
Guiding Performance Tuning for Grid Schedules

Jörg Keller Wolfram Schiffmann
FernUniversität in Hagen

Fakultät für Mathematik und Informatik
Postfach 940, 58084 Hagen, Germany

{joerg.keller,wolfram.schiffmann}@fernuni-hagen.de

Abstract

Grid jobs often consist of a large number of tasks. If
the performance of a statically scheduled grid job is unsat-
isfactory, one must decide which code of which task should
be improved. We propose a novel method to guide grid users
as to which tasks of their grid job they should accelerate in
order to reduce the makespan of the complete job. The input
we need is the task schedule of the grid job, which can be
derived from traces of a previous run of the job. We provide
several algorithms depending on whether only one or sev-
eral tasks can be improved, or whether task improvement is
achieved by improvement of one processor.

Keywords: Task scheduling, Grid computing, Performance
Tuning

1. Introduction

In the ongoing run between resources available to solve
large computational problems and computational require-
ments demanded from applications that want to solve larger
instances of such problems, grid computing has opened
a new stage beside the topmost supercomputers from the
TOP500 list. While the latter can only be afforded by few
computing centres in the world, computational grids offer
the chance to fulfil the demands above by collaborative ef-
forts of several not-so-wealthy sites.

Applications running on such grids (so-called grid jobs)
have to exploit the parallelism in the grid resources, and to-
gether with the complexity of the problems to be attacked
often lead to grid jobs consisting of hundreds or thousands
of tasks. While a grid job may be carefully planned, imple-
mented, and statically scheduled onto a grid that it can use
exclusively for execution, the performance may still be un-
satisfactory, without any obvious bottleneck. Traces from
such runs can be used to update the task graph parameters
used for the scheduling, but they may also be used to iden-

tify bottlenecks, i.e. reasons why the performance is worse
than planned. Because of the size of these traces, this cannot
be done by hand, and hence tools are necessary to support
the grid users in this task.

In the present work, we treat the problem above algo-
rithmically. Given the task graph of a grid job reflecting its
mapping, which can be derived from the trace of a previous
run, we analyze this graph and compute one or several tasks
where a runtime improvement of a certain percentage would
lead to the maximum runtime improvement for the complete
grid job. Thus, programmers get recommendations which
code they should look at first. We discuss several variants
that differ in the number of tasks to be changed, i.e. adapt
to available programmer resources, in the amount of com-
putation necessary, and in the amount of improvement that
the promise to offer. We illustrate our algorithms with an
example.

The remainder of this article is organized as follows.
Section 2 summarizes related work. Section 3 formalizes
the problem to be solved. Sections 4 and 5 presents algo-
rithms to recommend one or several tasks for improvement,
respectively. In Sect. 6, we discuss several variations of the
problem and possible algorithmic solutions. Section 7 pro-
vides a conclusion and an outlook on further work.

2. Related Work

Scheduling of the tasks on the Grid may require some
criteria to be considered. Besides the execution time, or
makespan, which is used most often also efficiency, eco-
nomic costs, reliability and quality of service can be of im-
portance. There is an huge number of related work in the
area of grid scheduling. It can be categorized with respect
of the number of simultaneously scheduled grid jobs, the
scheduling process, the task model, resource model and the
critera used [5]. The scheduling process can manage single
or multiple grid jobs simultaneously, it can be static or dy-
namic, use single or multiple criteria. Also there could be
schedules with and without advance reservation. Task must

be mapped on resources. This mapping can be variable or
fixed. It is also possible that the tasks migrate from one
resource to another. The resources (processing elements
PE) in a grid are usually heterogeneous but they can also
be partly homogeneous, e.g. a compute cluster.

Analysis of event traces in grid environments shows that
it is nearly impossible to explain the occurrence of wait
states during the execution of grid jobs. Usually, the symp-
toms and its cause are separated by great temporal or spa-
tial distances. Hermanns et al. [3] proposed a method for
verifying hypotheses on distant performance phenomena,
which is based on MPI event traces. By simulating the
message-passing behavior recorded in the event traces one
can verify hypotheses without altering the application. Un-
fortunately, one has to guess about possible causes because
the approach isn’t able to identify them automatically. Of-
ten, the main objective of trace-based approaches isn’t the
identification of bottlenecks or improvements of a specific
grid job. Instead, one tries to predict the scalability of an
application on bigger target computing systems [1]. Some
well known scalable performance-diagnosis tools are KO-
JAK and SCALASCA [3, 6].

3. Analyzing Grid Job Traces

A grid job consists of a set V of n tasks, represented as
a connected, directed acyclic task graph G = (V,E) where
each node represents a task and each edge (u, v) represents
a communication upon completion of task u, necessary to
start task v. Each task is associated a runtime, i.e. there is a
mapping

ρ : V → R+ ,

and each edge is associated a communication time, i.e.

ε : E → R+ .

We introduce two additional nodes with runtime 0 in V , a
start node vs and an end node ve. There are edges with
communication time 0 from vs to every task with indegree
0, and to ve from every task with outdegree 0. This serves
to have unique source and sink nodes.

We assume that beyond the task graph G, there exists
a static schedule onto an underlying grid hardware which is
exclusively used to execute the grid job under consideration.
If we do not possess the task graph itself, we can derive it
from traces generated during a run of the grid job [3].

Our assumptions are rather exact but we think that they
are not as unrealistic as they seem. If one would work
in a completely dynamic grid infrastructure, then no static
scheduling would be of any worth. Yet, many grids allow
reservation in advance, so that the infrastructure might not
be exclusively used by the grid job under consideration, but
as there performance guarantees from the reservation it is

known which compute resources are available. Also, while
the exact runtime of any task may depend on the particular
input data, the runtime is typically bounded by the algo-
rithm implemented in that task. If there is a strong depen-
dence of the task’s runtime on the input data, then such a
grid job might not be suited to static scheduling or advance
reservation.

We did not mention heterogeneity of resources in par-
ticular but assume that it is handled by the static scheduler
of the grid job, and is implicitly expressed in the task run-
times. When we reduce the runtime of the grid job, we still
want to maintain the mapping of tasks onto processors to
be able to restrict our attention to task graphs. Therefore we
represent the mapping indirectly in our task graph by insert-
ing edges (u, v) with communication time 0 if tasks u and
v are mapped to the same processor and scheduled succes-
sively. While there may be some cases where an improved
schedule may lead to further improvements by re-mapping
tasks onto heterogeneous resources, we feel that this is not
very frequent and thus should be treated separately instead
of complicating our current proposal.

In our scheduling model, a task can only be started if all
tasks that communicate to it are completed, and the com-
munication done. The job is completed if all tasks are com-
pleted. Thus, we can compute for each task v ∈ V the
earliest time b(v) when the task can be completed. This
value is called the static b-level. Obviously b(vs) = 0 and
for v 6= vs:

b(v) = ρ(v) + max{b(u) + ε(u, v) | (u, v) ∈ E} . (1)

Then, the earliest time when the job can be completed is
b(ve), called the makespan. As we have represented the
mapping to processors via edges, the makespan computed
for this task graph is identical to the makespan of the under-
lying schedule.

The b-levels can be computed as follows. Initially, we set
b(v) := 0 for all nodes in V , and sort the graph G topologi-
cally, i.e. we arrange it in layers such that vs is the top most
layer, ve is the bottom most layer, and all edges move from
an upper layer to a lower layer. Figure 1 gives an example.

Then, in this order, i.e. layer by layer, and node by node
in the layer, for every successor v of node u in the layer, we
compute

b(v) := max{b(v), b(u) + ε(u, v) + ρ(v)} .

After processing the graph, Eq. (1) holds.
Obviously, by re-defining the edge weight as

ε′ : E → R+, ε′(u, v) =
1

1 + ε(u, v) + ρ(v)

one could get rid of the node weights ρ, and computing
b(ve) became equivalent to solving a single-pair (or equiva-
lently a single-source) shortest-path problem in a directed

Figure 1. Example task graph, sorted topo-
logically.

acyclic graph, see e.g. [2], which can be done in time
O(|V |+ |E|).

Typical solutions for this problem not only compute the
b-level for each node, but also the so-called critical path of
nodes vs = v0, . . . , vk = ve that determines the b-level of
the sink node ve, and thus the execution time of the job.
Note that the critical path need not be unique, but that we
will assume a unique critical path in the sequel for simplic-
ity. In our example of Fig. 1, the critical path is marked in
bold, comprising nodes 0, 1, 4, 5, and 6.

As we want to guide the improvement of the makespan
by acceleration of task code, we assume that communica-
tion times are fixed. Furthermore, we make the assumption
that the runtime of any task v cannot be improved more than
a given fraction tmax ∈ [0 : 1]. Typically tmax will be on
the order of less than 10%.

4. Finding the best task for improvement

As task graphs can be quite large, especially those gen-
erated from traces, and as performance tuning is time-
consuming, the programmer needs a hint which tasks he
should look into. More exactly, our first problem to solve is
to select the task vmax ∈ V where a runtime improvement
by a fraction t ≤ tmax generates the maximum runtime
improvement for the whole grid job, i.e. the maximum re-
duction of the makespan. The following Lemma 1 gives a
hint as to which tasks to consider for improvement.

Lemma 1 The task vmax is a task vi on the critical path
from vs to ve, before and after the runtime reduction.

Proof: For any task v not on the critical path, a reduction
of ρ(v) does not influence the b-level of ve, by the definition
of the critical path. Thus, vmax must be on the current criti-
cal path. If vmax would not be on the critical path anymore
after the runtime reduction, then we could have improved
it by a factor t′ < t, such that it would have remained on
the critical path. After vmax leaves the critical path, further
runtime savings do not improve the makespan.

Lemma 1 indicates that the makespan is improved by
improving the runtime of any task vi on the critical path,
given that this task still remains on the critical path af-
ter its improvement. We therefore restrict to tasks vi with
1 ≤ i ≤ k − 1 because v0 and vk were added later on with
runtime 0.

For each of these tasks vi, we seek the maximum runtime
improvement such that vi does not leave the critical path and
that the factor of improvement is not more than tmax. Then
we recommend the task vi promising the largest runtime
improvement as candidate vmax for tuning the grid job.

Obviously, one may choose tmax individually for each
task vi, thus being able e.g. to mark or exclude a task vi that

Figure 2. Line graph of example task graph.

has already been optimized by setting its timax to a smaller
value than others or even to 0%.

To compute when a task vi will leave the critical path, we
transform the task graph into a line graph G′ = (V ′, E′).
This graph only consists of the nodes vi of the critical path
(i = 0, . . . , k) with runtimes ρi = ρ(vi). The nodes are
linked by the edges (vi, vi+1), where 0 ≤ i ≤ k − 1, with
weights εi,i+1 = ε(vi, vi+1). The remainder of the original
task graph that remains unchanged, is represented by edges
(vi, vj), where 0 ≤ i ≤ k− 2 and i+2 ≤ j ≤ k, with edge
weight εi,j being the weight of the heaviest path from vi to
vj that does not meet the critical path except in vi and vj , if
such a path exists.

Figure 2 depicts this transformation for the task graph
of Fig. 1. Only the nodes 0, 1, 4, 5, 6 from the critical
path remain. There are only two paths outside the critical
path: one from node 0 via node 2 to node 4 with weight
21 = 0 + 20 + 1, and one from node 0 via node 3 to node 5
with weight 40 = 0 + 39 + 1.

One can show that both critical paths mentioned in
Lemma 1 are identical. As a consequence, vi would leave
the critical path as soon as vi does not constitute anymore
the maximum when computing b(vi+1) in Eq. (1). Further-
more, as reducing the runtime of task vi reduces the b-level
of vi+1, this also reduces the computation of the b-levels of

vi+2 to vk. Therefore, the same check has to be done for
them as well.

Algorithmically, we proceed as follows. For each node
vj , where i+ 1 ≤ j ≤ k, we compute

di
j = b(vj−1) + ε(vj−1, vj) (2)

−max{b(vh) + ε(vh, vj) | h < i and (vh, vj) ∈ E′}

Thus, di
j is the amount that the runtime of vj−1 can be re-

duced before the critical path condition is violated in vj .
Note that it is not sufficient to subtract

max{b(u) + ε(u, vj) | (u, vj) ∈ E, u 6= vj−1} (3)

which one would assume to be suggested by Eq. (1). If all
paths from the source v0 to u pass the critical path in one of
the nodes vi, . . . , vj−2, then a runtime reduction in vi would
also necessarily reduce the b-level of u accordingly, so that
it cannot count as a constraint.

Obviously, the set in Eq. (2) over which the maximum is
formed may be empty. In this case, we set dj =∞, because
no runtime reduction of vj−1 can violate the critical path
condition in vj .

Then we compute, for i = k − 1, k − 2, . . . , 1,

Di = min{di
j | j > i} .

Thus Di is the amount that the runtime of task vi can be
reduced without violating the critical path condition in any
of vi+1, . . . , vk.

Finally, for each vi, where 1 ≤ i ≤ k − 1, we compute
the possible runtime reduction as

ri = min{Di, t
i
max · ρ(vi)}

in order to avoid cases where e.g. a node vi is on any criti-
cal path no matter how much its runtime would be reduced
and hence would be proposed as a candidate vmax although
large runtime improvements are not realistic.

Our recommendation is to consider task vi with maxi-
mum ri as candidate vmax for inspection of the code with
respect to performance improvement. Of course, we could
also give a recommendation list with all tasks of the critical
path sorted with descending ri values.

The computational complexity consists of computing the
b-levels and the critical path in timeO(|V |+|E|), the trans-
formation into the line graph which constitutes a kind of
all-pair shortest-path problem (restricted to all pairs of crit-
ical path nodes), and the computation of the Di which takes
time O(k3).

In our example of Fig. 1, we compute d5
6 = d4

6 = d1
6 =

∞ as the indegree of task 6 is only 1. Furthermore we have
d4
5 = d1

5 = 45 − 40 = 5 and d1
4 = 24 − 21 = 3. From

this we receive D5 =∞, D4 = min{∞, 5} = 5 and D1 =
min{∞, 5, 3} = 3. Thus, if all timax = 15%, we obtain

r5 = min{∞, 0.15·1} = 0.15, r4 = min{5, 0.15·20} = 3,
and r1 = min{3, 0.15·23} = 3. We see that in this example
both tasks 1 and 4 can be chosen as candidates, because
both runtimes can be improved by 3. Yet the reasons are
different: the runtime of task 1 can be improved only by
3 because of critical path constraints, and to achieve this
would only need an improvement by 3/23 ≈ 13%, while
the runtime of task 4 can be improved only by 3 because of
the threshold of 15%, which is already quite large. Thus,
one would probably recommend task 1 for inspection first.

Note that an additional edge (1, 6) in the original task
graph with weight 22 would have rendered d5

6 = d4
6 = 1

while d1
6 = ∞ still, leading to D5 = 1 and D4 =

min{1, 5} = 1, while D1 = 3 remains unchanged. If one
would have used Eq. (3) instead, then d1

6 would have be-
come 1 = 46 + 0− (23 + 22) and thus D1 = 1 would have
been the consequence, although D1 = 3 is possible.

5. Improving Several Tasks

As an extension of this scheme, one might also consider
to improve several tasks. We constrain ourselves to the case
that the critical path is not changed by the improvement. In
the case where only one task was improved, this was guar-
anteed. Here it is a restriction as we will see later in our
example.

The condition that the critical path is not changed despite
of runtime improvements ri in nodes vi holds as long as for
each pair of critical path nodes vi and vj that are not adja-
cent (i.e. j ≥ i+2), no path between them in the remainder
of the original task graph has more weight than the critical
path between them:

εi,j ≤ εi,i+1 + ρi+1 − ri+1

+ εi+1,i+2 + · · ·+ ρj−1 − rj−1 + εj−1,j (4)

We achieve our solution by solving a linear optimization
problem. We seek to maximize the sum R of the runtime
improvements ri, i.e.

R =
k−1∑
i=1

ri

under the constraints that for i = 1, . . . , k − 1 we have
0 ≤ ri/ρi ≤ timax, and for all 1 ≤ i, j ≤ k − 1 with
i+ 2 ≤ j, Eq. (4) holds. Note that the ri can be considered
to be reals so that the solution of the problem is simpler as
in the integer case.

We may want to prefer solutions that improve as few
tasks as possible. To do this, we have to introduce binary
indicator variables xi for improved tasks with the constraint
xi ≤ ri if we assume ri to be integral. Thus, in an optimal

solution we have xi = 0 for tasks that are not improved. We
extend R to

R̃ =
k−1∑
i=1

ri + α ·
k−1∑
i=1

(1− xi) (5)

so that each unchanged task increases the solution by α.
The choice of α determines the importance of this second
optimization goal.

The complexity of the linear optimization problem is
O(k) variables and up toO(k2) constraints, where k ≤ |V |.
Yet, in practice many of the εi,j will be zero and thus those
constraints can be removed. Also, the length of the critical
path k will often be much shorter than the size of the graph.
For example, if k ≤

√
|V | then we haveO(

√
|V |) variables

and O(|V |) constraints.
In our example, we would have to maximize the sum of

the variables r1, r4, r5 with the following constraints:

0 ≤ 1
23
· r1 ≤ 0.15

0 ≤ 1
20
· r4 ≤ 0.15

0 ≤ r5 ≤ 0.15
21 ≤ 24− r1
40 ≤ 45− r1 − r4

We see that the third constraint is independent of the oth-
ers, and thus in an optimal solution r5 = 0.15. Also, the
fourth constraint is tighter than the first, giving us 0 ≤ r1 ≤
3. Together with the second constraint 0 ≤ r4 ≤ 3 the fifth
constraint r1 + r4 ≤ 5 determines all optimal solutions to
be of the sort 2 ≤ r1, r4 ≤ 3 with r4 = 5 − r1. Thus, the
maximum reduction of the critical path is r1 + r4 + r5 =
5+0.15 = 5.15. The simplicity of this example comes from
the fact that the critical path is short and that all edges out-
side the critical path have their origin in the artificial source
(task 0).

If we optimize our example for function R̃ of Eq. (5), we
see that already for α > 0.15, a solution with r5 = 0 will
give a better target value, whereas α > 3 will lead to either
r1 or r4 being set to 0.

Note that if we allow the critical path to change, we can
derive a larger reduction of the makespan with improving 3
tasks. We may improve task 1 with r1 = 3, so that the paths
0–1–4 and 0–2–4 both have weight 21, excluding the run-
time of task 4. Then we may improve task 4 with r4 = 3.
Now the path 0–1–4–5 (excluding the runtime of task 5) has
weight 39, while the path 0–3–5 (excluding the runtime of
task 5) has weight 40, and so is the new critical path. If
we now reduce the runtime of task 3 by r3 = 1, both paths
have weight 39, and the improvement on the makespan is
6, while the maximum improvement without changing the
critical path was 5.15. Thus, the variants of the next section

that do not enforce this restriction may lead to better results,
yet perhaps at the price of a larger computational complex-
ity or the lack of guarantee of a good solution. Therefore,
the method of this section should always be applied as a
reference first.

6 Variants

In the previous sections we proposed algorithms for
identification of single or multiple tasks that mainly influ-
ence the performance of a grid job. In order to reduce the
makespan exactly those tasks should be improved. Besides
the proposed algorithms a great variety of other optimiza-
tion algorithms could also be applied to achieve this objec-
tive. If just a performance function is available we could use
heuristic search methods, e.g. meta-heuristic like Simulated
Annealing, Evolutionary or Genetic Algorithms or even Ant
Colony Optimization. Unfortunately, those algorithms per-
form an undirected search. Thus, it would be more advis-
able to use gradient search methods. To get the gradients we
add some noise to the runtime ρ(vi) of task i which yields
ρ′(vi). Then, we re-compute the static b-levels and get an
approximation of the gradient as follows:

gradi =
b′(ve)− b(ve)
ρ′(vi)− ρ(vi)

Beginning with the initial state given by the event trace-
based task graph we choose a step width η and per-
form a gradient descent to the next local minimum of the
makespan.

Another variant could be to minimize the makespan by
improving the performance of the resources instead of the
tasks. While we transformed the event trace to a task graph
the information about mapping of tasks to resources was
ignored. Nevertheless, it is available and we could use it
to determine which PE is most critical to the performance.
Because many tasks are mapped to one resource, an im-
provement of one PE affects all those tasks. In principle,
the above sketched gradient descent method can be trans-
ferred to solve this problem. Instead of approximating the
gradients in terms of the runtime we have to compute an ap-
proximation of the gradient with respect to the performance
of the resources.

A similar situation arises if the task graph contains
copies of one task, e.g. the same code is executed in many
nodes of the graph. In this case, the improvement of that
code would affect many tasks at once. Nevertheless, note
that the corresponding gradient components will be differ-
ent and thus this case would be equivalent to the one de-
scribed at the beginning of this section.

7. Conclusions

We have presented a novel method to guide the improve-
ment of grid jobs by recommending, given the trace of a
previous run, promising candidate tasks where an acceler-
ation by a certain factor would maximize the gain on the
makespan. We have detailed algorithms for finding a sin-
gle candidate task and for finding a list of candidate tasks,
thus adapting to the resources available for improvement on
the side of the developer. So far, our algorithms concen-
trate on the critical path. We have indicated how our ap-
proach can be generalized by using meta-heuristics on the
complete task graph to possibly find larger improvements,
or to tackle related problems such as the question whether
replacement of a single processor would result in a certain
improvement. Our future work will concentrate on apply-
ing an implementation to both traces from real grid jobs [3]
and to a benchmark suite of task graphs and schedules [4].

Acknowledgements

We would like to thank René Drießel for proposing the
line graph representation, and Christoph Kessler for intro-
ducing us to the connection between scheduling problems
and linear optimization.

References

[1] D. Becker, F. Wolf, W. Frings, M. Geimer, B. J. N. Wylie,
and B. Mohr. Automatic trace-based performance analysis of
metacomputing applications. In Proc. International Parallel
and Distributed Processing Symposium, pages 1–10, 2007.

[2] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Al-
gorithms. MIT Press, 1990.

[3] M.-A. Hermanns, M. Geimer, F. Wolf, and B. J. N.
Wylie. Verifying causal connections between distant per-
formance phenomena in large-scale message-passing appli-
cations. Technical Report FZJ-JSC-IB-2008-05, FZ Jülich,
2008.

[4] U. Hönig and W. Schiffmann. Fast optimal task graph
scheduling by means of an optimized parallel A*-algorithm.
In Proc. International Conference on Parallel and Distributed
Processing Techniques and Applications, pages 842–848.
CSREA Press, 2004.

[5] M. Wieczorek, A. Hoheisel, and R. Prodan. Taxonomy of
the multi-criteria grid workflow scheduling problem. In Proc.
CoreGrid Workshop, 2007.

[6] F. Wolf, B. Mohr, J. Dongarra, and S. Moore. Efficient pattern
search in large traces through successive refinement. In Proc.
Euro-Par, pages 47–54, 2004.

