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Abstract

Tuning the performance of grid applications is cumbersome because it is very difficult to decide which code to look at. In
our previous work we proposed a tool to recommend tasks in a task graph that look most promising for improvement. In
the present work we first show how to extract task graphs from real grid applications with the help of SCALASCA, then
we evaluate the tool with the OptSched benchmark suite of synthetic schedules. Finally, we present some extensions to
the tool to adapt it to some typical situations occuring in practice.

1. Introduction
Grid applications often consist of very large code bases
comprising hundreds of functions assembled from differ-
ent sources. Hence, when performance of such a system is
unsatisfactory, the question is what to do, i.e. which parts
of the code to look at for improvement. For the case of
data-parallel computing, data distribution can be changed
to improve performance by reducing waiting times. A tool
to advise users in this direction is developed [4] as part
of the SCALASCA toolset [3]. However, for more un-
structured types of large scale computations such as the
Tachyon parallel raytracer [15] from the SPEC MPI2007
suite an acceleration may only be possible by improvement
of part of the code.

In [8] we presented a concept for a tool to analyze grid
applications with the help of task graphs. The tool selects
one or several tasks from the critical path of a task graph
such that the critical path remains unchanged, that no task
needs to be improved by more than a certain percentage,
and that the reduction in critical path length, i.e. makespan
or runtime, is maximum given these constraints. In the
present work, our contributions are as follows. We extend
this concept in several ways. We show how it can be ap-
plied to traces of MPI applications, thus expanding its use
beyond the range of grid workflows where task runtimes
are known in advance. As an issue of immense practical
importance, we incorporate the possibility of task types,
i.e. the presence of several tasks based on the same code,
so that an optimization will affect all of them. Also, we
show how to treat the case of a non-unique critical path in
the task graph. This case frequently appears as a result of
a first optimization, so incorporation of this case allows to
apply the tool iteratively. Finally, we evaluate our tool with
a benchmark suite of synthetic task graphs and analyze the
relationship of their characteristics and the findings of the
tool.

In Section 2 we present how a grid application can be
traced such that a task graph results that can be used with

our tool, which thus becomes applicable to real world grid
applications. Consequently, in Section 3 we can evaluate
the tool with the OptSched benchmark suite of synthetic
schedules [5, 6]. We present preliminary findings from
this evaluation. In Section 4 we present two extensions
of our tool: dealing with multiple instances of one type of
tasks, where improvement of the code for this type reduces
the runtime for all instances, and handling of a non-unique
critical path by iterative application of our tool. In Sec-
tion 5 we summarize our results and present an outlook to
future work.

2. Task Graph Analysis
2.1. Original Guidance Tool

Our tool from [8] works in the following way. We assume
that an application is given by a task graph. The task graph
is a directed acyclic graph where each node represents a
task, i.e. a piece of computation, that is assigned a run-
time as node weight. Each task receives input only at its
start, and provides output to other tasks only at its com-
pletion. The edges represent this information flow and are
attributed with the time to communicate information from
task to task as edge weight. If the tasks are both mapped
onto the same processor, then we assume a zero commu-
nication time. We assume that the task graph has unique
source and sink nodes. If it does not, we provide artificial
source and/or sink nodes with zero node and edge weights.

Starting with a task graph already assigned to processing
elements, we compute the critical path, i.e. the longest path
from source to sink, which defines the makespan, i.e. the
completion time executing the task graph. If we try to re-
duce the runtime by improvement of the code, obviously
the tasks from the critical path must be considered, because
other tasks do not directly influence the makespan. Also,
we need improve a task on the critical path only so much
that it remains on the critical path, a further improvement
will not influence the makespan anymore. Finally, we as-
sume that each task can only be improved by at most some



percentage tm, because arbitrary improvements are unreal-
istic and because otherwise tasks that never leave the crit-
ical path (such as the source) could be considered as opti-
mizable to a zero runtime. The value of tm can either be set
globally for all tasks, or individually for each task, e.g. 0%
for highly optimized library routines, 10% for code from
a master thesis, and 30% for untested code written in the
night before.

Out of the tasks on the critical path, we select those that
under the constraints above promise maximum makespan
reduction, and recommend them for code review and im-
provement. The selection is done as follows. We trans-
form the task graph into a line graph only consisting of
the critical path. For each pair u, v of nodes on the crit-
ical path, we search for the longest path from u to v that
does not touch the critical path, and represent this path by a
so-called “outside” edge with the weight of the path. This
is possible because we only change weights on the critical
path. Now we generate a linear optimization problem, with
the target runtimes of the critical path nodes as variables,
the length of the critical path as objective function that is to
be minimized, and the following constraints. Each target
runtime must be between the original runtime and a frac-
tion of 1 − tm of the original runtime. Also, for each out-
side edge, the length of the critical path piece that it spans
(i.e. the sum of the target runtimes of nodes on that critical
path piece, plus the edge weights between) may never be
smaller than the weight of the edge. In order to account
for effort, we may provide a malus for each additional task
that must be improved. So we get a balance between fur-
ther improvement from recommending an additional task
and further effort by having to inspect and improve the cor-
responding code.

2.2. Task Graph Extraction from Grid Applications

Task graph extraction from applications written in MPI has
already been considered by Schulz [12]. Each piece of
computation on a processor between two communication
operations is a task. Each pair of a send and a receive op-
eration leads to an edge between the tasks that the send
terminates and the receives initiates, respectively. When
runtimes of tasks are considered, waiting time in receives
obviously is not modelled. A collective communication
may be modelled with the help of sends and receives [1].

What must be considered additionally in our scenario are
dependencies originating from the mapping of tasks onto
processors, in particular the execution order of the tasks
mapped on one processor. We represent these orders in the
task graph by connecting the tasks mapped on one proces-
sor by a chain of edges with zero weight.

The SCALASCA toolset [3] allows to instrument an MPI
application such that each processor writes a trace that logs
function entry, function exit, send and receive operations.
Thus, from these traces, with the method of Schulz aug-
mented by the considerations outlined above, we are able
to generate a task graph from the application such that the

mapping is represented and such that we can associate each
task with a function, i.e. with a piece of source code that
the function executes. For functions with multiple com-
munication operations, we can still associate with the i-th
task since the function entry the source code before the i-th
communication operation, assuming that this position can
be found by static analysis in the source code.

2.3. Grid Workflows

In the previous subsection we have seen how an MPI appli-
cation can be tuned by analyzing its task graph, and how
this task graph can be extracted from a trace of the MPI
application. MPI applications mostly run on cluster com-
puters in order to provide fast communication of interme-
diate results on a fine grain level, although there are sev-
eral projects like GridMPI [9] and MPICH-G2 [7] that pro-
vide grid-enabled implementations of MPI, and there are
MPI applications running on grids [11]. Yet, grid environ-
ments are not well-suited for very fine grained parallelism.
Instead, they are often used for high throughput comput-
ing (independent tasks) or for workflows (dependent tasks)
which are characterized by parallel coarse grained paral-
lelism [10, 16]. The dependencies of the tasks in a grid
workflow are known in advance and can also be modelled
by a scheduling task graph. Note however, that the task
graph used for scheduling is slightly different from the one
that is used to describe the concrete execution of the work-
flow. The scheduling task graph contains additional infor-
mation about the target environment in which the work-
flow should be executed. This environmental informa-
tion is used by the scheduler to find a good assignment
of the tasks to the compute nodes and to determine appro-
priate starting times for these tasks. On the other hand,
the trace task graph is just another representation of the
workflow’s execution on the assigned grid resources which
is needed by our tuning tool. Before a workflow sched-
ule can be computed a target environment must be estab-
lished. Scheduling is only possible if a certain Quality of
Service (QoS) of the target environment is assured. Thus,
an advance reservation (AR) facility is needed to config-
ure an execution environment for a workflow [2, 13, 14].
The execution environment comprises not only the com-
pute nodes but also the network connections for exchang-
ing data. Without AR, one could not plan the execution
times of the subtasks because the compute power of un-
reserved grid nodes could change at any time. Likewise,
also the data transfer times could not be considered during
scheduling without AR. When the target environment has
been established a schedule can be computed and the trace
task graph will be derived. It is used by our tuning tool to
identify the most critical task, which can then be acceler-
ated by means of code optimization as already explained in
the case of MPI applications. Another option could be to
reassign the identified task to another compute node or to
change the reserved network QoS features. After chang-
ing the properties of the target environment by means of
AR we could repeat the steps described in this paragraph
in order to gradually improve the performance of the work-



Figure 1: Structure of the OptSched testbench

flow’s execution on the grid.

3. Evaluation and Results
For our evaluation we use the OptSched testbench [6] of
synthetic task graphs scheduled onto several machine con-
figurations with various static scheduling heuristics.

3.1. Testbench

It is usually difficult to compare the quality of different
scheduling algorithms from the literature because each au-
thor uses a different set of task graphs for evaluation. Thus,
the OptSched testbench has been developed to provide a
tool for an objective comparison between scheduling al-
gorithms for homogeneous parallel machines like cluster
computers or a collection of grid resources with a certain
quality of service. Beyond a large number of scheduling
heuristics, the test bench also provides optimal schedule
lengths for almost all test cases to allow for absolute com-
parison. A detailed description of the test bench can be
found in [6]. Here, we restrict ourselves to its structure and
how it was applied to analyze the proposed tuning tool.

The OptSched test bench is a synthetically created collec-
tion of test cases. It allows to select subsets of test cases
characterized by specific graph properties. Thus, the users
are enabled to investigate the dependance of scheduling al-
gorithms on those properties. OptSched consists of ran-
domly generated task graphs whose size, meshing degree,
edge lengths as well as node and edge weights are varied,
see Fig. 1.

The task graph sizes are grouped into three categories with
7 to 12, 13 to 18 and 19 to 24 tasks per graph, respectively.
Regarding the meshing degree, four categories were con-
sidered: NoS_Low, NoS_Avg, NoS_High, and NoS_Rand,
denoting small, medium and large numbers of dependent
tasks created with normal distribution and uniformly dis-
tributed numbers of dependent tasks, respectively. The
edge-length related EL-categories are organized in a simi-
lar manner. The last level of categories is concerned with
the ratio between the node weights (computational load)
and the edge weights (communication load between pro-
cessors). E.g. for the HNode-LEdge category we get high

node weights and low edge weights, which corresponds to
a coarse grained application.

The hierarchically organized testbench comprises a total of
7200 (from bottom to top 150 · 4 · 4 · 3) task graphs that
were considered to be scheduled on five different archi-
tectures consisting of 2,4,8,16 and 32 (homogeneous) pro-
cessing elements, respectively. Thus, the OptSched test-
bench contains a total of 36000 test cases. All test cases
have been scheduled by eight popular static scheduling
heuristics, and for almost all test cases an optimal static
schedule has been computed in a multi-year effort since
2003. The testbench can be accessed via [5].

3.2. Experiments

For each test case1 and each available schedule, our tool
imports the task graph and the schedule, and represents the
mapping of tasks onto processors and the order of tasks
on each processor by adding edges with zero weight. We
first average over all task graphs and only consider differ-
ences between the different scheduling heuristics. Then we
consider the influence of the task graph properties on the
recommendations.

In the test cases, the average critical path length was be-
tween 6 and 7 nodes (ignoring the artificial zero weight
source and sink nodes), with a standard deviation of about
2. The task weights comprised from 80 to 87% of the crit-
ical path length on average depending on the scheduler,
with the optimal schedule showing highest percentage as
expected. This means that our tool can achieve an improve-
ment of 12 to 13% for a maximum possible improvement
of tm = 15%.

We performed experiments with tm =
10%, 15%, 20%, 25%. The results are depicted in
Fig. 2. We see that we achieve a gain that is increasing
with increasing tm, so the restrictions from outside edges
are not so strict that they render attempts at improvement
of the critical path useless. Also, while the possible
improvement in the case of an optimal schedule is smaller
than with heuristic schedules, the difference is small, so
that our tool is not only able to improve bad schedules, but
is also able to recommend inspection for improvements in
the case of optimal schedules. We see these preliminary
findings as an indication that our tool is useful.

For tm = 15% we have also investigated whether the
constraints from outside edges play a role. On average,
from 81% to 89% of the tasks recommended for improve-
ment could be improved by tm, with the optimal sched-
ule providing the smallest value, as expected, and the ETF
scheduling heuristic providing the largest value. Thus, the
better a schedule is, the larger the influence of the outside
edges is. This is no surprise however, because a better
schedule means that tasks are packed denser on the pro-

1We restricted to task graphs with at most 18 tasks because optimal
schedules are available for all of them, and to machine configurations
with 2 and 4 processors, because even the optimal scheduler does not use
more processors for such small graphs.



Figure 2: Possible makespan improvements for different scheduling heuristics.

Table 1: Possible makespan improvements for different
task graph properties

Property low med. high rand.
Meshing degree 6.94% 9.25% 10.82% 9.07%
Edge length 11.89% 8.86% 5.88% 9.56%

l/l l/h h/l h/h
Node/edge weights 8.96% 9.23% 9.03% 8.70%

cessors. Yet, even for weak schedules 11% of the nodes
can only be improved to a limit set by an outside edge, so
that their influence cannot be ignored.

When considering the task graph properties, we restrict to
the optimal schedules for the task graphs, in order to ex-
clude influences from imperfect scheduling, and set tm =
15%. The results are depicted in Table 1. The average
possible improvement is largest for a high meshing degree,
which may seem surprising as additional edges impose fur-
ther constraints. However, a low meshing degree typically
leads to a short critical path with fewer options for improv-
ing tasks. With rising edge length, edges tend to span more
than one level of the task graph when ordered topologi-
cally, and hence lead to more constraints. Thus, the pos-
sible improvement is highest for small edge length. The
ratio between node and edge weights has a much smaller
influence than the other parameters, while still low node
weights and high edge weights lead to largest possible im-
provements, as one would expect.

4. Extensions
So far we have assumed that all tasks in the task graph
are different, i.e. result from different pieces of code, and
that the critical path is unique. However, both assumptions
often will not hold in practice. For example, if the code
contains a function called on two processors, then there

will be two tasks resulting from the same piece of code. If
one of these tasks is on the critical path and will be rec-
ommended for code improvement, then the other task will
profit from this improvement as well. This situation can be
handled by introducing task types. As SCALASCA logs
entry and exit of functions, which is already used to estab-
lish a relation between source code and tasks, tasks can be
typed on the basis of their associated source code. For each
task type present on the critical path, all other instances of
this type outside the critical path are not assumed to have
a constant runtime but a runtime that improves by a sim-
ilar factor as the runtime of the task on the critical path
does. This has two effects. First, some outside edges in
our line graph may not have constant weight anymore, if
they contain tasks with a type that is present in a task on
the critical path. Second, as an outside edge represents a
maximum weight, we cannot compute this maximum nu-
merically anymore. Yet, in the linear optimization, a max-
imum of two expressions on the outside edge weight sim-
ply leads to two inequations that must be fulfilled instead
of one.

If there are two critical paths, then we may either start the
optimization twice, once for each of them, and recommend
the tasks on the path with the smaller improvement. Alter-
natively, we may couple the two optimization problems,
and provide an overall solution. Note that the optimization
in the case of a unique critical path may also lead to this
situation. If we improve one task so much that an outside
edge has the same weight as the corresponding piece of
the critical path, then in fact our optimization has created
an optimized situation where some part of the critical path
is not unique anymore. We now also may employ our op-
timization procedure iteratively: first on the critical path,
then on the two partial critical paths, and so on. Thus, we
can trade runtime of the optimizer against additional pos-
sibilities for code improvement.



5. Conclusions
We have presented an extension of a tool for guiding per-
formance improvements in grid applications, to make the
tool accessible to both grid workflows and MPI applica-
tions, i.e. with different levels of granularity, and to both
task graphs with task runtimes known in advance, and task
graphs derived from traces of a run. The extensions com-
prise the typing of tasks so that improving one task of a
certain type will also improve the runtime of all other in-
stances of this task type; also we incorporated the case of a
non-unique critical path, which allows to iteratively refine
the process of improvement.

We have furthermore evaluated the tool with a benchmark
suite of synthetic task graphs and schedules. The results
are promising in the sense that on average, a reasonable
potential for make span improvement by code acceleration
could be found.

Future work will first concentrate on applying our tool on
real world applications, probably starting with the Tachyon
application from the SPEC MPI2007 benchmark suite.

Beyond, there are two directions to follow. First, so far
we did not model the effort to improve a code function by
a certain percentage, but assume it to be constant for all
tasks. By correlating function metrics from software engi-
neering (e.g. lines of code) with expected effort to improve
code, we might provide the total amount of necessary pro-
gramming work to carry out the improvements and maxi-
mize the expected gain in runtime for this given amount.

Second, one may also invest the suitability of our tool to
data-parallel applications. In that case, a task graph with
source at the top and sink at the bottom will look like a
number of vertical paths, representing the computation on
the processors, with some horizontal edges indicating syn-
chronization or all-to-all communications or the like. Such
a situation can be recognized by our tool in the form of a
number of identical critical paths. If it does, it may recom-
mend to even out waiting times, which are known but not
considered so far, instead of reducing task runtime.
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