
Global Cellular Automata: a Path from Parallel

Random Access Machines To Practical

Implementations?

Jörg Keller1 and Andre Osterloh2??

1 FernUniv. in Hagen, Dept. of Math. and Computer Science, 58084 Hagen, Germany
joerg.keller@fernuni-hagen.de

2 Techn. Univ. Darmstadt, Dept. of Computer Science, 65289 Darmstadt, Germany
osterloh@andre-osterloh.de

Abstract. The Parallel Random Access Machine (PRAM) and the Glo-
bal Cellular Automaton (GCA) are both models to study parallel algo-
rithms. We investigate the commonalities and di�erences between these
models, because we think that they could nicely complement each other:
PRAMs have lots of algorithms, GCAs provide e�cient implementa-
tion paths. We provide the following results: GCAs are CROW PRAMs,
GCAs have more advantageous optimality criteria than PRAMs, and
GCA implementations are more e�cient than typical PRAM emulations.

Key words: PRAM simulation, Global Cellular Automaton, Optimal-
ity Criteria

1 Introduction

The Parallel Random Access Machine (PRAM) is an established model to study
parallel algorithms without consideration of details such as interconnection net-
work or synchronization cost. A number of processors work synchronously on a
shared memory with unit access time. There are several variants that di�er on the
access patterns that are allowed, denoted by XRYW, where X,Y ∈ {C,E,O}
denote the variant for read (R) and write (W) access, respectively. C means con-
current, i.e. several processors may access the same memory cell in one step. E
means exclusive, i.e. only one processor may access a cell in each step. O means
owner, i.e. only the owner of a cell may access this cell. While many PRAM algo-
rithms have been developed, and several schemes have been derived to emulate
a PRAM on a message-passing machine including hardware prototypes, PRAM
algorithms have not found their way yet into practical parallel programming.
This hurts more and more as parallel programming is becoming commonplace
with multicore processors being the standard for PCs and notebooks. For details
on PRAMs and their emulation, we refer to [1,2,3,4].

? Research supported by German Science Foundation (DFG) grant HO 893/7-1.
?? Now with BTC AG, Escherweg 5, 26121 Oldenburg, Germany.



The global cellular automaton (GCA) [5] is an extension of the classical
cellular automaton (CA) model. In the GCA, a collection of �nite state automata
(FSA) called nodes or cells update their local states synchronously where each
FSA uses as input its own current state and the current state of its neighbor(s).
While the neighbors are �xed by some geometrical rule in the CA, neighbors in
the GCA are not �xed by physical interconnect but neighbors are identi�ed by
addresses which are part of the local state and thus can vary with node ID or
over time. The number of addressable neighbors per node is a parameter of a
particular GCA, and typically denoted as the number of hands, i.e. in a one-
handed GCA, each node can only address one neighbor. A number of techniques
to implement GCAs in recon�gurable hardware (FPGA) or non-con�gurable
hardware (ASIC) have been developed: e.g. fully parallel [6] or data-parallel [7]. A
programming and synthesis environment is available [8], i.e. there is a high-level
programming language to formulate GCA algorithms, a simulator to debug them,
and there exists a compiler producing VHDL code that can be synthesized into
an FPGA con�guration by a silicon compiler. As the recon�gurability together
with programmability allows highly adapted and optimized implementations of
parallel algorithms, the GCA seems a promising candidate for a highly e�cient
massively parallel computing platform. Yet, the number of algorithms developed
for the GCA model is still rather small.

In the present paper, we investigate the commonalities and di�erences be-
tween both models, because they could nicely complement each other: PRAMs
have lots of algorithms, GCAs provide mature and e�cient implementation
paths. We give our results in three parts. First, we compare GCAs and PRAMs
and show how a PRAM can be simulated by a GCA. As a consequence the
wealth of PRAM algorithms is accessible to GCAs. One further result of this
comparison is that there is a one-to-one correspondence between a one-handed
GCA and a CROW-PRAM, i.e. a GCA can be seen as a CROW PRAM. Second,
we show that GCAs have more advantageous optimality criteria than PRAMs,
which allows to use simpler PRAM algorithms without penalty. Third, we show
that GCA implementations are more e�cient than typical PRAM emulations.
The similarities between CROW PRAM and GCA and aspects of optimality
criteria have been mentioned rather informally in [6].

The remainder of this paper is organized as follows. In Sect. 2 we describe
how one step of a PRAM can be simulated on a GCA and give upper and lower
bounds. In Sect. 3 we discuss optimality criteria for PRAMs and GCAs. In Sect. 4
we describe optimal PRAM emulations via GCAs. Finally, in Sect. 5 we give a
conclusion.

2 Correspondence of PRAMs and GCAs

In this section we give lower and upper bounds for the number of steps necessary
to simulate t steps of a PRAM on a GCA. A detailed description of the GCA
model can be found in [5]. For a description of the PRAM model see [1]. For the



rest of this section we assume the instruction sets of the PRAM and the GCA
to be equal.

First, we describe a simulation of one step of a priority CRCW PRAM on
a GCA. In contrast to a PRAM, a GCA does not have a common memory.
Hence, to simulate a PRAM by a GCA we have to simulate the access to the
memory. To distinguish between PRAMs and GCAs we call the storage locations
of a GCA cells. Note that cells are able to execute instructions. Since all GCAs,
even the 1-handed ones, are able to read from all their cells simultaneously, a
simulation of reading access to the PRAM memory is no problem. Hence we
focus our attention to simulate writing access. Here it is important to remember
that a cell is not allowed to write on other cells.

We begin with the description of a simple simulation of one step of a PRAM.
Then we improve the simulation to our �nal result. We simulate a step of a
priority CRCW PRAM with p processors and m storage locations. In a priority
CRCW PRAM writing con�icts are solved by using priorities. If two or more
processors want to write into the same storage location the processor with the
highest priority wins. We assume for simplicity and without loss of generality
that the priority of a processor is given by its number, i.e. the processor with the
highest number has the highest priority. We simulate the PRAM by a 1-handed
GCA with p ·m cells ci,j , 1 ≤ i ≤ p, 1 ≤ j ≤ m. The basics behind the simulation
are:

(1) cell ci,1, 1 ≤ i ≤ p, simulates processor i
(2) cell c1,i, 1 ≤ i ≤ m, simulates storage location i
(3) cells c1,i, . . . , cp,i, 1 ≤ i ≤ m, are used to solve writing con�icts on storage

location i

This situation is depicted in Fig. 1.
Writing on a storage location i, 1 ≤ i ≤ m, is simulated by the following

three steps:

(1) For all j, 1 ≤ j ≤ p: If processor j wants to write on storage location i, the
cell cj,i stores value i otherwise it stores value 0.

(2) Cells c1,i, . . . , cp,i calculate which processor writes on i. Since the processor
with the highest number has the highest priority, this can be done by cal-
culating the maximum of the stored values in c1,i, . . . , cp,i. Assume that k,
1 ≤ k ≤ p, is the calculated maximum. Then k is stored in c1,i.

(3) c1,i reads the value processor k wants to write into storage location i.

In step (1) cell cj,i reads on cell cj,1. This can be done in O(1) steps. In step (2)
a maximum of p values is calculated. This can be done in O(log p) steps [9]. So
we get a �rst result

Lemma 1. One step of a p-processor priority CRCW PRAM with m storage

locations can be simulated by a 1-handed GCA with p ·m cells in O(log p) steps.

One is able to reduce the resources from p ·m cells, each containing a polylog-
arithmic number of bits, to p+m cells containing p ·m bits in total. To do this



Fig. 1. Simple GCA to simulate concurrent writes.

we have to assume that all processor cells of the GCA are able to store at least
m bits. The idea is the following: we take a balanced binary tree of cells. We
call the root of the tree r. In this tree the p cells simulating the processors are
the leaves. Such a tree consists of 2p− 1 cells. Each cell of the tree is equipped
with a register of m bits. Additionally m other cells exist. These cells simulate
the m storage locations. If processor i wants to write on storage location j, the
leaf with number i sets the j-th bit of its register. Using a standard technique
we calculate in O(log p) steps in the register of r on which memory locations
we want to write, i.e. the i-th bit in the register of r is set if and only if one
processor cell wants to write to storage location i. This situation is depicted in
Fig. 2. Now each of the m cells is able to calculate in one step by testing the
register in cell r if it shall be written. If so, it can calculate in O(log p) steps
which processor cell wants to write to it, by following the path from root r to
the appropriate leaf processor cell, which is a standard tree search technique.
The memory cell then reads the value to be written from that processor cell,
and stores it locally. Hence we get:

Theorem 1. One step of a p-processor priority CRCW PRAM with m storage

locations can be simulated in O(log p) steps of a 1-handed GCA with O(p +m)
cells holding O(p ·m) bits in total.

We are also able to reduce the number of cells from p ·m to O(p+m), each
containing only a polylogarithmic number of bits, by paying with some extra
simulation time. To do this, we employ a GCA with p cells representing the
PRAM processors and m cells representing the memory locations. In the PRAM



Fig. 2. Tree of GCA cells for concurrent write.

step to be simulated, each processor Pi that wants to write value vi to shared
memory location ai generates a tuple

(ai, i, vi) ,

while other processors choose ai = ∞. The processors sort these tuples, which
can be achieved with the help of bitonic sort in O((log p)2) GCA steps. To
handle concurrent writes, each processor Pi compares its local tuple to the tuple
in Pi+1. If both tuples contain the same address, then processor Pi changes its
local address to ∞, so that only one write to each memory location remains,
originating from the processor with highest ID, i.e. highest priority. Now the
processors sort these tuples again. Then, each memory cell can apply a binary
search among the tuples to check if its address is present. If so, the memory
cell performs the write. This takes O(log p) GCA steps. Thus we arrive at the
following theorem.

Theorem 2. One step of a p-processor priority CRCW PRAM with m storage

locations can be simulated by a 1-handed GCA with O(p+m) cells in O((log p)2)
steps.

Now we show that we generally cannot reduce the number of steps necessary
to simulate one step of a PRAM below a logarithmic bound.

Theorem 3. Let a ∈ N. An a-handed GCA needs Ω(loga+1 p) steps to simulate
one step of a CREW PRAM with p processors. This result is independent from

the instruction set and the number of cells of the CGA.



Proof. Given is an a-handed GCA G. The task is to calculate a value that
depends on p inputs. The inputs are given in cells c1, . . . , cp. The result has to
be stored in cell cp+1. In the following we show that G needs Ω(loga+1 p) steps
to calculate the result in cell cp+1.

Before the calculation of the result starts, the content of cp+1 depends on no
other cell. Since G is a-handed, the state of each cell, in particular cp+1, depends
at most on a + 1 cells (its own state and a other cells) after the �rst step of a
calculation. After t ≥ 2 steps of a calculation, the state of cp+1 depends on the
cells it depended on after step t− 1, and additionally on the cells it accessed in
step t. So the maximum number xt of cells that cp+1 depends on after t steps is
given by

x1 = a+ 1 (1)

xt = xt−1 + a · xt−1, t ≥ 2 . (2)

So xt = (a+1)t. Since the input is given in cells c1, . . . , cp and the result depends
on all of them, the calculation can only be �nished for a t with (1 + a)t ≥ p, i.e.
the desired result.

Finally we shortly discuss why CROW PRAMs are GCAs. We have seen
that the simulation of a read access on a storage location is no problem. Since
processors of a CROW PRAM are only allowed to write on a storage location
where they have owner rights and furthermore each storage location has at most
one owner, no write con�icts can occur. So the storage locations for which a
processor is owner can be coded in the state of the cell that simulates the pro-
cessor. In order to arrive at GCA cells with asymptotically equal state sizes, one
must further request that each PRAM processor is owner of O(m/p) memory
locations.

We also assume that in a p-processor PRAM with m memory locations,
normally m is polynomial in p and each memory location contains a number of
bits polylogarithmic in m.

3 Optimality Criteria in PRAMs and GCAs

While the computational power of GCAs and PRAMs is equal (see previous
section), there are still some di�erences. In a PRAM, one counts the number
of processors as cost, but does not take the memory size and cost into account.
This may result from the impression that a processor is a very complex circuit
comprising more than 109 transistors, while memory cells are incredibly cheap,
involving about one transistor per bit for a dynamic RAM cell, or four transis-
tors for a static RAM cell. In contrast, in a GCA each node has a state that
comprises both processor state and memory state, and has some circuits for state
transitions from cycle to cycle. Thus, counting the nodes of a GCA involves both
processing and storage cost, with the ratio between cost per processor and cost
per memory bit being very much smaller than in the PRAM model. As a GCA
algorithm to be executed is directly encoded into the nodes' �nite state machines,



a GCA node typically contains only few hundred logic gates for processing. Thus,
memory makes out a considerable fraction of the node cost.

This di�erence becomes apparent when we consider the processor-time prod-
uct (PTP) of a parallel algorithm. When using a PRAM, the PTP is the product
of the parallel algorithm's runtime tp on a PRAM and the number P of proces-
sors of the PRAM. The ratio behind this de�nition is the ability to compare the
parallel algorithm to the sequential complexity ts of the problem to be solved.
The PTP cannot be asymptotically smaller than this sequential complexity. If
we assume that we would have a parallel algorithm with a smaller PTP, then
we could simulate a PRAM with this algorithm sequentially, instruction by in-
struction of all PRAM processors, and would arrive at a sequential algorithm
with a runtime that asymptotically equals the PTP, which contradicts the above
assumption. If the PTP equals the sequential complexity, i.e. if

tp · P = O(ts) , (3)

then the parallel algorithm is PTP-optimal. Consequently, there has been a strive
in PRAM algorithmics to �nd PTP-optimal parallel algorithms that use as many
processors as possible.

Yet, these are two con�icting goals. A parallel algorithm without concurrent
write that takes input of size n into account completely has a parallel runtime of
at least tp = Ω(log n). Because of Eq. (3), there exist only PTP-optimal parallel
algorithms using at most

P = O(ts/tp) = O(ts/ log n) (4)

processors. As in many problems, especially the ones with linear time complexity,
the memory consumption is Θ(ts), the memory size is asymptotically larger than
the processor count, but is not taken into account.

Creation of a PTP-optimal algorithm often occurs in two steps: there is a
parallel algorithm that achieves optimal parallel runtime, but needs more pro-
cessors than given in Eq. (4), typically on the order of the sequential complexity,
i.e. P = O(ts). Then one modi�es this algorithm, for example by reducing the
problem size by a factor of log n in a preprocessing step, and then one applies
the non-optimal algorithm on the reduced problem. As log(n/ log n) = Θ(log n),
the algorithm now is PTP-optimal. Yet, the construction of a PTP-optimal al-
gorithm may be much more elaborated, so that it would be advantageous to be
able to restrict to the non-optimal algorithms which are much simpler. Also, in
this case, memory size and processor count would be proportional.

As an example, consider the problem of computing the sum of n numbers.
A very simple PRAM algorithm with P = n/2 processors repeatedly adds two
of the numbers with each processor, until the sum remains, see the following
pseudocode.



int numbers[n];

int sum;

simplesum(int n){ // proc. count equals array size

for(t=log(n)-1;t>=0;t--){

if(PID<(1<<t)){ // use 2^t proc.s in step t

numbers[PID] = numbers[2*PID] + numbers[2*PID+1];

}

}

sum = numbers[0];

}

This simple algorithm uses P = n/2 processors to sum n numbers in time tp =
O(log n). Thus it is time-optimal as the sequential complexity is ts = O(n), but
not PTP-optimal. If we can reduce our problem size to n/ log n in parallel time
O(log n) with n/ log n processors, then the simple algorithm can be applied with
n/ log n processors in time O(log(n/ log n)) = O(log n). The resulting algorithm
is PTP-optimal. Such a preprocessing is easily achieved by having each of the
n/ log n processors simply sum up log n numbers, see the following pseudocode.

int numbers[n];

int sum;

optsum(int n){ // proc. count is only n/log n

for(i=1;i<log(n);i++) numbers[PID] += numbers[PID+i*n/log(n)];

simplesum(n/log(n));

}

In contrast, while there exists a simple time-optimal PRAM algorithm for
ranking a list of size n with n processors [10], reducing the number of processors
to n/ log n requires complex programming means like independent set removal
[11].

Another argument why the PTP as de�ned above might not give best results
in reality is a re-interpretation of the PTP. If we see runtime as the inverse
of the performance (performance is de�ned as work per time, and for a given
algorithm the work to be done is �xed), then the PTP is also a measure of price
per performance. However, this price or cost only includes processors but not
the memory cost.

In contrast to the PRAM, the node cost in a GCA includes memory cost
as the memory cells are part of the node states. Hence there is no necessity to
reduce the processor count below the memory size, i.e. at least the problem size,
because this would not simplify the GCA. In turn, this relaxes the PTP-criteria.

Thus, our second result is that in the GCA, optimality criteria are relaxed,
and thus non-PTP-optimal PRAM algorithms become optimal in the GCA. Non-
PTP-optimal but time-optimal PRAM algorithms typically exist and are much
simpler than PTP-optimal PRAM algorithms. As the GCA can avoid these



elaborate schemes, simpler algorithms can be applied without any penalty which
increases productivity. Also, these simpler algorithms further help the GCA by
simplifying the state machines and thus reduce node cost and potentially allow
to increase clock frequency.

4 Optimal PRAM emulations via GCAs

While GCAs seem to relate favorably to PRAMs, the realization of reads to
arbitrary addresses, possibly concurrent reads, takes time also in GCA imple-
mentations. Hence, the question arises whether GCAs only provide new and
better insights into optimality of algorithms, or whether they also lead to more
e�cient implementations than direct PRAM emulations on processor networks,
which have been studied for decades.

Emulations of a given P -processor PRAM on a parallel message-passing ma-
chine (MPP) typically work in the following manner. The PRAM address space
is distributed over the MPP memories in a pseudo-random manner. The size p
of the MPP is chosen such that P = l · p and that an l-relation3 can be handled
by the MPP's interconnection network in time O(l). For example, this is true for
a coated mesh of size p×p, where p processors occupy only the �rst and the last
row of the mesh, and the routing is done in time l = O(p) [12]. This also holds
probabilistically for a wrapped butter�y network of p rows, with processors only
present in the �rst column of the butter�y network. This situation is depicted
in Fig. 3(a). The routing of an l = O(log p) relation takes time O(log p) in a
butter�y network with high probability [13].

Each MPP-processor simulates l PRAM processors, instruction by instruc-
tion. Accesses to shared addresses are realized via requests (and responses in
case of reads) over the interconnection network to the MPP-memories holding
those addresses. Concurrent accesses to some address are handled by combining
the requests in the interconnection network or at the memory module holding
this address, in order to avoid a hot spot [14,15].

Thus one step of P PRAM processors can be simulated in time Θ(l) on a
p-processor MPP. The Θ is necessary because the interconnect latency gives an
upper bound, but the simulation of one step of l PRAM processors on one MPP
processors still takes time Ω(l). As P = l ·p, this is time-optimal. As the latency
in constant-degree networks is Ω(log p) or even Ω(

√
p) if we restrict to constant

length wiring between nodes, it follows that p = O(P/ logP ). Still, the cost of the
MPP is not Θ(p) but Θ(P ) as at least the state for each PRAM processor must
be kept, and also many interconnection networks, such as the butter�y network
used in the Fluent Machine and the SB-PRAM, have cost O(l · p) = O(P ) [3].
While those considerations have been largely ignored for cases where cost of
a processor is much larger than the memory or register cost to store PRAM
processor states, it becomes relevant when processing cost is small as in the case
of the GCA. A major disadvantage of this emulation is that each emulation step

3 Each processor-memory pair of the MPP is the source and the origin of at most l
packets.



Fig. 3. PRAM emulations: (a) a coated butter�y network, (b) a processor mesh.

takes time O(l), besides the cost being proportional to the number of PRAM
processors simulated.

A di�erent approach by Bilardi and Preparata [16] proposes to implement a
PRAM on a P -processor network with latency l, e.g. a square mesh, so that each
node has routing, processing, and storage functionality. An example is depicted
in Fig. 3(b). The cost of the MPP is O(P ) as in the previous emulation strategy,
and it can host P PRAM processors. While an emulation of shared memory
access will take time O(l) as before, simulation of PRAM steps without shared
memory access can be done in time O(1), as each MPP processor now only
has to host one PRAM processor. The scheme above is formally shown to be
optimal in [16]. Intuitively, one can argue that in the general case, all schemes
asymptotically have the same cost and the same time span to implement one
PRAM step, given that identical networks are used. Yet, in steps that only
work locally or in a regular manner (e.g. each PRAM processor may access a
memory location hosted by its right neighbor), the PRAM emulations above
cannot use this fact to their advantage, even if they are aware of it. Yet, the
Bilardi/Preparata scheme only needs a short time for this step.

The Bilardi/Preparata scheme also in a natural manner translates to GCAs,
where each cell typically hosts computational and storage functionality, and
where implementations complete each GCA step as fast as possible. Furthermore,
many algorithms are regular enough so that a compiler can identify steps where
concurrent and arbitrary access to the shared memory is not needed; all of these
steps can be simulated fast. As thus, GCAs seem an optimal implementation
platform for PRAMs.



5 Conclusions

We have presented how Global Cellular Automata provide a bridge between
the theory of parallel algorithms, formulated in the PRAM model, and practi-
cal realizations in recon�gurable, massively parallel hardware. First, we argued
that PRAM algorithms can be e�ciently transformed into GCA algorithms.
Second, we argued that optimality criteria for GCAs are both closer to reality,
and more advantageous than in the PRAM model, thus allowing to use simpler
algorithms. Third, we argued that typical implementations of GCAs in recon-
�gurable hardware are advantageous over classical PRAM emulations with their
massive latency hiding, if the full power of concurrent access is not needed too
often, which holds for many PRAM algorithms. Thus, we conclude that GCA
implementations in recon�gurable hardware provide PRAM emulations tailored
to the speci�cs of the algorithm to be executed.

References

1. JáJá, J.: An Introduction to Parallel Algorithms. Addison Wesley, Reading, MA
(1992)

2. Karp, R.M., Ramachandran, V.L.: A survey of parallel algorithms for shared�
memory machines. In van Leeuwen, J., ed.: Handbook of Theoretical Computer
Science, Vol. A. Elsevier (1990) 869�941

3. Keller, J., Keÿler, C.W., Trä�, J.L.: Practical PRAM Programming. Wiley & Sons
(2001)

4. Valiant, L.G.: General purpose parallel architectures. In van Leeuwen, J., ed.:
Handbook of Theoretical Computer Science, Vol. A. Elsevier (1990) 943�971

5. Ho�mann, R., Völkmann, K.P., Waldschmidt, S., Heenes, W.: GCA: Global Cel-
lular Automata. A Flexible Parallel Model. In: PaCT '01: Proceedings of the
6th International Conference on Parallel Computing Technologies, London, UK,
Springer-Verlag (2001) 66�73

6. Jendrsczok, J., Ho�mann, R., Keller, J.: Implementing hirschberg's PRAM-
algorithm for connected components on a global cellular automaton. International
Journal of Foundations of Computer Science (IJFCS) 19(6) (2008) 1299�1316

7. Jendrsczok, J., Ho�mann, R., Lenck, T.: Generated horizontal and vertical data
parallel GCA machines for the N-body force calculation. In: Proceedings of the
22nd Conference on the Architecture of Computing Systems (ARCS). (2009) 96�
107

8. Jendrsczok, J., Lenck, T., Ho�mann, R., Osterloh, A., Keller, J.: A data parallel
GCA machine adapted to the N-body force calculation. submitted (2009)

9. Heenes, W.: Entwurf und Realisierung von massivparallelen Architekturen für
globale Architekturen. PhD thesis, Techn. Univ. Darmstadt, Dept. of Comuter
Science (2006)

10. Wyllie, J.C.: The Complexity of Parallel Computation. PhD thesis, Department
of Computer Science, Cornell University (1979)

11. Cole, R., Vishkin, U.: Faster optimal parallel pre�x sums and list ranking. Infor-
mation and Computation 81(3) (1989) 334�352

12. Leppänen, V., Penttonen, M.: Work-optimal simulation of PRAM models on
meshes. Nordic Journal of Computing 2(1) (1995) 51�69



13. Leighton, T., Maggs, B., Rao, S.: Universal packet routing algorithms. In: Proceed-
ings of the 29th Annual IEEE Symposium on Foundations of Computer Science.
(1988) 256�269

14. Gottlieb, A., Grishman, R., Kruskal, C.P., McAuli�e, K.P., Rudolph, L., Snir, M.:
The NYU ultracomputer � designing an MIMD shared memory parallel computer.
IEEE Transactions on Computers C�32(2) (1983) 175�189

15. Ranade, A.G.: How to emulate shared memory. Journal of Computer and System
Sciences 42(3) (1991) 307�326

16. Bilardi, G., Preparata, F.P.: Horizons of parallel computation. Journal of Parallel
and Distributed Computing 27(2) (1995) 172�182


