
Simulating fault injection on disk arrays

Henning Klein, Fujitsu Technology Solutions, Augsburg, Germany

Jörg Keller, Fernuniversität in Hagen, Hagen, Germany

Abstract

We present an application for the simulation of errors in storage systems. The software is completely

parameterizable in order to simulate different types of disk errors and disk array configurations. It can be used to

verify and optimize error correction schemes for storage. Realistic simulation of disk errors is a complex task as

many test rounds need to be performed in order to characterize the performance of an algorithm based on highly

sporadic errors under a large variety of parameters. The software allows different levels of abstraction to perform

quick tests for rough estimations as well as detailed configurations for more realistic but complex simulation

runs. We believe that this simulation software is the first one that is able to cover a complete range of disk error

types in many commonly used disk array configurations.

1 Introduction

In the past few years a lot of investigation regarding

storage reliability has been done. In [10] the

influence of several parameters like utilization,

logged SMART errors or temperature on disk

failure have been analyzed. In some cases only part

of the disk fails which is called a visible error if the

hard disk is able to detect it. In [1] 1.53 million

disks have been monitored to get an insight about

latent errors which remain undetected by the disk.

In these papers, as well as in [5] and [11], figures

are presented describing probabilities of multiple

error types depending on a variety of parameters.

In order to overcome these errors several techniques

have been proposed. RAID as described in [1] is

being used to tolerate total failure of one or

multiple disks, depending on the configuration.

Visible disk errors can be corrected that way, too.

We proposed a new scheme to detect and correct

multiple latent errors in a disk array in [6]. A

different attempt to tolerate latent errors on single

disks using intra disk redundancy has been

presented in [2].

In order to prevent multiple latent errors from piling

up, which would reduce the chance of a successful

correction, data has to be checked frequently. By

"scrubbing" the disk, the data is being read out in

order to search for errors. However, additional IOs

increase the probability of errors and entail higher

power consumption. Therefore several attempts

have been made to optimize scrubbing techniques,

cf. e.g. [7], [8], [10].

Validation and comparison of scrubbing algorithms

and redundancy schemes with respect to the

reduction of latent errors, performance and/or

power consumption is not feasible analytically and

costs effort if done by simulation (see related

work). We therefore present a simulator for disk

storage systems including means to simulate faults

and scrubbing measures. The simulator allows

multiple levels of detail, and thus enables both

quick but rough estimations and complex realistic

scenarios. Furthermore, the simulator is

parameterizable to allow for different error models,

disk configurations and disk usage patterns. It

allows the definition of block level reliability as a

function of parameters like utilization and age. This

way the reliability of data cells in Solid State Disks

can be simulated. However, due to a lack of

information regarding NAND cell reliability of

SSDs and the new technology that is changing

rapidly the simulation of SSDs will be discussed in

our future work.

The remainder of this paper is organized as follows.

In Section 2 we give a brief overview about Related

Work. Section 3 describes the architecture of the

simulation software. In Section 4 we compare

simulation results with measured values, present

performance results, and discuss simulation results

of a self-correcting and self-checking disk

architecture. In Section 5 we give a conclusion and

an outlook on future work.

2 Related work

In previous work, we have proposed a variant of the

RAID-6 redundancy scheme optimized for silent

errors, and we have proposed a scrubbing algorithm

removing those errors in a disk system. We present

this work in Section 3.2.

Validating redundancy schemes in a real world

scenario is ineffective as errors are highly sporadic

and depend on various factors like disk vendor,

type and batch as well as the age, utilization and the

operating environment. Therefore the probability is

either calculated or simulated using proprietary

tools for specific scenarios like in [8] because

general purpose disk simulators like DiskSim [3]

would be too slow to run several thousand test runs

that are necessary to get significant average values.

Even Ram Disks like [4] are too slow as they have

to store I/O values.

The proposed simulator is able to work in different

levels of detail and therefore is able to generate

quick results to compare and optimize scrubbing

algorithms in specific scenarios as well as test them

in complex disk arrays with different sets of

parameters.

3 Simulator architecture

3.1 Supported configurations

The proposed tool simulates the behavior of a disk

array (RAID) over an extended period of time and

uses fault injection to allow validation of the

robustness against multiple kinds of errors. The

simulator supports single disks as well as the well

known RAID levels RAID-5 and RAID-6. We have

also implemented our proposed RAID architecture

with latent error detection and correction

capabilities [6]. Extension to other redundancy

schemes, i.e. MDS codes, should be possible with

restricted effort.

Once the disk architecture is set up, optional events

can be added and customized to detail the

simulation process. Depending on the complexity

and frequency of the occurrence of an event the

runtime of a simulation process will be slowed

down.

The application allows adding disk accesses which

can be modified to match realistic patterns, i.e.

generating hot spots like cluster bitmaps in file

systems or data accesses that decrease in frequency

over time like in data archives.

We have implemented three different scrubbing

algorithms: sequential scan, staggered scrubbing as

proposed in [8] and our proposal [7] which

prioritizes areas that are rarely accessed. The

simulator allows defining multiple scrubbing

schemes that are enabled or disabled by certain

events such as disk age or detected faults.

The tool supports injection of various error types.

Error events can be configured to overlap. That way

simultaneous disk faults can be generated.

However, double faults such as a latent error on a

failed disk are filtered out automatically. The tool

supports four kinds of errors with configurable

probabilities. Dependency factors like disk age or

utilization can be integrated. If a total disk failure is

simulated in a redundant RAID array, the time to

replace the disk and the speed at which the RAID

rebuilds parity or data information can be specified.

Before the rebuild process completes, data on the

new disk is handled like a visible error section that

is being reconstructed sequentially. Reconstructed

data can therefore be used to recover data on other

disks even though the rebuild process hasn’t

completed yet. Visible and latent errors can be

specified in probability, size and position. As

shown in [1] latent errors often spread across the

disk. Therefore we have implemented the option to

specify the amount, position and size of subsequent

errors. If a visible error occurs, an immediate

attempt is being made to recover lost data. Latent

errors are only reconstructed after being detected.

We assume that if some kind of error checking

mechanism is implemented, an error is detected

when data at its position is being accessed. As the

location of latent errors is unknown, the data

reconstruction process is more complicated and

leads to unrecoverable data more often. The fourth

kind of error that is supported is a data cell error

that could occur on a solid state drive. The data loss

of rarely accessed cells can be simulated as well as

wear-out effects on highly utilized cells. This kind

of error can be used to simulate error injection on

solid state disks. However, currently only rough

estimations are available about the reliability of

NAND cells, especially about their ability to hold

data over a long period of time. Figure 1 gives an

overview about the modules of the simulator.

Figure 1 Configuration overview

3.2 Simulated RAID and disk

scrubbing methods

The simulation software implements a couple of

common RAID configurations (Level 0, 1, 5, 6) as

well as our proposal, a variation of RAID-6. We

also analyze a RAID-5 variation which matches the

original proposal in degraded mode. This means

that one of the disks failed and has not been

replaced. Figure 2 shows the original proposal.

Each disk is divided into equally sized blocks. All

blocks at the same offset of each disk in the array

form a stripe. Each stripe consists of data blocks

and two blocks holding parity values. Our proposal

differs from RAID-6 by dividing a single stripe into

two parts and computing four different parity

values. This method allows detection of four and

correction of up to three silent errors. Figure 2

depicts the architecture. In Figure 3 the

computations based on Reed Solomon Codes are

given.

 Disk 0 Disk 1 Disk 2 Disk 3 Disk 4

Stripe 0 0 1 2 P0 R0

Stripe 1 3 4 5 Q0 S0

Stripe 2 6 7 P1 R1 8

Stripe 3 9 10 Q1 S1 11

Figure 2 RAID-6, optimized for latent error

correction

Figure 3 Parity calculation

We have proposed a new scrubbing algorithm in [7]

which takes user accesses into account. Areas that

are accessed frequently are being left out in the

scrubbing process. Large areas that have not been

checked within a certain time frame get higher

priority.

The simulator implements constraints to check for

uncorrectable error combinations for each RAID

system. It allows the definition of the time until

failed disks are replaced as well as the speed the

RAID rebuilds.

3.3 Performance optimizations

The proposed simulator has been implemented in

C++ for performance reasons, based on an event

driven model to simulate disk access, multiple types

of errors or disk scans. The execution order of each

event is defined by a timing function. Each event is

defined by a couple of functions, depending on the

type of event. In order to avoid unnecessary

computations each function is only computed if a

variable the function depends on has changed. Each

variable has a global scope and is assigned to a

designated bit position in a 64-bit array. If a

variable has changed the accordant bit is set which

allows the comparison with a second static bit array

that defines dependencies of a specific function.

This process is depicted in Figure 4.

Figure 4 Checking for affected functions

In order to calculate these user defined parameters,

millions of operations have to be processed during

the runtime of a RAID simulation to calculate the

parameters of the events. The user supplied string

has to be parsed into variables, constants and

operators in order to calculate the result. In order to

get the maximum performance, we compile the

code into directly executable functions stored in

memory with execution rights. We dissect each

equation into simple operations consisting of a

result and a maximum of two arguments first.

Temporary results, variables and constants are

assigned to fixed positions within data arrays. Each

operation can therefore be defined as a function,

combined with the information of the array

selection and position that holds an argument or

temporary result. We defined two arrays, one that

holds the global variables used in all events as well

as a local array holding constants and temporary

results. After a function has been parsed and

compiled, all array positions are fixed. Therefore

we initially have to declare all global variables used

to ensure fixed array positions. Operations that can

be computed in advance, e.g. operations on two

constants, are solved in advance during the parsing

steps. Figure 5 illustrates the compilation process.

Figure 5 Compiling user defined functions

The simulation is based on tests with random

numbers. Therefore multiple runs have to be

performed to compute average numbers based on

the results to draw conclusions on the effectiveness

of the analyzed scrubbing algorithms. Additionally

the simulation of RAID storage including

read/write accesses has a high computation

complexity. Simulating two years of a storage array

with “staggered scrubbing” roughly takes 1.25

minutes to complete on a modern processor.

Therefore we have parallelized the execution of

simulation runs. In order to gain the best

performance we run the same test definition file on

multiple cores at a time. We are putting a lot of

effort into the preparation of the test run, i.e. by

scanning for affecting variables as well as parsing

and compiling functions. By running the same test

definition multiple times, we can share the prepared

test environment across all parallel test executions.

As tests slightly vary in the execution time, i.e. by

different scrubbing rates due to randomly generated

errors, the thread that completes the test run first

can already prepare the environment for the next

test run. Figure 6 illustrates this process.

Test Preparation Test Run

time

Thread 0

Thread 1

Thread 2

Thread 3

Figure 6 Multiple errors affecting one stripe

4 Simulation accuracy and

performance

4.1 Simulation accuracy

The basis for our parameter settings are

investigations about disk failures [10] and latent

errors [1]. We use data of figure 2 of [10] to

simulate total disk failures and results shown in

figures 1, 4, 5 and 7 of [1] to define the probability,

number, size and position of latent errors. We have

imported the values of the presented charts into a

test definition file by function interpolation using

Mathematica. The error behavior of each disk can

then be imitated by using a specific set of functions.

The accuracy depends on the complexity of the

polynomial.

In [10] an analysis about the probability of a total

disk loss is being presented. The authors show the

“mortality” rate of hard disks in dependence of age.

They discovered an increased rate of failures during

the first three months. In a long term, however, the

drives seemed to run quite stable with failure rates

around 6-9%. Figure 7 shows the comparison

between simulated and original test results.

Figure 7 Disk failure rates

We have defined the behavior of each disk

regarding latent sector errors as functions of

occurrence probability, quantity, position and inter-

arrival rate according to [1]. We ran several

thousand randomized tests to get average values

that can be compared to the test results of the paper.

For clarity reasons we have only included two types

of disks in the figures: k1, an enterprise level disk

and C1, a nearline or consumer grade disk. All

results of the simulation match the original values

of the paper quite close. Keeping in mind that the

behavior of disks of the same class differ quite

strong, a failure rate of a few percent is enough for

simulation purposes.

Figure 8 depicts the percentage of disks developing

at least one latent error within two years. Figure 9

shows that disks which already developed a latent

error are likely to produce multiple errors. These

are likely to spread within physically close

positions in a short timeframe, as indicated in

Figures 10 and 11.

Figure 8 Latent error rates

Figure 9 Consecutive latent errors

Figure 10 Physical distribution of latent errors

Figure 11 Interarrival rate of latent errors

4.2 Simulator Performance

In this section we give a brief overview on how the

simulation software performs in different levels of

detail. The basis of our test definition is a 250 GB

hard disk with two types of parallel error injection:

total disk failure and latent error injection. We

started with the error injection on a single disk only

which would suffice for analyzing the accuracy of

the simulation compared to the experimental results

as shown in the previous section. In the second test

run we added random read and write user accesses

in 10 MB blocks, which would result in the

detection of corrupted data when trying to access

data where a latent error has been injected

previously. We changed the setup to a self-

correcting RAID architecture with five disks as

presented in [6]. We added a disk replacement

delay of 24h and a rebuild rate of 50 GB/h in case a

disk failed. Furthermore we could have altered the

error probability in dependence of the utilization.

The simulation results demonstrate the error

correction capabilities of the proposed RAID

system. In the last test we added a scrubbing

algorithm which should show better results as latent

errors would be detected earlier. This reduces the

risk of multiple errors to overlap. Table 1 shows the

number of test rounds the simulator ran per hour on

a single PC using an Intel Xeon System with 3,16

GHz and four cores. Higher levels of detail demand

for more computation power.

Table 1 Performance test results

4.3 Simulation of a self-correcting

RAID

We have configured a test definition to simulate a

combination of our self-correcting RAID as shown

in [6] and a scrubbing algorithm presented in [7].

The self correcting RAID is a variation of a

common RAID-6 system: it tolerates the loss of two

disks and is additionally able to detect and correct

up to three corrupted blocks per data stripe. A stripe

is a set of equally sized data blocks, each of which

is stored at the same physical offset on a different

disk. However, the error correction capabilities are

reduced after a disk failed until it is replaced and

the data recovered. We reduce the risk of latent

errors that could be present at the same time by

frequent integrity checks (scrubbing). We chose the

behavior of disk E-2 with the highest rate of latent

errors from [1] and integrated the disk failure rates

of [10]. The scrubbing algorithm we chose uses the

same scrubbing rates as discovered in [8]. It

prioritizes rarely accessed regions on the hard disk

and spreads scrubbing positions evenly across the

disk to increase the chance of an early detection of

latent errors spreading across multiple sectors.

So far we ran over 20.000 test cycles without a case

of any combination of uncorrectable errors. In 63%

of all tests that were simulating a disk array running

for two years, errors like disk failures or latent

errors occurred that were corrected successfully. In

a second test setup, we compared RAID-6 arrays

with modified RAID-5 systems. We changed the

latter version by doubling the stripe length and

number of parity blocks. This matches the RAID-6

modification of Figure 2 if one disk failed

permanently. Both systems have been tested with

equal amounts of usable disk space: The original

RAID-6 includes five disks whereas the modified

RAID-5 consists of four disks. A reduced number

of disks decreases the probability of a disk failure.

We ran 2500 tests per configuration, each of which

with and without our proposed scrubbing algorithm.

Data loss occurs in both array types, if a latent error

remains undetected until a hard disk fails. Table 2

shows the results of the two year simulations.

RAID

Type

Scrubbing Percentage of test

runs with data loss

RAID-5en NO 3,1 %

RAID-5en YES 0 %

RAID-6 NO 8,9 %

RAID-6 YES 0 %

Table 2 RAID reliability test results

5 Conclusions

We have presented the design of an application to

simulate RAID storage systems. We have discussed

how the simulation software can be optimized and

executed effectively on a multi-core PC. We use

this simulator to evaluate scrubbing algorithms for

long-term disk storage. Our results indicate that the

performance of the simulator scales well with the

number of processor cores. We have demonstrated

that the fault injection matches the measured results

of real tests accurately. In our future work we will

simulate SMART events to alter scrubbing behavior

or trigger early disk replacements. The current

version includes common RAID Levels 0, 1, 5 and

6 and our variations. Future versions will include

other MDS codes for comparison.

6 Literature

[1] L. N. Bairavasundaram, G. R. Goodson, S.

Pasupathy and J. Schindler, “An analysis of

latent sector errors in disk drives”, In

Proceedings of the 2007 SIGMETRICS

Conference on Measurement and Modeling of

Computer Systems, 2007

[2] A. Dholakia, E. Eleftheriou, X.-Y. Hu, I. Iliadis,

J. Menon, and K. Rao, "Analysis of a new intra-

disk redundancy scheme for high-reliability

RAID storage systems in the presence of

unrecoverable errors.", ACM SIGMETRICS

Performance Evaluation Review, Saint Malo,

June 2006

[3] G. Ganger, “The DiskSim Simulation

Environment”,

http://www.pdl.cmu.edu/DiskSim/

[4] Gavaskar, V. N., “Method and apparatus for

virtual disk simulation”, US Patent No. 5987565

[5] J. Gray and C. van Ingen, "Empirical

Measurements of Disk Failure Rates and Error

Rates", Microsoft Research Technical Report

MSR-TR-2005-166, 2005

[6] H. Klein and J. Keller, "Optimizing a Highly

Fault Tolerant Software RAID for Many Core

Systems", International Conference on High

Performance Computing & Simulation (HPCS

2009), Leipzig, June 2009

[7] H. Klein and J. Keller, " Optimizing RAID for

Long Term Data Archives", Workshop on

Dependable Parallel, Distributed and Network-

Centric Systems (DPDNS 2010), Atlanta, April

2010

[8] A. Oprea and A. Juels, "A clean slate look at

disk scrubbing",

http://www.rsa.com/rsalabs/staff/bios/aoprea/pu

blications/scrubbing.pdf

[9] D. A. Patterson, G. Gibson, and R. H. Katz, “A

case for redundant arrays of inexpensive disks

(RAID),” in SIGMOD ’88: Proceedings of the

1988 ACM SIGMOD International Conference

on Management of Data, 1988, pp. 109–116.

[10] E. Pinheiro, W. Weber and L. Barroso,

“Failure trends in a large disk drive population”,

FAST'07: Proceedings of the 5th conference on

USENIX Conference on File and Storage

Technologies, 2007

[11] B. Schroeder and G. Gibson, “Disk Failures in

the Real World: What Does an MTTF of

1,000,000 Hours Mean to You?”, 5th USENIX

Conference on File and Storage Technologies,

2007

[12] G. Wang, A. Raza Butt and C. Gniady, “On

the Impact of Disk Scrubbing on Energy

Savings”, HotPower, 2008

