
Efficient and Fault-Tolerant Static Scheduling for Grids

Patrick Eitschberger
Faculty of Mathematics and Computer Science

FernUniversität in Hagen
58084 Hagen, Germany

Email: Patrick.Eitschberger@fernuni-hagen.de

Jörg Keller
Faculty of Mathematics and Computer Science

FernUniversität in Hagen
58084 Hagen, Germany

Email: Joerg.Keller@fernuni-hagen.de

Abstract—Static task graphs model a variety of parallel
applications, and are used to schedule such applications in
grid platforms. While the scheduling is static, i.e. done prior
to execution, processors might fail or not deliver their perfor-
mance, especially if the grid comprises nodes with donated
time, that may be used or shutdown by their owner at
any time. We extend a prior proposal for fault-tolerant grid
scheduling with task duplication to also cover situations where
tasks take much longer than expected from the schedule as
a special kind of fault. Furthermore, we consider the time
for communication between dependent tasks when placing
duplicates. We evaluate both scenarios with a simulator that
injects faults and slowdowns to processors, and workloads from
a benchmark suite of task graph with a variety of structures.
Our results indicate that the overhead in the fault-free case is
negligible, that a processor failure mostly increases the schedule
makespan only moderately because duplicates can use gaps
in the original schedule, and that the effects of a processor
slowdown can partly be mitigated by aborting a (slow) task
and running its duplicate.

Keywords-static task scheduling; fault tolerance; grid com-
puting; performance monitoring

I. INTRODUCTION

Task graphs are a well-known model for parallel pro-
grams. They comprise a collection of tasks with depen-
dencies, i.e. tasks produce output upon completion, that
is needed by a dependent task before it can start. Cyclic
dependencies are not allowed. As the dependencies do not
fully specify an execution order in a grid with a finite number
of processing units, the task graph must be scheduled. Static
scheduling converts the task graph prior to execution into a
schedule, i.e. for each processing unit, a list of tasks with
start and end times is given. The goal of the scheduler typi-
cally is to achieve a short makespan, which is the maximum
completion time over all tasks. With dynamic scheduling, the
assignment of tasks to processing units occurs at runtime.
Scheduling is an NP-complete problem, hence schedulers
typically use heuristics. While static scheduling normally
achieves shorter makespan and does not incur overhead
during runtime, dynamic scheduling has the advantage that
it can adapt to changes in the computing platform that are
unknown prior to execution, at the cost of inferior schedules
and runtime scheduling overhead.

An example for a change at runtime is the failure of
a processing unit during execution. Another example is a
change in performance of a processing unit. Both events
frequently occur if a grid is used where computing resources
are free because they are donated. The owner of a processing
unit might at any moment switch off the unit, which leads
to a failure, or might use some of its power for his own
computations, so that only a part of its computing power
remains available for the grid job. As this fraction may
become very small, task runtimes might get very long, so
that they appear like a special kind of processor failure. As
these events are not too infrequent, grid users have a tension
between high performance in the fault-free case (resulting
from good schedules and small overhead) and handling of
these events in the case of a failure. Thus, a combination of
static and dynamic scheduling properties would be desirable.

In a prior work [6], we presented a static scheduling
algorithm that handles processor failures with the help
of task duplication. This algorithm uses already existing
schedules and task-graphs, i.e. concentrates on the placement
of duplicate tasks in the schedule. If a processor crashes
while executing a task, the schedule still can be completed
because the duplicate of that task is always scheduled to a
different processor, and thus can complete. The schedule also
carefully avoids overhead in the fault-free case by having
duplicates only execute if necessary, and if possible in
execution gaps between tasks, which frequently exist. Thus,
the desired compromise for this kind of event is achieved.

In a first step we include the consideration of the com-
munication costs between the tasks (and duplicates), which
is very important in terms of makespan and overhead, but
was left out in our previous work for a better readability. In
a second step we extend the duplicate placement algorithm
to also handle performance slowdown: if the duplicate can
complete earlier than the predicted completion of a task,
the duplicate is run and the task itself aborted. To our
knowledge, this kind of load balancing so far has only been
treated by dynamic schedulers. Our scheduling approach
avoids centralized decision making at runtime, which might
become a bottleneck, but still derives predictions for task
completion from the past performance of a processor over
an extended period of time.



We evaluate the extended approach with the help of a
simulator that inputs a schedule produced by our scheduling
approach and randomly injects processor failures or proces-
sor slowdowns while executing the schedule. We take the
task graphs from a benchmark suite of synthetic task graphs
[7] that is organized according to several structural criteria,
and thus allows to categorize results for certain types of task
graphs. Our results indicate that in about 15% of the task
graphs, the execution of a duplicate in case of a slow task
(with a slowdown of 50%) leads to a shorter makespan. With
respect to fault-tolerance, the extension of the makespan in
case of a processor failure is only moderate.

The remainder of this paper is structured as follows. In
Section II we briefly review elementary facts and related
work about task graph scheduling and fault-tolerant schedul-
ing, respectively. In Section III we present the extended
placement algorithm for duplicates, the necessary system
support at runtime, and the implementation of placement
algorithm and simulator. Section IV presents and analyzes
the simulation results. In Section V, we conclude and give
an outlook on open problems and future work.

II. SCHEDULING AND FAULT-TOLERANCE

Task scheduling is used for the execution of parallel
programs on parallel systems, where several parts (tasks)
of such programs are efficiently distributed to the different
processing units (PUs) by considering the dependencies
between the tasks. The dependencies can be described by a
directed acyclic graph (DAG), also known as task graph. In
a task graph, the nodes or tasks are attributed with a runtime,
and the edges are attributed with a communication cost (or
time). A valid schedule which assigns each task a processor,
a start time and an end time (where end time is start time
plus runtime) must respect the dependencies: if there is an
edge from task u to task v, then the start time of v must
be at least the end time of u plus the communication cost.
If both tasks are mapped to the same processor, the com-
munication cost is typically neglected as the communication
bandwidth within a processing unit is much higher than over
a network between two processing units. The goal of task
scheduling is normally the minimization of the makespan or
the maximization of the speedup.

Schedulers might also be classified according to when
the schedules are created. In general there are two different
methods, the static and the dynamic scheduling. With the
static scheduling the schedules are created before they are
executed so that no further calculations are needed during
the runtime of the programs, which would incur overhead
and prolong the makespan. But the consequence is that
the schedules cannot be modified afterwards. The dynamic
scheduling, where the schedules are created at runtime,
is more flexible and can react to unexpected situations at
runtime. But in such cases the makespan typically is longer

[7][11]. Another option is a hybrid variant, a combination
of the static and dynamic scheduling.

In the field of scheduling in distributed systems, fault
tolerance is very important. Here the PUs are often at
different locations so that an error avoidance is a priori
hardly possible. Thus unexpected errors could appear (like
transmission errors, or errors that result in failures of one or
more PUs). The formation of such errors basically cannot
be prevented by a scheduler, but it can be considered with
specific fault tolerance aspects during the creation of the
schedules.

There are some global software techniques like the trans-
action principle or replication to handle errors in distributed
systems. A special kind of replication is duplication, where
the fault tolerance is achieved by copying the data. If the
original data crashes, the copy (e.g. the duplicate) can be
used to continue the execution.

Fault-tolerant static scheduling algorithms have the goal to
achieve a certain level of fault tolerance while increasing the
makespan as little as possible. Such an increase in length can
be considered in both, the fault free and the fault case. For
this we use the measure overhead in percent (in the following
only called overhead). The overhead is the deviation from
the makespan (MS) with fault tolerance techniques (FTT)
and the makespan without fault tolerance techniques and
can be modelled by:

overhead =
MSwithFTT −MSwithoutFTT

MSwithoutFTT
· 100 (1)

One example for a fault tolerant scheduling method espe-
cially for grids is the so called distributed fault-tolerant
Scheduling (DFTS), which is presented in [1]. As target
architecture several networks are connected with a wide area
network and each network has several PUs and a so called
SRM-Unit (Single Resource Manager). With the help of this
unit the jobs are split into tasks. After that the tasks are
either directly distributed to the PUs, or they are firstly saved
and then assigned to earmarked PUs. The fault tolerance is
realized with replications of the jobs. For each calculation of
a job, the user can set the number of copies to be executed
in advance. Then the copies are distributed to the most
appropriate SRM-Units and are there executed independent
of each other. In this scenario there can already be an
overhead in the fault free case, which depends on the usage
rate of the PUs. If a random copy has finished, all the other
SRM-Units are informed and cancel their corresponding
execution. Other fault tolerant scheduling algorithms are
presented for example in [5] and [8].

As explained above, the consideration of the communica-
tion costs of the tasks that are mapped onto different PUs is
also important for task scheduling in distributed systems. For
example in [15] a fault-tolerant task scheduling algorithm
is presented that especially focuses on reducing the com-
munication costs. In this approach a list-based scheduling



algorithm is used. For fault tolerance, multiple copies of the
tasks are scheduled onto different processors. To reduce the
communication costs, each copy of a task sends its data not
to all copies of the successor tasks, but only to one copy.
In this way the scheduler can handle mutliple failures with
only a moderate increase of the communication costs.

Another aspect which is sometimes considered in task
scheduling is to handle or circumvent slowdowns of tasks
which result from a high usage rate of a processor. In [10], a
hybrid job scheduling mechanism is presented especially for
grids, that circumvents such slowdowns by using a backfill-
based multi-queue strategy.

While these aspects are only considered seperately in
existing algorithms, our scheduling approach combines all
mentioned aspects, namely the influence of the communi-
cation costs, the fault tolerance by using task duplication
and handling slowdowns of tasks as a special kind of
failure. Futhermore we also guarantee no overhead in a fault
free case, while most existing algorithms only focus on a
moderate increase of the makespan in case of a fault.

III. EFFICIENT FAULT-TOLERANT SCHEDULING

We start by reviewing the ideas from [6], then improve this
approach by consideration of communication times between
tasks when placing duplicate tasks into the schedule, and ex-
tend it by treating slowly progressing tasks as a special kind
of processor failure. We also argue that despite the dynamic
elements in our approach, the additional system support and
overhead at runtime are small compared to normal static
task scheduling. Thus, in comparison to dynamic scheduling,
we can achieve a shorter makespan in the fault-free case
because we know the complete task graph but can still react
to faults dynamically without the overhead introduced by
task duplication if used in a straightforward way.

A. Previous Approach

Fechner et al. [6] assume to have already an existing
schedule for a task graph, which is then extended with
duplicate tasks to cover processor failures in a fail-stop
model. For each task in the schedule, a duplicate (D) is
created and placed statically in the schedule before the
execution of the program. The duplicate has to be placed on
another PU than the original task, so that the schedule can
also be executed in a fault case. In most schedules there are
several gaps between the tasks because of the dependencies
of the tasks. Thus especially those gaps can be used to place
the duplicates in an efficient way. If the gaps are too short,
the placement of the duplicates already leads to a shift of all
successor tasks and thus leads to an overhead in the fault free
case. To avoid this overhead and to minimize the overhead
in a fault case, one has to take into account some specialities
with the placing of the duplicates.

First of all a placement of the duplicate to start at the same
time as the original task seems preferable, so that they could

be executed in parallel and thus the overhead in a fault case
is as low as possible. But then there would be an increased
network usage rate, because the results of both, the duplicate
and the original task have to be transmitted to all successor
tasks and duplicates. For this reason each duplicate is placed
with a small delay, also called slack. Thus a duplicate has
to be executed only until the corresponding original task
has finished correctly. For that the original task sends a
commit command to the PU of the duplicate after its fault
free execution. Then the duplicate can abort its execution.
So in every situation either only the original task or only
the duplicate will finish. Fig. 1 illustrates this context. If
a placement of some duplicates is not possible, because of
the structure of the gaps, the duplicates are placed on the
PUs after the end of the original tasks, and get runtime 0.
Such placeholders are then called dummy-duplicates (DD).
For the DDs the original runtime is only considered when a
fault occurs, as they are not executed in the fault free case.
With this technique an overhead in the fault free case can
be avoided.

Figure 1. Abort of the duplicate after finishing the original task.

In [6] three different strategies for the placement of the du-
plicates are presented. In the first strategy only DDs are used.
They can be placed into gaps between tasks, or between
directly succeeding tasks (considered as a gap of length 0).
The schedule remains valid as the DDs are assigned runtime
0 for the fault-free case. Note that a DD can only be placed
after the end time of the corresponding original task. The
reason for that is that one does not know if the original tasks
are correctly executed or if there was a fault before the end
of the tasks. With this strategy no overhead in the fault free
case can be observed in general, because the DDs are placed
with runtime 0. Fig. 2b illustrates an example placement
of the DDs in a schedule. The corresponding task graph
and input schedule are shown in Fig. 2a. Here the slack
and the communication costs are disregarded for a better
understanding. This strategy does not take much advantage
of the gaps.

The second strategy is an extention of the first strategy.
Here the DDs are placed in the same order like before. Then
all DDs within the gaps are checked: If there is some idle
time before a DD, this DD can be converted into a D. One
has to take into account that only such DDs can be converted



which are placed at the end time of the corresponding
original tasks. The size of the converted Ds is bounded by
the length of the idle time before the Ds. In a fault case the
execution of the corresponding D has just started, so that
only a smaller fraction has to be executed until the end of the
D. Thus the second strategy is more efficient in comparison
with the first strategy. In Fig. 2c the modified schedule is
illustrated.

In the third strategy the gaps in the input schedule are
partly extended to fill the gaps more efficiently with Ds. In
this strategy we allow a small overhead in a fault free case
for a better overhead in a fault case. Fig. 2d illustrates the
modified schedule.

Figure 2. An example task graph and three strategies in comparison.

B. Influence of Communication Time

So far we have neglected the communication cost to
transfer the results of one task to the PU of the successor
task, if the tasks are on different PUs. The communication
cost can have a large influence for the positioning of the
tasks and duplicates. This is illustrated by the following
small example. We assume that we have two tasks (task1
and task2) and the communication costs between them are
for example 5 time units. If the tasks are on the same PU,
there is nothing to take into account, because the results of
task1 are already on the PU for task2. But if the tasks are
on different PUs, the results have to be transferred and thus
task2 can start its execution only after the 5 timeunits for
the communication. Fig. 3 illustrates the example.

The consideration of the communication costs indicates
direct consequences to the three strategies explained above:
As a task and its duplicate are always on different PUs, at
least one of them is on a PU different from the predeces-
sor task, so that communication cost between succeeding
task/duplicate-pairs always occur. Also, as the commit mes-
sage between task and duplicate incurs some communica-
tion cost, a minimum slack is necessary. In the following
we demonstrate the consequences exemplary for the first

Figure 3. The influence of the communication costs.

strategy, yet they also apply similarly to the other strategies.
Starting from the task graph above, we include an additional
task (task5) and an additional edge weight between task1 and
task2.

Figure 4. A task graph and schedule a) without and b) with communication
costs.

Fig. 4 illustrates the extended task graph and the corre-
sponding schedules without (Fig. 4a) and with communi-
cation costs (Fig. 4b). We assume, that the communication
costs between task1 and task2 are higher than the compu-
tation time of task2 (e.g. with “t2 + x”). We see that the
DD2 (and all successors) has to be shifted by x time units
and thus the makespan of the schedule is already increased
in the fault free case. This example illustrates that one has
to take into account all communication costs for all tasks
(the original tasks as well as the Ds and DDs). Thus the
goal to provide no overhead in the fault free case cannot
be achieved with the original strategies. For this reason we
devise two further variants for each of the three strategies.

In variant a) the placement of duplicates is executed as
in the original version, with the additional consideration
of communication times. So in this variant, we tolerate an



Figure 5. An example task graph and the schedules of the three different
variants shown on the first strategy.

overhead in the fault free case (see Fig. 5a).
One first approach to eliminate the overhead in the fault

free case (variant b) is to check whether a DD to be inserted
leads to a shift of its successor tasks (and thus to an increased
overhead) because of the dependencies and communication
costs. In this case, if there is a gap between the insert
position of the DD and the task before the DD on the same
PU, this gap can be used to pull the insert position of the
DD forward until either the resulting overhead is undone or
there is no more place in the gap. After inserting the DD,
a so called wait dummy (see Fig. 5b) is placed before the
DD with a computation time of 0 time units in the fault
free case, which then in case of a fault extends with the
corresponding time of the shifting.

In the last variant c) we consider fault-free and fault case
separately. So far we assume that the communication costs
always have to be considered. However, if communication
costs between DDs and original tasks are not considered
(and only in this order), then the schedule has no overhead
in the fault free case. If delays result from a DD, they will
not be considered initially. Only in a fault case the schedule
has to be adapted with the corresponding communication
cost and the resulting shiftings. Thus there could be some
crossings of original tasks and DDs in the fault free case
(see Fig. 5c). If such crossings are allowed no overhead
can be guaranteed in the fault free case. Therefore each PU
must have the information about the complete task graph and
a memory buffer for the results of each task that has just
finished. The reason for the buffer is that the transmission
of the results will not be aborted in case of a fault and
thus the successor tasks on the other PUs can continue
their execution. So we get nine versions in total, which are
subdivided in three strategies with three variants each.

Note that both the ratio of communication time to com-

putation time (task runtime) and the number (and structure)
of dependencies influence both the input schedule and the
resulting schedule with duplicates. For example, if the
communication times between tasks are small compared to
the task runtimes, then our results will not deviate notably
from the strategy in [6]. For task graphs with a high ratio of
communication to computation, and/or with a high degree
of dependency, the input schedule will most likely contain
a notable number of gaps. This simplifies the placement of
duplicates and should produce a better result.

In the experimental validation, this is taken into account
by the structure of the benchmark set, which contains
schedules for different classes of task graphs for several
criteria (e.g. low/average/high computation to communica-
tion ratio, low/average/high degree of dependency). Thus,
the effectiveness of the strategies can be compared for the
different classes of task graphs.

C. Handling Task Slowdown

So far we described the different kinds of duplicates
within the different strategies and variants and explained
how they act in a fault case. If there is only a slowdown for
a task (instead of a fault), we have to take into account some
further rules, because there are only a few cases in which the
use of a duplicate could lead to a better makespan and thus
to a lower overhead. Fig. 6 illustrates all cases that could
lead to a better makespan. In general it could be better to
use a duplicate if the end time of the slowed original task is
later than the end time of the corresponding D or DD (cases
1 and 2 in Fig. 6). In variant b) also the wait dummies have
to be considered (case 3). Important for variant c) (case 4)
is that the resulting shift of the DD also must be considered.
All other cases like for example a DD which is placed after
the end time of the slowed original task are not relevant for
an improved overhead.

For handling a failure, a duplicate (D or DD) is started
by the PU if the commit message from the original task is
not yet received. If that message arrives while the duplicate
is already executing, the duplicate is aborted. For handling
slowdown, a duplicate should only be started if it terminates
faster than the original task. Otherwise, the duplicate would
still be aborted by reception of the commit message, but
would lead to overhead if the next task on the list of this
PU was delayed by the duplicate. Hence, each original task
must send a message to its duplicate with an estimate of its
actual end time. The message must be sent early enough so
that it reaches the PU where the duplicate is placed before
the duplicate is to be started. Then the duplicate can compute
locally whether one of the cases 1 to 4 is present. In this
case, the duplicate sends an abort message to the original
task and starts. Otherwise, the duplicate is not started.



Figure 6. Different cases of placed duplicates compared with a slowed
original task.

D. Runtime System Support

Normally, the PUs of the parallel machine executing the
tasks only know their own task queue at runtime with some
information about the tasks that are mapped onto the PU,
like e.g. the task index, the start time, the computation time
and the end time of each task in the queue. Because of the
dependencies of the tasks a successor task can only start,
when it has all results from the predecessortasks. Thus no
more information are needed during the runtime to complete
the execution of the whole schedule. Yet we see that the
dependencies also allow a very simple runtime system: each
PU only knows the list of tasks assigned to it, with their start
times. The PU launches the next task as soon as the start time
has come, and the PU is idle. The task will only start if all its
necessary input data is present. Thus, if there is a slowdown
of a task, all depending tasks will start later, because they
get the results of the slow task later than expected.

Besides starting messages, each PU already in normal
static task scheduling must be able to receive messages with
input data for tasks assigned to run on that PU in the future.
As predecessor tasks might complete much earlier than the
successor tasks start, the messages might arrive while a
task is run on the PU. To handle processor failures, the PU
additionally must be able to receive commit messages and
abort the running duplicate, or skip it if it has not been
launched yet.

To decide whether the execution of a D or DD could lead
to a better makespan in case of a slowdown, the PU of the
original task sends a message with the assumed end time
based of its usage rate to the PU of the corresponding D or
DD, so that this message arrives before the duplicate starts.
Then the PU of the D or DD can compare the end time of

the duplicate with the assumed end time of the original task.
In case of an improvement the PU of the D or DD sends a
positive message back to the PU of the original task, which
is then aborted. After that the D or DD is started. Otherwise
a negative message is sent back and there is nothing else
to do. Thus, each PU must be able to launch a message at
a time known in advance, and must be able to monitor the
performance of a task, i.e. the percentage of CPU time that it
gets. We see that those features do not need much extension
in the runtime system.

E. Implementation
We have implemented a program that supports all ex-

plained strategies and variants. The program can be subdi-
vided into a generator, where the task duplicates are inserted
into the existing schedule, and thus the schedule for the
fault free case is created, and a simulator, that simulates
execution of the schedule, injects failures and slowdowns,
and calculates the changes of the schedules in such cases.
The structure and workflow of the duplicate placement is
presented in Fig. 7.

Figure 7. The structure and workflow of the scheduler.

First of all the algorithm uses the information from the
existing task graph and schedule, that are given in files, as



input to create three schedules (one for each variant). The
schedules are represented by singly-linked lists, so called
processor lists, where the elements repesent the PUs. Each
element (PU) consists of a doubly linked list for the tasks
that are mapped onto the corresponding PU. The structure
of a task contains among other things information about
the task index, the processor index, the start time, the end
time, the computation time, the shift factor and the task
type. The structure of the taskgraph is held in a vector,
where important informations for each task are saved under
the corresponding task index. However, there are also some
structures like e.g. list of indirect predecessors or successors,
that are not necessary for a correct execution but useful for
a better performance of the scheduler.

The original schedule is then extended by the first strategy.
In variant a) the algorithm creates one DD for each original
task and searches for the best insert position. This can be
done by finding the earliest insert position in a first step.
Therefore the scheduler initially sets the insert position for
a DD to the end of the corresponding original task on
each PU that differs from the PU of the original task.
Then all dependencies and communication costs of the
predecessor tasks are considered and the insert position is
changed on the PUs where this is necessary. After that the
slack is considered (which can be set by the user in the
beginning) and the potential shift is calculated by the shifting
factor. Finally it must be checked, if the insert position of
the DD occurs during the runtime of another task on the
corresponding PU. If in such a case the other task is a
predecessor of the DD, the insert position is set to the end
of this task and the shift factor is corrected if necessary. In
the second step the biggest gap around the insert positions is
determined with the function “restdetection”. In this function
the scheduler first checks the part of the gap that is before
the insert position so that the DD could be expanded to a D
in the second strategy. Then the remaining part of the gap,
which is after the insert position is considered. If this part is
too small, there would be a rest of the DD, which in case of
a fault would lead to a shift. The best PU to insert the DD is
determined with the following decreasing priority: smallest
shifting factor, smallest rest, earliest insert position. After
finding the best insert position, the DD is mapped on the
corresponding PU in consideration of possibly shifts.

The other variants (b and c) have only small modifications
of the first variant. In variant b) the scheduler checks the
requirements for a wait dummy before the DD is mapped.
If it is possible, the insert position and the shift factor
are corrected. After that the DD is mapped to the PU,
the corresponding shifts are calculated and the schedule is
modified. Finally the WD is placed before the DD. In variant
c) only the DDs with a shift factor are considered. The shift
factors are saved as a property to the corresponding DDs
and then they are set to zero. Thus in a fault free case, they
are not considered, but in the case of a fault, the task has

still the information about the shift.
The other strategies are identical for all variants, because

they use the schedules of the different variants from the
corresponding previous strategy. Thus, in the second strategy
all DDs are searched, which are placed at the time where
the corresponding original tasks end. Then these DDs are ex-
panded forward. In the third strategy all gaps in the schedule
are searched and saved. Then the best D is determined and
inserted in the schedule with an extention of the gap where
required. After that all predecessor Ds or DDs are saved
and all successor Ds or DDs are deleted. Then the resulting
shifts are calculated and the schedule is modified. Finally all
strategies are once more executed, so that the third strategy
calls itself recursively until there are no more gaps which
can be used efficiently.

The simulator does not inject random faults or slowdowns,
but systematically applies a failure or slowdown to any task,
and computes how the makespan changes. Thus, it is not a
discrete event simulator but a quite specialized evaluation
program. The simulator distinguishes between failures and
slowdowns. The fault-tolerant schedule from the generator
is input in a first step. The user can decide at the beginning
of the program, if the simulator should inject failures or
slowdowns (with a specific percentage rate). Failures are
simulated on all PUs and for all mapped original tasks. The
simulator starts with the last orignial task of the first PU
and sets a failure to the beginning of that task. Then the
corresponding D or DD is searched. If it is a DD which
has a shift factor, the shift factor is deleted and the tasks
are resorted on that PU if necessary. The reason for the
resort is that the tasks of a PU are saved in a doubly
linked list and thus e.g. crossings of DDs and original tasks
cannot be ordered clearly. After that all direct and indircet
successor tasks that are not mapped on the PU with the
failure are shifted. For a better performance of the scheduler
the changed schedule from the simulation before is used to
simulate the next earlier failure on the same PU.

Slowdowns are also simulated on all PUs and for all
mapped original tasks. In this case the simulator starts
with the first original task on the first PU and calculates
the computation time of the task with the setting of the
percentage rate. Then two cases are simulated. In the first
case, the corresponding D or DD is used instead of the slow
original task. This is only done if the D or DD complies
with the rules explained above that could lead to a better
makespan. Thus the original task is aborted when the D or
DD is started and the D or DD is then extended. After that
all direct and indirect successor tasks are shifted if necessary.
In the second case, the schedule is simulated with the slow
original task. So in this case the schedule is used like in a
fault free case but with some shifts because of the slowdown
of the original task. Finally the makespans of both cases
are compared and the potential improvement of using the
corresponding D or DD is saved.



IV. EXPERIMENTAL RESULTS

We evaluate the scheduling algorithm with the task graphs
from the benchmark suite of synthetic task graphs [7], that
comprises 36,000 optimal schedules, which differ in the
number of PUs (2, 4, 8, 16 and 32), the number of tasks
(7 - 12, 13 - 18 and 19 - 24), edge density, the edge
length and the node and edge weights. The schedules in
this benchmark suite are generated with the Pruned Depth-
first Search (PDS) method. In the following the resulting
overheads for the whole benchmark suite are presented in
the fault free and fault case. Then we analyze the results for
the different classes of task graphs. Finally the results for
different slowdowns are pesented.

A. Overhead in the fault free and fault case

We extend the schedules with our algorithm and simulate
failures on every PU from each task on. Tab. I illustrates the
overhead results for all strategies and variants in the fault
free case. The overhead decreases from variant a) to c) and
increases from strategy 1 to 3. Note that in variant c) there
is no overhead in the fault free case for the strategies 1 and
2. Thus we could reach our goal to provide no overhead in
the fault free case.

Table I
OVERHEAD IN THE FAULT FREE CASE.

Variant a Variant b Variant c
Strategy 1 2.52% 1.38% 0.00%
Strategy 2 2.52% 1.38% 0.00%
Strategy 3 3.83% 2.74% 1.39%

In Tab. II the overhead results in the fault case are
presented. The values are averaged over all fault positions,
i.e. all tasks, and all schedules. With strategy 2c we got the
best results for the minimum (4.19%), the average (20.87%)
and the maximum (36.83%) overhead. Thus the results of
strategy 3, where the gaps in the schedules are increased for
a better overhead, are not as good as expected.

Table II
OVERHEAD IN THE FAULT CASE.

Minimum Average Maximum
Strategy 1a 7.43% 24.23% 39.61%
Strategy 2a 6.41% 22.08% 37.18%
Strategy 3a 7.59% 22.76% 37.44%
Strategy 1b 6.45% 24.35% 43.41%
Strategy 2b 5.39% 22.21% 40.84%
Strategy 3b 6.63% 22.85% 40.89%
Strategy 1c 5.28% 22.89% 39.05%
Strategy 2c 4.19% 20.87% 36.83%
Strategy 3c 5.42% 21.54% 37.05%

B. Influence of the different classes of task graphs on the
overhead

In the following analysis we concentrate on the influence,
that the structure of task graphs has on the overhead, and

do not focus on the different strategies and variants. We
use the results of strategy 2c for the analysis because this
strategy delivered the best results. The identified tendencies
and the respective explanations can be transferred to the
other strategies. First of all the task graphs can be classified
according to the number of PUs (2, 4, 8, 16 and 32). In
Tab. III the overhead results are presented.

Table III
INFLUENCE OF THE NUMBER OF PUS ON THE OVERHEAD.

Minimum Average Maximum
2 PUs 8.86% 37.01% 62.79%
4 PUs 3.27% 17.90% 32.05%
8 PUs 3.00% 16.64% 29.90%

16 PUs 2.88% 16.26% 29.44%
32 PUs 2.82% 16.15% 29.34%

We see that the overhead decreases with an increasing
number of PUs. The highest overhead which is more than
twice as large as the other values occurs with 2 PUs. In
this case also the minimum and maximum is far apart.
This results from the small number of choices to map the
DDs and Ds onto the PUs. In most cases both PUs are
already allocated with original tasks before the mapping of
the DDs and Ds. Thus there are only a few possibilities to
map the duplicates. There is also the fact that in case of
a failure one PU has to execute all existing tasks. This is
the worst case, because the tasks can be only executed in
a sequential order. In contrast the overhead with 4 PUs is
only the half the overhead with 2 PUs. The values with the
use of 8, 16 and 32 PUs are nearly the same. In general
only a few further PUs are needed to decrease the overhead
dramatically. But beyond a certain number, the PUs cannot
be utilized fully. Thus some PUs would be unused. This
explains the small differences between the overhead values
of the higher numbers of PUs (4 to 32).

The task graphs can be also classified according to the
number of tasks. The overhead results are presented in
Tab. IV.

Table IV
INFLUENCE OF THE NUMBER OF TASKS ON THE OVERHEAD.

Minimum Average Maximum
7-12 tasks 6.61% 25.18% 41.93%

13-18 tasks 3.48% 19.94% 35.99%
19-24 tasks 2.41% 17.38% 32.45%

In general the values show that there is a notably lower
overhead with an increasing number of tasks. With the use
of many tasks there are basically more gaps and the Ds and
DDs can be mapped more efficiently.

The next classification is the edge density. In Tab. V the
results are presented.

We can see that the overhead decreases with a higher edge
density. The tasks have more dependencies with a higher
edge density, so that longer gaps exist between the tasks.



Table V
INFLUENCE OF THE EDGE DENSITY ON THE OVERHEAD.

Minimum Average Maximum
low e.d. 4.20% 24.50% 46.02%
avg e.d. 4.23% 20.72% 35.71%
high e.d. 4.28% 16.75% 27.55%
rand e.d. 4.04% 21.30% 37.60%

Those gaps can be used for the expansion of the duplicates
for both the mapping of DDs and Ds and later in case of a
failure of one PU. In total there are fewer shiftings and thus
a lower overhead in case of a fault.

A further classification is the edge length. The Influence
on the overhead is shown in Tab. VI.

Table VI
INFLUENCE OF THE EDGE LENGTH ON THE OVERHEAD

Minimum Average Maximum
EL short 4.23% 18.81% 30.46%
EL avg 4.18% 21.08% 37.23%
EL long 4.00% 22.56% 43.05%
EL rand 4.35% 21.04% 36.55%

The overhead increases with a higher edge length. One
reason is that early shiftings directly affect tasks that must
be executed much later. Thus in total there would be a high
overhead from only a few shiftings. In contrast shiftings, in
the case of shorter edge length can usually be compensated
by gaps. Furthermore with short edge lengths the shiftings
are negligible because of the dependencies to other tasks.

The last classification are the node and edge weights.
In Tab. VII the results are presented. The node and edge
weights differ between high (H), low (L) and random (R).

Table VII
INFLUENCE OF THE NODE AND EDGE WEIGHT ON THE OVERHEAD

Minimum Average Maximum
HNodeHEdge 4.16% 18.06% 32.57%
HNodeLEdge 2.89% 17.79% 35.57%
LNodeHEdge 5.78% 27.49% 41.28%
LNodeLEdge 4.50% 20.90% 37.23%
RNodeREdge 3.95% 20.66% 37.28%

First of all the input schedules are optimal schedules. The
tasks are initially mapped in a way that there are only few
transmissions and thus the schedule length is very small.
Dependent tasks which would incur long transmission times
if mapped on different PUs, are typically mapped onto the
same PU. The Ds and DDs in contrast have to be mapped
onto other PUs and thus lead to long transmission times.
Thus the schedules are notably prolonged. In case of a fault
this effect would be enhanced because of the expansion
of the Ds and DDs. However, on small tasks with low
transmission times the overhead result is similar to the first
two cases.

In total the analysis shows that all classes of the task
graphs have an influence on the overhead, but there is no
class that does not profit from our scheme.

C. Use of duplicates instead of slow tasks

As slowdown we choose the values of 50 %, 70 % and
80 % and test for each slowed original task if there is
an improvement by using the corresponding duplicate. As
results, we simulate 36,000 schedules for a slowdown of
50 %, 6,800 schedules for a slowdown of 70 % and 10,164
schedules for a slowdown of 80 %, respectively.

In case of 50 % slowdown 510,456 tasks were simulated
in total. For 75,846 tasks the use of the duplicate leads to
an improvement of the makespan compared to the use of
the slowed original tasks. Thus in 14.85 % of all cases the
usage of the duplicate results in a better makespan. Tab. VIII
presents the results for the different strategies and variants.

For a slowdown of 70 %, 117,909 tasks are simulated.
The use of the duplicate leads to an improvement of the
makespan for 60,544 tasks, which is 56,28 % of all cases.
In Tab. IX the results for the different strategies and variants
are presented.

With a slowdown of 80 %, 176,160 tasks are simulated in
total. For 125,414 tasks the use of the duplicate leads to an
improvement of the makespan. This is 71,19% of all cases.
Tab. X presents the results for the different strategies and
variants.

Table VIII
IMPROVEMENT OF THE MAKESPAN WITH THE USE OF DUPLICATE IN

THE CASE OF 50 % SLOWDOWN

Minimum Average Maximum
Strategy 1a 0.00 % 0.00 % 0.00 %
Strategy 2a 0.98 % 3.24 % 32.13 %
Strategy 3a 0.98 % 3.60 % 32.13 %
Strategy 1b 0.00 % 0.00 % 0.00 %
Strategy 2b 0.98 % 3.74 % 90.09 %
Strategy 3b 0.98 % 4.07 % 90.09 %
Strategy 1c 0.00 % 0.00 % 0.00 %
Strategy 2c 0.98 % 3.03 % 31.25 %
Strategy 3c 0.98 % 3.45 % 31.25 %

Table IX
IMPROVEMENT OF THE MAKESPAN WITH THE USE OF DUPLICATE IN

THE CASE OF 70 % SLOWDOWN

Minimum Average Maximum
Strategy 1a 0.13 % 8.01 % 39.36 %
Strategy 2a 0.13 % 8.51 % 39.47 %
Strategy 3a 0.13% 8.49% 39.47%
Strategy 1b 0.13% 8.28% 69.90%
Strategy 2b 0.13% 8.74% 69.90%
Strategy 3b 0.13% 8.73% 68.09%
Strategy 1c 0.13% 8.03% 39.36%
Strategy 2c 0.13% 8.55% 39.36%
Strategy 3c 0.13% 8.55% 39.36%

We observe that up to a slowdown of 50% the DDs
in all strategies and variants are not considered because



Table X
IMPROVEMENT OF THE MAKESPAN WITH THE USE OF DUPLICATE IN

THE CASE OF 80% SLOWDOWN

Minimum Average Maximum
Strategy 1a 0.31% 14.89% 44.43%
Strategy 2a 0.31% 15,34% 44.43
Strategy 3a 0.32% 15.33% 44.43%
Strategy 1b 0.20% 15.10% 84.61%
Strategy 2b 0.28% 15.54% 84.61%
Strategy 3b 0.20% 15.52% 84.69%
Strategy 1c 0.31% 14.93% 43.18%
Strategy 2c 0.31% 15.39% 44.43%
Strategy 3c 0.32% 15.39% 44.43%

the earliest placement of a DD is at the end time of the
original task. Thus if the computation time of the original
task doubles because of the slowdown, the end time of the
slowed orignal task is the same as the end time of the
converted DD (without any communication costs). This is
the reason why the strategy 1, which uses only DDs, has no
duplicates which lead to an improvement of the makespan.
Only for a slowdown of over 50% the use of DDs can also
lead to an improvement of the makespan (see Tab. IX and
Tab. X). The results of the other strategies vary only a little
because the sorting of the duplicates differs between the
strategies and variants (e.g. different sizes of the duplicates
or a different placement). While the average improvement
seems small, note that we only slow down a single task
whose runtime only comprises a fraction of the runtime, so
that large improvements cannot be expected.

V. CONCLUSIONS AND FUTURE WORK

We have presented a static task scheduling algorithm that
takes into account both processor failures and processor
slowdowns by using task duplicates, without the need for
extensive interaction during runtime. Our results indicate
that the runtime overhead is small and that both error cases
can partly be improved. As future work, we plan to cover
simultaneous slowdown and failure by using two duplicates
per task, and to extend our experiments to a prototype
system. Furthermore we plan to consider energy efficiency,
e.g. to scale the frequency of a PU down for some time (and
thus slow down the task) if the slowdown does not increase
the makespan, and to trade overhead in the fault case against
energy by accelerating duplicates via frequency scaling.

REFERENCES

[1] Abawajy, J.H.: Fault-Tolerant Scheduling Policy for Grid Com-
puting Systems. In: Proccedings of the 18th IPDPS, 238, IEEE
Computer Society, 2004

[2] Adam, T.L., Chandy, K.M., Dickson, J.: A comparison of List
Scheduling for Parallel Processing Systems. Communications
of the ACM, 17:685-690, 1974

[3] Bansal, S., Kumar, P., Singh, K.: An improved duplication
strategy for scheduling precedence constrained graphs in mul-
tiprocessor systems. IEEE Transactions on Parallel and Dis-
tributed Systems, 14(6), 2003

[4] Braun, T.D. et al.: A Comparison of Eleven Static Heuristics
for Mapping a Class of Independent Tasks onto Heterogeneous
Distributed Computing Systems. Journal of Parallel and Dis-
tributed Computing. 61(6):810-837, 2001

[5] Favarim, F. et al.: GridTS: A New Approach for Fault-Tolerant
Scheduling in Grid Computing. In: Proceedings of the 6th
IEEE International Symposium on Network Computing and
Applications (NCA), 187-194, 2007

[6] Fechner, B., Hönig, U., Keller, J., Schiffmann, W.: Fault-
Tolerant Static Scheduling for Grids. In: Proceedings 13th
IEEE Workshop on Dependable Parallel, Distributed and
Network-Centric Systems (DPDNS’08), 2008

[7] Hönig, U., Schiffmann, W.: A comprehensive Test Bench for
the Evaluation of Scheduling Heuristics. In: Proceedings of
the 16th International Conference on Parallel and Distributed
Computing and Systems (PDCS), 2004

[8] In, J. et al.: SPHINX: A Fault-Tolerant System for Scheduling
in Dynamic Grid Environments. In: Proceedings of the 19th
IPDPS, 12, IEEE Computer Society, 2005

[9] Kasahara, H., Narita, S.: Practical Multiprocessor Scheduling
Algorithms for Efficient Parallel Processing. IEEE Transac-
tions on Computers, C-33(11):1023-1029, 1984

[10] Kiejin, P., Changhoon K., Sungsook K.: Hybrid Job Schedul-
ing Mechanism Using a Backfill-based Multi-queue Strategy
in Distributed Grid Computing. IJCSNS, VOL.12 No.9, 39-
49, 2012

[11] Kwok, Y.-K., Ahmad, I.: Static Scheduling Algorithms for
Allocating Directed Task Graphs to Multiprocessors. ACM
Computing Surveys, 31(4):406-471, 1999

[12] Kwok, Y.-K.: Parallel Program execution on a Heterogeneous
PC Cluster Using Task Duplication. In: Proc. 9th Heteroge-
neous Computing Workshop, 364-374. IEEE Computer Soci-
ety, 2000

[13] Papadimitriou, C.H., Yannakakis, M.: Towards an
architecture-independent analysis of parallel algorithms.
Communications of the ACM, 510-513, 1988

[14] Ritchie, G.: Static Multi-processor Scheduling with Ant
Colony Optimization & Local Search. Master’s thesis, School
of Informatics, University of Edinburgh, 2003

[15] Tabbaa, N., Entezari-Maleki, R., Movaghar, A.: Reduced
Communications Fault Tolerant Task Scheduling Algorithm for
Mutliprocessor Systems. IWIEE, 3820-3825, 2012.

[16] Tanenbaum, A., van Steen, M.: Distributed Systems — Prin-
ciples and Paradigms, 2nd ed. Prentice Hall, 2006

[17] Yang, T., Gerasoulis, A.: A fast static scheduling algorithm for
DAGs on an unbounded number of processors. In: Supercom-
puting ’91: Proceedings of the 1991 ACM/IEEE Conference
on Supercomputing, 633-642. ACM Press, 1991


