
Parallel Exploration of an Unknown Random Forest
Jörg Keller

Faculty of Mathematics and Computer Science
FernUniversität in Hagen
58084 Hagen, Germany

Joerg.Keller@FernUni-Hagen.de

Patrick Eitschberger
Faculty of Mathematics and Computer Science

FernUniversität in Hagen
58084 Hagen, Germany

Patrick.Eitschberger@FernUni-Hagen.de

Abstract—We investigate how to explore with a parallel ma-
chine a random and unknown forest, of which we only know
an upper bound on the total size, some leaves to start from,
and the roots. The size of the forest is too large to represent it
explicitly in the machine’s main memory. Instead for each node,
its parent node is given by an oracle, i.e. a piece of code of which
no particulars may be known. We present a parallel algorithm,
and use experiments to find parameter settings that influence the
runtime favorably.

Index Terms—Parallel graph algorithms, Multicore Comput-
ing, Performance Tuning.

I. INTRODUCTION

Assume that you are given the leaves of a tree (or forest),
and that for each node x, you can get its parent node p(x) by
an oracle (and thus also learn if you have reached the root), e.g.
by a piece of code about which no further details are known
than that its execution is done in a constant number of steps.
You know that the tree is so large that only a tiny fraction of
the nodes can be marked as visited, but you have no further
information about the structure, regularity or depth of the tree.
The task at hand is to explore the tree completely, starting at
the leaves. The exploration is to be done by a parallel machine,
in an efficient manner, i.e. with a reasonable speedup (we will
discuss later what this can mean).

While the scenario above seems rather abstract, it has a
very concrete application: the leaves are random seed states
of a pseudo-random number generator with moderately large
state space (i.e. of size less than 2100) and a non-bijective state
transition function, and the exploration serves to find some of
the cycles, e.g. to find where to modify the state transition
function (which is the oracle) to increase the cycle length [1].

In the present paper, we will investigate how to overcome
the challenges when implementing the parallel exploration on
a multicore machine. Basically, we will use the concept of
distinguished points to detect that paths have met, so that only
one has to be followed further, and we will explore the tradeoff
involved in deciding how many paths should be followed
in parallel: at least p if p hardware threads are available.
More paths might be advantageous, but too many again hurt
performance.

The remainder of this article is structured as follows. In
Section II, we provide background information on random
forests and parallel graph algorithms. In Section III, we present
our implementation and how it solves the challenges at hand.

In Section IV, we report preliminary experimental results, and
in Section V we conclude and give an outlook to future work.

II. BACKGROUND

A tree is a connected graph without cycles. We consider
directed trees, where arcs go from child to parent nodes, and
the root either has outdegree 0, or is its own parent node. A
forest is a collection of trees. A random tree is a tree created
by some random process. There are a number of models for
random trees (cf. e.g. [2]), which differ in their properties.

By a random forest, we assume that we have a set of n
nodes, and that each node randomly chooses a parent node.
In such a graph, each weakly connected component consists
of a cycle plus some trees attached to it via their roots (see
Figure 1), or put otherwise, consists of a tree plus one back
edge. We choose one node on the cycle as being the root, and
its outgoing edge as the back edge. The trees in such a graph
are rather ragged, i.e. the largest tree (i.e. weakly connected
component) is expected to contain about 75% of all nodes,
and has a depth of about 2

√
n, of which about half is on

the cycle [3]. The leaves are more or less evenly distributed
over all levels of the tree. Such structures appear in practice
as state transition graphs in cryptographic primitives such as
stream ciphers or pseudo-random number generators, where in
embedded sytems, n could be 264 or 280 [1]. As such, these
graphs cannot be represented in memory, but with the code of
the generator, the parent of a node can be found quickly.

Fig. 1. Connected component of a state transition graph, taken from [4].

To explore such a graph, one can start at randomly chosen
points, and follow the paths originating from there until they
have reached (and surrounded) the cycle of their component.
Thus, one can determine the cycle lengths of the larger
components, compute lower bounds on the depths of the trees,
and receive some kind of sampled spanning tree structure of
the components. However, as most of these starting points will
be in the same tree, the paths originating from them will merge
soon and much time is wasted in following them completely.

To prevent this, each path records from time to time a
node that it has passed, and queries from time to time if it
has reached a node recorded from another path. However, as
querying such a data structure in every step would be slow, the
nodes to be recorded should have a certain property, and only
when a node with such property is reached, the data structure
must be queried. Checking if a node has this property should
be much faster than querying the data structure. This concept
has been applied repeatedly under different names such as
distinguished points, anchors, or candidates [4]–[7]. As the
above mentioned property, typically a certain bit pattern in
the binary representation of the node index is used. As the
trees are considered random, choosing a fixed bit pattern is still
considered independent enough to be — in practice — similar
to assigning this property to a random subset of nodes. Thus,
if i bits must have a certain value in the pattern, the average
distance between candidate nodes is assumed to be 2i. Yet,
we note that it is not guaranteed that a path will meet any
candidate: if e.g. a tree contains only nodes with even index,
and the bit pattern requires that the lowermost bit is set to 1,
then no candidate will be encountered. Hence, this situation
must be detected, and such paths must be handled separately.
This can e.g. be done by additionally recording a node reached
after 2j steps, where j = 1, 2, 3, . . ., and checking in each step
if the last recorded node has been reached. However, we will
assume that at least the tree root is a candidate node.

III. PARALLEL ALGORITHM

Assume that we are given s starting points, and have a
shared-memory machine with p processors to follow the paths
starting from there. Then, as typically s � p, the question
arises if to proceed in a DFS-like or BFS-like manner. By
DFS-like manner, we understand starting p paths, follow them
until they terminate by either reaching the root or a candidate
that was already visited previously, and only add another path
if one path terminates. By BFS-like manner, we understand to
start following all s paths immediately and have each of the
p threads follow s/p paths simultaneously.

By following paths, we mean that each thread follows its
assigned path or paths until they have reached the next candi-
date. We will call this a round in the sequel. Then, a search
data structure that contains all candidates reached is queried
to find out if one of the candidates reached has been reached
before, in which case the respective path can terminate (and
be replaced by another in the DFS-like approach). The search
data structure is updated with the newly reached candidates,

and the next round starts. This continues until all paths have
been followed completely.

Both approaches have their merits. If an initial path is rather
long, then many of the paths started later can terminate quickly
because they soon will merge into the long path already
pursued. This calls for a DFS-like approach. In contrast, the
time to reach the next candidate can differ widely between
threads, as the number of steps necessary follows a geometric
distribution with success probability P = 2−i, if we assume
that each node is a candidate with probability 2−i. Thus, while
the expected number of steps is 1/P = 2i for every thread, the
standard deviation is

√
1− P/P , i.e. close to the expectation

as P is small. Hence, following multiple threads to their next
candidate simultaneously balances the round workloads of the
different threads, and can reduce the thread idle time. This
calls for a BFS-like approach.

We will generalize from these two extremal viewpoints by
having each thread follow k paths simultaneously, where 1 ≤
k ≤ s/p, cf. Alg. 1. We will determine advantageous values
for k by experiments in the next section.

Algorithm 1 Parallel algorithm to compute one round.
Precondition: C = {n1, . . . , npk} set of unvisited candidates,

ISCAND checks if state is candidate.

1: function ROUND(C)
2: for all i← 0 to p− 1 do . Parallel Loop
3: for j ← 1 to k do
4: pi ← nik+j ∈ C
5: repeat
6: pi ← TRANS(pi)
7: until ISCAND(pi) . Reached next candidate
8: Cnew ← Cnew ∪ {pi}
9: return Cnew

Splitting the algorithm (cf. Alg. 2) in rounds where first
paths are followed in parallel, and then the search data struc-
ture (which is a hashmap in our case) is accessed sequentially,
is due to our intention to run this algorithm later on an
accelerator (like a GPU), where control-flow intensive parts
like search might be difficult to implement. However, to find
out relevant parameter settings like the choice of k first, we
have first implemented it on a multicore CPU with OpenMP.

Although we assume (see previous section) that each path
will ultimately reach a candidate, for reasons of load balance
we still use a timeout, i.e. when a path does not meet a
candidate after a large number of steps (such as 10 · 2i), it
is interrupted, and further handled in a separate way, e.g.
completey on the host instead of the accelerator. Also, the
number of paths might be less than p · k in the last rounds,
which we did not specifically address in Alg.s 1 and 2, but
which is handled in our implementation.

Please note that the situation is different if the tree structure
is known before hand. There, at least in the BFS-approach
each node might be labeled with the minimum distance from
a starting point. Along a path, the distances increase. As soon

Algorithm 2 Algorithm to split starting points into rounds.
Precondition: S = {c1, . . . , cn} set of starting points.

1: function COMPUTE(S)
2: C ← ∅
3: repeat
4: C ← C ∪ {pk − |C| elements from S}
5: S ← S \ C
6: C ← ROUND(C)
7: for each c ∈ C do
8: if c is already visited then
9: C ← C \ {c}

10: else
11: mark c as visited
12: until S = ∅ . All paths processed

as a path reaches a parent node with a smaller distance label
than its child, the path can be terminated, as the parent has
already been visited previously on another path. Thus the tree
can be partitioned into paths of known length, and the problem
turns into a question of load balancing, where the task is to
assign each processor a number of paths such that the total
workload of any processor is minimized.

IV. EXPERIMENTS

All experiments presented in this section were executed
on a machine with four AMD Opteron 6328 processors, i.e.
with 32 cores in total. The cores have a maximum operating
frequency of 3,200 MHz (boost frequency 3,800 MHz). The
main memory has a size of 512 GiByte. The machine runs
under the Fedora 23 operating system. The programs are
compiled with gcc 4.7.2 with options -O3 and -fopenmp.
The time measurements are done with the time command,
using the real time.

The first set of experiments is done with s = 16, 384
randomly chosen candidate starting points. Candidates are
defined as nodes with bits 8 to 31 set to 1. Each run uses
the same set S1 of starting points. As transition function, the
index of a graph node is interpreted as a double value in the
range [0; 1], and f(x) = a · x · (1− x) is used to compute the
successor node, where a = 3.99. For a ≤ 4, this function has a
range of [0; 1], and for values of a close to 4 exhibits a chaotic
behaviour on the reals, i.e. will also look quite “random” on
the finite number representations used here. The doubles in
the range [0; 1] correspond to 62 bit unsigned integers1, as the
sign bit and the uppermost bit of the biased exponent are 0.

We first execute our algorithm sequentially, and get a
runtime of 168 seconds, which only increases for very large
values of k. We then execute our algorithm with 32 threads
for different values of k. Each run was repeated 3 times, but

1To be more exact, 62 bit unsigned integers correspond to the doubles in
the range [0; 2), but if we choose a starting point > 1, we divide by 2, and
application of the transition function only produces values in [0, 1]. Thus, a
fraction of 2−7 of the 62 bit unsigned integers is not used, assuming that
denormalized floating point representations are supported and used.

the variation in runtime is below 2%. Figure 2 depicts the
runtime achieved. We see that the runtime is minimized for k
around 24. The speedup compared to the sequential version is
around 16, which can be explained by the sequential part to
update the set of already visited candidates after each round,
and the insufficient parallelism in the last rounds, when only a
few active paths are left. Applying Amdahl’s law assigns the
sequential part about 3% of the total work, so most work still
is done in parallel.

The position of the minimum can be explained by the fact
that for small k, the chance of exploring a long path within
the first starting points is small, so that the paths starting
from the next starting points cannot profit from meeting
this path soon. On the other hand, for large k, all paths
progress simultaneously, and the long path does not progress
fast enough. Please note that the reduction in runtime from
k = 256 to k = 512 for set S1 has been confirmed in several
runs, but cannot be explained presently.

Figure 2 also depicts the runtimes for another set S2 of
randomly chosen starting points. The behaviour is similar, thus
we assume that this behaviour is independent of the concrete
set of starting points. Figure 2 finally depicts the runtimes
when the transition function is changed by using a = 3.98 (set
of starting points S3). Also here, the runtime dependence on
k is similar, although the position of the minimum is slightly
shifted.

0.000

5.000

10.000

15.000

20.000

25.000

30.000

1

2

4

8

1
2

1
6

2
0

2
4

2
8

3
2

6
4

1
2
8

2
5
6

5
1
2

ru
n
ti

m
e
 [
se

c]

k

set S1

set S2

set S3

Fig. 2. Runtime for different sets of starting points and transition functions,
depending on parameter k.

In a second set of experiments, we investigated the influence
of the candidate definition. For the set S1 of starting points,
and k = 24, we modified the candidates by defining them as
bits 8 to i set, where i was decreased from 31 to 24. Please
note that the starting points in S1 are candidates under each of
these definitions. The runtimes are shown in Figure 3. When
the candidate is defined by one bit less, then the number of
candidates doubles and their average distance is halved. One
would expect that having candidates with smaller distance
is favorable, as it can be detected earlier when two paths
have merged into one. However, putting candidates too close
seems to increase the sequential part of the program, as the
rounds, where paths are followed to the next candidate node,

get shorter. Earlier detection might happen, but is not certain.
If e.g. candidates are d steps apart, and paths merge 3d/4 steps
after the last candidate, and d/4 steps before meeting the next
candidate, then halving the distance is no advantage. Thus, the
overhead at some point gets higher than the gain.

We are aware that the optimal choice of k might depend on
the candidate definition, which is a topic of further research.

0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

31 30 29 28 27 26 25 24

ru
n
ti

m
e
 [
se

c]

candidate mask size

set S1

Fig. 3. Runtime for starting points S1 and k = 24 for different candidate
definitions.

Finally, we have investigated how to handle timeout. The
straightforward solution is to apply a fixed maximum number
of steps that a path is followed without reaching a candidate.
This maximum distance should be larger than the average
distance d between candidates. We have used a factor c,
i.e. stop following a path after c · d steps. Choosing c too
large however might hurt performance, as some threads might
already have completed finishing their k paths to the next
candidate node, while some might use most of the maximum
of k ·c ·d steps. Hence, we also tried to balance between paths,
by applying a bound of

bj =
k + 2j

3
· c · d−

∑
l<j

rl

for the j-th path that a thread follows, where rl ≤ bl is the
number of steps taken by the l-th path (with r0 = b0 = 0). In
total, the number of steps is still k ·c·d at most, but some paths
could use more than cd steps without taking away too much
of the others. The goal is to be able to apply a smaller value
of c without introducing additional paths that do not reach a
candidate before their timeout.

Table I depicts the number of paths that did not reach
a candidate before time out in the first two rounds, in an
experiment with 1,024 starting points and k = 8 paths per
thread. The results indicate that the more flexible timeout
allows to use a smaller c.

V. CONCLUSIONS

We have presented an algorithm to explore a large, random
tree or forest of unknown structure in parallel. We have
discussed implementation details and have explored parameter
settings that reduce the parallel runtime. In our future work,

TABLE I
NUMBER OF PATHS WITH TIMEOUT FOR FIXED AND VARIABLE TIMEOUT

BOUNDS.

c fixed variable
2 81 5
4 14 0
6 1 0
8 0 0

we plan to investigate a GPU-based implementation, which
involves further parameters, and to apply the algorithm in
the security domain to explore state spaces of pseudo-random
number generators.

ACKNOWLEDGMENT

We are very grateful to Christoph Kessler for discussions
about exploration of trees of known and unknown structure.
We also thank Torsten Linss for the possibility to use a
machine owned by FernUniversität’s numerical analysis group.

REFERENCES

[1] G. Spenger and J. Keller, “Tweaking cryptographic primitives with
moderate state space by direct manipulation,” in IEEE International
Conference on Communications (ICC’17), 2017.

[2] M. Drmota, Random Trees, An Interplay between Combinatorics and
Probability. Springer, 2009.

[3] P. Flajolet and A. M. Odlyzko, “Random mapping statistics,” in Advances
in Cryptology. Springer, 1990, pp. 329–354.

[4] A. Beckmann, J. Fedorowicz, J. Keller, and U. Meyer, “A structural
analysis of the A5/1 state transition graph,” in Proc. First Workshop
on GRAPH Inspection and Traversal Engineering, ser. Electronic Pro-
ceedings in Theoretical Computer Science, vol. 99. Open Publishing
Association, 2012, pp. 5–19.

[5] D. Denning, Cryptography and Data Security. Addison-Wesley, 1982.
[6] J. Hong, G. W. Lee, and D. Ma, “Analysis of the parallel distinguished

point tradeoff,” in Progress in Cryptology – INDOCRYPT 2011, D. J.
Bernstein and S. Chatterjee, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 161–180.

[7] J. Heichler and J. Keller, “A distributed query structure to explore random
mappings in parallel,” in Proc. 14th Euromicro Conference on Parallel,
Distributed and Network-based Processing, 2006, pp. 173–177.

