
Towards Practical Homomorphic Encryption in Cloud Computing

Adil Bouti
FernUniversität in Hagen

Faculty of Mathematics and Computer Science
58084 Hagen,Germany
adil.bouti@gmail.com

Jörg Keller
FernUniversität in Hagen

Faculty of Mathematics and Computer Science
58084 Hagen,Germany

joerg.keller@fernuni-hagen.de

Abstract—Secure computing in clouds faces many challenges
related to data confidentiality and integrity. Classical security
models focus on securing data from outside attacks, e.g. from
other cloud users. Yet, breach of data confidentiality by the
cloud provider has received far less attention. In previous
work, we presented a protocol to delegate computations into
clouds, providing security against other cloud users and cloud
providers through encrypted data. The protocol is based on
homomorphic properties of encryption algorithms. However,
that protocol was only practical in certain circumstances. In
the present paper we introduce some practical extensions to our
algorithm to improve its efficiency. Additionally we extend the
algorithm to support multiparty computation while preserving
its homomorphic properties. We then show how these optimiza-
tion blocks can be used for applying the scheme to efficient
face recognition using Eigenface recognition algorithm.

Keywords-Cloud Computing; Homomorphic Encryption;
Privacy-preserving Face Recognition; Secure Delegation;

I. INTRODUCTION

Cloud computing is one of the most distinctive advances
in the IT world during the last decade. IT companies provide
flexible cloud services and infrastructures almost for every
purpose, allowing customers to quickly scale their services
using pay-by-use provisioning models.

Concerns about potential risks involved with the loss of
privacy, integrity and availability of the user data on cloud
networks, due to technical failures or even targeted attacks
from both outside and inside the cloud provider’s network,
have been discussed in several scientific works [13], [14].
Cloud providers generally use common security protection
models that require to trust the cloud provider, and classical
user transparent security measures to protect their networks
and to satisfy the security goals of their customers. These
measures are still in an early stage and are prone to common
security threats, such as cloud providers forced by local
(political) pressure to reveal cloud user data.

To fill the need for encrypted computing in cloud networks
we presented an approach for secure delegated computation
[6]. Computations on encrypted data are based on two
independent homomorphic encryption algorithms, providing
homomorphy for additions and multiplications. The model
consists of an agent acting as the delegator and at least
one worker in the cloud who performs the computation.

However, the need to re-encrypt data to switch between
addition and multiplication operations limited applicability.
In the present work, we introduce measures to increase
the efficiency of our protocol, and to increase security by
multiparty computation. Furthermore we demonstrate the
applicability of our approach with the implementation of
a privacy-preserving face recognition system by means of
homomorphic encryption schemes. The typical scenario here
is a delegator-worker(s) application where the client needs
to know whether a specific face image is contained in
the encrypted face repertoire of a server. Our application
requires that the delegator trusts the worker(s) to correctly
perform the requested operations for the face recognition
but without revealing any information to the server about
the requested image as well as about the outcome of the
matching algorithm.

The remainder of this article is organized as follows. In
Section III, we review and improve the concept of delegated
computation based on multiple, partly homomorphic public
key cryptosystems. In Section IV, we discuss the delegation
of the encryption and decryption overhead to multiple cloud
providers. In Section V we present a privacy-preserving face
recognition algorithm using our protocol. In Section VI, we
give a conclusion.

II. RELATED WORK

The increasing demand for flexible and secure cloud
solutions for private and commercial use has attracted a lot
of attention to alternative schemes allowing to evaluate cir-
cuits over encrypted data. In [1] a “somewhat homomorphic
scheme” able to perform view multiplications was presented.
The first working fully homomorphic encryption (FHE)
schemes were published in [3], [4], [5]. The complexity of
FHE schemes to encrypt and decrypt one bit using FHE
schemes and the not proportionate ciphertext sizes have
mobilized many researchers and institutes to contribute im-
proving FHE performance to make fully homomorphic en-
cryption and secure multi-party computations more practical.
First attempts [2], [26] to integrate FHE schemes in cloud-
ready systems show that the computational costs for a single
fully homomorphic operation are dramatically larger than the
results presented in this work. Previous papers focusing on

the implementation of privacy preserving face recognition
and feature extraction used different approaches to reach
this goal. Erkin et al. [22] protocol is based on the homo-
morphic properties of Paillier to achieve face recognition
using encrypted face images. Sadeghi and Schneider [21]
combined Yao garbled circuits and homomorphic algorithms
to implement practicable face recognition. Qin et al. [25]
combined different cryptographic primitives to implement
privacy preserving image feature extraction.

III. PRECOMPUTED ENCRYPTED COMPUTATION

In previous work [6] we presented a method to delegate
computations on confidential data into a cloud, with the
assumption that the majority of computations would be addi-
tions or multiplications, or could be transformed into them.
Our approach uses two homomorphic encryption algorithms
A and M , one for addition and one for multiplication. The
delegator first encrypts confidential data with A, transmits
them to the cloud, and starts the application. The application
works on the encrypted data. If a multiplication occurs,
the encrypted data is sent back to the delegator, decrypted
with A, encrypted with M , and sent again to the cloud.
In the present work we use RSA [9] for homomorphic
multiplication operations and Paillier [7] for additions.

Even when the computational performance of the cloud
is very high, the method only relieves the delegator if
the effort to encrypt and decrypt data is smaller than for
the computation itself. We thus also discussed means to
reduce the frequency of encryptions and decryptions, e.g.
by reordering of computational steps, and bundling several
transmissions to reduce communication overhead. Still, the
effort remained high so that only some applications could
profit from our approach.

Precomputation is a widely used low level optimization
technique used e.g. by processors to reduce the operation
latency while precomputing input independent operations or
performing speculative memory accesses. In cryptography,
precomputation is a classic and a well-studied technique
adopted e.g. in a fixed base exponentiation method in order
to precompute modular exponentiations in cryptographic
operations.

Let X =

n−1∑
i=0

zi · 2i with n ∈ N and zi ∈ {0, 1},

i.e. zn−1, ..., z0 is a binary representation of a non-negative
integer X . In order to reduce the encryption overhead for
encrypted addition operations using additive homomorphic
encryption algorithms such as Paillier [7], the delegator
computes the encryption of all powers of two within a
specified number range. The precomputed encrypted powers
of two can be combined in order to encrypt an arbitrary
number using its binary representation:

Ek(X) =
∏
zi=1

Ek(2
i) mod n2

For a processor with a bit width of n bits, we should
precompute n encryptions (each 2i value) within the number
range of the specified bit width. The proposed usage of
precomputation for encrypted arithmetic additions eliminates
the overhead for modular exponentiations in favor of mod-
ular multiplications.

The usage of precomputation for encrypted addition op-
erations will speed up our algorithm due to the fact that
additions represent the majority of the operations processed
within numerical algorithms. The optimization of our al-
gorithm with precomputation has many advantages, on the
one hand the precomputation overhead is low compared to
the encryption overhead. On the other hand the memory
consumption through precomputation is manageable.

Furthermore the precomputed values and the respective
plaintext values can be stored in an efficient data structure by
the delegator in order to compare the encrypted results with
the values stored in the data structure, like a result cache,
in order to decrease the decryption overhead for arithmetic
additions over encrypted data.

We can also compute and store encryptions of all t-bit
combinations with 2t · l storage consumption, with l the
length of encrypted number bits.

Let X = (xn−1, . . . , x0) a binary representation of an

integer and l :=

n−1∑
i=0

xi the number of relevant bits.

The encryption X = (xn−1, . . . , x0) (assume n is a
multiple of t) can be computed as fallows:

E(X) =

n
t −1∏
i=0

Ek(xi·t+t−1, · · · , xi·t)

The power of 2 is a straightforward special case of t =
1. If t = 10 and n = 64, then only 7 multiplications are
necessary in contrast to 32 on average or 64 in worst case
for t = 1.

Using precomputation for addition operations the delega-
tor performs l − 1 multiplications with the complexity of
θ(n). Compared to our initial implementation we avoid the
overhead of the modular exponentiations needed for each
encryption using l−1 multiplications. In the present work we
waive using precomputation for RSA-encrypted values,due
to the huge complexity for the delegator to compute the
prime factors for every multiplication operand. Nevertheless
we show in IV how to use this approach to delegate the
RSA-encryption of chosen values.

Figure 1 depicts the advantages of precomputation for
variables of different bitwidth in a sample application.

IV. DISTRIBUTED HOMOMORPHIC ENCRYPTION

In this section we present how the deployed encryption
algorithms can be used to support distributed computing
using homomorphic encryption. In the following use case the
delegator wants to outsource the encryption and decryption
of the input data and results to k + k′ cloud workers. This

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 0 10 20 30 40 50 60

ns

Bit length

local encryption
precomputation

Figure 1: Average encryption time for variables with and
without precomputation

is a critical point, as on the one hand, the data should not
be disclosed in plaintext to any external party, to protect
confidentiality, but on the other hand, if the effort for
encryption and decryption on the delegator side is higher
than the computation itself, then the delegator would be
better off to perform the computation locally.

In the following we will present our extensions using the
example of two encryption algorithms, RSA [9] (multiplica-
tive homomorphic) and Paillier [7] (additive homomorphic)
to support distributed homomorphic encryption.

A. RSA

Let us suppose the delegator and the workers have already
exchanged an RSA modulus N e.g. using the shared RSA
key generation protocol by Damgård et al. [10], [11].

Let e be an RSA exponent co-prime to φ(N) and d the
corresponding RSA decryption exponent such that

d = {d1}+ {d2 + ...+ dk′}
= d′ + d′′

where di are positive integers. The representations of e
and d have no impact on the correctness of the encryption
and decryption computations and thus must fulfill only
the requirement that the number of operands di is equal
to the number of the workers performing the encryption
respectively the decryption. Notice the number k of workers
performing the encryption is not necessarily equal to the
number k′ of workers to decrypt messages.

The delegator distributes the partial exponent di to the
involved workers. Let m ∈ Z∗

N be a plaintext value with
m = m1 · · ·mn =

∏n
k=1 mk. the prime factors of m,

the delegator has the possibility to delegate the encryption

computation to a number of clients k ≤ N . Each partial
ciphertext ci = mi

e mod N is computed by a worker. The
partial ciphertexts ci can be multiplied by the delegator
or any other cloud worker in order to compute the final
ciphertext c:

c = c1 · c2 · · · ck mod N

= me
1 ·me

2 · · ·me
k mod N

= (m1 · · ·m2... · · ·mk)
e mod N

= me mod N .

The encryption can be securely outsourced to the workers
even if the modulus e is known. In order to prevent that
rogue cloud-workers can reconstruct m, the delegator can
e.g. use random blind factors in order to obfuscate m for
the workers. The blind factors can be removed after the de-
cryption dependent on the performed multiplications on the
initial ciphertext. By the use of e.g. two independent cloud
providers, the delegator chooses carefully m1 and m2 with
m = m1 ·m2 and each of the cloud workers computes the
encryption of one of the ciphertext parts (Ee(m1), Ee(m2)).
The delegator can combine the ciphertexts to reconstruct
Ee(m) without that the cloud workers are able to gain
knowledge about m. Alternatively the delegator can generate
a random number r and computes r′ = rd and m′ = m · r′
mod N and sends m′ to the worker. The worker computes:

c′ = m′e mod N

= (m · r′)e mod N

= me · rd·e mod N

= me · r mod N

The delegator recovers c by multiplying c′ by r−1 · r ≡ 1
(mod N) The random values guarantees that the workers
aren’t able to reconstruct neither m from m′ nor r from
r′, enabling the delegator to achieve semantic security for
RSA achieving a similar effect as using special padding RSA
padding schemes (e.g. RSA-OAEP+ [17], [18]), without the
loss of the homomorphic property.

Decrypting a message m can be carried out as described
by Shoup [12], every decryption client computes cdi mod
N . The delegator computes m =

∏
i c

di mod N .

m = cd
′
· cd

′′
mod N

m′ = cd
′′

can be computed by the workers, every decryption
client computes cdi mod N with i ∈ {2, ..., k′}. This part of
the computation can be easily parallelized and considerably
accelerate the decryption. The delegator finally computes
m = cd

′ ∗ m′ mod N in order to recover the message
plaintext. The secret key part d′ kept secret by the delegator
has few bits and can be used to compute m locally in a
efficient and resource-friendly manner.

We take in consideration that the cloud provider could
reconstruct the key if all subkeys di are available on the

cloud. Alternatively, different cloud providers can be used
for different parts of the input data, so that no provider ever
sees all inputs in ciphertext. A more elaborate scheme could
split the decryption on two independent cloud providers,
preventing that a malicious cloud provider receives enough
subkeys allowing in the worst case to rebuild the secret
key or at least to brute-force the remaining parts of it. The
delegator has also the possibility to keep a defined part of the
secret subkeys, in order to prevent attacks on the encryption
secret keys by a malicious cloud provider.

So far our base assumption is that the encryption cloud
workers receive no input data in plaintext in order to
compute the partial encryptions and the message can be split
up into several parts of which each is not confidential enough
to not be trusted to one encryption provider. Alternatively,
different cloud providers can be used for parts of the input
data, allowing no provider to proceed all inputs. A more
elaborated scheme could split a message m into two factors
m1 and m2 such that m = m1 · m2, have the two factors
encrypted separately, and generate the encrypted message
by multiplying the partial encryptions of both factors. Note
that the input data typically is from a much smaller range
(32-bit or 64-bit values), so that factorization is not resource
costly for the delegator. Furthermore the delegator can use
encrypted values present in the prime factors of the message
m in order to reduce encryptions and compensate the factor-
ization overhead. A malicious cloud provider shouldn’t be
able to distinguish between a full input message and factors
of it. thus the worker receives encrypted values sequences
including whole messages and prime factors of messages
without any possibility to distinguish between the context
in which the encrypted values are used in.

Note the use of RSA as multiplicative homomorphic
encryption scheme is only appropriate in use cases where
semantic security is not required and one-way security is
sufficient.

B. Paillier

Let N be an RSA modulus, (n, g) a Paillier public key
and (λ, µ) the corresponding private key.

Let m ∈ Z∗
n be a plaintext message with m = m1 +

· · · + mk with m >> k and ri ∈ Z∗
n a random number.

The partial encryptions ci of m can be computed by the
distributed clients as follows:

ci = gmi · rni mod n2 .

The complete encryption of m can be computed based on
the k partial encryptions ci by the delegator or any other
worker as follows:

c = gm1 · gm2 · · · gmk · rn1 · rn2 · · · rnk mod n2

= g(m1+m2·...+mk) · rn mod n2

= gm · rn mod n2 .

For λ the least common multiple of (p − 1, q − 1), λ =
λ1 + ... + λk a Paillier private key, the decryption of an
encrypted message c can also be computed by the distributed
workers if the partial encrypted messages cis are available.

m = L(cλ mod n2) · µ mod n

with
µ =

1

L(gλ mod n2)
mod n

The decryption can be moved to k workers, where every
worker has to compute:

mi = cλi mod n2

The delegator receives the respective values of ci from
the workers and can compute the plaintext message m as
follows:

m = L(

k∏
i=1

cλi mod n2) · µ mod n

= L(cΣ
k
i=1λi mod n2) · µ mod n

= L(cλ mod n2) · µ mod n .

The security of the decryption relies on outsourcing
merely parts of the secret key λi not allowing to decrypt the
ciphertext or parts of it. In the two party setting of the semi-
honest model, The cloud provider shouldn’t possess enough
λi allowing to decrypt the cipher text or to brute-force the
remaining parts. We notice that our protocol doesn’t leak
any partial information about the number k of private key
parts nor are the number of involved workers revealed. In
contrast to factorization-based key parts, the addition based
key parts aren’t distinct and thus able to include sufficient
entropy in order to complicate the prediction of key parts.
Paillier is semantically secure under a strong decisional
assumption as shown by Paillier [7] and provides indistin-
guishability under chosen-plaintext attacks. Nevertheless the
distributed encryption functionality theoretically allows per-
forming chosen plaintext attacks through combining several
message parts.

One disadvantage of sharing private key parts is that the
storage and transmission of the parts of keys requires an
amount of storage and bandwidth resources equivalent to
the number of used key parts between the delegator and the
involved workers.

C. Protocol overhead

Our initial protocol presented in [6] encrypts every vari-
able with a specific encryption algorithm in order to exploit
its homomorphic property to compute arithmetic operations
on the encrypted values. Using algorithms from computer
arithmetic [15], we implement operations on long numbers

via operations on shorter numbers. For typical sizes of 1024-
bit key lengths we get:

MODE(d, n) = 1.5 · l(d)[M(l(n)) + 2Mod(l(n)) + 1]

M(w) = 3M(w/2) + 5A(w) + 2S

A(w) = w/32

Mod(w) = Mod(w/2) + 4M(w/2) + 1.5A(w) + 3S

Where l(x) denotes the bit length of an argument. We
assume that the operations M(64), A(64), Mod(64) and
the shift operation S need each one CPU clock cycle.
Chinese remaindering as well as random number generation
is considered to be negligible.

M(1024) = 3M(w/2) + 5A(w) + 2S

= 3M(512) + 160 + 2

= 3[3M(256) + 5A(512) + 2S] + 162

· · ·
= 81M(64) + 1380

= 1461

Mod(1024) = Mod(w/2) + 4M(w/2) + 1.5A(w) + 3S

= Mod(512) + 4M(512) + 1.5A(1024) + 3

· · ·
= Mod(64) + 4M(64) + 1.5A(128) + 3S + 2393

= 2407

The cpu clock cycles for a modular exponentiation using a
1024 Bit key can be computed as follows:

MODE(d, n) = 1.5.l(d)[M(l(n)) + 2Mod(l(n)) + 1]

= 1.5.1024[M(1024) + 2Mod(1024) + 1]

= 1536(1461 + 4814 + 1)

= 9639936

using the optimized exponentiation techniques e.g. based on
the chinese remainder theorem (CRT) as described in [16],
the cpu clock cycles need can be reduced to:

MODE(d, n) = 2MODE(d/2, n/2) +A(512) + 2M(512)

+Mod(512)

= 2(1.5 · l(d/2)[M(l(n/2))+

2Mod(l(n/2)) + 1]) + 16 + 866 + 624

= 1.5.512[M(512) + 2Mod(512) + 1] + 1506

= 2585058

The number of cpu clocks needed for each encryption
operation using RSA is generally less than the decryption
due to the smaller value of the public key e compared to d. In
our computations we used the common exponent e = 216+1.

MODE(e, n) = 1.5 · l(e)[M(l(n)) + 2Mod(l(n)) + 1]

= 141210

The Paillier encryption is performed using two modular
exponentiations modulo n2:

c = gm · rn mod n2

The total number of arithmetic operations needed by the
encryption is dependent on the plaintext message m. The
number of operations needed by the exponentiation rn

mod n2:

MODE(n, n
2) = 1.5 · l(n)[M(l(n2)) + 2Mod(l(n2)) + 1]

= 1.5 · l(n)(M(2048) + 2Mod(2048) + 1)

= 32879616

This computation is the most complex part of the encryption
and can be easily precomputed by the delegator. For gm

the computation can be significantly accelerated by using a
small value for g, provided it fulfills the requirement g ∈
Z∗
n2 . In our example we choose g = 2. The total amount of

operations needed for

MODE(m,n2) = 1.5 · l(m)[M(l(n2)) + 2Mod(l(n2)) + 1]

= 1.5 · l(m)(M(2048) + 2Mod(2048) + 1)

= 32109 · l(m)

The total amount of arithmetic operations needed for each
Paillier encryption is 32109 · l(m). The Paillier decryption

m =
cλ mod n2 − 1

n
is practically one modular exponenti-

ation modulo n2. In our example λ has a bit length of 1024
bits.

MODE(λ, n
2) = 1.5 · l(λ)(M(l(n2)) + 2Mod(l(n2)) + 1)

= 1.5 · 1024(M(2048) + 2Mod(2048) + 1)

= 32879616

The presented distributed extension reduce the huge en-
cryption and decryption overhead for encryption algorithms
based on modular exponentiations to the overhead of com-
parably fast arithmetic multiplications. The computed com-
plexities of modular exponentiations with common moduli
show the huge complexity of our initial approach in [6].
The distributed computation approach brings a significant
improvement to our algorithm as shown in the benchmark
results in Figure 2 and Figure 3 measured on a 64 Bit
system with Intel Core i5-2540M 2.60GHz CPU and a local
cloud infrastructure connected via 100 MBit/s local area net-
work. The benchmark is based on distributed computation of
homomorphic multiplications and additions of integer values
of different sizes. Table II shows the average encryption
and decryption time needed by the delegator when using
the distributed algorithm compared to local computation.

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50 60

ns

Bit length

RSA distributed encryption
RSA distributed decryption

Figure 2: RSA average distributed encryption and decryption
time

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50 60

ns

Bit length

Paillier distributed encryption
Paillier distributed decryption

Figure 3: Paillier average distributed encryption and decryp-
tion time

Nanoseconds/Operation
Algorithm local distributed

RSA 1024 Bit Encryption 301075 341
RSA 1024 Bit Decryption 15213828 492
Paillier 1024 Bit Encryption 2625474 173
Paillier 1024 Bit Decryption 2403878 455

Table I: Encryption and decryption time average for local
and distributed computations

Due to the underlying basic arithmetic operations and the

parallelization potential of the construction. The complexity
of each distributed encryption and decryption is less complex
than performing the encryption operations by the delegator
locally. The management and network overhead for the
delegator grow linear to the number of variables used in
the outsourced computations and the number of necessary
encryption updates in order to switch between different
arithmetic operations. Furthermore the delegator may use
Shamir secret sharing algorithm in order to distribute the
plaintext variables securely to trustworthy workers.

V. EIGENFACE

Sirovich and Kirby [23] have developed a face classifica-
tion algorithm, transforming faces into a set of eigenfaces
forming a low-dimensional vector space (also known as face
space). The eigenfaces are generated through computing
principal components analysis on the set of training faces
to achieve a vector representation of every face image to
the face space spanned by the eigenfaces. The eigenvectors
are derived from the covariance matrix of the probability
distribution over the high-dimensional vector space of face
images.

Matthew Turk et al. have developed [19], [20] in 1991 a
dimension reduction method of calculating the eigenvectors
of a covariance matrix on a large number of face images
based on size independent matrices sized only by the number
of images within the training set. This improvement allowed
to apply the face classification algorithm of Sirovich and
Kirby to achieve practical computer based face recognition.
Recognition of a face is done by first projecting the query
face image to the face space and subsequently locating
the closest matching vector. The preparation phase of the
recognition consists of the following steps:

1) The average of the training face images Ψ is computed
as follows:

Ψ =
1

M

M∑
i=0

θi

The average face is then subtracted from each test
image within the training set (composed of M training
faces {θ1, · · · , θM}) to compute the difference vectors
ϕi = θi−Ψ. The difference vectors describe how much
each image differs from the average image Psi.

2) The covariance matrix of the difference vectors is
generated as follows:

S =
1

M

M∑
i=0

ϕiϕ
T
i

3) To obtain orthonormal eigenvectors and the corre-
sponding eigenvalues we need to apply principal com-
ponents analysis to the covariance matrix S. The
eigenvectors of the covariance matrix have then the
same dimension as the underlying test images and give

the direction in which the eigenvector differs from the
average image.

4) We choose the principal components K ≪ M arbi-
trary. From the set of M training images θ1, ..., θM to
determine an appropriate K-dimensional face space,
in which face images are projected in and represented
using the eigenfaces u1, u2, ..., uK (corresponding to
the K largest eigenvalues) as points. The result is the
projected face images Ω1,Ω2, ...,ΩK .

The recognition algorithm consists of three phases:
1) Given a test image Γ we compute the projection of Γ

in to the face space by calculating ω1 = uT
i (Γ − Ψ)

to obtain the projected face Ω = (ω1, · · · , ωK)
2) For all images within the test set the distances between

the vector Ω and the feature vectors Ω1, · · · ,ΩM are
computed:

Di = ∥Ω− Ωi∥2

3) The matching face image is calculated through com-
paring Dmin = min(D1, · · · , Dm) with a specific
threshold value ε. A match is given when the smallest
distance Dmin is smaller than ε otherwise a match
isn’t given.

A. Homomorphic Eigenface

In this section we present a privacy preserving Eigenface
implementation operating on encrypted face images. In our
proof of concept we wanted to test the practicability of
our approach using a real life scenario (video surveillance,
border control, etc.) where one requires privacy-preserving
online face recognition. Our protocol is based on a delegator
owning a face image he wants to recognize against a
database previously delegated to one or many cloud workers.

Notation: We denote an encrypted value x with an
additive homomorphic encryption algorithm by JxK+. An
encrypted value with a multiplicative homomorphic property
is denoted by JxK×. With ⊖ and ⊗ we denote the homomor-
phic arithmetic operations performed on encrypted values.

1) Offline phase: We use in the offline step the prepa-
ration phase as shown above to generate the The average
of the training face images Ψ, the eigenfaces u1, · · · , uK

and the feature vectors Ω1, · · · ,ΩK . We assume that the
delegator can calculate the encrypted values JΨiK+, JuiK×
with {i ∈ N : i ≤ K} and {JΩ1K+, · · · , JΩKK+} during
the processor idle times. The delegator transfers the one-
off precomputed encrypted values to the cloud workers to
perform the recognition steps later.

2) Online phase: The projection of an encrypted image
face JΓK is calculated as follows:

JωiK = JuiK× ⊗ (JΓK+ ⊖ JΨK+)
for each i ∈ {1, · · · ,K}. The feature vector JΩK =J(ω1, · · · , ωK)T K. The projection operations are primarily
performed by the workers using the homomorphic properties

of the used encryption algorithms, the delegator task is lim-
ited to perform dispatching tasks and recrypting operations
when needed.

After computing the feature Vector JΩK, the Euclidean
distance between Ω and all the feature vectors within the
database Di(Ωi,Ω) = ∥Ωi − Ω∥2 with i ∈ {1, · · · ,M} is
calculated by the workers. The distances JDiK are returned
to the delegator where he selects the index with the distance
smaller than the threshold value ε otherwise the recognition
will fail.

B. Implementation

We used the “ORL Database of Faces“ from AT&T
Laboratories Cambridge [24], which contains 10 images of
40 distinct subjects. All images within the database have a
dark background with the subject in upright, frontal position.
The size of each image is 92×112 pixels with 8-Bit grey
levels per pixel.

In our basic set the delegator communicates with a
dynamic number of cloud workers up to 32 (the peak
value to achieve efficient cpu load on the delegator side).
The Programs were developed in ANSI C using the GNU
MP Library for arbitrary precision computations. For ef-
ficiency reasons, floating point values were converted to
fixed points values. Tests were performed on a system with
Intel R⃝CoreTMi5-2540M CPU @ 2.60GHz and 8 GB RAM.
The network communication was performed within a 100
MBit LAN network.

To achieve the measurements results presented in [22]
we need round about 32 independent cloud workers. The
overhead is due to the recryption operations needed to
switch between homomorphic abstraction and multiplication
operations not needed in [22] (under the assumption that
eigenface vectors can be made public if the underlying face
image database isn’t classified as a secret).

sec./recognition
M w=8 w=16 w=32

40 138 73 37
80 157 81 40
160 182 89 46
320 203 103 51
400 211 113 62

Table II: Computation complexity for different Database
sizes M and distributed workers w

VI. CONCLUSION AND FUTURE WORK

We presented improvements to a protocol for computation
on encrypted data in clouds. Our analyses indicate that the
overhead is low enough to make the protocol practical. The
distribution of computations among several cloud providers
increases security at the cost of additional communication.

The algorithms presented in Chapters III and IV can be
combined as needed in order to optimize the tradeoff be-
tween local and remote encryption processing. The support
of precomputation and distributed encryption and decryption
is a significant progress towards applicable homomorphic
applications. Future work will focus on implementing a
prototype application supporting more encryption algorithms
with homomorphic properties and efficient and privacy-
friendly face recognition and feature extraction algorithms
to provide evidence of its feasibility for productive use. A
full length comparison against available privacy preserving
face recognition algorithms will be also considered.

REFERENCES

[1] M. Naehrig and K. Lauter and V. Vaikuntanathan. Can
Homomorphic Encryption Be Practical. In Proc. 3rd ACM
Workshop on Cloud Computing Security Workshop (CCSW
’11), pages 113-124, 2011.

[2] M. Brenner, H. Perl and Matthew Smith. Practical Applications
of Homomorphic Encryption. In Proc. 7th Int. Conference
on Security and Cryptography (SECRYPT 2012), pages 5–14,
2012.

[3] C. Gentry. Homomorphic encryption using ideal lattices. In
ACM Symposium on Theory of Computing (STOC’09) , pages
169–178, 2009.

[4] N. P. Smart and F. Vercauteren. Homomorphic encryption
with relatively small key and ciphertext sizes. In Public Key
Cryptography (PKC’10), volume 6056 of LNCS, pages 420–
443, 2010.

[5] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully
homomorphic encryption over the integers. In Advances in
Cryptology (EUROCRYPT’10), volume 6110 of LNCS , pages
24–43, 2010.

[6] A. Bouti and J. Keller. Securing cloud-based computations
against malicious providers. In SIGOPS Oper. Syst. Rev., Vol.
46, No. 2,pages 38–42, 2012.

[7] P. Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In Proc. 17th Int.l Conference on
Theory and Application of Cryptographic Techniques (EURO-
CRYPT ’99), pages 223–238, 1999.

[8] A. Shamir. How to share a secret. In Commun. ACM, Vol. 22
No.11, pages 612–613, 1979.

[9] R. L. Rivest and A. Shamir and L. Adleman. A method for
obtaining digital signatures and public-key cryptosystems. In
Commun. ACM, Vol. 26, pages 96–99, 1983.

[10] I. Damgård and K. Dupont. Efficient threshold RSA signa-
tures with general moduli and no extra assumptions. In Proc.
8th Int.l Conference on Theory and Practice in Public Key
Cryptography (PKC ’05), pages 346–361, 2005.

[11] I. Damgård and M. Koprowski. Practical threshold RSA
signatures without a trusted dealer. In Proc. Int.l Conference
on the Theory and Application of Cryptographic Techniques
(EUROCRYPT ’01), pages 152–165, 2001.

[12] V. Shoup. Practical threshold signatures. In Proc. 19th
Int.l Conference on Theory and Application of Cryptographic
Techniques (EUROCRYPT ’00), pages 207–220, 2000.

[13] T. Ristenpart and E. Tromer and H. Shacham and S. Savage.
Hey, you, get off of my cloud: exploring information leakage
in third-party compute clouds. In Proc. 16th ACM conference
on Computer and communications security (CCS ’09), pages
199–212, 2009.

[14] D. Osvik and A. Shamir and E. Tromer. Cache attacks
and countermeasures: the case of AES. In Proc. 2006 The
Cryptographers’ Track at the RSA conference on Topics in
Cryptology (CT-RSA’06), pages 1–20, 2006.

[15] R. Hwang and F. Su and Y. Yeh and C. Chen. An Efficient
Decryption Method for RSA Cryptosystem. In Proc. 19th
Int. Conference on Advanced Information Networking and
Applications (AINA ’05), Vol. 1, pages 585–590, 2005.

[16] H. Kamarulhaili and N. Basir. RSA Decryption Techniques
and the underlying Mathematical concepts. In Int. J. of
Cryptology Research, Vol. 1, No. 2, pages 165-177, 2009.

[17] M. Bellare and P. Rogaway. Optimal Asymmetric Encryption
How to Encrypt with RSA. In Lecture Notes in Computer
Science. vol. 950 (EUROCRYPT 94), pages 92-111, 1994.

[18] V. Shoup. OAEP Reconsidered. In Proc. 21st Annual Int.
Cryptology Conference on Advances in Cryptology (CRYPTO
01), Report 2000/060, pages 239-259, 2001.

[19] M. Turk and A. Pentland. Eigenfaces for Recognition. In J.
of Cognitive Neuroscience, Vol. 3, No. 1 , pages 71-86, 1991.

[20] M. Turk and A. Pentland. Face recognition using eigenfaces.
In IEEE Computer Vision and Pattern Recognition (CVPR91),
pages 586-591, 1991.

[21] A. Sadeghi and T. Schneider and I. Wehrenberg. Efficient
privacy-preserving face recognition. In Proc. 12th Int. Con-
ference on Information Security and Cryptology (ICISC’09),
pages 229-244, 2010.

[22] Z. Erkin and M. Franz and J. Guajardo and S. Katzenbeisser
and I. Lagendijkand and T. Toft. Privacy-Preserving Face
Recognition. In Proc. 9th Int. Symposium on Privacy Enhanc-
ing Technologies (PETS ’09), pages 235-253, 2009.

[23] L. Sirovich and M. Kirby. Low-Dimensional procedure for
the characterization of human faces. In J. of the Optical Society
of America, Vol. 4, pages 519524, 1987.

[24] The ORL Database of Faces. Available at.
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.
html, AT&T Laboratories Cambridge.

[25] Z. Qin, J. Yan, K. Ren, C.Chen, and C. Wang. Towards
Efficient Privacy-preserving Image Feature Extraction in Cloud
Computing. In Proc. ACM Int. Conference on Multimedia (MM
’14), Pages 497–506, 2014.

[26] M. Brenner, H. Perl and Matthew Smith. How Practical
is Homomorphically Encrypted Program Execution? An Im-
plementation and Performance Evaluation. In 11th IEEE Int.
Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom-12), pages 375–382, 2012.

