
Development of a GraphQL-based API for querying security

advisories for Common Security Advisory Framework (CSAF)

Waldemar Wiegel

Supervisors

Prof. Dr. Jörg Keller

FernUniversität in Hagen

Dr. Klaus Biß

Thomas Schmidt

Federal Office for Information Security (BSI) Germany

September 30, 2023

Master thesis in the master program practical computer science

Matriculation number: 3279308

FernUniversität in Hagen

Abstract

Security advisories can help to close vulnerabilities more quickly. However, relevant security

advisories have to be sifted out from the mass of security advisory documents. Both Common

Security Advisory Framework (CSAF) distribution methods Resource-Oriented Lightweight

Information Exchange (ROLIE) and directory-based do not provide opportunities to increase

the document relevance. The creation date is practically the only filter criterion. The new

Application Programming Interface (API) makes the content of security advisory documents

searchable. Thus, it is possible to include these document contents in the API query as

a condition. With the help of the API, expensive IT security personnel can be noticeably

relieved by only having to process relevant security advisories.

I

Contents

Abstract I

List of Figures IV

List of Tables V

List of Listings VI

List of Abbreviations IX

1 Introduction 1

1.1 Motivation . 1

1.2 Related work . 2

1.3 Value of the new solution and opportunities 2

1.4 Structure of the thesis . 2

2 Background 4

2.1 Vulnerabilities . 4

2.2 Affected products . 4

2.3 Security advisory . 5

2.4 Common Security Advisory Framework . 6

2.4.1 CSAF roles . 6

2.4.2 CSAF document . 6

2.4.3 CSAF distribution methods . 12

2.4.4 CSAF document hashing . 12

2.5 Persons responsible for IT security . 14

2.6 GraphQL . 15

2.7 Related work . 16

2.7.1 REST API Limitations . 16

2.7.2 CSAF Versioning . 17

2.7.3 Missing unique product identifier . 17

2.8 Product list . 18

2.9 OWASP API Security Top 10 - 2019 . 19

2.10 OWASP API Security Top 10 - 2023 . 21

3 Design 23

3.1 Eleasticsearch . 24

3.2 Intermediate . 24

3.3 GraphQL . 25

3.3.1 Search and filter criteria . 26

3.3.2 Show all elements . 29

II

3.3.3 Authentication . 30

3.4 CSAF API . 32

3.4.1 Automation . 38

3.4.2 Security . 39

3.4.3 Set number of results - max documents 40

3.4.4 Show results metadata . 40

3.4.5 Error handling . 41

3.4.6 Pre-query the product IDs . 42

3.5 Migration respectively synchronization . 43

4 Implementation 44

4.1 GraphQL . 44

4.1.1 Type definition . 44

4.1.2 CSAF API . 49

4.1.3 Product list . 51

4.1.4 Array Filtering . 51

4.1.5 Security . 51

4.2 Intermediate . 55

4.3 Eleasticsearch . 62

4.4 MySQL . 67

4.5 REST-API queries . 67

4.6 Migration respectively synchronization . 69

5 Results 71

6 Discussion 73

6.1 Extension of the CSAF standard . 73

6.1.1 TLP versioning . 73

6.1.2 Enumeration . 74

6.2 Violation of GraphQL principles . 75

6.3 CSAF document versioning . 75

6.4 Integration in other application . 77

6.5 What database should be chosen? . 77

7 Conclusion 78

Bibliography 79

A Appendix 82

A.1 CSAF list of dates . 82

A.2 CSAF API type defintions . 84

B Appendix: Data medium content 85

III

List of Figures

1 Document object of CSAF document . 8

2 CSAF document - product tree . 10

3 CSAF document - vulnerabilities . 13

4 CSAF directory based distribution by Federal Office for Information Security

(BSI) . 14

5 CSAF ROLIE based distribution by Federal Office for Information Security

(BSI) . 14

6 OWASP API Security Project changes from 2019 to 2023 21

7 CSAF API design . 23

8 CSAF API data flow - with MySQL connector 24

9 A GraphQL query and response for /document/category and /vulnerabili-

ties[]/cve . 29

10 A GraphQL extended query and response . 30

11 The basic design of the CSAF API . 32

12 CSAF API - findDocuments . 32

13 CSAF API array filter . 36

14 CSAF API Query with filtered array elements 37

15 Show only the document title . 37

16 Error flow . 41

17 CSAF API queryable but no longer displayable elements 71

IV

List of Tables

1 CSAF product statuses and descriptions by OASIS Open 5

2 Providers with additional CSAF documents 6

3 TLPv1 label short descriptions by FIRST.ORG, Inc 7

4 Possibilities for product definition in the CSAF document 9

5 CSAF document elements referencing a product by product ID 9

6 Routes and their use case, defined by Schmidt 16

7 Rough clustering of information classification 19

8 Harmonization of logical CSAF API operators 25

9 CSAF schema definitions by OASIS Open . 25

10 Different CSAF enumeration cases . 28

11 Examples of nesting depth . 53

12 Different CSAF enumeration cases . 74

13 TLPv1 label definitions by FIRST.ORG, Inc 82

14 CSAF list of dates . 83

V

List of Listings

1 Vulnerabilities ids example . 11

2 Vulnerabilities remediation example . 12

3 Product tree snippet from Federal Office for Information Security (BSI) . . . 18

4 GraphQL query where the full product name should contain ”Linux” 23

5 Elasticsearch query where the full product name should match ”Linux” . . . 23

6 SQL query where the full product name should contain ”Linux” 24

7 Enumeration example query with GraphQL 27

8 Example search query for a product . 28

9 GraphQL query byProduct . 29

10 Token send via HTTP headers . 31

11 CSAF API append TLP . 31

12 CSAF API function findDocuments examples 33

13 CSAF API function findDocuments non confusing examples 34

14 CSAF API reasons for redundancies . 35

15 GraphQL exist query . 35

16 GraphQL query - originals . 37

17 GraphQL response - originals . 38

18 Ticker query . 39

19 GraphQL max documents query . 40

20 GraphQL max documents results . 40

21 GraphQL metadata query . 41

22 GraphQL metadata results . 41

23 Error-causing query . 41

24 Response of the error-causing query . 42

25 Show product status of vulnerabilities by specifying the product name 42

26 CSAF API type definition . 44

27 CSAF schema snippet - CSAF document . 44

28 translated CSAF schema snippet - CSAF document 45

29 CSAF schema snippet - CSAF document - document 45

30 Type definition of CSAF document type . 46

31 JSON example . 47

32 JSON example translated into GraphQL . 48

33 Enumeration type definition with GraphQL 49

34 GraphQL TLP Enumeration type definition 49

35 CSAF API definition . 50

36 CSAF API date search parameter . 50

37 GraphQL CSAF API Query - product list . 51

38 GraphQL array filtering on /document/acknowledgments[] 52

39 depthLimit definition in the server startup script - server V20.js 52

VI

40 Configuration file of the CSAF API - config.js 54

41 Intermediate harmonization . 55

42 Intermediate enumeration translation . 56

43 Unfolding of the byProduct shorthand . 57

44 Manual query of the maximum depth . 58

45 Results of the try depth query from listing 44 58

46 Inserting the static list of all elements - csaf graphql all possible elements.js . 59

47 Intermediate caching of the GraphQL context and marking it as manipulated 59

48 User credential examples stored in accounts.js 59

49 Extension of the query for the purpose of authentication 60

50 Adding original files to the results - originals 61

51 Adding originalDocuments to GraphQL context 61

52 GraphQL example response for originalDocuments 62

53 The intermediate passes the intermediate version of the query to the connector. 62

54 Elasticsearch connector returns result to the intermediate 63

55 The logical AND operator in the CSAF API 63

56 Elasticsearch representation of figure 55 . 64

57 The logical OR operator in the CSAF API . 64

58 Elasticsearch representation of listing 57 . 64

59 The logical NOT operator in the CSAF API 64

60 Elasticsearch representation of figure 59 . 64

61 The logical XOR operator in the CSAF API 65

62 The logical XOR equivalent . 65

63 Elasticsearch representation of figure 62 . 65

64 The exist or existp function in the CSAF API 66

65 Elasticsearch representation of listing 64 . 66

66 Limiting Elasticsearch results to max documents 66

67 MySQL connector implementation . 67

68 REST-API ../by-cve/cve query as GraphQL query 67

69 REST-API ../from-device-list query as GraphQL query 68

70 REST-API ../match-property query as GraphQL query 68

71 REST-API ../match-properties query as GraphQL query 68

72 REST-API ../by-id/publisher ns/tracking id query as GraphQL query 68

73 REST-API (by-title) query as GraphQL query 69

74 REST-API (by-publisher) query as GraphQL query 69

75 Create Elasticsearch index for CSAF documents 69

76 Start upload on shell with Elasticsearch user credentials 70

77 CSAF documents upload shell-script (elastic upload.sh) 70

78 Intuitive query . 71

79 Query CSAF documents for the last 10 days. 72

80 CSAF schema TLP definition by OASIS Open 73

VII

81 Extended CSAF TLP definition . 74

82 Affected products extension of the document revision history 76

83 GraphQL type definitions of CSAF /document 84

84 GraphQL type definitions of CSAF ./full product name t 85

VIII

List of Abbreviations

API Application Programming Interface

API1:2019 Broken Object Level Authorization

API2:2019 Broken User Authentication

API3:2019 Excessive Data Exposure

API4:2019 Lack of Resources & Rate Limiting

API5:2019 Broken Function Level Authorization

API6:2019 Mass Assignment

API7:2019 Security Misconfiguration

API8:2019 Injection

API9:2019 Improper Assets Management

API10:2019 Insufficient Logging & Monitoring

API3:2023 Broken Object Property Level Authorization

API4:2023 Unrestricted Resource Consumption

API6:2023 Unrestricted Access to Sensitive Business Flows

API7:2023 Server Side Request Forgery

API10:2023 Unsafe Consumption of APIs

BSI Federal Office for Information Security Germany

CIO Chief Information Officer

CISO Chief Information Security Officer

CSAF Common Security Advisory Framework

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

DPO Data Protection Officer

FIRST Forum of Incident Response and Security Teams

GDPR General Data Protection Regulation

IX

JSON JavaScript Object Notation

OWASP Open Web Application Security Project

REST Representational State Transfer

ROLIE Resource-Oriented Lightweight Information Exchange

SQL Structured Query Language

TLP Traffic Light Protocol

URL Uniform Resource Locator

X

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

1 Introduction

IT systems and software components may have one or more vulnerabilities. Knowing that an

IT system or software component, is vulnerable and how to mitigate the problem is a central

challenge for a person responsible for IT security. Those responsible can find out whether

an IT system or software component is affected by a vulnerability from a security advisory,

for example. A security advisory consists of vulnerabilities and the IT systems and software

components affected by the vulnerability. Security advisories are issued by manufacturers,

IT security researchers or coordinating authorities. They should help to better understand a

vulnerability in order to in the best case close or at least mitigate the vulnerability.

Different manufacturers resulted in different security advisory formats, which makes work-

ing with security advisories more difficult for IT security responsibles than it would be the

case with a standardized format. With CSAF, such a standard for security advisories exists,

so that security advisories are partially additionally issued in the CSAF format.

Over time, the number of security advisories issued in the CSAF format increased, so that

IT security responsibles now have to check significantly more security advisories for relevance.

Relevant security advisories are those relating to IT systems or software components used in

the own area of responsibility.

To determine relevance, each security advisory must be queried and reviewed. Queries

would become more efficient if only documents with specific content, rather than all docu-

ments, could be queried. With GraphQL, an open source data query language exists that

may be able to query CSAF documents more efficiently. Therefore, the following research

question arise:

How could a GraphQL-based API make querying CSAF documents more effi-

cient?

Research question

1.1 Motivation

With security advisories, the reader gets an overview of the vulnerabilities and the products

affected by them. Security Advisories are published by various manufacturers in relation to

their products or by IT security researchers. The CSAF serves as a framework for security

advisories, with defined roles, document structures, and distribution methods.

The CSAF standard supports two types of distribution: directory-based and ROLIE-

based. In both cases, searching for CSAF documents with relevant content (e.g. products) is

not possible. All documents must be downloaded to make the decision whether one’s product

is part of the document and is it affected by a vulnerability with a relevant rating. This has

to be done continuously for all new and updated CSAF documents and is probably not the

most exciting part of the job. Especially because, as of today, only parts of this process can

be automated.

1

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

This is a waste of valuable time and human resources. Therefore, this master thesis follows

the leitmotif of keeping the time between the release of the security advisory, knowledge of

being affected, and getting it into the right hands short. This can shift valuable time and

human resources from searching to acting.

To achieve this goal, an API is needed that provides the ability to query for relevant

security advisories. And, if possible, all relevant security advisories for all products used

should be downloaded at once. There is also prior work on the CSAF API.

1.2 Related work

Schmidt describes in Development of an API to request security advisories for CSAF 2.0,

Bachelor’s thesis, University of Applied Sciences, Offenburg a Representational State Trans-

fer (REST) API based on routes [32]. This conceptual API defines routes for predefined

use cases. All of these routes provide clear added value in the use cases described. There-

fore, the new CSAF API must also provide these values. Schmidt has encountered three

main problems ”REST API Limitation”, ”CSAF Versioning” and ”missing unique product

identifier” [33].

1.3 Value of the new solution and opportunities

The powerful CSAF API query will be used to search not only for any CSAF document

parts and contents, but also for properties with dependent content. For example, it will

be possible to query by product name for products whose product ID occurs in the prod-

uct status of a vulnerability. This eliminates one step and speeds up the CSAF consumer

process. To reduce the abundance of information, the filter parameters will be used to fur-

ther limit the result set. With the help of logical operators AND, OR, XOR or NOT it will be

possible to formulate queries even more precisely to meet the requirements even more ac-

curately (e.g. combining or excluding queries). With the additional functionality (exist) it

will be possible to query for the existence of CSAF document components and their absence.

This enable further use cases that can be used in quality management (e.g. query missing

/product_ull_product_names[]/product_identification_helper). To achieve all this,

a structured approach is needed.

1.4 Structure of the thesis

Chapter 2 provides background information by describing the different terms, going into more

detail about CSAF and the related work on a CSAF API. The chapter concludes with an

overview of OWASP API Security Project and CSAF document migration to a database.

Chapter 3 focuses on the design and the individual components of the CSAF API. OWASP

API Security Project plays a crucial role in some design decisions. This chapter concludes

with concrete design decisions.

In the most comprehensive chapter, the specific implementations are explained by using

many examples. It is shown how to convert the CSAF schema into a GraphQL type definition,

2

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

how the Elasticsearch connector was implemented, and concludes with the migration of the

existing CSAF documents into the API database.

The fifth chapter contains a brief summary of all the goals achieved. Here, it becomes

evident that the workload of those responsible for IT security is significantly reduced. The

chapter concludes with possible further areas of application for the CSAF API.

The Discussion chapter addresses problems that could not be resolved by the CSAF API

because CSAF schema must be modified first. For the implementation of the CSAF API a

principle of GraphQL had to be violated, especially this point and the associated risks are

discussed in detail. The chapter concludes with the greatest achievement and an unachieved

goal or mitigated problem.

The last chapter concludes this master thesis with the central and most valuable achieve-

ment.

3

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

2 Background

To understand why CSAF and in particular a CSAF API is necessary, the background must

be explained. The following subsections therefore explain what a security advisory is, what

it consists of, and how it becomes a CSAF document. The different roles that work with

CSAF documents must be discussed to understand that the work begins with the publication

of the security advisory and ends with the remediation of the vulnerability or its mitigation.

Because an earlier concept for the CSAF API exists, it must also be considered in order to

incorporate its experiences. To ensure that the API can be operated relatively securely in

the end, at least the common faults must be avoided. Therefore, the Open Web Application

Security Project (OWASP) must be presented [25]. Vulnerabilities are one of the three pillars

of the CSAF document, so it should be started with.

2.1 Vulnerabilities

A weakness is not automatically a vulnerability. It becomes a vulnerability when it can be

demonstrably exploited. When a vulnerability becomes known and listed in the Common

Enumeration of Vulnerabilities Program database, it receives a Common Vulnerabilities and

Exposures (CVE) identifier [17]. CVE identifiers can be grouped under a Common Weakness

Enumeration (CWE) category. Vulnerabilities become relevant if they affect a product that

is in the organization’s own area of responsibility. The vulnerabilities are also relevant if they

are components of one’s own product.

2.2 Affected products

If a vulnerability of a third-party software component becomes known, then manufacturers

who use this third-party software components in their product check whether their product

is affected by the vulnerability in the same or similar way. If this is the case and a solution or

mitigating measures are available, these vendors will issue a security advisory and list their

products that are somehow affected by the vulnerability. The product tree is the second

pillar of the CSAF document.

Usually, not all of a manufacturer’s products are equally affected by a vulnerability.

Therefore, CSAF offers the possibility to specify the product status per vulnerability in the

CSAF document. There are different vulnerability product statuses in the CSAF standard

(see table 1). With the product status not_affacted the manufacturer can make clear

which products are not affected by the vulnerability in order to avoid unnecessary calls from

customers. This status not_affacted is not very spectacular, and yet it is soothing for those

responsible for IT security. Vulnerabilities and products affected by them are important

components of a security advisory.

4

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

CSAF product status Description

first affected
These are the first versions of the releases known to be
affected by the vulnerability.

first fixed
These versions contain the first fix for the vulnerability but
may not be the recommended fixed versions.

fixed
These versions contain a fix for the vulnerability but may
not be the recommended fixed versions.

known affected
These versions are known to be affected by the
vulnerability.

known not affected
These versions are known not to be affected by the
vulnerability.

last affected
These are the last versions in a release train known to be
affected by the vulnerability. Subsequently released versions
would contain a fix for the vulnerability.

recommended
These versions have a fix for the vulnerability and are the
vendor-recommended versions for fixing the vulnerability.

under investigation

It is not known yet whether these versions are or are not
affected by the vulnerability. However, it is still under
investigation - the result will be provided in a later release
of the document.

Table 1: CSAF product statuses and descriptions by OASIS Open

2.3 Security advisory

Security advisories are issued not only by manufacturers, but also by IT security researchers

and coordinating authorities (e.g. Federal Office for Information Security (BSI)). They

contain the vulnerability or a collection of vulnerabilities, a list of affected products, and

information about the security advisory document itself and the publisher. This is the third

pillar of the CSAF document. In the best case, the security advisories contain a final solution

or at least mitigation measures. This makes it easier for IT security responsibles to understand

the problem and derive recommendations for action or to argue the need for action.

The CSAF security advisory pulls all these information together into a CSAF document.

If new findings come from research, then the security advisory is expanded. If the criticality

of a vulnerability rises or falls, the security advisory is adjusted.

In addition to the CVE identifier, the security advisory can also contain other information

about the vulnerability, such as a rating and a brief description. The brief description is

addressed to the consumer, the consumer interprets the relevance. If a rating is present,

then the relevance has been established in an external context. Whether this context applies

to the consumer and thus also the rating, the consumer still has to find out for himself.

Nevertheless, this external evaluation gives the consumer the opportunity to pre-filter for

supposedly more critical vulnerabilities.

5

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

2.4 Common Security Advisory Framework

A CSAF document contains a product tree, vulnerabilities, information about the publisher

and the document, and in the best case a vendor fix. More and more vendors (see table 2)

and other security advisory providers are additionally providing security advisories as CSAF

documents.

Vendors and security advisory providers Providing CSAF documents

Cisco Systems, Inc. [4] at least since January 2018

TIBCO Software Inc. [38] at least since November 2018

Nozomi Networks Inc. [18] at least since November 2019

Siemens Aktiengesellschaft [36] at least since April 2021

SICK AG [35] at least since June 2021

Arista Networks, Inc. [3] at least since July 2021

Festo SE & Co. KG [10] at least since September 2021

Schneider Electric SE [34] at least since December 2021

Oracle Corporation [23] at least since April 2022

Red Hat, Inc. [30] at least since May 2022

Hitachi Energy Ltd. [15] at least since December 2022

Table 2: Providers with additional CSAF documents

CSAF extends the security advisory with a framework. It defines roles (CSAF publisher,

CSAF provider, CSAF trusted provider, CSAF lister and CSAF aggregator) [21], distribution

methods (ROLIE and directory based) and standardizes the security advisory JavaScript

Object Notation (JSON) document (/document, /product_tree and /vulnerabilities).

2.4.1 CSAF roles

The CSAF consumer is the client, the user or in simple terms the consumer of the CSAF

documents. The CSAF documents can be provided, for example, by IT security researchers

as CSAF publisher or by product manufacturers as CSAF provider. A CSAF lister is similar

to a phone book, it lists CSAF providers and CSAF publishers but does not provide CSAF

documents itself.

The CSAF aggregator is different, it collects documents from different CSAF publishers

and CSAF providers and makes them available for download, if the CSAF publishers and

CSAF providers agree. A CSAF publisher or CSAF provider agrees if the /mirror_on_CSAF_

aggregators attribute in the provider-metadata.json explicitly allows aggregation of

CSAF documents.

2.4.2 CSAF document

As mentioned above (see subsection 1.3), the CSAF document consists of three parts (doc-

ument, product tree and vulnerabilities). The intended API is to search document contents

when querying, so relevant contents of the CSAF document are explained in the coming

subsections.

6

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

2.4.2.1 Document

The document part of a CSAF document contains information about the publisher, called

metadata in the further course. This metadata is no new information as long as the document

was retrieved directly from the CSAF publisher or CSAF provider. If the CSAF document is

not obtained directly from the publisher but via a CSAF aggregator, this information becomes

relevant in a completely new way, namely as a search criterion in the CSAF API.

In addition to the publisher, the canonical URL /document/references[category:

"self"]/url is given. Only then is it possible for the CSAF consumer to go directly to

the source of the information. First-hand information may be more comprehensive and avail-

able more quickly.

The title of the document provides a good search criterion because it should be chosen

as unique as possible. The Traffic Light Protocol (TLP) label is also suitable as a search

and sharing criterion. Various definitions can be used for the definition of the TLP. The

CSAF documents from Federal Office for Information Security Germany (BSI) use the TLP

definition from FIRST.ORG, Inc [11]. Whereby only TLP:WHITE labeled documents may be

shared without restriction (see table 3 for short descriptions and table 13 for definitions).

TLP label Short description

TLP:RED Not for disclosure, restricted to participants only.

TLP:AMBER Limited disclosure, restricted to participants’ organizations.

TLP:GREEN Limited disclosure, restricted to the community.

TLP:WHITE Disclosure is not limited.

Table 3: TLPv1 label short descriptions by FIRST.ORG, Inc

A valuable attribute is the /document/tracking/current_release_date, which can be

used especially for automation. This is always the case when it comes to latest documents.

Interfaces that should fetch latest documents automatically will query for this attribute.

Each CSAF document has a unique ID assigned by the publisher and located in the

attribute /document/tracking/id. Strictly speaking, the ID is unique in the context of the

publisher. Together with the publisher namespace /document/publisher/namespace, this

ID can be used to query the current state of a CSAF document. An impression of the entire

CSAF document object /document is given in figure 1.

Not only the /document/tracking/current_release_date can increase the relevance of

CSAF documents found through the API. The products contained in the CSAF documents

can contribute decisively.

7

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

Figure 1: Document object of CSAF document

2.4.2.2 Product tree

Products can be defined in a CSAF document at different places (see table 4). In product

tree branches /product_tree/branches[] whole product families can be defined. This is a

special case in a CSAF document, since an infinite nesting of branches is possible. Branches

8

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

are not suitable for querying because users cannot know in advance how many branch nestings

actually exist and need to be queried.

Product ID definitions

/product tree/branches[](/branches[])*/product/

/product tree/full product names[]/

/product tree/relationships[]/full product name/

Table 4: Possibilities for product definition in the CSAF document

If a product is defined in the CSAF document, it can be referenced in the CSAF document

via the product ID (see references in table 5). For example, products can be grouped into

product groups under the path /product_tree/product_groups[]/product_ids[].

Product ID references

/product tree/product groups[]/product ids[]

/product tree/relationships[]/product reference

/product tree/relationships[]/relates to product reference

/vulnerabilities[]/flags[]/product ids[]

/vulnerabilities[]/product status/first affected[]

/vulnerabilities[]/product status/first fixed[]

/vulnerabilities[]/product status/fixed[]

/vulnerabilities[]/product status/known affected[]

/vulnerabilities[]/product status/known not affected[]

/vulnerabilities[]/product status/last affected[]

/vulnerabilities[]/product status/recommended[]

/vulnerabilities[]/product status/under investigation[]

/vulnerabilities[]/remediations[]/product ids[]

/vulnerabilities[]/scores[]/products[]

/vulnerabilities[]/threats[]/product ids[]

Table 5: CSAF document elements referencing a product by product ID

Figure 2 shows the product tree with the infinite ../branches[] nesting, highlighted in

light blue.

9

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

Figure 2: CSAF document - product tree

Under the CSAF array /product_tree/full_product_names[] all products are listed

that are not listed under /product_tree/branches[]. The product itself consists of a name,

a product_id and a product_identification_helper. The product name is suitable for

querying whether there are dependencies on the product that is used in one’s own area of

responsibility. Restricting to products increases the relevance of the results when products

are affected by vulnerabilities.

2.4.2.3 Vulnerabilities

Whether a product is affected by a vulnerability is stated in the vulnerability product status

/vulnerabilities[]/product_status (e.g. fixed or known_not_affected). Since not all

versions of a product are equally affected by vulnerabilities, the various versions could be

listed individually as branches in the CSAF document in order to assign them individually

and thus clearly to a vulnerability.

The vulnerabilities object /vulnerabilities[] is an array of vulnerabilities. If a CVE

has been assigned and this information is maintained at the vulnerability, then it can be

10

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

found under the path /vulnerabilities[]/cve. If a CWE category has been determined

and assigned for the vulnerability, then this information can be found under the path

/vulnerabilities[]/cwe/id.

CVE and CWE are globally unique IDs and therefore suitable to search for CSAF doc-

uments containing them. Even without a product reference, these can be used to answer

statistical questions about CVE and CWE (e.g. How many security advisories are there,

with vulnerabilities assigned to this CVE or CWE?).

A significant role for the API query is played by the /vulnerabilities[]/product_

status part. A vulnerability has a list of eight possible statuses (see table 1). The sta-

tus contains product IDs for which the vulnerability status applies. Alternative lists and

collections can be specified as sources under /vulnerabilities[]/ids[] (see example in

listing 1), alternatively to CVE.

{

"document": {...},

"product_tree": {...},

"vulnerabilities": [{

...

"ids": [{

"system_name": "Github Issue",

"text": "csaf-tools/CVRF-CSAF-Converter#78"

}]

}]

}

Listing 1: Vulnerabilities ids example

Probably the nicest, because most soothing, part of a CSAF document is the remediations

part /vulnerabilities[]/remediations[]. A look at the details /vulnerabilities[]

/remediations[]/details tells an IT security responsible what to do to fix or mitigate the

vulnerability (see listing 2). The existence of this attribute is suitable as a criterion if a person

responsible for IT security is only interested in CSAF documents that contain a vendor fix

/vulnerabilities[] /remediations["category":"vendor_fix"].

The document parts /vulnerabilities[]/scores[]/cvss_v2 and /vulnerabilities[]

/scores[]/cvss_v3 have already been addressed in Motivation (see subsection 1.1). IT se-

curity responsibles can usefully restrict the search queries to supposedly more critical vul-

nerabilities. It must not be forgotten that these scores were created in a context that differs

from their own. Despite this, the scores are excellent for queries, as they highlight suppos-

edly critical vulnerabilities and thus increase the relevance of the result documents. For a

complete overview of all vulnerability elements, see figure 3.

An API that also considers the content of CSAF documents during querying can increase

the relevance of result documents and complement existing distribution methods well.

11

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

{

"document": {...},

"product_tree": {...},

"vulnerabilities": [{

...

"remediations": [{

"category": "vendor_fix",

"date": "2022-03-14T13:10:55.000+01:00",

"details": "Update to the latest version of the product.

At least version 1.0.0-rc2",

"product_ids": [...],

"url": "https://github.com/csaf-tools/CVRF-CSAF-Converter/

releases/tag/1.0.0-rc2"

}]

}]

}

Listing 2: Vulnerabilities remediation example

2.4.3 CSAF distribution methods

The consumer can access and download CSAF documents directly through a browser (see

figure 4). There is a directory structure and the files are sorted by name. CSAF documents

can change over time (tracked in ../changes.csv in the main directory adjacent to the year

folders), so the consumer must also check the timestamp of the files to ensure all updated

CSAF documents are downloaded. Whether the found CSAF document is still interesting and

relevant, the consumer sees only after he has downloaded the CSAF document and checking

the content.

In the ROLIE based distribution the topicality is in the foreground, it is sorted by date.

The first entry is therefore the most recent CSAF document. The most recent CSAF docu-

ments still need to be downloaded to determine relevance (see figure 5).

To enable a CSAF consumer to determine the integrity of CSAF documents, hash values

are formed for each CSAF document, signed and additionally offered for download. They are

relevant for the API in that these documents are to be queried as required.

2.4.4 CSAF document hashing

Each CSAF document is stored on the file system with the OpenPGP Message Format [16]

signature and one or more hashed values (e.g. SHA256, SHA512 [37]). Using the OpenPGP

Message Format key and hash values, a consumer or IT security responsible can check whether

the CSAF document has been tampered with in transit from the publisher to the consumer.

The self-generated hash value must match the generated value. IT security responsibles have

an additional and crucial task that influences the speed of remediation implementation.

12

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

Figure 3: CSAF document - vulnerabilities

13

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

Figure 4: CSAF directory based distribution by Federal Office for Information Security (BSI)

Figure 5: CSAF ROLIE based distribution by Federal Office for Information Security (BSI)

2.5 Persons responsible for IT security

The security of IT is spread over many shoulders. Above a certain size, this creates different

roles in a company. The smaller the company, the more tasks are handled by a single person.

No matter how many different people or roles are involved, it is important that the person

acting also gets the opportunities to act. The following five roles have different tasks and yet

at least one common goal: To make their IT more secure.

The IT administrator is the key person who keeps IT products up to date and closes

vulnerabilities by installing patches and applying mitigations. If a vulnerability is known and

one’s own IT system or software component is affected, then an IT administrator responsible

for this product is instructed to eliminate the vulnerability. IT administrators are part of

the IT department in larger companies, with a department head who also does IT project

work in addition to IT operations. IT projects compete for IT budget. Since it is difficult

to calculate the return on investment for IT security projects, particularly good arguments

must be made here.

14

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

This is where the Chief Information Security Officer (CISO) comes in. One of his most

important skills is communication, so that necessary measures are planned and taken. In

German, there is a kind of play on words. You can make a good living from fortune-telling

(in German: Wahrsagen), but not from telling the truth (in German: Wahrheit sagen). Here

is the original German version:

”Vom Wahrsagen läßt sich wohl leben in der Welt, aber nicht vom Wahrheit

sagen.”

Georg Christoph Lichtenberg

It is CISO’s job to argue and vigorously pursue the need with a mixture of fortune-telling

and telling the truth. The CISO is supported by the Data Protection Officer (DPO) in

many respects, because many of the systems and software components involved also process

personal data protected by the General Data Protection Regulation (GDPR) in the EU. With

the clear goal in mind, armed with the arguments from the security advisory and flanked by

the GDPR, the CISO can go to the Chief Information Officer (CIO) and get the necessary

budget and resources to do his job now and do it well.

In order to cover the needs of all IT security roles, it must be possible to query the API

for as many CSAF document parts as possible. Not all document parts are always required

by all IT security roles and this is where the strength of GraphQL comes into play.

2.6 GraphQL

GraphQL is in a way a view of things, in parts comparable with a filter, only certain things

are let through. If an object consists of several elements, then the user gets exactly those

elements displayed that he explicitly asked for (see Description of GraphQL).

”GraphQL is a query language for APIs and a runtime for fulfilling those

queries with your existing data. GraphQL provides a complete and understandable

description of the data in your API, gives clients the power to ask for exactly what

they need and nothing more, makes it easier to evolve APIs over time, and enables

powerful developer tools.”

Description of GraphQL by GraphQL Foundation [13]

In the intended API context this is exactly where a problem arises. If the searched element

is included, the CSAF consumer sometimes wants to get all elements of a CSAF document,

without knowing which of them exist and without having to query all possible elements.

Thus, the intended API would no longer provide a predictable result and would violate the

following principle (see Principle of GraphQL).

”Send a GraphQL query to your API and get exactly what you need, nothing

more and nothing less. GraphQL queries always return predictable results. Apps

using GraphQL are fast and stable because they control the data they get, not the

server.”

15

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

Principle of GraphQL by GraphQL Foundation [13]

Nevertheless, GraphQL is auspicious because individual elements can be targeted for

querying, inputs and outputs are validated, and experience values with APIs based on

GraphQL exist on the Internet. These experiences are especially valuable for the secure

operation of the intended API.

Implementing the API based on GraphQL is not the first attempt. Therefore, experience

from the conceptual API based on REST is available.

2.7 Related work

Schmidt describes in his Bachelor’s thesis a conceptual REST API (see subsection 1.2) and

defines routes for use cases (see table 6).

HTTP-Method Route Use case

GET ../by-cve/{cve} Find the CSAF document(s) that contains the
following CVE.

POST ../from-device-list
Find all documents containing any device in the
device list.

GET ../match-property
Find all documents where the property has this
value/type.

POST ../match-properties
Find all documents where all of the properties
have this value/type.

GET
../by-id/
{publisher ns}/
{tracking id}

Find the CSAF document with the global ID
supplied.

GET ../by-title/{title} Find the CSAF document(s) having the title
specified.

GET
../by-publisher/
{publisher name} Find all documents from publisher X.

Table 6: Routes and their use case, defined by Schmidt

The intended API should serve these use cases without running into the three prob-

lems (”REST API Limitation”, ”CSAF Versioning” and ”missing unique product identifier”)

Schmidt mentioned.

2.7.1 REST API Limitations

Schmidt’s conceptual REST API is limited by design to the defined routes and their intended

purpose (e.g. find the CSAF document(s) that contains the following CVE). New use cases

(such as find CSAF document(s) with a missing CVE) must be implemented additionally.

OR-concatenation of routes (../by-cve/{cve} OR ../from-device-list) is only possible

if both routes are queried separately from each other. This creates the distinct union problem

for REST API user, Schmidt mentions [33]. If two or more routes are retrieved, then dupli-

cates cannot be avoided, since it is not possible to prevent documents from being retrieved

twice. Complex queries (e.g.: XOR concatenated) are impossible. The terms (device and

16

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

device list) are replaced by the terms (product and product list) in this master thesis

to reflect the CSAF terminology (see /product_tree in subsection 2.4.2.2).

2.7.2 CSAF Versioning

Versioning of the CSAF document does not take place. Differences between once and now

downloaded CSAF document must be found on the consumer side by comparing both CSAF

document versions.

”However, the API lacks one important feature in its current state: tracking

document updates.”

Missing CSAF versioning by Schmidt

2.7.3 Missing unique product identifier

The third challenge identified by Schmidt is the lack of a unique product identifier. For ex-

ample, the CSAF document attribute /product_tree/full_product_names[]/product_id

is only a CSAF document-internally unique ID (see Product id description).

”Token required to identify a full product name so that it can be referred to

from other parts in the document. There is no predefined or required format for

the product id as long as it uniquely identifies a product in the context of the

current document.”

Product id description by OASIS Open

Therefore, the attribute /product_tree/full_product_names[]/product_id cannot be

used to search across publishers. Only the full product name seems to be suitable for searching

across all publishers (see Product name description).

”The value should be the product’s full canonical name, including version num-

ber and other attributes, as it would be used in a human-friendly document.”

Product name description by OASIS Open

There is no reliable naming convention for full product names, so product names may vary

depending on which CSAF publisher creates the document. The matter is complicated even

more by the fact that the product ID can change during the life cycle of a CSAF document;

after all, the product ID only needs to be unique in the current version of the document.

branches nesting can alleviate the problem to some extent. In the example of list-

ing 3, vendor name, product name and the version number are included in the full prod-

uct name (FastStone Image Viewer 7.6) in a human-readable way (see listing 3). These

three informations can also be structured hierarchically in a CSAF document. OASIS Open

recommended a hierarchical structure e.g. vendor -> product_name -> product_version

(marked teal in listing 3) [20]. But other hierarchical structures are also conceivable (e.g.

17

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

vendor -> product_family -> product_name -> product_version). Therefore, the cate-

gory product_name may vary in the branches nesting depth. This circumstance must be

taken into account in the intended API.

{

"document": {...},

"product_tree": {

"branches": [{

"category": "vendor", "name": "FastStone",

"branches": [{

"category": "product_name", "name": "Image Viewer",

"branches": [

{

"category": "product_version", "name": "7.6",

"product": {

"name": "FastStone Image Viewer 7.6",

"product_id": "CSAFPID-0001"

}

},

{

"category": "product_version_range", "name": "<7.6",

"product": {

"name": "FastStone Image Viewer <7.6",

"product_id": "CSAFPID-0002"

}

}

]

}]

}]

},

"vulnerabilities": [...]

}

Listing 3: Product tree snippet from Federal Office for Information Security (BSI)

IT security responsibles can be responsible for one or more products. If they are responsi-

ble for multiple products, then there is an obvious interest in retrieving all security advisories

that affect all those products.

2.8 Product list

A product list in the terms of this master thesis is a list of all systems and software compo-

nents used in an organization. Any system or software component may have vulnerabilities.

Therefore, the CSAF documents must be queried for each product (system and software

component). Knowing the contents of the product list can open various attack vectors.

Classifying informations makes it easier to decide whether and to whom this informations

may be passed on. There are no rigid specifications for the classification of information.

Often four clusters are formed (see table 7).

18

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

Public Internal Confidential Strictly confidential

already published
information
or free to share

information
for internal
use only

access is
restricted to
named groups

access is
limited to
named individuals

Table 7: Rough clustering of information classification

The classification of a product list is essential for the use of the intended API. The product

list can disclose everything about the products used by the CSAF consumer. Therefore,

the product list must be protected from attackers. When the product list is passed to the

API, risks arise. If an attacker succeeds in intercepting this product list or hijacks it by

manipulating the API, he gets an accurate picture of possible attack vectors related to the

CSAF customer’s vulnerable products in use. If the attacker additionally captures identity

information (e.g. company names), the risk increases even further. Therefore, the CISO must

be diligent in classifying the product list. Here it must be considered that a too restrictive

classification of the product list prevents a rational use of the API.

For this reason, it makes sense not only to specify functional requirements, but also non-

functional requirements for secure API operation.

2.9 OWASP API Security Top 10 - 2019

APIs are critical components of modern web applications and therefore targets for attackers.

OWASP, through the OWASP API Security Project [26] , presents the top ten mistakes

made by API developers. These top 10 (API1:2019 to API10:2019) need to be analyzed

and applied to the intended CSAF API to eliminate potential flaws in the API. OWASP

Foundation additionally assists in this process with its special cheat sheet for GraphQL [24].

Broken Object Level Authorization (API1:2019) is about access restrictions. These re-

strictions must not be circumvented by manipulating the query. Transferred to the intended

CSAF API, it means that only CSAF documents that are approved for the specific user

may be accessed. So it must be prevented that the API user gets access to protected CSAF

documents by manipulating the queries.

Broken User Authentication (API2:2019) is about authentication. Authentication is an

upstream process and not part of the intended CSAF API, so the consideration here is

limited to recommendations. Unauthenticated users have no token or no valid token. If a

user becomes an attacker and tries to send a token, there is a risk that a valid token will be hit.

Therefore, token generation must generate sufficiently long tokens that are not continuous

and thus difficult to guess. Following the OWASP Foundation recommendation for session

IDs, the token should have a length of at least 16 bytes [28].

Excessive Data Exposure (API3:2019) is to remind that internal information should re-

main internal. So there is a risk that error messages pass internal information (e.g. the chosen

database) to an API user. To prevent data disclosure, database-specific error messages should

be replaced with API’s own error messages before they are propagated. This can prevent

19

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

internal structure information from leaking out.

With Lack of Resources & Rate Limiting (API4:2019), the focus is on availability. Lim-

itations are intended to make the API resilient. To prevent resource consumption from

increasing uncontrollably, limiting parameters must be foreseen. Transferred to the intended

CSAF API, for example, the maximum number of CSAF documents that can be retrieved

with one query should be specified. To further limit resource consumption, it is recommended

to run an API in a virtualized environment, then consumptions (such as memory, CPU, . . .)

can be further limited.

Broken Function Level Authorization (API5:2019) draws attention to the fact that there

may be functions intended for an administrator that could be abused by an attacker. For

the intended CSAF API no administrative API user is needed, it should be distinguished

between authenticated and unauthenticated users. Since the function set remains the same

whether authenticated or not, this point does not seem to have any relevance to the design

of the intended API.

With Mass Assignment (API6:2019), careless source code is pointed out. It is reckless

to assume that every value sent, whether expected or not, can also be taken over into one’s

own database. The CSAF API is not intended to persistently take over user data, so the

relevance of this point is rather low. Although no data of the user is supposed to be taken

over into the database when using the CSAF API, this carelessness can cause problems at

one point or another in the source code. Therefore, this point should be considered during

implementation.

Security Misconfiguration (API7:2019) includes, for example, sending an error traces to

API user. The CSAF API must be configured to prevent these misconfigurations, which can

be prevented by the API implementation.

Injection (API8:2019) draws attention to the fact that APIs are not safe from injections

either. Whenever user input has to be interpreted, it can result in a malicious execution.

Since GraphQL validates API queries against the API schema, the risk seems to be low with

respect to API8:2019. If GraphQL validation is deviated from, this point must be considered

again.

Improper Assets Management (API9:2019) deals with previous API versions and any

remaining functionality that was not included everywhere. The intended CSAF API is a

new API, with no previous versions at all, so this point should not matter. Should proof

of concept or similar occur during the implementation phase, then these versions must be

cleaned up so that the point mentioned here does not occur.

Insufficient Logging & Monitoring (API10:2019) deals with a topic that seems to be

neglected. Since logging does not have to meet any functional requirements, it is difficult to

define requirements. The CSAF API should consist of different modules, each module should

have at least one error handling and should generate at least one log entry for monitoring.

Whether additional logging and monitoring is required beyond that must be shown in practice.

OWASP Foundation has released a new API Top 10 list while working on this thesis. The

changes from version 2019 to 2023 must be duly considered [27].

20

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

2.10 OWASP API Security Top 10 - 2023

OWASP Foundation released a new version on July 3, 2023. In this brand new version, two

categories API3:2019 and API6:2019 have been merged under a new category Broken Object

Property Level Authorization (API3:2023) because they share a root cause. The category

API4:2019 has been renamed to Unsafe Consumption of APIs (API10:2023) because more

emphasis is placed on resource consumption than the pace at which they are exhausted.

Three new categories Unrestricted Resource Consumption (API4:2023), Unrestricted Access

to Sensitive Business Flows (API6:2023) and Server Side Request Forgery (API7:2023) have

been added. Figure 6 draws the complete picture.

Figure 6: OWASP API Security Project changes from 2019 to 2023

API4:2023 deals with the fact that resources cost money and in times of cloud services

these resources now cause transparent costs that should not be unnecessarily or unmanageably

raised by API users. Therefore, points (e.g. execution timeouts) must be taken into account

in the implementation.

API6:2023 addresses a point that seems to be aimed at the intended CSAF API (see

Closing recommendation), since one of the intended API goals is automation.

”Secure and limit access to APIs that are consumed directly by machines (such

as developer and B2B APIs). They tend to be an easy target for attackers because

they often don’t implement all the required protection mechanisms.”

Closing recommendation of Unrestricted Access to Sensitive Business Flows [29]

21

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

Since the implementation of the CSAF API should also consider users who could become

attackers by manipulating the query, this kind of neglect should not arise.

API7:2023 is about the fact that the API server could be used as a gateway if an attacker

succeeds in providing the server with his own target addresses. The CSAF API should

essentially address three services (file system, database and authentication) in the back-end.

None of these targets should be dependent on the user’s input to prevent API7:2023.

22

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

3 Design

The design of the CSAF API is kept simple. The client queries the API using GraphQL.

The reason for this choice is described in chapter ¡2.6¿ This request is put into a simplified

intermediate form. The API has one or more connectors (see figure 7). The connector’s job is

Figure 7: Simple CSAF API design

to put the intermediate form into a database-specific form. Depending on the connector, the

GraphQL query (see listing 4) becomes an Elasticsearch (see listing 5), MySQL (see listing 6)

query {

csafApi {

findDocuments {

must {

product_tree {

full_product_names {

name (should: "Linux")

}}}}}}

Listing 4: GraphQL query where the full product name should contain ”Linux”

or other database query.

{

"query": {

"bool": { "should": [{

"bool": { "must": [{

"match": { "product_tree.full_product_names.name": "Linux" }

}]}

}]}

}

}

Listing 5: Elasticsearch query where the full product name should match ”Linux”

Since queries can fail, error messages must be taken into account on the way back from

the database to the client. Not all error messages should arrive unfiltered at the client, some

of them are intended for administrators and must remain on the server (see figure 8). At

least one database is required to run the API.

23

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

SELECT * FROM PRODUCT_TREE

LEFT JOIN FULL_PRODUCT_NAMES

WHERE PRODUCT_TREE.ID = FULL_PRODUCT_NAMES.PRODUCT_TREE_ID

AND FULL_PRODUCT_NAMES.NAME LIKE "Linux"

Listing 6: SQL query where the full product name should contain ”Linux”

Figure 8: CSAF API data flow - with MySQL connector

3.1 Eleasticsearch

Elasticsearch is the storage component of the Elastic stack.

”Elasticsearch is the distributed search and analytics engine at the heart of

the Elastic Stack. It provides near real-time search and analytics for all types

of data. Whether you have structured or unstructured text, numerical data, or

geospatial data, Elasticsearch can efficiently store and index it in a way that sup-

ports fast searches. Elasticsearch provides a REST API that enables you to store

data in Elasticsearch and retrieve it. The REST API also provides access to

Elasticsearch’s search and analytics capabilities.”

elasticsearch B.V.

There are alternatives to Elasticsearch such as the open-source project OpenSearch from

Amazon Web Services, Inc. [1]. Elasticsearch was chosen based on prior experience. The API

is to be designed to be open to databases, so all database-specific points are outsourced to

connectors (see figure 7). To make it easier to implement connectors, an intermediate layer

is included.

3.2 Intermediate

The intermediate stage is to be based on the GraphQL structure and reduce it to the ab-

solutely necessary. Equivalent logical operators are to be harmonized. This means that a

csafAnd should remain as it is and a must should be harmonized into a csafAnd. A complete

list of logical operators and corresponding harmonization specifications is given in table 8.

Each connector gets the intermediate version of theGraphQL query, generates the database-

specific query from it and converts the results into the structure expected by GraphQL.

GraphQL expects the results as JSON objects under the path /data. Therefore, all found

CSAF documents must be inserted into a JSON object under the path /data. On the one

hand, the query is specified in GraphQL, while the response is returned as a JSON object.

24

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

GraphQL logical operator Intermediate harmonization

csafAnd csafAnd

must csafAnd

csafOr csafOr

should csafOr

csafNot csafNot

must not csafNot

exist existp

existp existp

Table 8: Harmonization of logical CSAF API operators

Because CSAF documents are also in JSON format, it makes sense to define JSON as the

CSAF API format.

3.3 GraphQL

Queries are written in GraphQL. The query must be able to pass search parameters, filter

parameters and a desired result structure. GraphQL must be able to cover requirements from

the REST API. The new requirements include querying all CSAF document parts, dependent

parts and, in the best case, future requirements. Strictly speaking, the query should not be

unnecessarily restricted so that as many future use cases as possible can be covered with a

GraphQL query.

Schmidt describes a REST API based on routes (e.g. /csaf-documents/by-cve/) in his

thesis (see table 6). All these routes must be mapped with GraphQL in order to leverage

their added value. Also, the CSAF objects have to be translated into GraphQL types.

The CSAF distribution brings several schema definitions. These have to be converted to

GraphQL type definitions. Only then, GraphQL can use the objects to validate the input

and output and structure the output. Table 9 lists all schema definitions. The schema

definitions marked with MUST in the second column must be transferred. The remaining

schema definitions are marked as NICE TO HAVE, because they are not part of the API.

CSAF schema definition file MUST or NICE TO HAVE

aggregator json schema.json NICE TO HAVE

csaf json schema.json MUST

cvss-v2.0.json MUST

cvss-v3.0.json MUST

cvss-v3.1.json MUST

provider json schema.json NICE TO HAVE

ROLIE feed json schema.json NICE TO HAVE

Table 9: CSAF schema definitions by OASIS Open

25

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

3.3.1 Search and filter criteria

Since all components of a CSAF document are to be searched for, the various CSAF types

and formats must be taken into account. Depending on the combinations of types, formats

and enumerations, different search and filter parameters must be added as attributes. There

are the following combinations of types, formats and enumerations:

• type: ”string”, format: ”date-time”

• type: ”string”, format: ”uri”

• type: ”string”, enum: []

• type: ”string”

• type: ”object”

• type: ”number”

• type: ”array”

When searching for a date string, four cases (before, exactly, after and in between) must be

distinguished. It is also useful to be able to specify the date relative to now, so this is to be

implemented as well. This simplifies automation on the client side, since the date no longer

has to be determined there. Strings should be searched for in two ways. The exact search

should find CSAF documents whose field matches exactly the searched term. This search is

especially suitable for searching in ID fields. In the full text search, the search term must

only be contained in the search field.

Objects can consist of other objects, strings, numbers, arrays or dates. They cannot

be searched for directly, but their components can. A number can be less than, equal to,

greater than, or within a range. Therefore, it should be possible to search according to these

criteria. Arrays are collections of other arrays, strings, numbers, dates or other objects. As

with objects, it is not possible to search directly for an array, but for its entries. It must be

possible to filter array entries so that only array entries that the user requests are displayed.

When using an array filter in combination with the must_not condition, the user expects

that all array elements that do not meet this condition will be filtered out. This must not

result in filtering out CSAF documents that contain these unwanted array entries. Conse-

quently, the must_not condition must not be taken into account when searching for array

entries.

There are fourteen enumerations defined in the CSAF schema. The query with an enu-

meration value should behave exactly as in the exact search. Since there are no entries that

differ from it, an approximate full text search makes no sense. An additional query for the

exact value is superfluous, since GraphQL ensures that only values from the enumeration are

considered. The search criteria should be passed as enumeration values and not as strings

(see c0-c6 in listing 7).

26

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

query {

categoryEnumeration: csafApi {

findDocuments {

csafOr {

vulnerabilities {

notes {

c0: category (enum: DESCRIPTION)

c1: category (enum: DETAILS)

c2: category (enum: FAC)

c3: category (enum: GENERAL)

c4: category (enum: LEGAL DISCLAIMER)

c5: category (enum: OTHER)

c6: category (enum: SUMMARY)

}}}}}}

Listing 7: Enumeration example query with GraphQL

Since GraphQL expects an enumeration in upper case (see GraphQL enumeration spec-

ification), all CSAF enumerations must be translated for the GraphQL type definition. For

database queries, the GraphQL enumerations must be translated back to the CSAF enumera-

tion. This translation must take place in the intermediate so that it is passed to all connectors

in the same way.

”Enum values are represented as unquoted names (ex. MOBILE WEB). It

is recommended that Enum values be “all caps”. Enum values are only used in

contexts where the precise enumeration type is known. Therefore it’s not necessary

to supply an enumeration type name in the literal.”

GraphQL enumeration specification by GraphQL Foundation

To comply with the GrahpQL enumeration notation, the enumerations are to be renamed.

In most cases, capitalization is sufficient (see table 10). In a case csaf_version: 2.0 a

complete renaming must be done, because neither the dot as separator nor a number as start

character is accepted by GrahpQL. In one case, nothing needs to be converted because the

values there are already in uppercase. In this particular case, additionally the enumeration

type can be set as GraphQL object type, because in this case the validation would not fail.

It is not only the enumerations that need to be translated. To reduce the user’s typing work,

the short notation in the product queries must also be translated into the long notation.

27

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

JSON path Transformation

.../branches[]/category UPPERCASE

.../notes[]/category UPPERCASE

.../references[]/category UPPERCASE

/document/csaf version RENAME

/document/distribution/tlp/label DO NOT TRANSFORM

/document/publisher/category UPPERCASE

/document/tracking/status UPPERCASE

/product tree/relationships[]/category UPPERCASE

/vulnerabilities[]/flags[]/label UPPERCASE

/vulnerabilities[]/involvements[]/party UPPERCASE

/vulnerabilities[]/involvements[]/status UPPERCASE

/vulnerabilities[]/remediations[]/category UPPERCASE

/vulnerabilities[]/remediations[]/restart required/category UPPERCASE

/vulnerabilities[]/threats[]/category UPPERCASE

Table 10: Different CSAF enumeration cases

Products can be defined in three places in the CSAF document. By nesting branches

elements, an infinite number of places in the CSAF document can contain product definitions.

CSAF consumers should be able to formulate queries like the one in listing 8, with significantly

less text.

query{ csafApi {

findDocuments {

csafOr {

path1: product tree { branches {

product { name (should: "Linux") }

} }

path2: product tree { branches { branches {

product { name (should: "Linux") }

} } }

path3: product tree { branches { branches { branches {

product { name (should: "Linux") }

} } } }

path4: product tree { branches { branches { branches { branches {

product { name (should: "Linux") } }

} } } }

path5: product tree { full product names {

name (should: "Linux")

} }

path6: product tree { relationships { full product names {

name (should: "Linux")

} } }

}

}

}}

Listing 8: Example search query for a product

28

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

So the query function byProduct is intended to avoid typing work for the CSAF consumer

(see listing 9), especially because the CSAF consumer cannot know how many nesting levels

exist. This avoided typing work has to be done by the intermediate (see subsection 3.2), so

query{

byProductExampleQuery: csafApi {

findDocuments {

byProduct { name (should: "Linux") }

}}}

Listing 9: GraphQL query byProduct

that the connectors get the full long version of the query. The query is passed to the connectors

as if the CSAF consumer had queried each CSAF product name path individually. To enable

complete search queries, the maximum nesting depth must be determined in advance and

stored in the intermediate configuration.

As with the nesting depth, it can also be assumed for the components of a CSAF document

that the CSAF consumer does not know their existence or absence in advance. To avoid

that CSAF consumers have to include all elements of a CSAF document in their queries, a

shorthand notation is required.

3.3.2 Show all elements

GraphQL returns only that part of a JSON object that is part of the query (see figure 9). If

Figure 9: A GraphQL query and response for /document/category and /vulnerabilities[]/cve

the query contains only the paths /document/category and /vulnerabilities[] /cve and

the found CSAF document contains other JSON elements /document/csaf_version and

/product_tree/full_product_names[]/name, then only the requested JSON paths will be

29

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

displayed in the results. The elements marked in red will not be included. To get the complete

object all paths of the object must be part of the query. The CSAF consumer should not be

required to type in the complete CSAF object structure, therefore a user-friendly solution

is required with significantly less writing effort, which outputs all elements of the CSAF

document on demand without having to request them individually. If the CSAF consumer

does not specify a structure or paths, then all possible paths, i.e. the complete structure,

should be displayed.

Before passing the connector result CSAF documents to GraphQL, the query of GraphQL

must be manipulated (see figure 10). The query must contain all existing attributes of the

result set in order for GraphQL to display all attributes.

Figure 10: A GraphQL extended query and response

No matter what query a CSAF consumer enters, the response from intermediate to

GraphQL must be the complete CSAF document. It is the job of GraphQL to take care

of hiding, even if it has to be manipulated here and there by the intermediate.

The intermediate’s responsibilities also include token verification. If, in addition to the

query, the API user sends a token that he has received from the API operator, then this

token must also be taken into account in the query, since authenticated users may be offered

more CSAF documents.

3.3.3 Authentication

If the CSAF consumer, as a customer of the CSAF provider, has received a token from

it. This token must be included with every CSAF API query in the headers (see token in

listing 10). This token should be used to implement restrictions that affect the TLP label,

so that only certain CSAF documents with the corresponding TLP label can be queried.

CSAF uses the TLP to specify the distribution. The Forum of Incident Response and

Security Teams (FIRST) distinguishes four TLP labels (see table 3). Only CSAF documents

with the TLP label WHITE will be delivered to an arbitrary and unauthenticated API user.

To prevent CSAF documents with other TLP labels from being supplied, an additional con-

dition must be appended to each query. For arbitrary users it is the restriction to the TLP

30

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

POST / HTTP/1.1

Host: localhost:4000

token: ***

query{

byProductExampleQuery: csafApi {

findDocuments {

byProduct { name (should: "Linux") }

}}}

Listing 10: Token send via HTTP headers

label WHITE and for CSAF consumers additional granted TLP labels should be added (see

listing 11). Which TLP labels the CSAF API operator grants to its CSAF consumers must

be told to the API in the intermediate layer so that the TLP labels can be appended by the

intermidiate accordingly.

query{

csafApi {

findDocuments {

must {

csafConsumerOriginalQueryExample:

product_tree {full_product_names {name (should: "Linux")}}

byIntermediateAppendedMustRestriction: csafOr {

default: document {distribution {tlp {label (enum: WHITE) }}}

ifGranted1: document {distribution {tlp {label (enum: GREEN) }}}

ifGranted2: document {distribution {tlp {label (enum: AMBER) }}}

ifGranted3: document {distribution {tlp {label (enum: RED) }}}

}

}}}}

Listing 11: CSAF API append TLP

There are similar definitions (e.g. from US Cybersecurity & Infrastructure Security

Agency [39] or Federal Office for Information Security (BSI) [8]), these can also be used.

It is important that the TLP used is specified in the CSAF document as an attribute

/document/distribution/tlp/url, but only the attribute /document/distribution/tlp

/label is in the CSAF json schema definition, Version 2.0 [22] marked as required.

Authenticity of the user to the API is important, just as important as the authenticity

of the API to the user. Hash values were generated for each CSAF document (see subsec-

tion 2.4.4).

The hash values generated after the creation of the CSAF documents cannot be used

for the validation of the GraphQL results, because the GraphQL results have gone through

several manipulations before they are output and thus never match the original. So that the

possibility for the validation is not completely lost, the intended CSAF API must offer these

documents (CSAF document, PGP key and hashes) optionally as attachment.

31

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

3.4 CSAF API

The basic structure of CSAF API shall provide a search function findDocuments and a

filter function filterParameter and shall allow structuring of the output documents. The

fourth element originalDocuments is shown as needed and is not relevant to the query.

Therefore, it is grayed out in figure 11. The gray marked must, should and must_not under

findDocuments are equivalences to csafAnd, csafOr and csafNot and therefore marked in

gray.

Figure 11: The basic design of the CSAF API

With findDocuments it shall be possible to search for CSAF documents directly by using

the CSAF document structure and setting one or more arguments as search criteria (see

figure 12). Paths without attributes accordingly do not contain any search criteria, they are

irrelevant for the query and can be ignored. In figure 12, they are therefore grayed out.

Figure 12: CSAF API - findDocuments

Search criteria can be specified under the findDocuments function. How these criteria

relate to each other, whether they must all apply or only one of them, has yet to be de-

termined. Listing 12 shows an example with two product names. These two products are

obviously so different that they permit only one decision, it is searched for both products,

these conditions must be OR concatenated.

32

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

query{ csafApi {

example: findDocuments {

product tree { full_product_names {

p1: name (should: "Linux")

p2: name (should: "Windows")

}}

}

extended: findDocuments {

document { lang (should: "DE") }

product tree { full_product_names {

p1: name (should: "Linux")

p2: name (should: "Windows")

}}

}

confusion: findDocuments {

document { lang (should: "DE") }

p1: product tree { full_product_names { name (should: "Linux") }}

p2: product tree { full_product_names { name (should: "Windows") }}

}

}}

Listing 12: CSAF API function findDocuments examples

An additional search criterion is added, see extended example in listing 12. In this

extended example, the search is obviously for the two products and the document language

should be German. In this case, findDocuments must be an AND concatenation.

The confusion example shows that neither the AND concatenation nor the OR concate-

nation allow an intuitive usage. It is confusing because with no concatenation the obvious

search result can be achieved, CSAF documents in German language for the two products

Linux and Windows.

This confusion cannot arise if there is always a logical operator between findDocuments

and a CSAF path (see listing 13). Since the AND concatenation yields fewer results than the

OR concatenation, misbehavior with the AND concatenation would be noticed more quickly,

findDocuments is therefore defined as an AND concatenation.

The logical operations AND, OR and NOT are sufficient for complex search queries. To make

the query easier for the user or to save him typing work, the logical operator XOR should

be implemented. This will make the notation much shorter and less complex. All logical

operators can be nested within each other.

For readability, the equivalences MUST, SHOULD and MUST_NOT are to be implemented

for the logical operators AND, OR and NOT. The operators MUST, SHOULD and MUST_NOT are

redundant. They have been taken from the Elasticsearch context and have been left in

because they are more meaningful in certain cases.

Here is an example: The searched document must contain Linux and Kernel in the title

(see example1 in listing 14). The query would start with findDocuments followed by must.

Both criteria must apply, so these two query conditions can also be concatenated with the

33

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

query{ csafApi {

example: findDocuments {

csafOr {

product_tree { full_product_names {

p1: name (should: "Linux")

p2: name (should: "Windows")

}}}}

extended: findDocuments {

csafAnd {

document { lang (should: "DE") }

csafOr { product_tree { full_product_names {

p1: name (should: "Linux")

p2: name (should: "Windows")

}}}

}}

nonconfusing: findDocuments {

csafAnd {

document { lang (should: "DE") }

csafOr {

p1: product_tree{ full_product_names{ name (should: "Linux") }}

p2: product_tree{ full_product_names{ name (should: "Windows")}}

}}}

}}

Listing 13: CSAF API function findDocuments non confusing examples

logical AND operator (see example2 in listing 14). For a query with only one criterion, the

query would start with findDocuments followed by a MUST (see example3 in listing 14). In

this case, there is no AND operation, so AND instead of MUST would cause confusion (see example

confusing in listing 14). In addition to searching for existing CSAF objects, it should also

be possible to search for non-existing objects.

In order for the user to query for missing elements, the function exist must be imple-

mented. The user should be able to select elements from the CSAF JSON structure as desired

(see example e3 in listing 15). All selected CSAF elements should be present if the element

exist is in a must. All CSAF elements must be missing if it is in a must_not (see example

e4 in listing 15). Since existence is limited to only two states (exist or not), the use case with

should makes no sense and therefore shall not be implemented.

Since GraphQL validates the query and the selection of objects is accepted only if at least

one contained scalar is selected as well, an alternative function existp must be implemented.

This alternative function existp should pass a JSON path as an attribute path (see example

e2 in listing 15). This is to bypass the restriction of GraphQL. Instead of an array, it should

also be possible to pass only a single value (see example e1 in listing 15).

This not only circumvents a restriction of GraphQL to meet the need, but also creates

a vulnerability to injection attacks. This vulnerability must be eliminated by appropriate

implementation. Vulnerability can be prevented by first validating the passed path against a

34

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

query{ csafApi {

example1: findDocuments {

must { document {

criterion1: title (should: "Linux")

criterion2: name (should: "Kernel")

}}}

example2: findDocuments {

csafAnd { document {

criterion1: title (should: "Linux")

criterion2: name (should: "Kernel")

}}}

example3: findDocuments {

must { document { title (should: "Linux") }}

}

confusing: findDocuments {

csafAnd {document { title (should: "Linux") }}

}

}}

Listing 14: CSAF API reasons for redundancies

query{ exist: csafApi { findDocuments {

must {

e1: existp (path: "/document/title")

e2: existp (path: ["/document/lang", "/document/title"])

e3: exist {

document {

lang

title

}}

}

must_not {

e4: exist {

document { title }

}}

}}}

Listing 15: GraphQL exist query

full list of allowed paths and then passing it to the database. A validation routine must be

implemented in the intermediate layer.

If the criteria from the findDocuments match, then the found CSAF documents are

returned completely. If a specific array content is to be searched for, then a complete array

list can lead to confusion, since not only the searched contents are listed. Therefore, and in

order to make the overview better, an array filter is to be implemented. This array filter is

to clean the results, so that in the results arrays only entries are to be found, for which one

searched.

As with search attributes (see subsection 3.3.1), filter attributes must also be differentiated

35

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

by type. The array can consist of JSON basic types string, date or number or complex

objects. Filters for the following JSON types, formats and enumerations are required:

• type: ”string” format: ”date-time”

• type: ”string” format: ”uri”

• type: ”string” enum: []

• type: ”string”

• type”: ”number”

No additional attributes need to be created in the GraphQL type definition for filtering, the

attributes from the search function should be reused. Array filters on integrated arrays and

objects should not be implemented (see red marked in figure 13). If all elements of an array

Figure 13: CSAF API array filter

are filtered out due to filter criteria, obviously the parent object was not searched for. The

parent object would have to be removed, since consciously set filter criteria do not apply

to this object. Since filtering happens after the database query, it must be implemented in

the intermediate or the step after it, at the latest in the last step before handover. Because

filterParameter distinguish by must and must_not (see figure 11), they must be taken into

account in the filter function. Since a should would include both results of a must and results

36

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

of a must_not, filtering with should makes no sense. Therefore, only these two operators

must and must_not are to be implemented.

With the CSAF API it should be possible to search for all parts of a CSAF document (e.g.

/document/category and /vulnerabilities[]/cve), the results should be filtered (e.g. for

/product_tree/full_product_names[]/name) and in the best case only the desired parts

of the document are displayed, as in figure 14.

Figure 14: CSAF API Query with filtered array elements

To keep the overview filterParameter intervenes in the results. To increase this overview

even more, the output structure can be customized with documents. If the documents el-

ement is missing in the query, then all CSAF document elements should be displayed. If

documents is present, then only the elements defined in documents should be displayed (like

the /document/title in figure 15). With the documents function, an API user can selec-

Figure 15: Show only the document title

tively retrieve elements of the CSAF document. The possibility to query original documents

should not disappear completely.

To be able to check authenticity on the client side, clients need to be able to download

original documents, signatures and hashes (see subsection 2.4.4). In such a case, the attribute

originals can be added to the query (see listing 16).

query {

max_documents_1: csafApi (max_documents: 1, originals: true) {

findDocuments { document {title (should: "Linux") } }

}

}

Listing 16: GraphQL query - originals

The original documents should appear in the response under the item /data/[csafApi

|| alias]/originals. So that GraphQL does not modify the original CSAF document, they

must be passed Base64 encoded (see listing 17). The functionality of the API is now complete

37

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

{

"data": {

"max_documents_1": {

"documents": [...],

"originalDocuments": [

{

"documentName": "XYZ.json",

"documentBase64Binary": "ewogICJkb2N1bWVudCIgOiB7C ..."

},

{

"documentName": "XYZ.json.asc",

"documentBase64Binary": "LS0tLS1CRUdJTiBQR1AgU0lHT ..."

},

{

"documentName": "XYZ.json.sha256",

"documentBase64Binary": "ZTI0NGFlOWUwYzA1ZDRiMmYxZ ..."

},

{

"documentName": "XYZ.json.sha512",

"documentBase64Binary": "Y2FlZWRkYjYxOGRkMGJjYWFmM ..."

}

]

}}}

Listing 17: GraphQL response - originals

with this originals functionality. For the next subsection, a step back must be taken so

that process speed-up potentials become visible.

3.4.1 Automation

After a CSAF document is created, it can be published by placing it on the server. It may take

an indefinite time before the document is retrieved by a CSAF consumer. It takes time for the

CSAF consumer to determine if any of their products are affected by the vulnerability inside

the CSAF document. Depending on the downstream process, it may take an indeterminate

amount of time for this information to reach a responsible administrator.

Therefore, manufacturers could come up with the idea of integrating CSAF API queries

into their product, e.g. in a management dashboard if one exists. Relevant information

would reach key persons (e.g. administrators, application or system owners, or other roles

with responsibility) directly.

References to CSAF documents could come in by ticker. For a ticker query the CSAF ele-

ments /document/title, /document/tracking/revision_history[]/date and /document

/tracking/revision_history[]/summary seems to be well suited and for more detailed in-

formation the element /document/notes[]/text (see listing 18). Other useful information

can also be included (e.g.: /vulnerabilities[]/scores[]/cvss_v3/baseScore); Only if

the administrator wants more information the complete CSAF document would be displayed.

38

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

query { tickerQuery: csafApi {

findDocuments { byProduct { name (exact: "Red Hat Enterprise Linux")}}

documents {

document {

title

tracking {

revision history {

date

summary

}

}

notes { text }

}

}

}}

Listing 18: Ticker query

These queries can be narrowed down specifically to the product used (see byProduct

example in listing 18). As the manufacturer knows the third-party components used in his

product, these products can additionally be included in the query. Manufacturers, CSAF

consumers and also API operators are interested in stable and secure API operation.

3.4.2 Security

The CSAF API offers infinite nesting (see branches in figure 2), this creates the risk that

Apollo Graph, Inc warns about under Mitigate malicious queries [2] . This risk should

be mitigated by limiting the nesting depth in a configuration file. OASIS Common Security

Advisory Framework (CSAF) Technical Committee says a maximum nesting depth of 25 is

sufficient [19], so the configuration value should not exceed this recommendation.

In addition to protecting the CSAF API resources and thus protect the availability of

CSAF API from unconsidered queries, a maximum of 10 CSAF documents should be de-

livered by default. This value must be configurable so that it can be adjusted by the API

administrator. This preset must be allowed to be overridden by the CSAF consumer up to a

certain threshold.

There is a potential risk that the authenticity of the original files is checked (see subsec-

tion 3.4), but then the unverifiable API response (see subsection 3.3.3) is processed further.

CSAF consumers should continue the process with the original CSAF documents whenever

possible, despite the many conveniences of the API.

The CSAF API receives requests from the CSAF consumer, converts them into database

queries, and returns the results. Except for writing the log files, no write access is required.

Therefore, all permissions of the user running the API should be restricted to read-only, except

for the log directory. Additional functionalities have to be implemented for the realization of

the security requirements.

39

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

3.4.3 Set number of results - max documents

Since the maximum number of results should be set to a default value for security reasons (see

previous subsection 3.4.2), the CSAF consumer must be given the option to set a different

value. It should be possible to increase the limit of the results with the max_documents

argument (see listing 19).

query {

max documents 1: csafApi (max documents : 1){

findDocuments { document {title (should: "Linux") } }

}

max documents 2: csafApi (max documents : 2) {

findDocuments { document {title (should: "Windows") } }

}

}

Listing 19: GraphQL max documents query

As a result, the first query max_documents_1 would return exactly one CSAF document

and the second query max_documents_2 would return two CSAF documents (see listing 20).

Since the information about how many documents can be found with the query is lost when

{

"data": {

"max documents 1": {

"documents": [

{...}

]

},

"max documents 2": {

"documents": [

{...},

{...}

]

}

}}

Listing 20: GraphQL max documents results

the result list is limited, additional functionality must be implemented.

3.4.4 Show results metadata

The default limitation of the search results (see previous subsection 3.4.3) could give the

wrong impression that only this amount of CSAF documents could be found. Therefore,

the CSAF consumer should be given the possibility to display the real results size using

metadata (see listing 21). The real results size of found CSAF documents should be attached

as a /data/[csafApi || alias]/metadata/total object (see listing 22). Errors can occur

when processing metadata and also in other places, so error handling must be implemented.

40

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

query {

max_doc_1: csafApi (max_documents: 1, metadata: true) {

findDocuments { document {title (should: "Linux") } }

}

max_doc_2: csafApi (max_documents: 2, metadata: true) {

findDocuments { document {title (should: "Windows") } }

}

}

Listing 21: GraphQL metadata query

{

"data": {

"max_doc_1": { "documents":[{...}], "metadata": { "total": 753}},

"max_doc_2": { "documents":[{...},{...}], "metadata": { "total": 34}}

}}

Listing 22: GraphQL metadata results

3.4.5 Error handling

As in any application, error messages can occur in the API. Two types of error messages

must be distinguished, error messages for the user and for the administrator. Error messages

for administrators must be written to log files. Error messages for the user must be passed

to the user, they should be part of the response (see figure 16). As mentioned before (see

Figure 16: Error flow

subsection 3.4.2), writing the log files is supposed to be the only write access of the API.

If an error occurs, as with the query in listing 23, a csafXor with three conditions instead

query{

erroneousExample: csafApi {

findDocuments {

csafXor {

condition1: existp (path: "/document")

condition2: existp (path: "/product_tree")

condition3: existp (path: "/vulnerabilities")

}}}}

Listing 23: Error-causing query

41

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

of two should be used, then the error message must be passed to the CSAF consumer (like

listing 24).

{

"data": {

"erroneousExample": {

"error": "csafXor allows exactly two conditions."

}}}

Listing 24: Response of the error-causing query

Depending on where the error occurred (database, connector or intermediate), it must be

ensured that the CSAF consumer only receives the information it needs. Under no circum-

stances should information about the database, its structure, the application server or other

security-relevant information be leaked. No error message may be forwarded unfiltered.

Even with csafXor, requirements (see subsection 1.3) cannot be implemented with exactly

one database query. Especially the dependent queries can fail due to the possibilities of the

database. To be able to serve these requirements nevertheless, an additional functionality

must be implemented.

3.4.6 Pre-query the product IDs

For people responsible for IT security, the question is whether and how a product for which

they are responsible is affected by a vulnerability. Whether a product ID is affected by a vul-

nerability is stored in the vulnerability product status /vulnerabilities[]/product_status.

The people responsible for IT security do not know the IDs assigned in the CSAF document,

so they cannot query them directly. The assigned product IDs for the product names must

first be found out. This can be found out by searching all places where product ids are defined

(see table 4) with the help of the product name.

In a relational database that supports Structured Query Language (SQL), the query

could start on the products with a condition (e.g. PRODUCTS.NAME LIKE "Linux") and the

vulnerabilities product statuses could be joint (e.g. ON P.ID = V.PRODUCT_ID) (see listing 25

for the entire SQL Statement).

SELECT * FROM PRODUCTS P

LEFT OUTER JOIN VULNERABILITIES_PRODUCT_STATUS V

ON P.ID = V.PRODUCT_ID

WHERE P.NAME LIKE "Linux"

Listing 25: Show product status of vulnerabilities by specifying the product name

This advantage does not exist in databases like Elasticsearch, which store CSAF docu-

ments as complete JSON documents. In order to serve the request, a first query must find

documents with the corresponding product names and then start a new query with the found

product IDs. First, all products corresponding to the product name must be found in the

CSAF document. With their IDs, a second query must be performed in the product statuses

42

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

of the vulnerabilities. The situation is complicated by the fact that the data source is not

a single CSAF document, rather many. All CSAF documents must be queried for products

that match the search term. With the product IDs found from the many CSAF documents,

a second query must be run.

Since the product ID must only be unique within the CSAF document (see document

tracking ID description in subsection 2.4.2.1), additional search parameters must be provided

for the second query the document tracking id /document/tracking/id. Aggregators that

provide CSAF documents from different publishers must also include the publisher namespace

/document/publisher/namespace to be unique. If the first query finds a large amount of

results, the entire system can quickly reach its limits when executing the second query. The

query for products whose ID is in a vulnerability product status must be implemented without

running into the problem described.

This circumstance can be bypassed in the connector module. The first query should return

CSAF documents containing the requested product names. A second query with the product

IDs becomes unnecessary if CSAF documents are filtered out in the connector module that do

not match the query. This shifts database activity to the Connector, but prevents oversized

queries.

In order to test all functionalities, a database (in this case Elasticsearch) is required, so

the existing CSAF documents have to be migrated into the database.

3.5 Migration respectively synchronization

The API design intends to use a database. This means that the existing CSAF documents

must be migrated to a database so that the CSAF API can search for the documents there.

In the case of Elasticsearch, the CSAF documents can be uploaded to an Elasticsearch index

unchanged. After uploading, the CSAF documents are already fully queryable. In the case

of MySQL, the CSAF documents must be fragmented into their individual components and

inserted into corresponding database structures. A database structure is not given in this

thesis, therefore it can differ from API operator to API operator. Consequently, the MySQL

connector, which is to be implemented only rudimentarily, must be adapted to each future

API operator.

43

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

4 Implementation

After the design in the broadest sense reflects the expectations, the implementation will show

the concrete design of the CSAF API.

4.1 GraphQL

GraphQL is the language in which the CSAF API is queried (see figure 7), so it makes sense

to start here. In order to query the API, the query itself csafApi must be defined first (see

listing 26) and then the respective components of the query. The query should return CSAF

type Query {

csafApi: [csafDocument]

}

Listing 26: CSAF API type definition

documents, so it gets the type csafDocument. Because it is intended to be an array of CSAF

documents, the type is enclosed in square brackets [csafDocument]. The query is now ready,

only the used type csafDocument and types following it have to be defined.

4.1.1 Type definition

GraphQL expects a type definition, on the one hand to be able to validate the query and

on the other hand to be able to reduce the output of the results to defined types and thus

approved objects. There are several tools on the Internet that can translate an JSON schema,

and thus also the CSAF JSON schema, into an GraphQL type definition. Here the manual

process is described. This example will show how easy it is to convert a JSON schema (see

reduced CSAF document schema in listing 27) into a GraphQL type definition (see listing 28).

{

"properties": {

"document": {

"type": "object"

},

"product tree": {

"type": "object"

},

"vulnerabilities": {

"type": "array"

}

}

}

Listing 27: CSAF schema snippet - CSAF document

A CSAF document csafDocument consists of two objects /document and /product_tree

and an array /vulnerabilities[]. These three parts can be found in the reduced CSAF

44

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

document schema under /properties (see previous listing 27). Their names (document,

product_tree and vulnerabilities) must be copied unchanged from the schema to the

GraphQL type definition (see listing 28).

type csafDocument {

document: csafDocumentDocument

product tree: csafDocumentProductTree

vulnerabilities: [csafDocumentVulnerabilities]

}

type csafDocumentDocument {}

type csafDocumentProductTree {}

type csafDocumentVulnerabilities {}

Listing 28: translated CSAF schema snippet - CSAF document

A new type must be created for each of the properties. If the property type is an ar-

ray (e.g. /properties/vulnerabilities/type in listing 27), the GraphQL property type

is specified in square brackets vulnerabilities: [csafDocumentVulnerabilities], as the

csafApi: [csafDocument] before. The type definition of csafDocument is completed. The

newly created but empty types csafDocumentDocument, csafDocumentProductTree and

csafDocumentVulnerabilities must be filled with their properties and so on.

The elements of the type string are interesting (see /properties/document/properties

/category in listing 29), because users should be able to search for them. Therefore, search

{

"properties": {

"document": {

"type": "object",

"properties": {

"acknowledgments": { "$ref": "#/$defs/acknowledgments_t" },

"aggregate severity": {"type": "object"},

"category": {"type": "string"},

"csaf_version": {

"type": "string",

"enum": { "0": "2.0" }

},

"distribution": {"type": "object"},

"lang": {"$ref": "#/$defs/lang_t"},

"notes": {"$ref": "#/$defs/notes_t"},

"publisher": {"type": "object"},

"references": {"$ref": "#/$defs/references_t"},

"source_lang": {"$ref": "#/$defs/lang_t"},

"title": {"type": "string"},

"tracking": {"type": "object"}

}}}}

Listing 29: CSAF schema snippet - CSAF document - document

parameters are defined in addition to the element type. There is a separate subsection on

45

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

search criteria (subsection 4.1.2), so they are only briefly explained here. Contents of the type

string can be searched for either exactly or approximately. Therefore, the user is given the

possibility to specify an exact or an approximate search term as attributes exact or should.

Another special case is formed by the objects that are reused respectively referenced in the

schema (e.g. /properties/document/properties/acknowledgements/$ref in listing 29).

These predefined objects can and should be created with their own name as type name. The

next special case is enumeration, which is described in more detail in subsection 4.1.1. A brief

note here, the enumeration values cannot always be copied. This applies especially to the

case /properties/document/properties/csaf_version, since a forbidden separator dot is

contained and the enumeration value 2.0 begins with a number. The fully translated CSAF

document object from listing 29 is in listing 30.

type csafDocumentDocument {

acknowledgments: [acknowledgments t]

aggregate_severity: csafDocumentDocumentAggregateSeverity

category(exact: String

should: String): String

csaf_version(exact: String

should: csav versionEnum): String

distribution: csafDocumentDocumentDistribution

lang(exact: String

should: String): String

notes(audience: String

category: String

text: String

title: String): [notes t]

publisher: csafDocumentDocumentPublisher

references: [references t]

source_lang(exact: String

should: String): String

title(exact: String

should: String): String

tracking(id: String): csafDocumentDocumentTracking

}

type acknowledgments t {}

type csafDocumentDocumentAggregateSeverity {}

type csafDocumentDocumentDistribution {}

type notes t {}

type csafDocumentDocumentPublisher {}

type references t {}

type csafDocumentDocumentTracking {}

enum csav versionEnum {}

Listing 30: Type definition of CSAF document type

The following listing 31 shows various type definitions occurring in the CSAF schema.

For each of these definitions there is a corresponding entry in listing 32. This converts the

CSAF JSON schema to the GraphQL type description. If CSAF documents are now passed

46

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

"object_t": {

"properties": {

"integer": {"type": "number"},

"text": {"type": "string"}

},

"type": "object"

}

"object": {

"properties": {

"integer": {"type": "number" },

"floatnumber": {"type": "number" },

"text": {"type": "string" },

"true or false": {"type": "boolean"},

"date": {"type": "string" },

"complexObject": {"$ref": "#/object t"},

"array of integergs": {"type": "array", "items": {"type": "number" }},

"array of floats": {"type": "array", "items": {"type": "number" }},

"array of strings": {"type": "array", "items": {"type": "string" }},

"array of booleans": {"type": "array", "items": {"type": "boolean" }},

"array of objects": {"type": "array", "items": {"$ref": "#/object t"}},

"enumeration": {"type": "enum"}

},

"type": "object"

}

Listing 31: JSON example

47

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

type object {

#scalars

integer: Int

floatnumber: Float

text: String

true or false: Boolean

#no special date type, just a string

date: String

#objects

complexObject: object t

#arrays

array of integergs: [Int]

array of floats: [Float]

array of strings: [String]

array of booleans: [String]

array of objects: [object t]

enumeration: uppercaseStringEnum

}

type object t {

integer: Int

text: String

}

enum uppercaseStringEnum {

STRING_IN_UPPER_CASE_ONE

STRING_IN_UPPER_CASE_TWO

}

Listing 32: JSON example translated into GraphQL

48

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

to GraphQL as a response, then GraphQL can validate, process and return them to a CSAF

API user. For validation, the enumerations must be translated from the CSAF schema to

GraphQL type definition. There are 14 enumerations in the CSAF schema (see table 10). One

of them /document/csaf_version had to be renamed for GraphQL, so that it can be used

as an enumeration in the enum search parameter (see table 33). The type of csaf_version

enum csafDocumentDocumentCsafVersionEnum {

2.0 fully renamed

V2_0

}

type csafDocumentDocument {

...

csaf_version(enum: csafDocumentDocumentCsafVersionEnum): String

...

}

Listing 33: Enumeration type definition with GraphQL

must not be set to csafDocumentDocumentCsafVersionEnum. If the type would also be csaf

DocumentDocumentCsafVersionEnum, then the results would fail during validation. There-

fore it must remain of type String. In the case of /document/distribution/tlp/label

not only the enum type but also the TLP label type was set to csafDocumentDocument

DistributionTlpEnum (see listing 34). In this case, the results must take exactly these

enum csafDocumentDocumentDistributionTlpEnum{

Enumeration was already in upper case,

it can be used as object type and attribute type

AMBER

GREEN

RED

WHITE

}

type csafDocumentDocumentDistributionTlp {

label(enum: csafDocumentDocumentDistributionTlpEnum

): csafDocumentDocumentDistributionTlpEnum

...

}

Listing 34: GraphQL TLP Enumeration type definition

values. This completes the preliminary work for the CSAF API.

4.1.2 CSAF API

The CSAF API is defined as a query in the GraphQL type description (see listing 26). Since

the CSAF API must provide many different functions (e.g. findDocuments, filterParameter,

. . .), the csafApi type from listing 26 must be significantly extended. The API must be multi

functional, like the egg-laying, milk-giving mammal with woolly base hair and a beak, the

49

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

platypus. Therefore, the new csafApi type is named csafApiPlatypus. All functions are

inserted there (see listing 35). The query csafApi itself gets three additional attributes.

type Query {

csafApi(

max_documents: Int

originals: Boolean

metadata: Boolean

): csafApiPlatypus

}

type csafApiPlatypus {

findDocuments: csafApiPlatypusSearchCriteria

filterParameter: csafApiPlatypusFilterCriteria

documents: [csafDocument]

originalDocuments: [csafOriginalDocuments]

metadata: csafResultsMetadata

error: String

}

Listing 35: CSAF API definition

These attributes are max_documents (see subsection 3.4.3), originals (see subsection 3.4)

and metadata (see subsection 3.4.4). max_documents restricts the result set to the desired

number of documents (detailed information is given later in subsection 4.3), originals en-

sures that the original documents are attached (detailed information is given later in sub-

section 4.2), and metadata tells the CSAF consumer the exact number of CSAF documents

that could be retrieved with this query without any max_documents limitation.

It should be possible to search for elements directly (see subsection 3.3.1) or indirectly

(see subsection 3.4.6). Attributes such as should have been added for direct searches (for ex-

ample see category in the appendix in listing 83). Attributes such as idInVulnerabilities

ProductStatusFixed have been added for indirect search (for example see product_id in

the appendix in listing 84).

If the document current release date /document/tracking/current_release_date is to

be searched by, the date can be specified either approximately, exactly, or as a range (see

example in listing 36).

query{ dateCriteria: csafApi {

findDocuments {

csafOr { document { tracking {

approximately: current_release_date (should: "2023-03")

exactly: current_release_date (exact: "2023-03-15T23:00:00.000+00:00")

asRange: current_release_date (younger: "2023-03", older: "2023-04")

}}}}}}

Listing 36: CSAF API date search parameter

Search criteria can be OR concatenated with each other. Thus, not only different time

50

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

periods can be defined in the query (see csafOr in listing 36), but also different products.

4.1.3 Product list

Several products can be affected by one vulnerability. If each product is queried separately,

then it cannot be avoided that CSAF documents that have already been downloaded are

downloaded a second time. This can be avoided by making a single query and downloading

all relevant CSAF documents at once (see listing 37). The restriction max_documents must

query{

productlist: csafApi (max_documents: 2000, metadata: true) {

findDocuments {

csafOr{

p1: product_tree{full_product_names{name(should: "SUSE")}}

p2: product_tree{full_product_names{name(should: "Ubuntu")}}

}

}

}

}

Listing 37: GraphQL CSAF API Query - product list

be set accordingly high, so that all CSAF documents are delivered that match the query.

The parameter metadata additionally returns the maximum number of documents matching

the query. If the returned value is greater than max_documents, then not all documents were

delivered. max_documents is preset to 10 for security reasons as long as the query does not

specify a value. This query returns CSAF documents with the searched product name. The

array product_tree/full_product_names[] may contain many additional products that do

not match the search query. The array filter function can be used to remove them from the

array.

4.1.4 Array Filtering

The function filterParameter (see subsection 3.4) is implemented as a resolver. There

is one resolver for the query csafApi and one resolver per array parent (see example for

/document/acknowledgments[] in listing 38). Resolvers are called by GraphQL for each

recognized GraphQL type, if they exist respectively are implemented. In this example, the

resolver is called on the CSAF document object acknowledgements. The filterArray_V2

function return a cleaned respectively filtered array. In the filter function filterParameter,

as well as in the search function findDocuments there is the possibility to query an unlimited

number of nestings, this bears risks (see branches in subsection 2.4.2.2).

4.1.5 Security

To mitigate the risk of infinite nesting (see subsection 3.4.2), the nesting depth parameter

must be set (see listing 39). This parameter describes the allowed nesting depth, all nestings

51

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

csafDocumentDocument: {

// /document/acknowledgments[] has arrays

// that is why it needs to be filtered

acknowledgments:(root, obj, args, context, info) => {

var filteredArray = root.acknowledgments;

if(filteredArray){

//names Filter

filteredArray = graphQLhelper.filterArray_V2(

context, filteredArray, originalCsafApiFilter,

"/document/acknowledgments", "names"

);

//urls Filter

filteredArray = graphQLhelper.filterArray_V2(

context, filteredArray, originalCsafApiFilter,

"/document/acknowledgments", "urls"

);

}

return filteredArray;

}

}

Listing 38: GraphQL array filtering on /document/acknowledgments[]

const config = require("./config");

const depthLimit = require("graphql-depth-limit");

const { ApolloServer } = require("apollo-server");

const typeDefs = require("./typeDefs");

const resolvers = require("./resolvers");

const server = new ApolloServer({ typeDefs, resolvers,

introspection: config.csafServer.csafServerStage !== "production",

context:({req})=>{const token=req.headers.token || null; return {token};},

validationRules: [depthLimit(config.csafServer.csafDepthLimit)]

});

server.listen().then(({ url }) => {console.log("Server ready at ${url}");});

Listing 39: depthLimit definition in the server startup script - server V20.js

are counted starting from findDocuments (for determination of the maximum see table 11).

It can be seen from the table 11 that the different CSAF document elements have different

maximum nesting depths. The first three examples represent the deepest nesting depths

(with out unlimited nesting) of the three CSAF document components. The two special

cases show the real problem, the possibility of infinite nesting. In order to use all elements as

query parameters, a minimum nesting depth of 8 must be allowed. To allow more complex

logical operations like a XOR (coming later in listing 61), two more nesting depths must be

allowed. Therefore, the maximum nesting depth of 10 was chosen here. This setting can

be customized by the CSAF API administrator (see listing 40), but it does not need to be

greater than 35 (see subsection 3.4.2).

52

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

GraphQL query depth

query{csafApi{
findDocuments{ must{
document{tracking{generator{engine{name}}}}

}}
}}

2
+5

=7

query{csafApi{
findDocuments{must{
product tree{branches{product{product identification helper{
hashes{filename}}

}}}
}}

}}

2
+6

=8

query{csafApi{
findDocuments{must{
vulnerabilities{remediations{restart required{details}}}

}}
}}

2
+4

=6

special case I:
query{csafApi{
findDocuments{
csafAnd{csafAnd{csafAnd{csafAnd{csafAnd{. . . }}}}}

}
}}

1
+∞

=∞
special case II:
query{csafApi{
findDocuments{
must{
product tree{branches{branches{. . . }}}}

}
}}

1
+1
+∞

=∞

Table 11: Examples of nesting depth

The next security consideration is file access. To enable authenticity for the CSAF

customer, the CSAF documents are searched as originals on the file system and attached to

the CSAF API results. For the search file system access is needed. If an attacker succeeds

to pass his own file system search terms to this procedure, the attacker gains access to the

file system with the rights of the user running the CSAF API. Therefore, on the one hand,

the permissions of the user running the API must be limited to the least necessary. The user

running CSAF API needs read permissions to the CSAF documents directory and must not

be an administrator. And on the other hand, it must be impossible for a attacker to pass his

own file names to the procedure.

The permissions for the user running the CSAF API must be restricted by the CSAF API

administrator. File names cannot be passed to the procedure directly by the attacker. The

file names are taken from the results /document/tracking/id. As long as an attacker does

53

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

/**

* csafServerStage: "production" means, that the introspection of GraphQL is

* deactivated for security reasons

* Just use "test", "integration", "engeneering" or something else to have

* the introspection active

*

* csafIntermediate: connector: "./elasticsearch/connector" OR

* csafIntermediate: connector: "./mysql/connector"

*/

module.exports = {

csafServer: {

csafDepthLimit: 10,

csafServerStage: "engeneering"

},

csafIntermediate: {

connector: "./elasticsearch/connector",

defaultTLP: "WHITE",

branchesMaxDepth: 3,

defaultMaxDocuments: 10

},

csafElasticsearch: {

elasticsearchIndex: "csaf_documents", requestTimeout: 30000,

host: "localhost", port: "9200",

user: "elastic", password: "***",

maxPreQuerySize: 10000

},

csafMysql: {

database: "csaf", requestTimeout: 30000,

host: "localhost", port: "3306",

user: "csaf", password: "***",

insecureAuth : true

}

};

Listing 40: Configuration file of the CSAF API - config.js

not succeed in uploading his own CSAF documents, this attack vector should be closed.

Additional protection is provided by disabling introspection (see listing 39). If introspec-

tion is disabled, CSAF consumers and attackers no longer receive any information about the

structure of the API. As long as the CSAF API remains in the standard, disabling intro-

spection makes no sense because the structure and thus all functions and elements are made

public. If the operator extends the CSAF API with its own interfaces and functions, this

restriction could become more relevant because this information is not public. This can make

attacks and the design of legitimate queries more difficult. However, CSAF providers must

then find another way to enable their customers to design the queries. A qualification or

training system could become necessary in this case. All GraphQL queries are forwarded to

the Intermediate.

54

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

4.2 Intermediate

GraphQL queries are forwarded to the intermediate, which has a central role in the CSAF API.

The intermediate caches the GraphQL context before it is manipulated, unfolds the shorthand

byProduct into full queries and restricts each query by adding a TLP label constraint to each

query. It reduces the query to the bare minimum by translating the GraphQL context into

its own intermediate form, enriches information that reduces the programming effort in the

connectors and harmonizes logical operators. And it searches on the file system in cases the

CSAF documents are needed as originals. Since the intermediate layer is intended to unify

and simplify (see table 8), unnecessary case distinctions are avoided through harmonization

(see listing 41).

function harmonizeIntermediateObjects(intermediateObject, graphQlContext){

if(intermediateObject.name == "must") {

intermediateObject.name = "csafAnd";

} else if(intermediateObject.name == "must not"){

intermediateObject.name = "csafNot";

} else if(intermediateObject.name == "should") {

intermediateObject.name = "csafOr";

} else if(intermediateObject.name == "exist"){

intermediateObject.name = "existp";

let newExistpArguments = createExistpArguments(graphQlContext);

let i = 0;

while(i < newExistpArguments.length){

if(!intermediateObject.arguments){intermediateObject.arguments = [];}

intermediateObject.arguments[intermediateObject.arguments.length] =

newExistpArguments[i];

i++;

}

// remove because "exist" tree branche is now "existp" attribute

delete graphQlContext.selectionSet;

}

return intermediateObject;

}

Listing 41: Intermediate harmonization

Harmonization is not the only renaming in the intermediate. The renamed enumerations

(see enumerations in subsection 4.1.1) must be translated back so that they can be used by

connectors. The challenge in translation was to get the right object for translation without

having to approach an infinite number of paths for the mappings (see branches in table 11).

Because the last two path parts are sufficient for uniqueness, the path is shortened to the

last two parts and used for the translation (see listing 42).

Surprisingly, during the implementation it turned out that lower case is also accepted

by GraphQL, although it should not be (see GraphQL enumeration specification in subsec-

tion 3.3.1). This would have the advantage that then only one enumeration must be translated

and that then also these values could be checked automatically during the validation.

55

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

/**

* @param CSAF document path json path

* @param Enumeration in UPPER CASE argument value

* @returns

*/

function translateEnum(json_path, argument_value){

let translatedEnum = "";

let tempJsonPath = "";

var tempArray = json_path.split("/");

let i = tempArray.length-2;

while(i < tempArray.length){

if(i!=0){ tempJsonPath += "/" + tempArray[i]; }

i++;

}

if(tempJsonPath == "/document/csaf version") {

if (argument_value == "V2_0") {translatedEnum = "2.0";}

else {translatedEnum = "csafUndefined"}

}else if(tempJsonPath == "/references/category") {

// /document/references[]/category

if (argument_value == "EXTERNAL"){translatedEnum = "external";}

else if (argument_value == "SELF") {translatedEnum = "self";}

else {translatedEnum = "csafUndefined"}

}else if(tempJsonPath == "/branches/category") {

// /product tree/branches[]*/category

...

}else if(tempJsonPath == "/notes/category") {

// /vulnerabilities[]/notes[]/category

...

}else if(tempJsonPath == "/publisher/category") {

...

}else {

//no translation, use it as it is

translatedEnum = argument_value;

}

return translatedEnum;

}

Listing 42: Intermediate enumeration translation

Another type of translation takes place in the products, here the shorthand is translated

into the longhand. The shorthand notation byProduct is intended to relieve the CSAF

consumer of typing work (see listing 8). Therefore, the element byProduct is replaced in the

intermediate by the long notation (see listing 43), in which the context is extended as if the

CSAF consumer had specified all places with product reference individually. The translation

from GraphQL query to the intermediate version is started afterwards.

Here, a fixed maximum nesting depth is assumed. This must be determined before-

hand by the administrator and entered in the configuration file (see /csafIntermediate

56

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

const config = require("../config");

function createIntermediateByProductObject(graphQlContext, parent){

var tempgraphQlContext = JSON.parse(JSON.stringify(graphQlContext));

tempgraphQlContext.name.value = "csafOr";

var tempIntermediateObject =

createIntermediateObject(tempgraphQlContext, parent);

var tempSubElements = [];

// /product tree/branches[]

// /product tree/branches[]/branches[]

// /product tree/branches[]/branches[]/branches[]

// /product tree/branches[]/branches[]/branches[]/branches[]

let i = 0;

while(i < config.csafIntermediate.branchesMaxDepth){

tempSubElements[tempSubElements.length] =

createByProductProductTreeBranches V2(

tempIntermediateObject, i

);

i++;

}

// /product tree/full product names[]

tempSubElements[tempSubElements.length] =

createByProductProductTreeFullProductNames(tempIntermediateObject);

// /product tree/relationships[]/full product name

tempSubElements[tempSubElements.length] =

createByProductProductTreeRelationshipsFullProductName(

tempIntermediateObject);

return tempSubElements;

}

Listing 43: Unfolding of the byProduct shorthand

/branchesMaxDepth in listing 40). A setting that is too high unnecessarily increases re-

source consumption. The administrator should therefore determine the exact nesting depth

of branches in advance. Fortunately, the CSAF API already provides all the possibilities to

retrieve this information (see listing 44).

57

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

query{

n0: csafApi (max_documents: 1, metadata:true) { findDocuments { must {

existp (path:"/product tree") }}}

n1: csafApi (max_documents: 1, metadata:true) { findDocuments { must {

existp (path:"/product tree/branches") }}}

n2: csafApi (max_documents: 1, metadata:true) { findDocuments { must {

existp (path:"/product tree/branches/branches") }}}

n3: csafApi (max_documents: 1, metadata:true) { findDocuments { must {

existp (path:"/product tree/branches/branches/branches") }}}

n4: csafApi (max_documents: 1, metadata:true) { findDocuments { must {

existp (path:"/product tree/branches/branches/branches/branches") }}}

n5: csafApi (max_documents: 1, metadata:true) { findDocuments { must {

existp (

path:"/product tree/branches/branches/branches/branches/branches") }}}

}

Listing 44: Manual query of the maximum depth

The results of the development database give a maximum nesting depth of 3 (see nesting

n3 has hits and n4 has no hits in listing 45), therefore 3 is entered in the configuration file

as branchesMaxDepth (see listing 40).

{

"data": {

"n0": { "documents": [...], "metadata": { "total": 5076 } },

"n1": { "documents": [...], "metadata": { "total": 14 } },

"n2": { "documents": [...], "metadata": { "total": 14 } },

"n3": { "documents": [...], "metadata": { "total": 14 } },

"n4": { "documents": [], "metadata": { "total": 0 } },

"n5": { "documents": [], "metadata": { "total": 0 } }

}

}

Listing 45: Results of the try depth query from listing 44

The unfolding of the byProduct shorthand is a convenience for the user, as he does

not have to query each CSAF document path containing product names individually. For

the next convenience it is required to violate a GraphQL principle (see subsection 2.6). As

mentioned before (see subsection 3.3.2), the GraphQL context must be manipulated to display

additional elements that the user has not explicitly requested. If the user has not made

any specifications regarding the output /query/csafApi/documents, it is assumed that all

elements should be displayed (see subsection 3.3.2). In order for all elements to be displayed,

the GraphQL context must be changed as if the user has requested all elements. All elements

are added to the GraphQL context (see listing 46). The content of the prepared static file

csaf_graphql_all_possible_elements.js is inserted.

Not only do elements need to be added to be filled. Some elements must be removed from

the GraphQL context so that they do not appear empty. The findDocuments part of the

58

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

// create a manipulated query to display all the elements of the response,

// not just the requested one

context.fieldNodes[0].selectionSet.selections = [{

kind: "Field", name: { kind: "Name", value: "documents" },

selectionSet: require("./csaf graphql all possible elements")

}];

Listing 46: Inserting the static list of all elements - csaf graphql all possible elements.js

query would always return an empty element if it is not deleted from the GraphQL context.

This type of manipulation introduces a significant challenge. The moment the context is

no longer resent because the query has not changed, the query would fail because it cannot

be extracted from the now manipulated context. Therefore, the GraphQL context must be

cached before manipulation in order to access the original context if needed. To distinguish

between the original and the manipulated context, the manipulated context is assigned an

additional attribute manipulated (see listing 47). Another manipulation of the GraphQL

function cacheContext(context){

var contextCsafApi = context.fieldNodes[0];

// If an alias is assigned, then take the alias

// otherwise take the name of the query

var tempAlias = contextCsafApi.alias ?

contextCsafApi.alias.value : contextCsafApi.name.value;

// cache the original query if not manipulated

if (!contextCsafApi.manipulated) {

originalContext[tempAlias]=JSON.parse(JSON.stringify(contextCsafApi));

...

// mark this context as CSAF API manipulated

contextCsafApi["manipulated"] = true;

} else {

// never cache the manipulated query as original

}

return tempAlias;

}

Listing 47: Intermediate caching of the GraphQL context and marking it as manipulated

context concerns authorization (see listing 48) or authentication. Authentication is part of

"accounts": [

{ "id": "12345", "token": "***", "roles": ["csaf_consumer"],

"permissions": [{"tlpLabel":"RED"}, {"tlpLabel":"GREEN"},

{"tlpLabel":"WHITE"}] },

{ "id": "67890", "token": "***", "roles": ["csaf_aggregator"],

"permissions": [{"tlpLabel":"WHITE"}] }

]

Listing 48: User credential examples stored in accounts.js

59

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

the intermediate (see subsection 3.3.3). The intermediate includes a restriction to predefined

TLP labels as an additional condition for each query (see listing 49).

function authentification(context, userData){

let temp = context.selectionSet.selections.filter(

e => e.name.value === "findDocuments");

if(temp.length == 0){

context.selectionSet.selections[context.selectionSet.selections.length]

= { "arguments":[], "directives":[], "kind": "Field", "name":{

"kind": "Name", "value": "findDocuments" },

"selectionSet":{ "kind": "SelectionSet", "selections": []} };

}

// filter and patch all findDocuments-queries

var findDocuments = context.selectionSet.selections.filter(

e => e.name.value === "findDocuments");

let tlpLabelSelections = generateTlpLabelSelections(userData);

let i = 0;

while (i < findDocuments.length){

let temp = findDocuments[i];

let selections = temp.selectionSet.selections;

// original query: parameter1 AND parameter2 AND ...

let csafOr1 = {

"arguments":[], "directives":[], "kind": "Field", "name":{

"kind": "Name", "value": "csafAnd" },

"selectionSet":{ "kind": "SelectionSet", "selections": selections}

};

// restrictions = restriction1 OR restriction2 OR ...

let csafOr2 ={

"arguments":[], "directives":[], "kind": "Field", "name":{

"kind": "Name", "value": "csafOr" },

"selectionSet":{ "kind":"SelectionSet","selections":tlpLabelSelections}

};

// (original query parameter) AND (restrictions)

var unionSelections = [];

if(selections.length == 0){ unionSelections = [csafOr2]; }

else { unionSelections = [csafOr1, csafOr2]; }

let csafAnd = {

"arguments":[], "directives":[], "kind": "Field", "name":{

"kind": "Name", "value": "csafAnd" },

"selectionSet":{ "kind": "SelectionSet", "selections":unionSelections}

};

findDocuments[i].selectionSet.selections =[csafAnd];

i++;

}

return context;

}

Listing 49: Extension of the query for the purpose of authentication

60

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

The script first filters out all queries. If the query does not exist, then an empty query is

added. Additional constraints are appended to each query so that after running the script,

each query has the following structure:

((original query parameter) AND (tlp1 OR tlp2 OR ..))

This is to prevent that more files can be queried than allowed. Thus, conditions, or more

precisely, restrictions were added. Thereby findDocuments is converted to csafAnd (see

subsection 3.4). However, entire CSAF documents can also be added.

To be able to attach the original documents (CSAF documents, signatures and hashes),

two extensions have been implemented. First, files are searched on the file system that

if (intermediateObject.originals) {

// object originals is present, user wishes to get the original files

results["originalDocuments"] =[];

let i = 0;

while (i < results.documents.length) {

let documentTrackingId = results.documents[i].document.tracking.id;

// fetch files belonging to (results: /documents[]/document/tracking/id)

let fileList = searchOnFilesytem(documentTrackingId, csafDocumentsPath);

let j = 0;

while (j < fileList.length){

results.originalDocuments[results.originalDocuments.length]

= fileList[j];

j++;

}

i++;

}

}

Listing 50: Adding original files to the results - originals

match the attribute /document/tracking/id. The found documents are appended base64

encoded to the result set (see listing 50). And secondly, the GraphQL context is extended

let originals = intermediateObject.arguments.filter(e=>e.name=="originals");

if(originals.length > 0 && originals[0].value){

context.fieldNodes[0].selectionSet.selections[

context.fieldNodes[0].selectionSet.selections.length

]={

kind: "Field", name: {kind: "Name", value: "originalDocuments"},

selectionSet: {kind: "SelectionSet", selections: [

{kind: "Field", name: {kind: "Name", value: "documentName"}},

{kind: "Field", name: {kind: "Name", value: "documentBase64Binary"}}

]}

};

}

Listing 51: Adding originalDocuments to GraphQL context

to additionally display these attachments (see listing 51), i.e. the original CSAF documents

61

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

also arrive at the clients response (see example in listing 52).

{

"data": {

"example": {

"documents": [...],

"originalDocuments":[

{ "documentName": "wid-sec-w-2022-0517.json",

"documentBase64Binary": "ewogICJk..." },

{ "documentName": "wid-sec-w-2022-0517.json.asc",

"documentBase64Binary": "LS0tLS1C..." },

{ "documentName": "wid-sec-w-2022-0517.json.sha256",

"documentBase64Binary": "NmM2ODgw..." },

{ "documentName": "wid-sec-w-2022-0517.json.sha512",

"documentBase64Binary": "YThiY2Uz..." }

]

}}}

Listing 52: GraphQL example response for originalDocuments

Once all changes are made to the GraphQL context and the intermediate version of the

GraphQL context is created, then the intermediate version of the query can be passed to the

database connector.

4.3 Eleasticsearch

Elasticsearch was chosen as the database (see subsection 3.1). Therefore, a connector for

Elasticsearch was implemented, which is called by the intermediate (see listing 53) and defined

in the configuration file (see listing 40).

const config = require("../config");

const connector = require(config.csafIntermediate.connector);

function Intermediate(context, args){

...

console.log("use connector (" + connector.name + ")");

return connector.connect(intermediateObject)

.then(r => { ...; return r; })

.catch(e => { ... })

;

}

Listing 53: The intermediate passes the intermediate version of the query to the connector.

The connector takes the intermediate version of the query, converts it to an Elasticsearch

query, and executes it. The return structure of Elasticsearch differs from the structure that

Intermediate and also GraphQL expect, so the expected structure is created before the results

are returned. At this point, the total number of CSAF documents (see metadata in listing 22)

corresponding to the query is appended (see listing 54).

62

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

function Connector(intermediateObject){

var elasticSearchQuery =

intermediateToElasticsearchQuery(intermediateObject, undefined);

var needPreQuery = testNeedPreQuery(intermediateObject);

if(needPreQuery){

// run special query (with pre-query)

...

} else {

// run normal query

return ElasticSearchClient(elasticSearchQuery)

.then(

//change response comming from elasticsearch

r => {

let results = r['hits']['hits'];

results.map((item, i) => results[i] = item._source);

results = {
"documents": results,

"metadata": { "total": r.hits.total.value }
};

return results;

}

)

.catch(e => {...});

}

Listing 54: Elasticsearch connector returns result to the intermediate

In order to translate the complete intermediate query into an Elasticsearch query, each

object (e.g. csafAnd) of the intermediate query must be translated individually. A csafAnd

corresponds to a must in Elasticsearch. Therefore, theGraphQL csafAnd query (see listing 55)

query {

csafApi {

findDocuments {

csafAnd {

condition1: document {title (should: "Linux")}

condition2: document {title (should: "Kernel")}

}}}}

Listing 55: The logical AND operator in the CSAF API

is translated to an Elasticsearch must query (see listing 56).

63

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

"query": {

"bool":{ "must":[

{"match": {"document.title": "Linux" }},

{"match": {"document.title": "Kernel" }}

]}}

Listing 56: Elasticsearch representation of figure 55

The should element is for the logical or operator, as shown in listing 57, which is a

query { csafApi {

findDocuments {

csafOr {

condition1: document {title (should: "Linux")}

condition2: document {title (should: "Kernel")}

}}}}

Listing 57: The logical OR operator in the CSAF API

csafOr in the CSAF context. Therefore, it is converted into a should query (see listing 58).

"query": {

"bool":{ "should":[

{"match": {"document.title": "Linux" }},

{"match": {"document.title": "Kernel" }}

]}}

Listing 58: Elasticsearch representation of listing 57

A csafNot (see listing 59) corresponds to the must_not in the Elasticsearch context (see

query { csafApi { findDocuments {

csafNot {

condition1: document {title (should: "Linux")}

condition2: document {title (should: "Kernel")}

}}}}

Listing 59: The logical NOT operator in the CSAF API

listing 60).

"query": {

"bool":{ "must not":[

{"match": {"document.title": "Linux" }},

{"match": {"document.title": "Kernel" }}

]}}

Listing 60: Elasticsearch representation of figure 59

64

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

Since csafXor is intended to avoid the user typing work (see the short form in listing 61),

the long form must be implemented in the Elasticsearch query (see listing 63).

query { csafApi { findDocuments {

csafXor {

condition1: document {title (should: "Linux")}

condition2: document {title (should: "Kernel")}

}}}}

Listing 61: The logical XOR operator in the CSAF API

For better understanding, the first thing to do is to convert the csafXor to a logical

equivalent (see listing 62).

query { csafApi { findDocuments {

csafOr {

csafAnd {

condition1: document {title (should: "Linux") }

condition2: csafNot { document {title (should: "Kernel")} }

}

csafAnd {

condition1: csafNot { document {title (should: "Linux") } }

condition2: document {title (should: "Kernel")}

}

}

}}}

Listing 62: The logical XOR equivalent

Now each logical operator is translated separately (see listing 63).

"query": {

"bool": {"should": [

{"bool": {"must": [

{"bool": {"must": [{"match": {"document.title": "Linux" }}]}},

{"bool": {"must not": [{"match": {"document.title": "Kernel" }}]}}

]}},

{"bool": {"must": [

{"bool": {"must not": [{"match": {"document.title": "Linux" }}]}},

{"bool": {"must": [{"match": {"document.title": "Kernel" }}]}}

]}}

]}

}

Listing 63: Elasticsearch representation of figure 62

For the sake of completeness, the must is inserted parallel to the must not, even though

it is completely unnecessary from a logical point of view. Not only the Xor can be repre-

sented in different ways, also the existence of CSAF document elements can be queried in

different ways. Both alternatives alternative1 and alternative2 that query the existence

65

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

of a CSAF document elements (see listing 64) are mapped the same in the Elasticsearch

query { csafApi {

findDocuments {

must {

alternative1: exist{

document {

title

lang

}

}

alternative2: existp (path: ["/document/title", "/document/lang"])

}}}}

Listing 64: The exist or existp function in the CSAF API

query (see listing 65). During the implementation it turned out that the effort for exist is

significantly lower, if exist is already harmonized in the intermediate away (see exist in

table 8). Therefore, this case no longer occurs in the connectors and can be ignored.

"query": {

"bool":{ "must":[

{"exists": {"field": "document.title"}},

{"exists": {"field": "document.lang" }}

]}}

Listing 65: Elasticsearch representation of listing 64

Once the GraphQL query is converted to an Elesticsearch query, the Elesticsearch con-

nector can query the Elesticsearch database. To avoid traffic between CSAF API and the

database, each Elesticsearch query can be given a size. The number of hits can be limited by a

user with the argument max_documents (see listing 19). Elasticsearch has an absolute limit of

10,000 Results Per Query, so a user can enter a larger number but will not get more results

delivered (see Limits by elasticsearch B.V. [5]). If the max_documents attribute is set and it

is set by default in the intermediate for performance reasons (see defaultMaxDocuments in

listing 40), this value is appended to the Elasticsearch query to avoid unnecessary network

traffic (see listing 66). Since the CSAF API is designed to be modular, additional connectors

let max_documents = getMaxDocuments(intermediateObject);

let elasticsearchQuery = {

"size": max_documents,

"query": {...}

};

Listing 66: Limiting Elasticsearch results to max documents

(such as MySQL) can be implemented.

66

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

4.4 MySQL

The MySQL connector has not been implemented. Only a basic scaffold was built to show

how a MySQL database is connected, which parameters are passed and how the connector

switching works (see description in listing 40). To test the basic functionality, the same CSAF

document is always delivered, no matter what the query is (see fake_file in listing 67).

function Connector(context, args, userData, intermediateObject){

var sql = convertSearchParameterToSQLQuery(context.selectionSet.selections);

// run query

return mysqlClient(sql)

.then(

//change response comming from mysql

r => {

let _source = r.result;

let _source_json = mysql_to_json(r.result);

//fake file

_source_json = fake file();

_source = { "documents": [_source_json] };

return _source;

}

)

.catch(e => {...})

;

}

Listing 67: MySQL connector implementation

4.5 REST-API queries

Schmidt has defined 7 routes (see table 6). All of these routes must be implemented (see

subsection 3.3). When using the CSAF API these routes do not need to be implemented sepa-

rately. They can be queried using the functionality now available. The route /csaf-documents/by-cve/{cve}?cvssv2=<string>&cvssv3=<string>

can be directly converted into a GraphQL query (see example query in listing 68). Also the

optional parameters CVSSv2 and CVSSv3, which Schmidt mentions in his thesis, can be given

directly.

query { csafApi (max_documents: 2) {

findDocuments { must {

vulnerabilities {cve (exact: "CVE-2022-27193")}

should {

vulnerabilities {scores {

cvss v2 {baseScore (gte: 2.5, lte: 10)}

cvss v3 {baseScore (gte: 2.5, lte: 10)}

}}}}}}}

Listing 68: REST-API ../by-cve/cve query as GraphQL query

67

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

As mentioned in subsection 2.7.1, the devices from Schmidt’s thesis are called products

here, because this term reflects the CSAF terminology. Products can be queried in many

ways, the easiest way is to use the byProduct function (see listing 69).

query { csafApi (max_documents: 2) {

findDocuments { must {

pr1: byProduct {name (should: "Red Hat")}

pr2: byProduct {name (should: "SUSE")}

}}}}

Listing 69: REST-API ../from-device-list query as GraphQL query

To match a property is the simplest query, all other queries build on it. The property is

specified as a GraphQL query. The condition is set on the property itself. In this example

(see listing 70), a product is searched for that contains Red Hat in the product name.

query { csafApi (max_documents: 2) { findDocuments {

must {

property: product_tree {full_product_names {name (should: "Red Hat")}}

}}}}

Listing 70: REST-API ../match-property query as GraphQL query

There are many ways to specify multiple properties, the simplest way is to number them

(see properties p1-p3 in listing 71). The properties do not have to be numbered in this case,

query { csafApi (max_documents: 2) {

findDocuments { must {

p1: document {aggregate_severity {text (exact: "mittel")}}

p2: product_tree {full_product_names {name (should: "SUSE")}}

p3: vulnerabilities {cve (exact: "CVE-2022-47951")}

}}}}

Listing 71: REST-API ../match-properties query as GraphQL query

because they are different properties. If the properties are the same, e.g. OR concatenated,

then the properties must be numbered consecutively. More precisely, they do not need to

be numbered, but an alias must be assigned so that GraphQL can differentiate them. As

query { csafApi (max_documents: 2) {

findDocuments { must {

document {

p1: publisher {namespace (exact: "https://www.bsi.bund.de")}

p2: tracking {id (exact: "BSI-2022-0002")}

}}}}}

Listing 72: REST-API ../by-id/publisher ns/tracking id query as GraphQL query

already seen with match-properties, two or more properties can be queried, i.e. also the

68

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

publisher namespace and the tracking ID (see listing 72). As shown for match-property (see

query { csafApi (max_documents: 2) {

findDocuments { must {

document {title (should: "Denial of Service")}}

}}}

Listing 73: REST-API (by-title) query as GraphQL query

listing 70),it is possible to query for any property, including the document title (see listing 73)

or the document publisher name (see listing 74).

query { csafApi (max_documents: 2) {

findDocuments must {

document {publisher {name (should: "Bundesamt")}}}

}}

Listing 74: REST-API (by-publisher) query as GraphQL query

In order for the CSAF API queries to search the database, the database must be populated

with CSAF documents. The CSAF documents must be migrated into the database.

4.6 Migration respectively synchronization

At the time of migration, the CSAF documents are on the file system (see figure 4). They

must be migrated into the corresponding database and kept up to date. To keep the status

up to date, a synchronization must take place regularly. When a new CSAF document is

created on the file system, this CSAF document must also be uploaded to the API database.

When a CSAF document is deleted from the file system, it must also be deleted from the

API database. This procedure saves server resources (computing load), since only absolutely

necessary steps are performed.

Alternatively, the complete data-set can be deleted and rebuilt. This procedure seems to

make sense especially for smaller databases, as it is reliable and clearly arranged. Database

entries that no longer exist were completely deleted and only current CSAF documents were

imported.

Because Elasticsearch was chosen as the database (see subsection 3.1), the creation of the

Elasticsearch index and the import were implemented. In order for the CSAF documents

to be uploaded to the Elasticsearch database, the first thing to do is create an index (see

listing 75).

curl -k -u USERNAME:PASSWORD -X PUT "localhost:9200/csaf-documents?pretty"

Listing 75: Create Elasticsearch index for CSAF documents

Now the CSAF documents can be uploaded under the csaf-documents index by running

the import script (see elastic_upload.sh in listing 76). The unique file name is used as ID

69

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

/bin/bash ~/elastic upload.sh ~/UPLOADDIRECTORYPATH USERNAME PASSWORD

Listing 76: Start upload on shell with Elasticsearch user credentials

here (see listing 77). File names are unique in the context of a CSAF publisher. Because it

cannot be avoided that file names are not unique in the case of a CSAF aggregator, the path

must also be added as a distinguishing feature. The script runs through all directories and

uploads all documents with the .json file extension.

#!/bin/bash

MYHOMEDIR=~

DIR=$1

USERNAME=$2

PASSWORD=$3

for FILE in $1/*; do

if is a folder, that look inside the folder

if [-d $FILE]; then

sh ./elastic_upload.sh $FILE;

else

upload only in cases of .json files

case $FILE in

*.json)

use directory as ID in Elasticsearch,

without information about the homedirectory

MYKEY=${FILE#"$MYHOMEDIR"*};

MYKEY=$(echo "$MYKEY" | tr "/" "_" | tr "-" "_")

upload file to elasticsearch

curl -k -u $USERNAME:$PASSWORD -X POST \

-H 'Content-Type:application/json' \

--data @"$FILE" "https://localhost:9200/csaf document/_doc/{$MYKEY}";

esac

fi

done

Listing 77: CSAF documents upload shell-script (elastic upload.sh)

Migration to MySQL was not implemented, because the MySQL Connector was only

implemented schematically to demonstrate that the CSAF API can be connected to a MySQL

database. The migration should be similar to Elasticsearch. All CSAF documents are iterated

through and stored in the MySQL database. Depending on the database design, there may

be one or many database tables that need to be filled.

70

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

5 Results

The main goal of this master thesis was to design and implement an API with GraphQL to

demonstrate that this is possible, to show where the limits of GraphQL and the API are and

what opportunities arise with the API. Most importantly, the API is incredibly intuitive to

use. If the query is to search for CSAF documents that should have Linux in the document

title, the query looks exactly like this (see listing 78).

query {

csafApi {

findDocuments {

document {

title (should: "Linux")

}}}}

Listing 78: Intuitive query

In this way, any element of interest can be searched for. There are so many elements that

Figure 17: CSAF API queryable but no longer displayable elements

it cannot be properly displayed on one page (see figure 17).

Depending on the element type, type-specific search parameters can be used. In case

of a date, CSAF documents can be searched for that are younger than the given date (see

listing 79). Even complex queries are made possible by the logical operators (e.g. AND, OR,

XOR and NOT).

71

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

query {

csafApi {

findDocuments {

document {

tracking {

current_release_date (younger: "now-10d")

}}}}}

Listing 79: Query CSAF documents for the last 10 days.

With the possibility to search for existing or non-existing elements, not only tools for

complex queries are provided (see listing 15), but also possibilities for quality improve-

ment are created. Thus, for example, missing current release dates /document/tracking

/current_release_date can be searched for.

See figure 17, there are to many elements with too much information to reasonably display

it on one page. For an even smaller display (like mobile devices) it makes sense not to display

all elements at once. Therefore, the response can be limited to certain elements. Only a

selection of elements is returned, making the information displayable and readable even on

small displays.

If an array element is defined as a filter criterion, the query returns the complete CSAF

document on which the query matches. If the structure of the response is specified, then all

JSON elements that were not queried are removed. If an array element is part of the response

structure, then all array elements are returned because they are part of the searched CSAF

document array. This filter criterion can also be used to remove these elements of the CSAF

document array that are irrelevant for the CSAF consumer.

It is important to know whether a product is affected by a security vulnerability. It is

tedious to search out product IDs in each CSAF document based on the product name and

then use the product ID to determine whether a vulnerability is affected. Therefore, a kind of

preliminary query was implemented that first queries all product names and then filters out

the CSAF documents whose product IDs do not appear in the queried vulnerability product

status (e.g. /vulnerabilities[]/product_status/known_affected[]). Only then the

exact affected status can be determined.

For automation, characteristics are needed by which a change can be determined. Time

stamps (like dates) are particularly well suited for this purpose. A complete list of CSAF doc-

ument dates and their definitions can be found in the appendix (see table 14). Probably the

most relevant date for automation is the document current release date /document/tracking

/current_release_date. It shows when the document was last modified. Therefore, it is

very suitable for queries about the latest CSAF documents. With the possibility to specify

the date relatively, queries can be defined that always provide current CSAF documents (see

listing 79).

72

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

6 Discussion

The fact that an API can be implemented with GraphQL, Elasticsearch as database and

corresponding effort in the type description became apparent early in the design. Accordingly,

the problem with the GraphQL principles appeared early, which could not be completely

resolved until the end, without violating the GraphQL principles. Recommended extensions

to the CSAF standard have also emerged and will be addressed here.

Eleasticsearch, which was chosen as database, had advantages. Among the notable dis-

advantages is the versioning. Although Elasticsearch stores the number of times a document

was overwritten, it does not store the content of the overwritten document. Even the best

API cannot compensate for versioning that is already missing in the database. Therefore,

this chapter will conclude with the database recommendation.

6.1 Extension of the CSAF standard

In the course of the development of this document, the need for changes became apparent,

as standards have changed in the meantime or the full potential of the CSAF API could not

be leveraged. These change requirements are addressed in the following subsections.

6.1.1 TLP versioning

FIRST.ORG, Inc’s TLP transitioned to version 2.0 in September 2022. The original TLP

version cannot be read from the CSAF document itself because the version number is missing.

There are only two properties for TLP the Uniform Resource Locator (URL) and the label

(see listing 80).

"tlp": {

"additionalProperties": false, "title": "Traffic Light Protocol (TLP)",

"description": "Provides details about the TLP classification of the

document.",

"properties": {

"label": {

"description": "Provides the TLP label of the document.",

"enum": ["AMBER", "GREEN", "RED", "WHITE"],

"title": "Label of TLP", "type": "string" },

"url": {

"default": "https://www.first.org/tlp/",

"description": "Provides a URL where to find the textual description

of the TLP version which is used in this document. Default is the

URL to the definition by FIRST.", "examples": [...],

"format": "uri", "title": "URL of TLP version", "type": "string" }

},

"required": ["label"], "type": "object"

}

Listing 80: CSAF schema TLP definition by OASIS Open

73

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

In this version change the label TLP:WHITE was replaced by TLP:CLEAR. Since the link

refers always to the current version, the CSAF publisher is forced to regenerate all CSAF

TLP:WHITE documents to change either /document/distribution/tlp/url or /document

/distribution/tlp/label when such TLP version change occurs. In this case, the easiest

way is to change the URL to the old version without having to have detailed knowledge about

the version change itself (for the link to the old version see table 12).

Version number Link Version

2.0 https://www.first.org/tlp/ latest or current version

1.0 https://www.first.org/tlp/v1/ old version

Table 12: Different CSAF enumeration cases

The version number could be added to the TLP schema definition to avoid misunder-

standings and need for action.

"tlp": {

...

"properties": {

"label": {...},

"url": {...},

"version": {

"$ref": "#/$defs/version_t"

}

},

"required": ["label"],

"title": "Traffic Light Protocol (TLP)",

"type": "object"

}

Listing 81: Extended CSAF TLP definition

6.1.2 Enumeration

Enumerations are accepted in theGraphQL type definition in upper case (see subsection 3.3.1).

Enumerations like CSAF version (see table 10) are not accepted under this condition and

must be renamed to the type definition (see listing 33). Enumerations with a dot in the enu-

meration value or those that start with a number must be renamed necessarily, an adaptation

of the CSAF standard could avoid unavoidable translations in the API.

For the CSAF API, all enumerations except TLP label have been renamed. This renam-

ing costs resources in processing. Although the capitalization of 12 enumerations was not

necessary, they were also renamed for completeness and policy compliance. Should the CSAF

standard be adapted and renaming become completely obsolete, then it would have a positive

impact on the performance of the API. A renaming in the CSAF standard is to be welcomed

from the point of view of the API.

74

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

6.2 Violation of GraphQL principles

In order to meet all or as many requirements as possible, tricks had to be done, since some

requirements violate the GraphQL principle (see subsection 2.6). The tricks applied contain

additional risks. On the one hand, it is possible that this manipulation makes GraphQL itself

more vulnerable. And on the other hand it cannot be guaranteed that the CSAF API still

works after a GraphQL upgrade.

During manipulation, the context of GraphQL is changed. Entries are deleted and added

as needed. Should GraphQL consciously block or ignore this kind of manipulation in a

coming version, the following points must be refactored or accepted by CSAF API operators

and consumers.

Metadata and originalDocuments are added to the GraphQL context as needed when a

user sets the CSAF API attributes (metadata and originals) to true. If adding them to the

GraphQL context is no longer possible, a API user must include them in the query for them

to be displayed. Especially if the user should see all elements of a document, all elements of

a CSAF document must be included in the query by the user. See figure 17, there are many

of them.

The CSAF API query contains elements (findDocuments and filterArrays) that would

appear empty in the output if not removed by the GraphQL context manipulation. This can

cause confusion for CSAF consumers who expect a fixed number of elements. Downstream

applications can fail if they stubbornly process the first element and suddenly an empty

element appears first.

GraphQL can become vulnerable. The cheatsheet by OWASP Foundation shows that a

hardening of GraphQL is advised [24]. With the manipulation of the GraphQL context comes

a potential vulnerability with yet unknown extent. Since there are no empirical values with

the new API yet, there is at least the possibility that some bugs or dependencies may still

lead to crashes, data disclosure or denial of service. Even if no serious vulnerabilities exist

now, new vulnerabilities may be added, e.g. when new connectors are implemented.

OWASP API Security Project API Top 10 [26], the GraphQL Cheat Sheet [24] and

GraphQL own security recommendations were taken into account as far as possible. Thus, a

reasonable nesting depth was determined (see table 11) and set up (see listing 39). Neither

the GraphQL Cheat Sheet nor GraphQL’s own security recommendations assumed that such

manipulations of the GraphQL context would take place, as they violate GraphQL principles,

so some surprises might still occur.

6.3 CSAF document versioning

If a CSAF consumer receives a new CSAF document for review, then the complete document

is reviewed (affectedness, impact, criticality). If this CSAF document is updated, then the

check must take place again. Therefore, there might be a wish for versioning, more specif-

ically change tracking. A CSAF consumer can read the change history from the element

/document/tracking/revision_history[]. These entries are made for humans and there-

75

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

fore understandable for humans. For an automation these entries are not suitable, because

they have no fixed reference to other elements in the document, no IDs which are taken over

into other elements. In the end, the question remains open whether relevant changes have

occurred.

If the relevance is determined by the product, then a change by an additional affected

product is not automatically a relevant change. Relevant changes can include an additional

product if it is in the own product list. Relevant changes may include a status change

/vulnerabilities[]/product_status if it relates to its own product in use. But all these

considerations are worth nothing if the actual change cannot be clearly determined in an

automated way.

With the functionality of a pre-query (see subsection 3.4.6) it was shown that reliefs for

the CSAF consumer can be implemented. These reliefs are possible at the expense of the

CSAF provider. Many relevant changes are already covered by the design of the CSAF API

query. If the vulnerability status for a product changes, CSAF documents are filtered out

that were previously found or added if they were not previously included. Useless effort is

created for the CSAF consumer if the changes to the CSAF document are not part of the

query, for example, if additional affected products are added to the CSAF document that the

CSAF consumer does not have in use. In this case, the CSAF consumer has to look through

the CSAF document again without having had any added value to his own work. The CSAF

consumer has to make this effort because the last change date has changed. The CSAF

consumer cannot query a relevant change concerning a product. A selection feature seems

to be missing for these changes to the product. A last change timestamp on the product

would allow CSAF consumer to search more specifically for relevant updates without having

to refer to the parent timestamp of the entire CSAF document.

By extending the revision history (see listing 82), it becomes possible to extend the

CSAF API to allow specific querying using the pre-query functionality. With the pre-query,

"revision_history": {

"description": "Holds one revision item ... including the initial one.",

"items": {

"additionalProperties": false,

"description": "Contains all the information ... of a CSAF document.",

"properties": {

"date": {...},

"legacy_version": {...},

"number": {...}, "summary": {...},

"affected products": { "$ref": "#/$defs/products_t" }

},

"required": ["date", "number", "summary"], "title": "Revision",

"type": "object"

},

"minItems": 1, "title": "Revision history", "type": "array"

}

Listing 82: Affected products extension of the document revision history

76

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

the product IDs are queried, as with the other pre-query. With these product IDs, CSAF

documents are queried that have these product IDs in the revision history, which has a current

timestamp. Unlike current queries, it is then no longer necessary to filter by the timestamp

of the whole CSAF document.

6.4 Integration in other application

It could bear untold fruits, if software manufacturer integrates a connector for the CSAF API

into their own product, perhaps in their product administration or monitoring panel. Security

advisories would pop up there, where IT administrators regularly check system status. This

is where the strengths of GraphQL come into play. The query can be set to retrieve only

relevant parts of a CSAF document, which are perfectly suited to be integrated into existing

applications.

6.5 What database should be chosen?

As already mentioned (see subsection 3.1), Elasticsearch was chosen as the database for this

work. When querying the product status of a vulnerability using the product name, the

Elasticsearch query quickly reaches its limits and a pre-query was needed. It was possible to

use pre-queries to answer this type of query with Elasticsearch. However, the queries quickly

become inefficient. This problem does not seem to arise with relational databases, since

the queries using SQL provide for such relationships. How the increasing document volume

will affect the performance of relational databases cannot be deduced from the rudimentary

implementation of the MySQL connector.

If the CSAF document was found, then in the case of Elasticsearch it only needs to

be returned. In the case of a relational database, the CSAF document is distributed over

many tables and must first be exported in JSON format. Alternatively, only essential CSAF

document elements could be transferred to database tables, which are needed for the most

frequent queries. The query in the relational database can then no longer generate the

complete CSAF document. The database must therefore hold references to the original

CSAF documents and deliver them to the API. This prevents the need to migrate every

CSAF document component to the relational database. However, the number of file accesses

would then increase and this would affect the API performance. With Elasticsearch, on the

other hand, file accesses only occur when the API user requests the original files.

The query itself seems to be much more efficient on a relational database. Especially if the

relational database already exists and the CSAF documents are already generated from it.

Elasticsearch is very simple and quickly operational from the initial setup. Both databases

mentioned here have their advantages and disadvantages and thus a person responsible is

spoilt for choice.

77

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

7 Conclusion

All of the work presented in this paper was conducted to find an answer to this research

question:

How could a GraphQL-based API make querying CSAF documents more effi-

cient?

Research question

This master thesis structures and names individual components of the API and their

functional scope. After designing and implementing the GraphQL-based API, all CSAF

document contents became searchable. This made it possible to search for CSAF documents

with more relevant content, such as vulnerabilities with a specific CVE or minimum Common

Vulnerability Scoring System (CVSS) score.

During the development of the targeted API, limitations of GraphQL were reached and

exceeded. A basic principle of GraphQL, that GraphQL queries always return predictable

results, was violated. Elements were inserted into the query as needed, while other elements

were deleted. Inserting elements as needed saves the API user a lot of typing.

After the first breakthrough was achieved, the API can be queried and provides data, the

requirements were gradually implemented. The work took place iteratively with alternating

design and implementation phases. With the API developed here, the query can be restricted

directly to more relevant CSAF documents. This eliminates a significant part of the daily

work of sifting through irrelevant documents to determine their irrelevance.

The API could leverage more potential if document changes could be assigned to products,

as consumers of CSAF documents determine their personal affectedness based on the affected

products. However, GraphQL is suitable as a basis for the CSAF API, even if GraphQL

principles had to be violated in some places. The deviation from these principles raises

questions. Has the API become more vulnerable as a result of the deviation?

Future research could address the structure of a CSAF security advisory. The document

structure makes sense from the manufacturer’s point of view, as it allows them to record how

products are affected by assigning them to a vulnerability product status. The consumers of

the CSAF documents have a different view, they want to get the question answered, from

which vulnerabilities is the product in use affected. It seems to be the same data, just from

different perspectives. To enable more effective queries for consumers, their perspective must

be taken.

78

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

Bibliography

[1] Amazon Web Services, Inc. OpenSearch. 2023. url: https://aws.amazon.com/what-

is/opensearch/ (visited on 02/24/2023).

[2] Apollo Graph, Inc. 9 Ways To Secure your GraphQL API — GraphQL Security Check-

list. 2021. url: https://www.apollographql.com/blog/graphql/security/9-ways-

to-secure-your-graphql-api-security-checklist/ (visited on 04/18/2022).

[3] Arista Networks, Inc. Security Advisories. 2021. url: https://www.arista.com/en/

support/advisories-notices/security-advisory/11999-security-advisory-59

(visited on 09/15/2023).

[4] Cisco Systems, Inc. Cisco Security Advisories. 2018. url: https://sec.cloudapps.

cisco.com/security/center/publicationListing.x (visited on 03/12/2023).

[5] elasticsearch B.V. Limits. 2023. url: https://www.elastic.co/guide/en/app-

search/current/limits.html (visited on 06/26/2023).

[6] elasticsearch B.V. Welcome to Elastic Docs. 2023. url: https://www.elastic.co/

guide/index.html (visited on 01/04/2023).

[7] Federal Office for Information Security (BSI). CSAF documents. 2023. url: https:

//wid.cert-bund.de/.well-known/csaf (visited on 07/07/2023).

[8] Federal Office for Information Security (BSI). Merkblatt zum sicheren Information-

saustausch mit dem Traffic Light Protocol (TLP), Version 2.0. 2022. url: https :

//www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/TLP/merkblatt-tlp.pdf

(visited on 12/23/2022).

[9] Federal Office for Information Security (BSI). Stack Buffer Overflow vulnerability in

FastStone Image Viewer 7.5 and earlier. 2022. url: https://wid.cert-bund.de/

.well-known/csaf/white/2022/bsi-2022-0002.json (visited on 08/10/2023).

[10] Festo SE & Co. KG. Downloads for FestoSecurityAdvisory. 2021. url: https://www.

festo.com/de/en/search/?tab=SUPPORT_PORTAL&q=FestoSecurityAdvisory&

documentTypeGroup=EXPERT_KNOWLEDGE&documentTypes=&supportPortalQ= (visited

on 09/15/2023).

[11] FIRST.ORG, Inc. TRAFFIC LIGHT PROTOCOL (TLP), FIRST Standards Defini-

tions and Usage Guidance — Version 1.0. 2022. url: https://www.first.org/tlp/

v1/ (visited on 03/28/2023).

[12] FIRST.ORG, Inc. TRAFFIC LIGHT PROTOCOL (TLP), FIRST Standards Defini-

tions and Usage Guidance — Version 2.0. 2022. url: https://www.first.org/tlp/

(visited on 03/28/2023).

[13] GraphQL Foundation. A query language for your API. 2022. url: https://graphql.

org/ (visited on 05/16/2023).

[14] GraphQL Foundation. Specification for GraphQL. 2018. url: http://spec.graphql.

org/June2018/%5C#sec-Enum-Value (visited on 07/18/2023).

79

https://aws.amazon.com/what-is/opensearch/
https://aws.amazon.com/what-is/opensearch/
https://www.apollographql.com/blog/graphql/security/9-ways-to-secure-your-graphql-api-security-checklist/
https://www.apollographql.com/blog/graphql/security/9-ways-to-secure-your-graphql-api-security-checklist/
https://www.arista.com/en/support/advisories-notices/security-advisory/11999-security-advisory-59
https://www.arista.com/en/support/advisories-notices/security-advisory/11999-security-advisory-59
https://sec.cloudapps.cisco.com/security/center/publicationListing.x
https://sec.cloudapps.cisco.com/security/center/publicationListing.x
https://www.elastic.co/guide/en/app-search/current/limits.html
https://www.elastic.co/guide/en/app-search/current/limits.html
https://www.elastic.co/guide/index.html
https://www.elastic.co/guide/index.html
https://wid.cert-bund.de/.well-known/csaf
https://wid.cert-bund.de/.well-known/csaf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/TLP/merkblatt-tlp.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/TLP/merkblatt-tlp.pdf
https://wid.cert-bund.de/.well-known/csaf/white/2022/bsi-2022-0002.json
https://wid.cert-bund.de/.well-known/csaf/white/2022/bsi-2022-0002.json
https://www.festo.com/de/en/search/?tab=SUPPORT_PORTAL&q=FestoSecurityAdvisory&documentTypeGroup=EXPERT_KNOWLEDGE&documentTypes=&supportPortalQ=
https://www.festo.com/de/en/search/?tab=SUPPORT_PORTAL&q=FestoSecurityAdvisory&documentTypeGroup=EXPERT_KNOWLEDGE&documentTypes=&supportPortalQ=
https://www.festo.com/de/en/search/?tab=SUPPORT_PORTAL&q=FestoSecurityAdvisory&documentTypeGroup=EXPERT_KNOWLEDGE&documentTypes=&supportPortalQ=
https://www.first.org/tlp/v1/
https://www.first.org/tlp/v1/
https://www.first.org/tlp/
https://graphql.org/
https://graphql.org/
http://spec.graphql.org/June2018/%5C#sec-Enum-Value
http://spec.graphql.org/June2018/%5C#sec-Enum-Value

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

[15] Hitachi Energy Ltd. Hitachi Energy. 2022. url: https://www.hitachienergy.com/

products-and-solutions/cybersecurity/alerts-and-notifications (visited on

02/28/2023).

[16] J. Callas, L. Donnerhacke, H. Finney, D. Shaw and R. Thayer. OpenPGP Message

Format. 2007. url: https://datatracker.ietf.org/doc/html/rfc4880 (visited on

09/19/2023).

[17] MITRE Corporation. Common Enumeration of Vulnerabilities Program. 1999. url:

https://www.cve.org/ (visited on 04/16/2022).

[18] Nozomi Networks Inc. Nozomi Networks Security Advisories. 2019. url: https://

security.nozominetworks.com/csaf/ (visited on 09/15/2023).

[19] OASIS Common Security Advisory Framework (CSAF) Technical Committee. Consider

a set of proven values for maxima of string and array lengths. 2021. url: https:

//github.com/oasis-tcs/csaf/issues/204%5C#issuecomment-815975781 (visited

on 08/31/2023).

[20] OASIS Open. Branches Type. 2022. url: https://docs.oasis- open.org/csaf/

csaf/v2.0/os/csaf-v2.0-os.html#312-branches-type (visited on 09/19/2023).

[21] OASIS Open. Common Security Advisory Framework Version 2.0. 2022. url: https:

//docs.oasis-open.org/csaf/csaf/v2.0/os/csaf-v2.0-os.html (visited on

09/17/2023).

[22] OASIS Open. CSAF json schema definition, Version 2.0. 2022. url: https://github.

com/csaf-poc/csaf_distribution/blob/main/csaf/schema/csaf_json_schema.

json (visited on 04/08/2022).

[23] Oracle Corporation. Critical Patch Updates, Security Alerts and Bulletins. 2022. url:

https://www.oracle.com/security-alerts/ (visited on 03/12/2023).

[24] OWASP Foundation. GraphQL Cheat Sheet. 2020. url: https://cheatsheetseries.

owasp.org/cheatsheets/GraphQL_Cheat_Sheet.html (visited on 02/23/2023).

[25] OWASP Foundation. OWASP API Security Project. 2019. url: https://owasp.org/

API-Security/editions/2019/ (visited on 08/31/2023).

[26] OWASP Foundation. OWASP API Security Project. 2019. url: https://owasp.org/

www-project-api-security/ (visited on 12/03/2022).

[27] OWASP Foundation. OWASP API Security Project. 2023. url: https://owasp.org/

API-Security/editions/2023/en/0x00-header/ (visited on 08/14/2023).

[28] OWASP Foundation. SessionManagement. 2019. url: https://cheatsheetseries.

owasp . org / cheatsheets / Session _ Management _ Cheat _ Sheet . html (visited on

08/27/2023).

[29] OWASP Foundation.Unrestricted Access to Sensitive Business Flows. 2023. url: https:

//owasp.org/API-Security/editions/2023/en/0xa6-unrestricted-access-to-

sensitive-business-flows/ (visited on 08/16/2023).

80

https://www.hitachienergy.com/products-and-solutions/cybersecurity/alerts-and-notifications
https://www.hitachienergy.com/products-and-solutions/cybersecurity/alerts-and-notifications
https://datatracker.ietf.org/doc/html/rfc4880
https://www.cve.org/
https://security.nozominetworks.com/csaf/
https://security.nozominetworks.com/csaf/
https://github.com/oasis-tcs/csaf/issues/204%5C#issuecomment-815975781
https://github.com/oasis-tcs/csaf/issues/204%5C#issuecomment-815975781
https://docs.oasis-open.org/csaf/csaf/v2.0/os/csaf-v2.0-os.html#312-branches-type
https://docs.oasis-open.org/csaf/csaf/v2.0/os/csaf-v2.0-os.html#312-branches-type
https://docs.oasis-open.org/csaf/csaf/v2.0/os/csaf-v2.0-os.html
https://docs.oasis-open.org/csaf/csaf/v2.0/os/csaf-v2.0-os.html
https://github.com/csaf-poc/csaf_distribution/blob/main/csaf/schema/csaf_json_schema.json
https://github.com/csaf-poc/csaf_distribution/blob/main/csaf/schema/csaf_json_schema.json
https://github.com/csaf-poc/csaf_distribution/blob/main/csaf/schema/csaf_json_schema.json
https://www.oracle.com/security-alerts/
https://cheatsheetseries.owasp.org/cheatsheets/GraphQL_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/GraphQL_Cheat_Sheet.html
https://owasp.org/API-Security/editions/2019/
https://owasp.org/API-Security/editions/2019/
https://owasp.org/www-project-api-security/
https://owasp.org/www-project-api-security/
https://owasp.org/API-Security/editions/2023/en/0x00-header/
https://owasp.org/API-Security/editions/2023/en/0x00-header/
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html
https://owasp.org/API-Security/editions/2023/en/0xa6-unrestricted-access-to-sensitive-business-flows/
https://owasp.org/API-Security/editions/2023/en/0xa6-unrestricted-access-to-sensitive-business-flows/
https://owasp.org/API-Security/editions/2023/en/0xa6-unrestricted-access-to-sensitive-business-flows/

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

[30] Red Hat, Inc. Common Security Advisory Framework (CSAF) beta files now available.

2022. url: https://www.redhat.com/en/blog/common- security- advisory-

framework-csaf-beta-files-now-available (visited on 08/10/2023).

[31] Leon Schmidt. Development of an API to request security advisories for CSAF 2.0,

Bachelor’s thesis, University of Applied Sciences, Offenburg. 2022. url: https://

opus.hs-offenburg.de/files/6011/CSAF_API_development_v1.pdf (visited on

11/01/2022).

[32] Leon Schmidt. Development of an API to request security advisories for CSAF 2.0,

Bachelor’s thesis, University of Applied Sciences, Offenburg. 2022. Chap. 3.3.2. url:

https://opus.hs-offenburg.de/files/6011/CSAF_API_development_v1.pdf.

[33] Leon Schmidt. Development of an API to request security advisories for CSAF 2.0,

Bachelor’s thesis, University of Applied Sciences, Offenburg. 2022. Chap. 6.1. url:

https://opus.hs-offenburg.de/files/6011/CSAF_API_development_v1.pdf.

[34] Schneider Electric SE. Cybersecurity support portal. 2021. url: https://www.se.com/

ww/en/work/support/cybersecurity/security-notifications.jsp (visited on

02/28/2023).

[35] SICK AG. SICK PSIRT Security Advisories. 2021. url: https://sick.com/.well-

known/csaf/white/ (visited on 09/15/2023).

[36] Siemens Aktiengesellschaft. Siemens Security Advisories. 2021. url: https://new.

siemens.com/global/en/products/services/cert.html#SecurityPublications

(visited on 02/28/2023).

[37] National Institute of Standards and Technology. FIPS PUB 180-4: Federal Informa-

tion Processing Standards PUBLICATION: Secure Hash Standard (SHS). 2015. url:

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf (visited on

09/19/2023).

[38] TIBCO Software Inc. TIBCO Security Advisories. 2018. url: https://www.tibco.

com/.well-known/csaf/ (visited on 09/15/2023).

[39] US Cybersecurity & Infrastructure Security Agency. Traffic Light Protocol (TLP) Defi-

nitions and Usage. 2022. url: https://www.us-cert.gov/tlp (visited on 03/28/2023).

81

https://www.redhat.com/en/blog/common-security-advisory-framework-csaf-beta-files-now-available
https://www.redhat.com/en/blog/common-security-advisory-framework-csaf-beta-files-now-available
https://opus.hs-offenburg.de/files/6011/CSAF_API_development_v1.pdf
https://opus.hs-offenburg.de/files/6011/CSAF_API_development_v1.pdf
https://opus.hs-offenburg.de/files/6011/CSAF_API_development_v1.pdf
https://opus.hs-offenburg.de/files/6011/CSAF_API_development_v1.pdf
https://www.se.com/ww/en/work/support/cybersecurity/security-notifications.jsp
https://www.se.com/ww/en/work/support/cybersecurity/security-notifications.jsp
https://sick.com/.well-known/csaf/white/
https://sick.com/.well-known/csaf/white/
https://new.siemens.com/global/en/products/services/cert.html#SecurityPublications
https://new.siemens.com/global/en/products/services/cert.html#SecurityPublications
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://www.tibco.com/.well-known/csaf/
https://www.tibco.com/.well-known/csaf/
https://www.us-cert.gov/tlp

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

A Appendix

A.1 CSAF list of dates

TLP label Definition

TLP:RED

Not for disclosure, restricted to participants only. Sources may use
TLP:RED when information cannot be effectively acted upon by
additional parties, and could lead to impacts on a party’s privacy,
reputation, or operations if misused. Recipients may not share
TLP:RED information with any parties outside of the specific exchange,
meeting, or conversation in which it was originally disclosed. In the
context of a meeting, for example, TLP:RED information is limited to
those present at the meeting. In most circumstances, TLP:RED
should be exchanged verbally or in person.

TLP:AMBER

Limited disclosure, restricted to participants’ organizations. Sources
may use TLP:AMBER when information requires support to be
effectively acted upon, yet carries risks to privacy, reputation, or
operations if shared outside of the organizations involved. Recipients
may only share TLP:AMBER information with members of their own
organization, and with clients or customers who need to know the
information to protect themselves or prevent further harm. Sources are
at liberty to specify additional intended limits of the sharing: these
must be adhered to.

TLP:GREEN

Limited disclosure, restricted to the community. Sources may
use TLP:GREEN when information is useful for the awareness of all
participating organizations as well as with peers within the broader
community or sector. Recipients may share TLP:GREEN information
with peers and partner organizations within their sector or community,
but not via publicly accessible channels. Information in this category
can be circulated widely within a particularcommunity. TLP:GREEN
information may not released outside of the community.

TLP:WHITE

Disclosure is not limited. Sources may use TLP:WHITE when
information carries minimal or no foreseeable risk of misuse, in
accordance with applicable rules and procedures for public release.
Subject to standard copyright rules, TLP:WHITE information may be
distributed without restriction.

Table 13: TLPv1 label definitions by FIRST.ORG, Inc

82

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

JSON PATH DESCRIPTION

document.tracking.current release date
The date when the current revision of this
document was released

/document/tracking/generator/date

This SHOULD be the current date that the
document was generated. Because
documents are often generated internally
by a document producer and exist for a
nonzero amount of time before being
released, this field MAY be different
from the Initial Release Date and
Current Release Date.

/document/tracking/initial release date
The date when this document was first
published.

/document/tracking/revision history/date The date of the revision entry

/vulnerabilities/discovery date
Holds the date and time the vulnerability
was originally discovered.

/vulnerabilities/flags/date
Contains the date when assessment was
done or the flag was assigned.

/vulnerabilities/involvements/date
Holds the date and time of the involvement
entry.

/vulnerabilities/release date
Holds the date and time the vulnerability
was originally released into the wild.

/vulnerabilities/remediations/date
Contains the date from which the
remediation is available.

/vulnerabilities/threats/date
Contains the date when the assessment was
done or the threat appeared.

Table 14: CSAF list of dates

83

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

A.2 CSAF API type defintions

type csafDocumentDocument {

acknowledgments: [acknowledgments_t]

aggregate_severity: csafDocumentDocumentAggregateSeverity

category(

exact: String

should: String): String

csaf_version(

enum: csafDocumentDocumentCsafVersionEnum): String

distribution: csafDocumentDocumentDistribution

lang(

exact: String

should: String): String

notes(

audience: String

category: String

text: String

title: String): [notes_t]

publisher: csafDocumentDocumentPublisher

references: [references_t]

source_lang(

exact: String

should: String): String

title(

exact: String

should: String): String

tracking(id: String): csafDocumentDocumentTracking

}

Listing 83: GraphQL type definitions of CSAF /document

84

Development of a GraphQL-based API for querying security advisories for CSAF
FernUniversität in Hagen Waldemar Wiegel

type full_product_name_t {

name(

exact: String

should: String): String

product_id(

exact: String

should: String

idInProductTreeProductGroupsProductIds: Boolean

idInProductTreeRelationshipsProductReference: Boolean

idInProductTreeRelationshipsRelatesToProductReference: Boolean

idInVulnerabilitiesProductStatusFirstAffected: Boolean

idInVulnerabilitiesProductStatusFirstFixed: Boolean

idInVulnerabilitiesProductStatusFixed: Boolean

idInVulnerabilitiesProductStatusKnownAffected: Boolean

idInVulnerabilitiesProductStatusKnownNotAffected: Boolean

idInVulnerabilitiesProductStatusLastAffected: Boolean

idInVulnerabilitiesProductStatusRecommended: Boolean

idInVulnerabilitiesProductStatusUnderInvestigation: Boolean

idInVulnerabilitiesFlagsProductIds: Boolean

idInVulnerabilitiesRemediationsProductIds: Boolean

idInVulnerabilitiesScoresProducts: Boolean

idInVulnerabilitiesThreatsProductIds: Boolean

): String

product_identification_helper:

full_product_name_tProductIdentificationHelper

}

Listing 84: GraphQL type definitions of CSAF ./full product name t

B Appendix: Data medium content

The JavaScript code and this master thesis on the CSAF API were burned to the disk. The

folder structure of the disk is as follows:

• /csaf_api: The .js source files.

• /paper: The pdf version of this master thesis and the Selbständigkeitserklärung.

85

	Abstract
	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	Introduction
	Motivation
	Related work
	Value of the new solution and opportunities
	Structure of the thesis

	Background
	Vulnerabilities
	Affected products
	Security advisory
	Common Security Advisory Framework
	CSAF roles
	CSAF document
	CSAF distribution methods
	CSAF document hashing

	Persons responsible for IT security
	GraphQL
	Related work
	REST API Limitations
	CSAF Versioning
	Missing unique product identifier

	Product list
	OWASP API Security Top 10 - 2019
	OWASP API Security Top 10 - 2023

	Design
	Eleasticsearch
	Intermediate
	GraphQL
	Search and filter criteria
	Show all elements
	Authentication

	CSAF API
	Automation
	Security
	Set number of results - max_documents
	Show results metadata
	Error handling
	Pre-query the product IDs

	Migration respectively synchronization

	Implementation
	GraphQL
	Type definition
	CSAF API
	Product list
	Array Filtering
	Security

	Intermediate
	Eleasticsearch
	MySQL
	REST-API queries
	Migration respectively synchronization

	Results
	Discussion
	Extension of the CSAF standard
	TLP versioning
	Enumeration

	Violation of GraphQL principles
	CSAF document versioning
	Integration in other application
	What database should be chosen?

	Conclusion
	Bibliography
	Appendix
	CSAF list of dates
	CSAF API type defintions

	Appendix: Data medium content

