
Synchronous + Concurrent + Sequential = Earlier than + Not later than

Gabriel Juhás
Faculty of Electrical Engineering

and Information Technology
Slovak University of Technology Bratislava

gabriel.juhas@stuba.sk

Robert Lorenz, Sebastian Mauser
Department of Applied Computer Science
Catholic University of Eichstätt-Ingolstadt

robert.lorenz@ku-eichstaett.de
sebastian.mauser@ku-eichstaett.de

Abstract

In this paper, we show how to obtain causal semantics
distinguishing ”earlier than” and ”not later than” causal-
ity between events from algebraic semantics of Petri nets.

Janicki and Koutny introduced so called stratified order
structures (so-structures) to describe such causal seman-
tics. To obtain algebraic semantics, we redefine our own al-
gebraic approach generating rewrite terms via partial oper-
ations of synchronous composition, concurrent composition
and sequential composition. These terms are used to pro-
duce so-structures which define causal behavior consistent
with the (operational) step semantics. For concrete Petri net
classes with causal semantics derived from processes mini-
mal so-structures obtained from rewrite terms coincide with
minimal so-structures given by processes. This is demon-
strated exemplarily for elementary nets with inhibitor arcs.

1. Introduction

Since the basic developments of Petri nets more and
more different Petri net classes for various applications
have been proposed. Causal semantics of such special Petri
net classes are often constructed in a complicated ad-hoc
way, defining process nets which generate causal structures
(see e.g. [13, 6, 10, 11]).

Naturally there are also several approaches to unify the
different classes in order to be able to define non-sequential
semantics in a systematic way using algebraic descriptions
[18, 1, 3, 5, 16, 14, 15] (see [17] for an overview). Most of
these approaches are based on the paper [12], where non-
sequential runs of nets are described by equivalence classes
of rewrite process terms. These process terms are generated
from elementary terms (transitions and markings) by con-
current and sequential composition. Unfortunately, none of
these works provides a method how to obtain causal seman-
tics from the algebraic semantics.

This paper extends the unifying approach of algebraic
Petri nets as proposed in Part II of [7]. With the approach
from [7] non-sequential semantics can be derived on an ab-
stract level for Petri nets with restricted occurrence rule (en-
coded by partiality of concurrent composition). In addition
to other works, and in particular to [5], in [7] it is shown how
to obtain causal semantics based on ”earlier than” causal-
ity between events (formally given as labelled partial orders
(LPOs)) from process terms. It is shown in [7] for many
concrete net classes that the minimal LPOs obtained from
process terms coincide with minimal LPOs given by ac-
knowledged classical processes.

e

p3

p1

f

p4

p2

g

p6

p5

h

p7

e

p3

p1

f

p4

p2

p5

g

p6

h

p7

c(p7)

e f

g h

Figure 1. An elementary net with inhibitor
arcs (p3, f), (p6, h) and (p7, g), a process of the
net and the associated run.

As explained in [6], ”earlier than” causality expressed by
LPOs is not enough to describe causal semantics for some
Petri net classes, as for example the a-priori semantics of
elementary nets with inhibitor arcs.1 In Figure 1 this phe-
nomenon is depicted: In the a-priori semantics the testing
for absence of tokens (through inhibitor arcs) precedes the
execution of a transition. Thus f cannot occur later than
e, because after the occurrence of e the place p3 is marked

1Note that there are also other semantics for elementary nets with in-
hibitor arcs such as the a-posteriori semantics which are less problem-
prone [6].

and consequently the occurrence of f is prohibited by the
inhibitor arc (p3, f). Therefore e and f cannot occur con-
currently or sequentially in order e → f . But they still can
occur synchronously (because of the occurrence rule ”test-
ing before execution”) or sequentially in order f → e -
this is exactly the behavior described by ”f not later than
e” (see Section 2 for details on the occurrence rule). Af-
ter the respective firing of f and e we reach the marking
{p3, p4, p5}. Now with the same arguments as above the
transitions g and h can even only occur synchronously but
not sequentially in any order. The described causal behav-
ior (between events) of the net is illustrated on the right side
of Figure 1 (”run”). The drawn through arcs represent a
(common) ”earlier than”-relation, i.e. the events can only
occur in the expressed order but not synchronously or in-
versely, and dotted arcs depict the ”not later than” relation
explained above. The net in the middle of Figure 1 depicts
a process corresponding to the run on the right (details on
processes and runs are explained in the next section). Alto-
gether there exist net classes including the by practitioners
admired inhibitor nets where synchronous and concurrent
behaviour has to be distinguished. In [6] causal semantics
based on stratified order structures like the run in Figure 1
(so-structures, see Section 2) consisting of a combination
of an ”earlier than” and a ”not later than” relation between
events were proposed to cover such cases.

In order to describe such situations on the algebraic level,
in [8] we extended the algebraic Petri nets from [5] by a
synchronous composition operation which allows to distin-
guish between concurrent and synchronous occurrences of
events. Therewith a great variety of additional concrete net
classes can be covered compared to [7]. Unfortunately, pa-
per [8] does not provide a general method how to construct
so-structure based causal semantics from algebraic seman-
tics. Therefore in [8] a correspondence of the algebraic se-
mantics to non-sequential a-priori semantics of elementary
nets with inhibitor arcs was proven in a complicated ad hoc
way not comparing causal semantics.

As the main result of this paper we fill this gap. Namely,
we show how to obtain causal semantics based on so-
structures from process terms and derive exemplarily their
correspondence to causal semantics produced from pro-
cesses for elementary nets with inhibitor arcs equipped with
the a-priori semantics.

Thereto we generalize our own algebraic approach from
[8] generating process terms via partial operations of syn-
chronous composition, concurrent composition and sequen-
tial composition (Section 3). These terms are used to pro-
duce so called enabled so-structures defining causal se-
mantics of algebraic nets (Section 4). These causal se-
mantics are consistent with the step semantics of algebraic
nets in the sense that an so-structure is enabled iff every
of its step sequentializations is an enabled step sequence.

Given a Petri net of a concrete Petri net class, we define the
corresponding algebraic net to have the same step seman-
tics (Section 5). Then for concrete Petri net classes with
causal semantics derived from processes minimal enabled
so-structures obtained from process terms of a correspond-
ing algebraic net coincide with minimal so-structures given
by processes. Exemplarily we will show this result in a sys-
tematic way (which can obviously be adapted to further net
classes) for elementary nets with inhibitor arcs (Section 6)2,
thus generalizing the main result of [8].

For better readability we only sketched the proofs in the
main text of the paper but we included detailed proofs in the
Appendix.

2. Preliminaries

In this section we recall the basic definitions of strat-
ified order structures, elementary nets with inhibitor arcs
(equipped with the a-priori semantics) and partial algebras.
Given a set X we will denote the set of all subsets of X
by 2X , the set of all multisets over X by NX , the iden-
tity relation over X by idX , the reflexive, transitive clo-
sure of a binary relation R over X by R∗ and the compo-
sition of two binary relations R,R′ over X by R ◦ R′. A
directed graph is a pair (V,→), where V is a finite set of
nodes and →⊆ V × V is a binary relation over V called
the set of arcs. As usual, given a binary relation →, we
write a → b to denote (a, b) ∈→. Two nodes a, b ∈ V are
called independent w.r.t. the binary relation → if a 6→ b
and b 6→ a. We denote the set of all pairs of nodes inde-
pendent w.r.t. → by co→ ⊆ V × V . A partial order is a
directed graph po = (V,<), where < is an irreflexive and
transitive binary relation on V . If co < = idV then (V, <)
is called total. Given two partial orders po 1 = (V, <1) and
po 2 = (V,<2), we say that po 2 is a sequentialization (or
extension) of po 1 if <1⊆<2. A relational structure (rel-
structure) is a triple S = (X,≺, <), where X is a set (of
events), and ≺⊆ X ×X and <⊆ X ×X are binary rela-
tions on X . A rel-structure S ′ = (X,≺′, <′) is said to be
an extension of another rel-structure S = (X,≺, <), writ-
ten S ⊆ S ′, if ≺⊆≺′ and <⊆<′.

Definition 1 (Stratified order structure [6]). A rel-structure
S = (X,≺,<) is called stratified order structure (so-
structure) if the following conditions are satisfied for all
x, y, z ∈ X:
(C1) x 6< x
(C2) x ≺ y =⇒ x < y

2This net class has the advantage that it is already extensively analysed
in the concept of ad-hoc process definitions so that we are able to check
the consistency of the ad-hoc concept to our general algebraic concept.
Furthermore this comparison will not be too lengthy because the ad-hoc
definitions are not that complicated as for p/t-nets with inhibitor arcs.

(C3) x < y < z ∧ x 6= z =⇒ x < z
(C4) x < y ≺ z ∨ x ≺ y < z =⇒ x ≺ z

In figures ≺ is graphically expressed by drawn through
arcs and < by dotted arcs. According to (C2) a dotted arc is
omitted if there is already a drawn through arc. Moreover,
we omit arcs which can be deduced by (C3) and (C4). It
is shown in [6] that (X,≺) is a partial order. Therefore so-
structures are a generalization of partial orders which turned
out to be adequate to model the causal relations between
events of complex systems regarding sequential, concurrent
and synchronous behavior. In this context ≺ represents the
ordinary ”earlier than” relation (as in partial order based
systems) while < models a ”not later than” relation (ex-
amples are depicted in Figure 1 and 2). The ♦-closure of
a rel-structure S = (X,≺, <) is given by S♦ = (X,≺S♦

,<S♦) = (X, (≺ ∪ <)∗◦ ≺ ◦(≺ ∪ <)∗, (≺ ∪ <)∗ \ idX).
A rel-structure S is called ♦-acyclic if ≺S♦ is irreflexive.
The ♦-closure S♦ of a rel-structure S is an so-structure if
and only if S is ♦-acyclic [6] (observe that the notion of
the ♦-closure in the context of so-structures corresponds to
the concept of the transitive closure in the less general situa-
tion of partial orders). Finally, we introduce two subclasses
of so-structures which turn out to be associated to (specific
subclasses of) process terms of algebraic Petri nets. Let
S = (X,≺, <) be an so-structure, then S is called syn-
chronous closed if co≺ = co < ∪ (< \ ≺) (e.g. the so-
structure in Figure 1 is not synchronous closed) and S is
called total linear if co≺ = (< \ ≺) ∪ idX (for exam-
ples see Figure 2). The set of all total linear extensions (or
linearizations) of S is denoted by stratsos(S). Now we
will summarize some results about these two classes of so-
structures. The following result proven in [10]3 shows that
every so-structure can be reconstructed from its lineariza-
tions (see Figure 2 for an example):

Proposition 2. Let S be an so-structure. Then

S = (X,
⋂

(X,≺,<)∈stratsos(S)

≺,
⋂

(X,≺,<)∈stratsos(S)

<)

Each total linear so-structure is synchronous closed be-
cause according to (C2) co≺ = (< \ ≺) ∪ idX implies
co < = idX . Using the results from [6] about augment-
ing so-structures one can conclude that every so-structure is
extendable to a total linear so-structure. The crucial prop-
erty of synchronous closed so-structures is the fact that ev-
ery synchronous closed so-structure can be embedded into
a partial order in the following way: A straightforward
proof shows that an so-structure S is synchronous closed
if and only if (< \ ≺) ∪ idX is an equivalence relation.
For such so-structures we denote ∼S= (< \ ≺) ∪ idX ,
[x]S = {y ∈ X | x ∼S y} and X|S = {[x]S | x ∈ X}.

3formulated in other notations using the notion strat(S)

e f

g h

e f

g h

e f

g
h

e f

g h

((e⊕f)||{p5});
((g⊕h)||{p3})

((f||{p1,p5});(e||{p4,p5}));
((g⊕h)||{p3})

(f||{p1,p5});
(e⊕g⊕h)

((f||{p1,p5});((g⊕h)||{p1});
(e||{p6,p7}))

Figure 2. Top: All linearizations of the so-
structure from Figure 1. Bottom: Process
terms of the net from Figure 1, to which the
respective so-structures above are associ-
ated.

The elements of X|S are called synchronous classes of S .
For [x]S , [y]S ∈ X|S define [x]S <S [y]S ⇐⇒ x ≺ y (by
(C4) this is well-defined), then (X|S , <S) defines a par-
tial order. The partial order poS = (X|S , <S) is called
associated to S . The partial orders associated to the to-
tal linear so-structures in Figure 2 are the total orders ex-
pressed by the following sequences (from left to right):
{e, f} → {g, h}, {e} → {f} → {g, h}, {f} → {e, g, h}
and {f} → {g, h} → {e} (this also illustrates the second
statement in Remark 3). We have the following results for
associated partial orders:

Remark 3. Let S,S ′ be synchronous closed so-structures
satisfying S ⊆ S ′. Then obviously k′ ∈ X|S′ has the form
k′ = k1∪. . .∪kn with k1, . . . , kn ∈ X|S because∼S⊆∼S′ .

Moreover a synchronous closed so-structure S is total
linear if and only if its associated partial order poS is total.

We will often use labelled so-structures in the following.
These are so-structures S = (X,≺, <) together with a set
of labels M and a labelling function l : X → M .

Next we present the example net class considered in this
paper. An elementary net is a net N = (P, T, F), where P
is a finite set of places, T is a finite set of transitions and
F ⊆ (P ×T)∪ (T ×P) is the flow relation. For x ∈ P ∪T
we abbreviate •x = {y ∈ P ∪ T | (y, x) ∈ F} (preset
of x) and x• = {y ∈ P ∪ T | (x, y) ∈ F} (postset of
x). This notation can be extended to X ⊆ P or X ⊆ T
by •X =

⋃
x∈X

•x and X• =
⋃

x∈X x• . Each m ⊆ P
is called a marking. A transition t ∈ T is enabled to occur
in a marking m of N iff •t ⊆ m ∧ (m \ •t) ∩ t• = ∅. In
this case, its occurrence leads to the marking m′ = (m \
•t) ∪ t• . Two transitions t1, t2 ∈ T, t1 6= t2 are in conflict
iff (•t1 ∪ t•1) ∩ (•t2 ∪ t•2) 6= ∅.

An elementary net with inhibitor arcs is a quadruple
ENI = (P, T, F, C−), where (P, T, F) is an elementary
net and C− ⊆ P × T is the negative context relation satis-
fying (F ∪ F−1) ∩ C− = ∅. In the example net of Figure

1 the negative context relation is depicted through so called
inhibitor arcs with circles as arrowheads. For a transition t,
−t = {p ∈ P | (p, t) ∈ C−} is the negative context of t.
A transition t is enabled to occur in a marking m iff it is
enabled to occur in the underlying elementary net (P, T, F)
and −t ∩m = ∅. The occurrence of an enabled transition t
leads to the marking m′ = (m \ •t) ∪ t• . Two transitions
t1, t2 ∈ T, t1 6= t2, are in synchronous conflict (in the a-
priori semantics) if they are in conflict in the underlying ele-
mentary net or if (•ti)∩(−tj) 6= ∅ (for i, j ∈ 1, 2, i 6= j). A
set of transitions s ⊆ T , called synchronous step, is enabled
to occur in a marking m of N iff every t ∈ s is enabled to
occur in m and no two transitions t1, t2 ∈ s, t1 6= t2, are
in conflict. In this case, its occurrence leads to the marking
m′ = (m \ •s) ∪ s• . We write m

s−→ m′ to denote that
s is enabled to occur in m and that its occurrence leads to
m′ (see the Introduction for an example on the occurrence
rule).

Now we introduce the ”classical” process semantics for
ENI as presented in [6]. Remember that since the absence
of a token in a place cannot be directly represented in an
occurrence net, every inhibitor arc is replaced by a read arc
to a complement place. It is shown in [13] that ENI can
be transformed via complementation into a contact-free el-
ementary net with positive context (i.e. with read arcs de-
picted through arcs with dots as arrowheads) exhibiting the
same behavior. The set of complement places 4 will be de-
noted by P ′ and the complementation-bijection from P to
P ′ will be denoted by c. The processes of ENI will be
defined endowing processes of ”ordinary” elementary nets
(defined as usual by occurrence nets using complementa-
tion, see e.g. [8]) with read arcs (also called activator arcs
in [6, 10, 11]).

Definition 4 (Activator process). A labelled activator occur-
rence net (ao-net) is a five-tuple AON = (B,E,R, Act, l)
satisfying: (B, E,R) is an occurrence net, (B, E, R,Act)
is an elementary net with positive context, and the relational
structure

S(AON) = (E,≺,<)
= (E, (R ◦R)|E×E ∪ (R ◦Act), (Act−1 ◦R) \ idE)

is ♦-acyclic. An ao-net AON is an activator process of
ENI = (P, T, F, C−) w.r.t. m iff:

• ON = (B, E, R, l) is a process of the elementary net
N = (P, T, F) w.r.t. m, and

• ∀b ∈ B, ∀e ∈ E : (b, e) ∈ Act ⇐⇒
(c−1(l(b)), l(e)) ∈ C−.

4The concept of complement places can often be simplified (omitting
complement places or using existing places as complement places); such
principles are applied in graphical representations.

In this case the labelled so-structure (S(AON)♦, l) is
called a run of ENI w.r.t. m. Denote by Run(ENI,m)
the set of all runs of ENI w.r.t. m.

e f e f e f

(a) (b) (c)

Figure 3. The nets in (a) and (b) generate the
order e ≺ f , the net in (c) the order e < f .

An example of an activator process and an associated run
is depicted in Figure 1. The construction rule of S(AON)
is illustrated in Figure 3. For a more detailed definition of
activator processes and a discussion of related results see
the series of papers [6, 10, 11].

The central idea to model restricted occurrence rules as
in the case of inhibitor nets on the algebraic level is the
utilisation of partial algebras in the context of partial com-
position rules for process terms. A partial algebra is a
set called carrier together with a set of (partial) operations
(with possibly different arity) on the carrier. A partial alge-
bra with one binary operation is a partial groupoid, i.e. an
ordered tuple I = (I, domu, u), where I is the carrier of
I, domu ⊆ I×I is the domain of u, and u : domu → I
is the partial operation of I. I is called a partial closed
commutative monoid if the following conditions are satis-
fied: If a u b is defined then also b u a is defined with
aub = bua (closed commutativity), if (aub)uc is defined
then also au(buc) is defined with (aub)uc = au(buc)
(closed associativity) and there is a (unique) neutral ele-
ment i ∈ I such that a u i is defined for all a ∈ I with
aui = a (existence of a (total) neutral element). We shortly
recall the concept of closed congruences on partial algebras.
Given a partial algebra with carrier X , an equivalence rela-
tion ∼ on X is called congruence if for each n-ary opera-
tion op on X with domain domop: a1 ∼ b1, . . . , an ∼ bn,
(a1, . . . , an) ∈ domop and (b1, . . . , bn) ∈ domop implies
op(a1, . . . , an) ∼ op(b1, . . . , bn). A congruence∼ is called
closed if for each n-ary operation op on X with domain
domop: a1 ∼ b1, . . . , an ∼ bn and (a1, . . . , an) ∈ domop

implies (b1, . . . , bn) ∈ domop. Thus, a congruence is an
equivalence which preserves all operations of a partial alge-
bra. A closed congruence moreover preserves the domains
of operations. Therefore the operations of a partial algebra
X with carrier X can be carried over to the set of equiv-
alence classes of a closed congruence ∼. For this, denote
[x]∼ = {y ∈ X | x ∼ y} and X/∼ = {[x]∼ | x ∈ X},
domop/∼ = {([a1]∼, . . . , [an]∼) | (a1, . . . , an) ∈ domop}
and op/∼([a1]∼, . . . , [an]∼) = [op(a1, . . . , an)]∼ for each
n-ary operation op : domop → X of X (this is well de-
fined for closed congruences). This defines a partial alge-

bra X/∼ with carrier X/∼ and operations op/∼. X/∼ is
called factor algebra of X w.r.t. ∼. A possibility to gen-
erate (closed) congruences on partial algebras is through so
called (closed) homomorphisms [2]. The most important re-
sult of [2] for this paper is that there always exists a unique
greatest closed congruence on a given partial algebra.

3. Algebraic (M, I)-nets

A general algebraic Petri net is a quadruple A =
(M, T, pre : T → M, post : T → M) (similar to [12]),
which is a graph with vertices representing markings and
edges labelled by transitions. Formally, the set of markings
is given by a (total) commutative monoid M = (M, +)
with neutral element 0. T denotes the set of transitions.
The two mappings pre : T → M, post : T → M assign
pre-sets and post-sets to each transition. In order to ob-
tain process term semantics, firstly transitions can be syn-
chronously composed to synchronous step terms, and sec-
ondly markings and synchronous step terms can be sequen-
tially and concurrently composed to process terms. As
usual, each process term α has assigned an initial mark-
ing pre(α) ∈ M and a final marking post(α) ∈ M , written
α : pre(α) → post(α). Two process terms can be se-
quentially composed, if the final marking of the first process
term equals the initial marking of the second process term.
Moreover, each marking and each transition has assigned an
information element used for determining the synchronous
composability of transitions and the concurrent composabil-
ity of process terms. Thus, a set of information elements
I is equipped with partial operations ‖̇ : dom‖̇ → I and
⊕̇ : dom⊕̇ → I , dom‖̇, dom⊕̇ ⊆ I × I , for the concur-
rent and synchronous composition of information elements,
resulting in a partial algebra I = (I, dom‖̇, ‖̇, dom⊕̇, ⊕̇).

The groupoids (I, dom‖̇, ‖̇) and (I, dom⊕̇, ⊕̇) are assumed
to be partial closed commutative monoids with neutral ele-
ments i0 and j0. Such I is called sc-partial algebra.

Definition 5 (Algebraic (M, I)-net). Let I =
(I, dom‖̇, ‖̇, dom⊕̇, ⊕̇) be an sc-partial algebra,
A = (M, T, pre : T → M, post : T → M) be a
general algebraic Petri net, and inf : M ∪ T → I be a
mapping. Then (A, inf) is called algebraic (M, I)-net.

For the example (Figure 1) of elementary nets with in-
hibitor arcs the crucial mappings pre, post and inf for a
corresponding algebraic (M, I)-net (see Section 5 for the
technical definition of corresponding) will be defined as fol-
lows: pre(t) = •t, post(t) = t•, inf (t) = (•t, t•, −t)
for t ∈ T and inf (m) = (m, m, ∅) for m ⊆ P (see
Section 6 for details), i.e. M = (2P ,∪), T = T
and I = 2P × 2P × 2P . The first two components
of i ∈ I represent the write part - pre and post - and

the last component stores the read information - the nega-
tive context which is not in the write part. Consequently
for the example net from Figure 1 we have inf(e) =
({p1}, {p3}, ∅), inf(f) = ({p2}, {p4}, {p3}), inf(g) =
({p5}, {p6}, {p7}), inf(h) = ({p4}, {p7}, {p6}). Note
that in this example it is now important which informa-
tion triples can be composed synchronously respectively
concurrently and which information triples result from
such a composition. Thereto completely coincident with
the occurrence rule of elementary nets with inhibitor arcs
equipped with the a-priori semantics, two information ele-
ments i1, i2 ∈ I can be composed

• concurrently iff the write part of i1 is disjoint from the
write and the read part of i2 and vice versa,

• synchronously iff the write parts of i1 and i2 are dis-
joint and the pre-component (first component) of i1 is
disjoint from the read part of i2 and vice versa.

Two transitions can be synchronously composed, if their as-
sociated information elements can be synchronously com-
posed. Their synchronous composition yields a syn-
chronous step term, which has associated as information
element the synchronous composition of their information
elements. Accordingly in our example the only pair of tran-
sitions that cannot be composed synchronously is f with h.
Note that e and f as well as g and h can be composed syn-
chronously with inf(e⊕ f) = ({p1, p2}, {p3, p4}, ∅) and
inf(g⊕h) = ({p4, p5}, {p6, p7}, ∅). The illustrated prin-
ciple of synchronous composition can be iterated. In this
way also e⊕ f ⊕ g and e⊕ g⊕h are defined synchronous
step terms. Thus, in general the synchronous step terms of
an algebraic (M, I)-net are defined inductively as follows.

Definition 6 (Synchronous step terms). Let (A, inf) be
an algebraic (M, I)-net. Its elementary synchronous step
terms are its transitions t ∈ T . If s and s′ are synchronous
step terms which satisfy (inf (s), inf (s′)) ∈ dom⊕̇,
then their synchronous composition yields the synchronous
step term s⊕ s′ with initial marking pre(s⊕ s′) =
pre(s) + pre(s′), final marking post(s⊕ s′) = post(s) +
post(s′) and assigned information element inf(s⊕ s′) =
inf(s) ⊕̇ inf(s′). The set of all synchronous step terms of
(A, inf) is denoted by Step(A,inf).

Each s ∈ Step(A,inf) has the form s = v1⊕ . . .⊕ vn

for transitions v1, . . . , vn ∈ T . We denote t ∈ s if ∃i ∈
{1, . . . , n}: t = vi, and we define |s| ∈ NT by |s|(t) =
|{i ∈ {1, . . . , n} | t = vi}|. Next we define the process
term semantics of algebraic (M, I)-nets through sequential
and concurrent composition of markings and synchronous
step terms. Each process term will have assigned a set of
information elements (information set). For markings and
synchronous step terms, the associated information set will

contain only the information element assigned by the map-
ping inf . The sequential composition of two process terms
has assigned the union of their respective information sets.
The concurrent composition of two process terms has as-
signed the set of concurrent compositions of the informa-
tion elements in their respective information sets. Note that
the sequential composition ; as well as the concurrent com-
position ‖ are partial: For sequential composability post of
the first process term has to coincide with pre of the second
process term while for concurrent composability the infor-
mation sets of the two process terms have to be indepen-
dent 5. Consequently some possible process terms in the
example are f ;h, e; {p3}, e ‖ g, (e⊕ f) ‖ g, (g⊕h) ‖{p3}
or ((e⊕ f) ‖{p5}); ((g⊕h) ‖{p3}) (with the last example
term the basic principle of constructing process terms is il-
lustrated in Figure 4). For the technical definitions the sc-
partial algebra I = (I, dom‖̇, ‖̇, dom⊕̇, ⊕̇) is lifted to the

partial algebra X = (2I , dom{‖̇}, {‖̇}, 2I × 2I ,∪) defined
by dom{‖̇} = {(X, Y) ∈ 2I × 2I | X × Y ⊆ dom‖̇} and

X{‖̇}Y = {x ‖̇ y | x ∈ X ∧y ∈ Y }. It is easy to verify that
X is also a partial closed commutative monoid. Two infor-
mation sets A and B can carry the same ”information” in
the sense that each information set C is either independent
from both A and B or not independent from both A and B.
Such sets need not be distinguished and can be technically
identified through a closed congruence on 2I . Therefore we
distinguish information sets only up to the greatest closed
congruence ∼=∈ 2I × 2I on X (for a concrete construction
of ∼= see Section 6). Based on these preparations process
terms of an algebraic (M, I)-net (A, inf) which represent
all abstract computations of (A, inf) are defined inductively
as follows:

Definition 7 (Process terms). Let (A, inf) be an algebraic
(M, I)-net. Its elementary process terms are of the form
ida : a −→ a with Inf (ida) = [{inf (a)}]∼= for a ∈ M
(mostly we denote ida simply by a) and s : pre(s) −→
post(s) with Inf (s) = [{inf (s)}]∼= for s ∈ Step(A,inf).

If α : a1 −→ a2 and β : b1 −→ b2 are process terms
satisfying (Inf (α), Inf (β)) ∈ dom{‖̇}/∼= , their concurrent
composition yields the process term

α ‖β : a1 + b1 −→ a2 + b2

with Inf (α ‖β) = Inf (α) {‖̇}/∼= Inf (β).
If α : a1 −→ a2 and β : b1 −→ b2 are process terms

satisfying a2 = b1, their sequential composition yields the
process term

α; β : a1 −→ b2

with Inf (α;β) = Inf (α) ∪/∼= Inf (β).
5Two information sets X and Y are called independent if each infor-

mation element in X is independent from (i.e. concurrently composable
with) each information element in Y .

The partial algebra of all process terms with the partial
operations of synchronous, concurrent and sequential com-
position will be denoted by P(A, inf).

{p1}

{p3}

e
({p1},{p3},∅)

⊕

{p2}

{p4}

f
({p2},{p4},{p3})

{p1,p2}

{p3,p4}

e⊕f
({p1,p2},{p3,p4},∅)

{p5}

{p5}

{p5}
({p5},{p5},∅)|| =

{p1,p2,p5}

{p3,p4,p5}

(e⊕f)||{p5}
{({p1,p2,p5},{p3,p4,p5},∅)}

{p5}

{p6}

g
({p5},{p6},{p7})

⊕

{p4}

{p7}

h
({p4},{p7},{p6})

{p4,p5}

{p6,p7}

g⊕h
({p4,p5},{p6,p7},∅)

{p3}

{p3}

{p3}
({p3},{p3},∅)|| =

{p3,p4,p5}

(g⊕h)||{p3}
{({p3,p4,p5},{p3,p6,p7},∅)}

((e⊕f)||{p5});((g⊕h)||{p3})
{({p1,p2,p5},{p3,p4,p5},∅),
({p3,p4,p5},{p3,p6,p7},∅)}

Figure 4. Deriving exemplary a process term
of the net from Figure 1. In the middle of
an arc there are drawn the respective sub-
process terms with associated information
(information elements for elementary pro-
cess terms and information sets for non-
elementary process terms) in the line below.
At the beginning of an arrow we illustrated
pre and at the arrowhead post is depicted.

For process terms α we denote by Bα the set of syn-
chronous step terms α is composed from (using some mark-
ings and the operations ‖ and ;). The synchronous step
terms in Bα are called basic step terms of α. The ba-
sic step terms of the process term from Figure 4 are e⊕ f
and g⊕h. For a process term α and t ∈ T we denote
t ∈ α ⇐⇒ (∃s ∈ Bα : t ∈ s).

Compared to [8] and [7], the definition of algebraic
(M, I)-nets is as general as possible. In order to derive
conclusions about process term semantics on the algebraic
level similar as in [7] it is necessary to require certain
properties for the mapping inf of an algebraic (M, I)-net
(A, inf), relating the sets (I, dom‖̇, ‖̇), (I, dom⊕̇, ⊕̇) and
M = (M, +). All properties have a simple intuitive inter-
pretation and for all common net classes (with so-structure
based semantics) it is easy to show that they are fulfilled.
In contrast to [8] where no results are obtained on the ab-
stract level we have to introduce more specific properties for

inf . We did not include them into the algebraic (M, I)-net
definition, instead, for each stated result we will explicitly
mention which properties are required. These properties are
for x, y, m,m1,m2 ∈ M and s, s1, s2 ∈ Step(A,inf):

(Con1) (inf (x), inf (y)) ∈ dom‖̇ =⇒ inf (x + y) =

inf (x) ‖̇ inf (y) (consistency of markings)

(Con2) inf (0) = i0 (consistency of neutral elements)

(Con3) {inf (s)} ∼= {inf (s), inf (pre(s)), inf (post(s))}
(consistency of steps and initial/final marking)

(Con4) (inf (s1), inf (s2)) ∈ dom⊕̇ =⇒ {inf (s1⊕ s2)}∼= {inf (s1⊕ s2), inf (s1), inf (s2)} (consistency of
steps)

(Con5) (inf (s1), inf (s2)) ∈ dom⊕̇, (inf (s1) ⊕̇ inf (s2),
m), (inf (s1), inf (m1)), (inf (s2), inf (m2)) ∈ dom‖̇,
pre(s1) + pre(s2) + m = pre(s1) + m1, post(s1) +
m1 = pre(s2)+m2 =⇒ (inf (pre(s2)+m), inf (s1)),
(inf (post(s1) + m), inf (s2)) ∈ dom‖̇ (synchronous-
sequential consistency)

(Con6) (inf (s1), inf (s2)) ∈ dom‖̇ =⇒ (inf (s1), inf (s2))

∈ dom⊕̇ and {inf (s1) ‖̇ inf (s2)} ∼= {inf (s1) ‖̇
inf (s2), inf (s1) ⊕̇ inf (s2)} (synchronous consis-
tency)

(Det) (inf (s), inf (x)), (inf (s), inf (y)) ∈ dom‖̇, pre(s)+
x = pre(s) + y =⇒ post(s) + x = post(s) + y (de-
terminism)

The first two consistency properties (Con1) and (Con2)
are self explanatory. Property (Con3) states that the in-
formation (about concurrent composability) attached to a
synchronous step s includes information about pre(s) and
post(s) and (Con4) tells that it also includes information
about sub-steps of s. The synchronous-sequential consis-
tency (Con5) can be interpreted as follows: if two syn-
chronous step terms s1, s2 can occur synchronously and se-
quentially in the order s1 −→ s2 in the same initial mark-
ing, then the occurrence of s2 does not depend on the final
marking of the occurrence of s1 and the occurrence of s1

does not depend on the initial marking of the occurrence
of s2. The next condition (Con6) determines that two syn-
chronous step terms, which can occur concurrently, can also
occur synchronously and that the information associated to
their concurrent composition includes the information asso-
ciated to their synchronous composition. For net classes we
are interested in, the occurrence of a step s in a marking m
is deterministic in the sense that the follower marking m′ is
unique (Det).

We conclude this subsection by enumerating some tech-
nical notions and immediate observations concerning the

greatest closed congruence ∼= on X . For A ∈ 2I we ab-
breviate [A] = [A]∼=. It is convenient to carry the subset
relation⊆ on 2I over to 2I/∼=, thus defining when a congru-
ence class [A] represents less information than a congruence
class [B] in the sense that if [B] can be composed concur-
rently (using {‖̇}/∼=) with a congruence class [C] then also
[A] (representing less information) can be composed con-
currently with [C]. Therefore we define a ⊆ /∼= b if there
exist A, B ∈ 2I with A ⊆ B, a = [A] and b = [B]
(a, b ∈ 2I/∼=). Simple technical computations yield for
a, b, a′, b′ ∈ 2I/∼=:
(i) ⊆/∼= is a weak partial order, i.e. ⊆/∼= is reflexive, tran-
sitive and antisymmetric.
(ii) a ⊆ /∼= a′, b ⊆ /∼= b′, a′ {‖̇}/∼= b′ defined =⇒ a {‖̇}/∼= b
defined.
(iii) a ⊆ /∼= a′, b ⊆ /∼= b′ =⇒ (a ∪/∼= b) ⊆ /∼= (a′ ∪/∼= b′)
and (a {‖̇}/∼= b) ⊆/∼= (a′ {‖̇}/∼= b′) (if defined).
(iv) a ⊆/∼= (a ∪/∼= b) and a ⊆/∼= (a {‖̇}/∼= b) (if defined).
(v) a ⊆/∼= c, b ⊆/∼= c =⇒ (a ∪/∼= b) ⊆/∼= c.

These results directly carry over to the composability of
process terms and the information attached to composed
process terms. In particular, we deduce that sub-terms of
a process term have associated less information than the
process term, where sub-terms are as usual defined induc-
tively following the inductive definition of process terms.
The properties of ⊆ /∼= summarized above will be funda-
mentally used in the proofs of this paper without explicitly
mentioning them anymore.

4. Causal semantics of algebraic (M, I)-nets

We define explicit causal semantics of algebraic (M, I)-
nets by associating so-structures to process terms.

Definition 8 (So-structures of process terms). We define in-
ductively labelled so-structures goα = (V,≺α, <α, lα) of
(or associated to) a process terms α: gom = (∅, ∅, ∅, ∅) for
m ∈ M , got = ({v}, ∅, ∅, l) with l(v) = t for t ∈ T , and
gos1⊕ s2 = (V1∪V2, ∅, <1 ∪ <2 ∪(V1×V2)∪(V2×V1), l1∪
l2), for synchronous step terms s1, s2 ∈ Step(A,inf) with
associated so-structures go1 = (V1, ∅, <1, l1) and go2 =
(V2, ∅, <2, l2), where the sets of nodes V1 and V2 are as-
sumed to be disjoint (what can be achieved by appropriate
renaming of nodes). Finally, given process terms α1 and α2

with associated so-structures go1 = (V1,≺1,<1, l1) and
go2 = (V2,≺2, <2, l2), define

• goα1 ‖α2 = (V1 ∪ V2,≺1 ∪ ≺2,<1 ∪ <2, l1 ∪ l2),

• goα1;α2 = (V1 ∪ V2,≺1 ∪ ≺2 ∪(V1 × V2), <1 ∪ <2

∪(V1 × V2), l1 ∪ l2),

where the sets of nodes V1 and V2 are again assumed to be
disjoint.

Since all labelled so-structures associated to a process
term α are isomorphic (and arbitrary labelled so-structures
isomorphic to goα are also associated to α) we mostly dis-
tinguish labelled so-structures only up to isomorphism. It
is easy to verify (by an inductive proof) that a labelled so-
structure goα of a process term α is synchronous closed.

In Figure 2 the principle of so-structures associated to
process terms is demonstrated. Note that there cannot exist
a process term to which the run from Figure 1 is associated
because this so-structure is not synchronous closed. That
is why we considered its linearizations (which are always
synchronous closed) here. The fact that in this example it is
actually possible to find such process terms for all of these
linearizations leads to the next essential idea.

We want to deduce so-structure based semantics of alge-
braic (M, I)-nets from their process term semantics. Easy
examples show that single so-structures associated to a pro-
cess term in general cannot describe each run of a Petri net
(e.g. as explained the run from Figure 1 is not associated
to a process term; other examples which are also valid for
the partial order case include so called N-forms [7]). Con-
sequently the set of so-structures of process terms is not
expressive enough in order to directly describe the com-
plete causal semantics of algebraic (M, I)-nets. But we
can derive the complete causal behaviour from the set of so-
structures of process terms in a similar way as in [7] for the
partial order based semantics case. This complete causal
behaviour will be represented by the set of so called en-
abled labelled so-structures. For their definition we denote
process terms α of the form α = (s1 ‖m1); . . . ; (sn ‖mn)
(s1, . . . , sn ∈ Step(A,inf), m1, . . . ,mn ∈ M) as syn-
chronous step sequence terms, and the set of all syn-
chronous step sequence terms with initial marking m by
Stepseq(A,inf ,m). It is easy to observe that so-structures
associated to synchronous step sequence terms are total lin-
ear.

Definition 9 (Enabled labelled so-structure). A labelled so-
structure go is enabled to occur in a marking m w.r.t. an
algebraic (M, I)-net (A, inf), if every go′ ∈ stratsos(go)
is associated to some β ∈ Stepseq(A,inf ,m). Denote by
Enabled(A, inf , m) the set of labelled so-structures en-
abled to occur in m w.r.t. (A, inf).

In this definition enabled labelled so-structures are in-
troduced using linearizations. Figure 2 gives an example
how to check if an so-structure is enabled. It shows that
the run from Figure 1 is enabled w.r.t. the marked net in
the same figure. We will show in Theorem 13, that so-
structures of process terms are enabled in the initial mark-
ing of the process term. Obviously, every extension of
an so-structure enabled in m is also enabled in m. A la-
belled so-structure go enabled in m is said to be minimal,
if there exists no labelled so-structure go′ 6= go enabled

in m, where go is an extension of go′. We denote by
MinEnabled(A, inf ,m) the set of all such minimal en-
abled labelled so-structures. For example with this defini-
tion one can check (intuitively and technically) that the run
from Figure 1 is in MinEnabled(A, inf ,m). In the next
definition process terms are identified through an equiva-
lence relation. The basic idea is to identify two enabled
so-structures if one is an extension of the other. Carrying
over this principle to process terms we will show in Theo-
rem 17 that two process terms are equivalent if their asso-
ciated so-structures can be identified in the above described
sense. In this context the process terms in Figure 2 should
all be equivalent. For algebraic (M, I)-nets representing
concrete Petri nets equivalent process terms will represent
the same commutative process of the Petri net (for details
and examples to commutative processes see [7]). In the ex-
ample all process terms in Figure 2 represent the (commu-
tative) process in Figure 1.

Definition 10 (The congruence ∼). The relation ∼ on the
set of all process terms of an algebraic (M, I)-net is the
least congruence of the partial algebra of all process terms
with the partial operations ⊕, ‖ and ;6, which includes the
relation given by the following axioms for process terms
α, β, α1, α2, α3, α4 and markings m, n:
(1) α ‖β ∼ β ‖α
(2) (α ‖β) ‖ γ ∼ α ‖(β ‖ γ)
(3) (α; β); γ ∼ α; (β; γ)
(4) α = ((α1 ‖α2); (α3 ‖α4)) ∼ β = ((α1;α3) ‖(α2;α4))
(5) α⊕β ∼ β⊕α
(6) (α⊕β)⊕ γ ∼ α⊕(β⊕ γ)
(7) (α⊕β) ∼ (α ‖ pre(β)); (post(α) ‖β)
(8) (α; post(α)) ∼ α ∼ (pre(α); α)
(9) id(m+n) ∼ idm ‖ idn

(10) pre(α)+m = pre(α)+n, post(α)+m = post(α)+n
=⇒ (α ‖ idm) ∼ (α ‖ idn)
(11) (α ‖ id0) ∼ α
if the terms on both sides of ∼ are defined process terms.

E.g. for the first two process terms in Figure 2 we have
the following transformation:

((e⊕ f) ‖{p5}); ((g⊕h) ‖{p3}) (7)∼
(((f ‖{p1}); (e ‖{p4})) ‖{p5}); ((g⊕h) ‖{p3}) (8)∼
(((f ‖{p1}); (e ‖{p4})) ‖({p5}; {p5})); ((g⊕h)‖{p3}) (4)∼
((f ‖{p1} ‖{p5}); (e ‖{p4} ‖{p5})); ((g⊕h) ‖{p3}) (9)∼
((f ‖{p1, p5}); (e ‖{p4, p5})); ((g⊕h) ‖{p3}) (note that
all occurring process terms are defined w.r.t. the rules from
Section 3).

Given two ∼-equivalent process terms α and β, there
holds pre(α) = pre(β) and post(α) = post(β). The
so-structures associated to process terms are changed only

6According to [2] this least congruence exists uniquely.

through the axioms (4) and (7). Regarding (4) we get that
goα is an extension of goβ with additional ≺-ordering be-
tween events of α1 and α4 as well as between events of
α2 and α3. Regarding (7) the associated so-structures are
not comparable in a similar way. For further observations
concerning the relationship between the above axioms, the
properties (Con1)-(Con6) and (Det), and the information
associated to process terms see the beginning of the Ap-
pendix.

In order to simplify the identification of transitions of
a process term and nodes (events) of an associated so-
structure it would be helpful to assume that the labelling
function of an so-structure goα of α is the id-function. In
such a case a transition would occur only once in a process
term and consequently a basic step term would also occur
only once in a process term. Moreover, the basic step terms
of process terms could be identified with the synchronous
classes of the synchronous closed so-structure goα since
{|s| | s ∈ Bα} = V |goα (see Section 2 for the definition
of V |goα

). The synchronous class corresponding to s ∈ Bα

is denoted by ks ∈ V |goα
. To achieve this simplification

for a given process term, we will identify copies of transi-
tions of the process term with events of the associated so-
structure: For a set V and a surjective labelling function
l : V → T we denote by (A(V,l), inf (V,l)) the algebraic
(M, I)-net given by A(V,l) = (M, V, pre(V,l), post(V,l))
and inf (V,l) : M ∪ V → I , where pre(V,l)(v) = pre(l(v)),
post(V,l)(v) = post(l(v)), inf (V,l)|M = inf |M and
inf (V,l)(v) = inf (l(v)) for every v ∈ V . (A(V,l), inf (V,l))
is called (V, l)-copy net of (A, inf).

The following definition is only a technicality used in
the proof of Theorem 13 (and the precursory Lemma 11). It
defines the substitution of basic step terms in a given pro-
cess term α. For an arbitrary set X , a set C ⊆ Bα and a
mapping s : C → X we define inductively the substituted
term αs of α w.r.t. s: If α = m ∈ M , then αs = m. If
α ∈ Step(A,inf), then αs = α if α 6∈ C and αs = s(α)
if α ∈ C. Finally, for process terms α, β, γ: If α = β; γ,
then αs = βs; γs and if α = β ‖ γ, then αs = βs ‖ γs. Later
we will be interested in the case that basic step terms are
substituted by their post-sets.

Lemma 11. Let α be a process term of an algebraic
(M, I)-net (A, inf) which fulfills (Con1)-(Con3), such that
α has no sub-term of the form m; α′ with m ∈ M . Let fur-
ther goα = (V,≺, <, id) be a labelled so-structure of α
with associated partial order pogoα = (Kgoα , <goα) and
C ⊆ Bα be a set of minimal basic step terms of α (i.e.
ks is minimal w.r.t. <goα for every s ∈ C)7. Finally let
su : C → M be given by su(β) = post(β) for β ∈ C.

Then there exists a marking mC , such that αC =

7Corresponding synchronous classes ks of basic step terms s are de-
fined because the labelling function of goα is id.

((‖s∈C s) ‖mC); αsu is a defined process term of (A, inf)8

satisfying: (I) αC ∼ α and (II) Inf (αC) ⊆/∼= Inf (α).

Sketch of the proof. Straightforward following the induc-
tive definition of process terms (see the Appendix for a de-
tailed proof).

Corollary 12. Assume the same preconditions as in Lemma
11 and additionally that (A, inf) fulfills (Con6).

Then there exists a marking mSy , such that αSy =
((⊕s∈C s) ‖mSy); αsu is a defined process term satisfying:
(I) αSy ∼ α and (II) Inf (αSy) ⊆/∼= Inf (α).

Now we are prepared to proof the first important theorem
which shows that so-structures of process terms are enabled
in the initial marking of the process term.

Theorem 13. Let α be a process term of an alge-
braic (M, I)-net (A, inf) which fulfills (Con1)-(Con3) and
(Con6). Then goα ∈ Enabled(A, inf ,m) with m =
pre(α). In particular, every go′ ∈ stratsos(goα) is as-
sociated to some β ∈ Stepseq(A,inf ,m) satisfying α ∼ β.

Sketch of the proof. It is enough to construct a process term
β ∈ Stepseq(A,inf ,m) which has associated a given go′ ∈
stratsos(goα) and satisfies α ∼ β. Such β can be con-
structed by an iterative application of Corollary 12. See the
Appendix for a detailed proof.

An enabled so-structure go is uniquely determined by the
set of process terms whose associated so-structures extend
go. As we have already seen in the recurring example the
run (an enabled so-structure) from Figure 1 can be recon-
structed with the linearizations from Figure 2 which are all
associated to certain process terms.

Definition 14. Let go = (V,≺, <, l) ∈
Enabled(A, inf ,m). Then the set Υcan

go of all pro-
cess terms α of (A(V,l), inf (V,l)) with pre(α) = m whose
associated so-structures extend (V,≺,<, id) is called the
canonical set of go.

Remark 15. Let Υcan
go be the canonical set of the so-

structure go = (V,≺, <, l) ∈ Enabled(A, inf ,m).
For α ∈ Υcan

go denote goα = (V,≺α, <α, id) the so-
structure associated to α. Then go = (V,

⋂
α∈Υcan

go
≺α

,
⋂

α∈Υcan
go

<α, l) by Proposition 2.
The set Υcan

go is maximal in the sense that for any set Υ
of process terms of (A(V,l), inf (V,l)) with initial marking m
which also fulfills the equation there holds Υ ⊆ Υcan

go .

The next lemma states that process terms with the same
initial marking, whose associated so-structures are total lin-
ear and are all extensions of one enabled so-structure, are

8Note: αsu is the substituted term of α w.r.t. su.

∼-equivalent. In the subsequent theorem we can general-
ize this result omitting the presumption of total linear so-
structures.

Lemma 16. Let (A, inf) be an algebraic (M, I)-net ful-
filling (Det) and (Con1)-(Con5). Let go′ and go′′ be to-
tal linear labelled so-structures of process terms α and β
with initial marking m. If go′ and go′′ are extensions of
go ∈ Enabled(A, inf ,m), then there holds α ∼ β.

Sketch of the Proof. We show that both α and β can be
equivalently transformed to one synchronous step sequence
terms (which only depends on go). Namely, it is shown that
the minimal events of go can be equivalently permuted to
the first position of a synchronous step sequence term and
that this procedure can be iterated for the following events
of go. See the Appendix for a detailed proof.

Theorem 17. Let (A, inf) be an algebraic (M, I)-net
with the same preconditions as in Lemma 16. Let go′ and
go′′ be labelled so-structures of process terms α and β
with initial marking m. If go′ and go′′ are extensions of
go ∈ Enabled(A, inf ,m), then there holds α ∼ β.

Proof. There exist total linear so-structures go′E respec-
tively go′′E which are extensions of go′ respectively go′′.
According to Theorem 13 there exist synchronous step se-
quence terms α′ and β′ with associated so-structures go′E
resp. go′′E with α′ ∼ α and β′ ∼ β. Clearly, go′E and go′′E
are also extensions of go. Thus, according to Lemma 16,
we get α′ ∼ β′. Consequently we have α ∼ β.

With this theorem we can identify minimal enabled so-
structures through their canonical sets (use Remark 15).

Corollary 18. Let (A, inf) be an algebraic (M, I)-net
with the same preconditions as in Theorem 17 and let
go ∈ Enabled(A, inf , m). Then Υcan

go ⊆ [α]∼ for some
process term α of (A(V,l), inf (V,l)). If Υcan

go = [α]∼, then
go ∈ MinEnabled(A, inf ,m).

5 The corresponding algebraic (M, I)-net

Despite the differences between different classes of Petri
nets, there are some common features of almost all net
classes, such as the notions of marking (state), transition,
and occurrence rule (see [4]). Thus, in the next defini-
tion we suppose a Petri net be given by a set of mark-
ings, a set of transitions and an occurrence rule determin-
ing whether a synchronous step (a multi-set) of transitions
is enabled to occur in a given marking and if yes deter-
mining the follower marking. Note that for the net classes
we are interested in their concurrent behavior can be ob-
tained from the sequential and synchronous behavior as fol-
lows: A multi-set of synchronous steps S ∈ NNT

is en-
abled to occur concurrently in a marking m if and only

if S can occur synchronously and sequentially in any or-
der in the marking m. The occurrence rule of a Petri net
with a set of transitions T and a set of markings M can
always be described by a transition system. Accordingly,
we suppose that a Petri net is given in the form of a tran-
sition system (M,E,NT) with nodes m ∈ M , labelled
arcs e ∈ E ⊆ M × NT × M and labels s ∈ NT , where
s is interpreted as a synchronous step of transitions. The
notation m

s−→ m′ for (m, s, m′) ∈ E means that s
can occur in m with follower marking m′. The notation
m0

s1...sn−→ mn means that there exist m1, . . . , mn−1 ∈ M ,
such that m0

s1−→ m1, . . . , mn−1
sn−→ mn.

Definition 19 (Corresponding net). Let N = (M,E,NT)
be a Petri net in the form of a transition system. An al-
gebraic (M, I)-net ((M, T, pre : T → M,post : T →
M), inf) = (A, inf) is called a corresponding net to N
if the occurrence rule for synchronous steps is preserved,
i.e. if for every pair of markings m,m′ ∈ M and every syn-
chronous step s ∈ NT there holds: m

s−→ m′ if and only
if there exists s̃ ∈ Step(A,inf) with |s̃| = s and a mark-
ing m̃ ∈ M such that α = s̃ ‖ m̃ is a defined process term
fulfilling pre(α) = m and post(α) = m′.

From the definitions we conclude: m
s1...sn−→ m′ ⇐⇒

there exists α : m → m′ ∈ Stepseq(A,inf ,m) of the
form α = s̃1 ‖ m̃1; . . . ; s̃n ‖ m̃n, where m̃i ∈ M and
s̃i ∈ Step(A,inf) with |s̃i| = si for every i ∈ {1, . . . , n}.
Then α is called corresponding to m

s1...sn−→ m′. More-
over, an so-structure associated to α is called associated to
m

s1...sn−→ m′. Altogether this describes the consistency of
the algebraic approach to operational step semantics.

The construction of corresponding algebraic (M, I)-
nets provides a general framework to derive causal seman-
tics for a wide range of concrete net classes. This is il-
lustrated in Section 6 for the example of elementary nets
with inhibitor arcs equipped with the a-priori semantics (the
respective ideas were already exemplary developed in the
previous sections) using the following general scenario: (1)
Give the classical definition of a Petri net class including
their synchronous step occurrence rule. (2) Given a net
N of the considered class, construct a corresponding al-
gebraic (M, I)-net (A, inf) through defining M, I, pre,
post, inf appropriately and deduce X , ∼= and a partial al-
gebra of information isomorphic to X/∼=. (3) Show that
(A, inf) satisfies the stated properties of the mapping inf
(thus ensuring the validity of the theorems of Section 4). (4)
Now one can derive algebraic semantics of (A, inf) through
process terms and thus causal semantics of N through
MinEnabled(A, inf ,m).

From the considerations of this section we can con-
clude that the causal semantics of N derived with this
scheme are consistent with the operational semantics of
N , because obviously (using theorem 13): go is associ-

ated to m
s1...sn−→ m′ ⇐⇒ go ∈ stratsos(go′) for some

go′ ∈ MinEnabled(A, inf , m). Moreover so-structures
which are not enabled never fulfill such a property and thus
minimal enabled so-structures are the so-structures with
the least causalities guaranteing consistency to the oper-
ational occurrence rule. These characteristics ensure that
the derived causal semantics are reasonable. Consequently
if there exist non-sequential semantics of the considered
Petri net class based on processes and occurrence nets, it
should always be possible to show that the set of (mini-
mal) runs representing (minimal) processes coincides with
MinEnabled(A, inf ,m). In [7] this was already demon-
strated for several Petri net classes with partial order based
semantics. Moreover if there are no non-sequential seman-
tics based on processes for a given Petri net class, they can
be straightforwardly given (following the scenario above)
by MinEnabled(A, inf ,m). For exotic net classes where
their concurrent behaviour cannot be derived from their syn-
chronous and sequential behaviour, the presented frame-
work can be adapted by explicitly regarding the concur-
rent behaviour in the definition of corresponding algebraic
(M, I)-nets9.

6 Elementary nets with inhibitor arcs

In this section we will now apply the techniques devel-
oped in the previous sections to the concrete net class of el-
ementary nets with inhibitor arcs equipped with the a-priori
semantics. Some of the main ideas, e.g. the definition of a
corresponding algebraic (M, I)-net, were already partially
discussed on the basis of the recurring example net in Figure
1. Note that the content of this section is based on the pro-
cess semantics introduced by Janicki and Koutny (see Sec-
tion 2). Similar results as in this section have been derived
in [8]. But in [8] there was only shown a one to one corre-
spondence between the process term semantics and the pro-
cess semantics in a complicated lengthy ad-hoc way with-
out regarding causal behaviour. Here we additionally get
the complete consistency of the causal behaviour derived
from process terms and the causality of activator processes
using the general framework from Section 5 that can also be
adapted to other net classes.

Given an elementary net with inhibitor arcs ENI =
(P, T, F, C−) (see Section 2) we construct a corresponding
algebraic (M, I)-net analogously as in [7] by

• M = (2P ,∪), I = 2P × 2P × 2P , pre(t) = •t,
post(t) = t•, inf (t) = (•t, t•, −t) (t ∈ T) and
inf (m) = (m,m, ∅) (m ∈ M).

• dom⊕̇ = {((a, b, c), (d, e, f)) ∈ I × I | (a∪ b)∩ (d∪
9In this case also the definition of Enabled(A, inf , m) has to be

adapted accordingly.

e) = a ∩ f = d ∩ c = ∅} with (a, b, c) ⊕̇(d, e, f) =
(a ∪ d, b ∪ e, (c ∪ f) \ (b ∪ e)).

• dom‖̇ = {((a, b, c), (d, e, f)) ∈ I × I | (a ∪ b) ∩
(d ∪ e) = (a ∪ b) ∩ f = c ∩ (d ∪ e) = ∅} with
(a, b, c) ‖̇(d, e, f) = (a ∪ d, b ∪ e, c ∪ f)

and define

• supp : 2I → 2P × 2P , supp (A) = (s1(A), s2(A) \
s1(A)) where s1(A) =

⋃
(a,b,c)∈A(a∪b) and s2(A) =⋃

(a,b,c)∈A c.

• ∼=⊆ 2I × 2I , A ∼= B ⇐⇒ supp(A) = supp(B).

In [7] it was shown that ∼= is the greatest closed congru-
ence on X = (2I , {‖̇}, dom{‖̇}, 2

I × 2I ,∪). It is a straight-
forward computation that the algebraic (M, I)-net defined
in this section fulfills all formulated properties of the map-
ping inf . It is shown in [7]:

Theorem 20. The algebraic (M, I)-net
((2P , T, pre, post), inf) with M, I, pre, post, inf as
developed in this section is corresponding to ENI
(according to Definition 19).

To prove the consistency of the algebraic approach to
the process based concept we can use an important result
about activator processes. Corollary 2 in [10] (considering
the more general case of p/t-nets with inhibitor arcs) reads
in our terminology:

Theorem 21. {goα | α ∈ Stepseq(A,inf ,m)} =⋃
r∈Run(ENI,m) stratsos(r).

As a consequence we directly get that Run(ENI, m) ⊆
Enabled(A, inf ,m). In order to prove the main result
Run(ENI, m) = MinEnabled(A, inf ,m), we funda-
mentally need the following lemma.

Lemma 22. Let go1 = (V,≺1, <1, id) and go2 = (V,≺2

,<2, id) be labelled so-structures of ∼-equivalent process
terms α : m → m′ and β : m → m′ of (A, inf) and
let go = (V,≺,<, id) ∈ Run(ENI,m) satisfying that
go ⊆ go2, then go ⊆ go1.

Sketch of the proof. It is enough to consider the cases where
α is derived from β through one of the equivalent transfor-
mation axioms (1)-(11) (Definition 10). Because for axioms
preserving associated so-structures the statement is trivial
we will only consider the axioms (4) and (7). We will prove
the statement by contradiction. Namely, assuming that go1

does not extend go contradicts that α is a defined process
term. This can in each case easily be computed by reducing
the proof to one of the three situations shown in Figure 3.
See the Appendix for a detailed argumentation.

As a corollary we get that for each run r ∈
Run(ENI, m) there is α with Υcan

r = [α]∼. That means
Run(ENI, m) ⊆ MinEnabled(A, inf ,m) (Corol-
lary 18). For the reverse statement observe that for
go ∈ Enabled(A, inf ,m) every so-structure go′ ∈
stratsos(go) is associated to α ∈ Stepseq(A,inf ,m). All
these process terms α are ∼-equivalent (Theorem 17) and
all elements of stratsos(go) are extensions of one run r ∈
Run(ENI, m) (Theorem 21, Lemma 22). Using the rep-
resentation of go from Proposition 2, we get that go itself is
an extension of r. This gives altogether

Theorem 23. Given ENI and (A, inf) as defined above,
there holds Run(ENI,m) = MinEnabled(A, inf ,m).

Furthermore, we deduce that every ∼-equivalence class
of process terms of the copy net is the canonical set of a
unique run (Theorem 13, Remark 15). Consequently there
holds the following one-to-one relationship, which is an en-
hancement of the main result of [8] (proven in another man-
ner).

Theorem 24. Given ENI and (A, inf) as defined above,
the mapping ψ : Run(ENI, m) → {[α]∼ | pre(α) = m}
defined by ψ(r) = [α]∼ for some α such that goα is an
extension of r is well-defined and bijective.

Finally, this especially implies that every go ∈
Enabled(A, inf , m) is an extension of exactly one r ∈
Run(ENI, m). This result is strongly connected to the
well-known result obtained for elementary nets (without
context), which says that each occurrence sequence of an
elementary net is a linearization of exactly one run of the
net.

7 Conclusion

In this paper we have presented a very flexible and gen-
eral unifying approach regarding causal semantics. While
in other approaches to unifying Petri nets (see e.g. [16, 14,
15, 9]) the occurrence rule is never a parameter and there-
fore the definitions in [14] and [9] both capture elementary
nets but let open more complicated restrictions of enabling
conditions in the occurrence rule, such as inhibitor arcs or
capacities, in our case we were even able to extend the ba-
sic approach from [7] to so-structure based semantics. Thus
it would be an interesting and promising project of further
research to additionally extend the approach of algebraic
Petri nets in order to include new net classes of a different
fundamental structure. But we also have more proximate
and immediate research in this area. On the one hand we
still have to examine some net classes and compare the al-
gebraic semantics to process semantics, as for example ele-
mentary nets with read arcs and p/t-nets with inhibitor arcs

each equipped with the a-priori semantics,10 nets with pri-
orities or p/t-nets with weak capacities regarding explicit
synchronous semantics.11 On the other hand it would be in-
teresting to derive behavioral results beyond the causal se-
mantics on the abstract level. Because of the generality of
the approach this could result in a very powerful analyzing
tool.

References

[1] R. Bruni and V. Sassone Algebraic Models for Contextual
Nets. Proc. of ICALP 2000, Springer, LNCS 1853, pp. 175–
186, 2000.

[2] P. Burmeister. Lecture Notes on Universal Algebra – Many
Sorted Partial Algebras. TU Darmstadt, 2002.

[3] A. Corradini P. Baldan and U. Montanari. Contextual petri
nets, asymmetric event structures, and processes. Informa-
tion and Computation, 171(1):1–49, 2001.

[4] J. Desel and G. Juhás. What is a Petri Net? LNCS 2128,
pages 1-25, 2001.

[5] J. Desel, G. Juhás and R. Lorenz. Petri Nets over Partial
Algebra. LNCS 2128, pages 126-172, 2001.

[6] R. Janicki and M. Koutny. Semantics of Inhibitor Nets. In-
formation and Computations 123, pages 1–16, 1995.

[7] G. Juhás. Are these events independent? It depends!. Habili-
tation thesis, Catholic University Eichstätt-Ingolstadt, 2005.

[8] G. Juhás, R. Lorenz, T. Singliar. On Synchronicity and Con-
currency in Petri Nets. LNCS 2679, pages 357-376, 2003.

[9] E. Kindler, M. Weber. The Dimensions of Petri Nets: The
Petri Net Cube. EATCS Bulletin 66, pages 155-166, 1998.

[10] H.C.M. Kleijn and M. Koutny. Process semantics of P/T-
Nets with inhibitor arcs. LNCS 1825, pages 261-281, 2000.

[11] H.C.M. Kleijn M. and Koutny. Process semantics of general
inhibitor nets. Inf. and Comp. 190(1), pages 18-69, 2004.

[12] J. Meseguer and U. Montanari. Petri nets are monoids. In-
formation and Computation 88(2), pages 105–155, 1990.

[13] U. Montanari and F. Rossi. Contextual nets. Acta Informat-
ica, 32(6):545–596, 1995.

[14] J. Padberg. Abstract Petri Nets: Uniform Approach and
Rule-Based Refinement, Ph.D. Thesis, TU Berlin, 1996.

[15] J. Padberg. Classification of Petri Nets Using Adjoint Func-
tors Bulletin of EACTS 66, 1998.

10Note that these classes are already discussed regarding the a-posteriori
semantics [7].

11For the difference of weak and strong capacities as well as the explicit
synchronous semantics of weak capacities see [7].

[16] J. Padberg, H. Ehrig. Parametrized Net Classes: A uniform
approach to net classes. LNCS 2128, pages 173–229, 2001.

[17] V. Sassone The Algebraic Structure of Petri Nets. In: Cur-
rent Trends in Theoretical Computer Science, World Scien-
tific, 2004.

[18] M.-O. Stehr, J. Meseguer and P. Ölveczky. Rewriting Logic
as a Unifying Framework for Petri Nets. LNCS 2128, pages
250–303, 2001.

8. Appendix

In this Section we give detailed proofs of Lemma 11,
Theorem 13, Lemma 16 and Lemma 22, which we omit-
ted due to lack of space. For the proofs we need the fol-
lowing observations concerning the relationship between
the ∼-axioms, the properties (Con1)-(Con6) and (Det), and
the information associated to process terms: In the axioms
(1), (2), (3), (5), (6), (8) one side of ∼ is a defined pro-
cess term if and only if also the other side is. In the ax-
ioms (4) and (9) the left side is defined if the right side is
defined (but not vice versa). In (11) the right side is de-
fined if the left side is defined (and with (Con2) we have
the reverse implication, too). In (7) and (10) we can de-
rive no similar relation. In the axioms (1), (2), (3), (5)
and (6) both sides have the same associated information.
In (4) we have Inf (α) ⊆ /∼= Inf (β). For (7) and (10) we
get no similar result. In some axioms the information of
both sides is equal if adequate conditions are satisfied: In
(8) we need to require (Con3) and (Con1), in (9) solely
(Con1) and (Con2) in (11). In order to sequentialize con-
currently composed process terms we use axiom (4) with
α3 = post(α1) and α2 = pre(α4). To transform concur-
rently composed step terms into synchronously composed
step terms we additionally need axiom (7). For these two
kinds of transformations one has to regard also axiom (8)
and adequate consistency conditions. We are especially in-
terested in the following two special cases: With (Con3) and
(Con1) we deduce (α ‖β) ∼ (α ‖ pre(β)); (β ‖ post(α))
and Inf ((α ‖ pre(β)); (β ‖ post(α))) ⊆ /∼= Inf (α ‖β). If
additionally (Con6) is fulfilled we get α ‖β ∼ α⊕β and
Inf (α⊕β) ⊆/∼= Inf (α ‖β)).

These results will be used in equivalent transforma-
tions in the proofs of this Section mostly without mention-
ing them explicitly. If the associated information and so-
structures stay the same we often even do not distinguish
between equivalent terms anymore. In particular, we write
that a process term has without loss of generality a special
form if the process term can be equivalently transformed
into that special form by such easy equivalent transforma-
tions. Finally we can conclude with axiom (10) for (Det1)
and additionally axioms (9), (4), (8) and (7) for (Det2):

(Det1) If (A, inf) fulfills (Det), then there holds for
s ∈ Step(A,inf) and m1, m2 ∈ M : s ‖m1 and
s ‖m2 defined with pre(s ‖m1) = pre(s ‖m2) =⇒
post(s ‖m1) = post(s ‖m2) and (s ‖m1) ∼
(s ‖m2).

(Det2) If (A, inf) fulfills (Det), (Con1) and (Con3)-
(Con5), then there holds for s1, s2 ∈ Step(A,inf)

and m,m1,m2 ∈ M : (s1⊕ s2) ‖m
and (s1 ‖m1); (s2 ‖m2) defined with
pre((s1⊕ s2) ‖m) = pre((s1 ‖m1); (s2 ‖m2)) =⇒

post((s1⊕ s2) ‖m) = post((s1 ‖m1); (s2 ‖m2))
and (s1⊕ s2) ‖m ∼ (s1 ‖m1); (s2 ‖m2).

We need the following technical notations concerning
copy-nets.

In order to formulate basic relations between process
terms of (A(V,l), inf (V,l)) and of (A, inf), we extend the la-
belling function l from the definition of copy nets to process
terms α of (A(V,l), inf (V,l)) in the following way for mark-
ings m and process terms α1, α2: l(m) = m, l(α1⊕α2) =
l(α1)⊕ l(α2), l(α1 ‖α2) = l(α1) ‖ l(α2) and l(α1; α2) =
l(α1); l(α2) (if defined, respectively). The extended la-
belling function l fulfills the following immediate prop-
erties for process terms α, β of (A(V,l), inf (V,l)) and α′

of (A, inf): l(α) ∈ P(A, inf), pre(α) = pre(l(α)),
post(α) = post(l(α)), Inf (α) = Inf (l(α)), α ∼ β =⇒
l(α) ∼ l(β), l : P(A(V,l), inf (V,l)) → P(A, inf) is surjec-
tive, go = (V,≺, <, id) associated to α =⇒ go′ = (V,≺
,<, l) associated to l(α),go′ = (V,≺,<, l) associated to α′

=⇒ ∃α with l(α) = α′ such that go = (V,≺, <, id) is as-
sociated to α, go = (V,≺, <, id) and go′ = (V,≺′, <′, id)
associated to α =⇒ go = go′.

Let go = (V,≺,<, l) be an so-structure of a process
term α of (A, inf). A copy term of α (w.r.t. go) is a pro-
cess term αgo of the (V, l)-copy net (A(V,l), inf (V,l)) with
l(αgo) = α such that (V,≺, <, id) is associated to αgo.
Two copy terms of α w.r.t. go are always ∼-equivalent
through commutativity and associativity axioms. We will
not further distinguish such copy terms.

Proof of Lemma 11. We proof the statement inductively ac-
cording to the construction of process terms:

If α = m ∈ M , then C ⊆ Bα = ∅, αsu = m and mC =
m, i.e. αC = m; m is a defined process term obviously
fulfilling (I) (axiom (8)) and (II).

If α ∈ Step(A,inf) and C = ∅, then αsu = α and
mC = pre(α), i.e. αC = pre(α);α is a defined pro-
cess term obviously fulfilling (I) (axiom (8)) and (II) (use
(Con3)).

If α ∈ Step(A,inf) and C = {α}, then αsu = post(α)
and mC = 0, i.e. αC = (α ‖ 0); post(α) is a defined pro-
cess term (use (Con2)), obviously fulfilling (I) ((11) and (8))
and (II) (use (Con2) and (Con3)).

Let α = β; γ for process terms β and γ which fulfill the
statement. According to Definition 8 there exist disjoint sets
Vβ ⊆ V and Vγ ⊆ V with Vβ ∪ Vγ = V , such that goβ =
(Vβ ,≺ ∩(Vβ × Vβ), < ∩(Vβ × Vβ), id) is a labelled so-
structure of β, goγ = (Vγ ,≺ ∩(Vγ×Vγ),< ∩(Vγ×Vγ), id)
is a labelled so-structure of γ and v ≺ v′ for each v ∈ Vβ ,
v′ ∈ Vγ . Bβ and Bγ are disjoint sets satisfying Bβ ∪Bγ =
Bα and consequently Kgoβ

⊆ Kgoα and Kgoγ ⊆ Kgoα are
disjoint sets fulfilling Kgoβ

∪ Kgoγ = Kgoα . Moreover,
k <goα k′ for each k ∈ Kgoβ

and k′ ∈ Kgoγ . Because
α has no sub-term of the form m; α′ we have Vβ 6= ∅ and

thus Bβ 6= ∅ and Kgoβ
6= ∅. It easily follows C ⊆ Bβ

(elements of Bγ are not minimal in α). Obviously the el-
ements of C are also minimal in β. Because also β has
clearly no sub-term of the form m; α′ and β fulfills the
statement, there exists a marking mC , such that βC =
((‖s∈C s) ‖mC); βsu is a defined process term fulfilling (I)
and (II). Furthermore we have γsu = γ, because Bγ and C
are disjoint. Consequently αC = ((‖s∈C s) ‖mC); αsu =
((‖s∈C s) ‖mC); βsu; γsu = βC ; γ is a defined process
term (because post(βC) = post(β) = pre(γ)). From
βC ∼ β we get (I) and from Inf (βC) ⊆ /∼= Inf (β) we
can conclude (II).

Let α = β ‖ γ for process terms β and γ which fulfill
the statement. As in the previous paragraph there exist
disjoint sets Vβ ⊆ V and Vγ ⊆ V with Vβ ∪ Vγ = V , such
that goβ = (Vβ ,≺ ∩(Vβ × Vβ), < ∩(Vβ × Vβ), id) is a
labelled so-structure of β, goγ = (Vγ ,≺ ∩(Vγ × Vγ),<
∩(Vγ × Vγ), id) is a labelled so-structure of γ and there
holds v 6< v′ as well as v′ 6< v for each v ∈ Vβ ,
v′ ∈ Vγ . Again Bβ and Bγ are disjoint sets satisfying
Bβ ∪ Bγ = Bα, Kgoβ

⊆ Kgoα and Kgoγ ⊆ Kgoα are
disjoint sets fulfilling Kgoβ

∪Kgoγ = Kgoα and k 6<goα k′

and k′ 6<goα k for each k ∈ Kgoβ
, k′ ∈ Kgoγ . Define

C1 = C ∩ Bβ and C2 = C ∩ Bγ . Then C1 and C2 are
disjoint with C1 ∪ C2 = C. Obviously C1 is a subset
of minimal basic step terms of β and C2 is a subset of
minimal basic step terms of γ. Because β and γ have
no sub-term of the form m;α′, there exist markings m1

and m2, such that βC1 = ((‖s∈C1
s) ‖m1); βsu and

γC2 = ((‖s∈C2
s) ‖m2); γsu are defined process terms

fulfilling (I) and (II). From Inf (βC1) ⊆ /∼= Inf (β) and
Inf (γC2) ⊆ /∼= Inf (γ) we derive that βC1 ‖ γC2 is de-
fined with Inf (βC1 ‖ γC2) ⊆ /∼= Inf (β ‖ γ) = Inf (α).
For mC = m1 + m2 we get the following relation
using axiom (4) in the first equivalent transformation
step and the axioms (1), (2) and (9) in the second trans-
formation step: βC1 ‖ γC2 = (((‖s∈C1

s) ‖m1); βsu)
‖ (((‖s∈C2

s) ‖m2); γsu) ∼ (((‖s∈C1
s) ‖m1) ‖

((‖s∈C2
s) ‖m2)); (βsu ‖ γsu) ∼ ((‖s∈C s) ‖mC); αsu

= αC . Consequently αC is a defined process term.
With (I) for βC1 and γC2 we get (I) for αC . From the
used ∼-axioms and (II) for βC1 and γC2 there results
Inf (αC) ⊆/∼= Inf (βC1 ‖ γC2) ⊆/∼= Inf (β ‖ γ) = Inf (α).
Consequently (II) is fulfilled.

Proof of Theorem 13. Denote go = goα = (V,≺, <, l) and
go′ = (V,≺′, <′, l). We will equivalently transform αgo

into the process term βgo′ , i.e. βgo′ has associated the so-
structure (V,≺′, <′, id), then the process term β = l(βgo′)
has associated the so-structure go′ and satisfies α ∼ β.
Consequently pre(β) = pre(α) = m and thus go is en-
abled in m.

Let pogo = (Kgo, <go) be the partial order associated
to go, let pogo′ = (Kgo′ , <go′) be the total order asso-

ciated to go′ (see Remark 3). Let Kgo′ = {k′1, . . . , k′m}
such that k′i <go′ k′j ⇔ i < j. Then k′1 is of the form
k′1 = k1∪ . . .∪kn for (pairwise disjoint) k1, . . . , kn ∈ Kgo,
where k1, . . . , kn are all minimal w.r.t. <go (see remark 3).
Thus, the basic step terms b1, . . . , bn ∈ Bαgo of αgo corre-
sponding to k1, . . . , kn are minimal.

Define C = {b1, b2, . . . , bn} and su = post|C . Without
loss of generality we can suppose that αgo has no sub-term
of the form m;α′. According to corollary 12 there exists a
marking mSy such that αgo

C = ((⊕s∈C s) ‖mSy); αgo
su =

((⊕v∈k′1 v) ‖mSy); αgo
su is a defined process term fulfill-

ing (I) and (II). Thus we have detached k′1 from αgo.
Denote V ′ = V \ {v | ∃s ∈ C with v ∈ s},
KC = Kgo \ {k1, . . . , kn} and K ′

C = Kgo′ \ {k′1}. Di-
rectly from the construction of αgo

su we get that goC =
(V ′,≺ |V ′×V ′ , < |V ′×V ′ , id) is an so-structure of αgo

su and
pogoC

= (KC , <go |KC×KC
) is the associated partial order.

Observe now that go′C = (V ′,≺′ |V ′×V ′ , <
′ |V ′×V ′ , id)

is a total linear extension of goC , k′2 ∈ Kgo′ is minimal
in pogo′C = (K ′

C , <go′ |K′
C×K′

C
). That means we can re-

iterate the above procedure for k′2, αgo
su, goC and go′C in-

stead of k′1, α, go and go′, and subsequently for all further
k′3, . . . , k

′
m ∈ Kgo′ . This results in the searched process

term β′ = ((⊕v∈k′1 v) ‖m1); . . . ; ((⊕v∈k′m v) ‖mk)(=
βgo′).

Proof of Lemma 16. Denote go = (V,≺,<, l), go′ =
(V,≺′, <′, l) and go′′ = (V,≺′′, <′′, l). We show that both
α and β can be equivalently transformed to equivalent syn-
chronous step sequence terms γα resp. γβ which only de-
pend on go. As usual this is done on the copy term level.
We start with the process term α. Without loss of generality
αgo′ is of the form αgo′ = (s1 ‖m1); . . . ; (sn ‖mn) with
si ∈ Step(A(V,l),inf (V,l))

and mi ∈ M for i = 1, . . . , n. Let
Vmin ⊆ V be the set of minimal events in go w.r.t. ≺. With-
out loss of generality each step term si is of the form si =
(smin

i ⊕ srest
i), where smin

i , srest
i ∈ Step(A(V,l),inf (V,l))

with Vmin ∩ |si| = |smin
i |. Of course the terms smin

i and
srest

i are also allowed to be empty. In the following equiva-
lence transformations smin

i and srest
i are always considered

not to be empty, because in the case that one term is empty
there is always an obvious way to justify the given transfor-
mation.

First we equivalently sequentialize each si ‖mi into
(smin

i ‖mmin
i); (srest

i ‖mrest
i). Obviously for v ∈

smin
i , w ∈ srest

i we have v <′ w and w <′ v. Because
w is not minimal in go and v is minimal in go we con-
clude w 6< v (use (C4)). Consequently if we remove for
each i ∈ {1, . . . , n} and each v ∈ smin

i , w ∈ srest
i the

relation w <′ v from go′ and add in exchange the rela-
tion v ≺′ w to go′ the result is a total linear so-structure
go′1 = (V,≺′1, <′1, l) which extends go. Since go is en-
abled, there exists a synchronous step sequence term α′1

with pre(α′1) = m and associated so-structure go′1. Its
copy term (α′1)

go′1 has without loss of generality the form
(α′1)

go′1 = (smin
1 ‖mmin

1); (srest
1 ‖mrest

1) ; . . . ; (smin
n ‖

mmin
n) ; (srest

n ‖mrest
n) satisfying (α′1)

go′1 ∼ αgo′ (use
(Det2) iteratively).

Next we iteratively equivalently permute synchronous
step terms with minimal events (”min”-terms) and syn-
chronous step terms with not minimal events (”rest”-terms),
starting from behind. Analogously as above we conclude
for each v ∈ smin

n , w ∈ srest
n−1 that w 6< v. Consequently

if we remove for each v ∈ smin
n , w ∈ srest

n−1 the relation
w ≺′1 v from go′1 and add in exchange the relation v <′1 w
to go′1 the result is a total linear so-structure go′2 = (V,≺′2
,<′2, l) which extends go. As above there is a synchronous
step sequence term α′2 with associated so-structure go′2
and the copy term of α′2 w.r.t. go′2 has without loss
of generality the form (smin

1 ‖mmin1
1); (srest

1 ‖mrest1
1) ;

. . . ; ((smin
n ⊕ srest

n−1) ‖mminrest1
n−1); (srest

n ‖mrest1
n) being

equivalent to (α′1)
go′1 (using (Det1) and (Det2)) and con-

sequently to αgo′ . From go′2 we now remove each re-
lation w <′2 v and add in exchange v ≺′2 w for v ∈
smin

n , w ∈ srest
n−1 resulting in the total linear so-structure

go′3 = (V,≺′3,<′3, l) which also extends go. With the
same arguments we get an accordant copy term of the form
(smin

1 ‖mmin2
1); (srest

1 ‖mrest2
1); . . . ; (smin

n ‖mmin2
n) ;

(srest
n−1 ‖mrest2

n−1); (srest
n ‖mrest2

n) equivalent to αgo′ . Al-
together the terms smin

n and srest
n−1 have been permuted.

With a similar argumentation we can equivalently trans-
form the sub-term (smin

n−1 ‖mmin2
n−1); (smin

n ‖mmin2
n) into

((smin
n−1⊕ smin

n) ‖mmin3).
Repeating this procedure, ”min”-terms are itera-

tively permutated with ”rest”-terms from the right
to the left and synchronously composed with other
”min”-terms to one collective ”min”-term. The re-
sult is a synchronous step sequence term of the form
(smin

1 ⊕ . . .⊕ smin
n ‖mmin′); (srest

1 ‖mrest′
1) ; . . . ; (srest

n−1

‖ mrest′
n−1) ; (srest

n ‖mrest′
n) = ((⊕v∈Vmin v) ‖mmin′) ;

(srest
1 ‖mrest′

1) ; . . . ; (srest
n−1 ‖mrest′

n−1) ; (srest
n ‖mrest′

n)
equivalent to αgo′ and with an associated so-structure go′′′

extending go. Thus, we have sorted the minimal events
Vmin of go to one synchronous step at the beginning of the
term. Considering the so-structure go1 = (V \ Vmin,≺
|(V \Vmin)×(V \Vmin),< |(V \Vmin)×(V \Vmin), l) restricting
go to the set of remaining events, we can collect in the
same way the minimal events of go1 to one synchronous
step term at the second position of the synchronous step
sequence term12. Now we re-iterate this procedure until
goi constructed in this way is empty. Because every goi

has minimal events the procedure terminates. Altogether
we get a synchronous step sequence term αgo′

gonat
equiva-

12One must attention that the enabled property of go (and not of go1)
has to be used.

lent to αgo′ that is uniquely defined by go up to concur-
rently composed markings and commutativity and associa-
tivity axioms13. The same can be applied to the process
term β resulting in a copy term βgo′′

gonat
equivalent to βgo′′ .

We deduce αgo′
gonat

∼ βgo′′
gonat

from pre(βgo′′) = pre(αgo′),
αgo′

gonat
∼ αgo′ and βgo′′

gonat
∼ βgo′′ (use (Det1)), so there

results αgo′ ∼ βgo′′ and consequently α ∼ β.

Proof of Lemma 22. It is enough to consider the cases
where α is derived from β through one of the equivalent
transformation axioms (1)-(11) (Definition 10). Because
for axioms preserving associated so-structures the state-
ment is trivial we will only consider the axioms (4) and
(7). We will prove the statement by contradiction. Let
AON = (B, V, R, Act, l) (with l|V = id) be the process
represented by the run go.

First we consider axiom (4). It is enough to consider the
case α = (α1;α3) ‖(α2; α4) and β = (α1 ‖α2); (α3 ‖α4)
(since in this case go1 ⊆ go2 because in go2 orderings (≺
and <) between events in α1 and α4 as well as α2 and α3

are added compared to go1). Without loss of generality,
suppose that in the run an ordering between an event in α1

and an event in α4 exists (≺ or <-ordering). That means
there are events t ∈ α1, and s ∈ α4, and a condition c ∈
B such that one of the following three possibilities holds
(according to Figure 3): (a) (t, c) ∈ R and (c, s) ∈ R or
(b) (t, c) ∈ R and (c, s) ∈ Act or (c) (c, t) ∈ Act and
(c, s) ∈ R.

Consider case (a): If l(c) = x ∈ P (no complement
place), then we have x ∈ t• , x ∈ •s and therefore
Inf (α1) = (w1, a1), Inf (α4) = (w4, a4) with x ∈ w1∩w4.
This contradicts the fact that α = (α1; α3) ‖(α2; α4) is a
defined process term. If l(c) = x′ ∈ P ′ then c−1(x′) ∈ •t
and c−1(x′) ∈ s• causes the same contradiction.

Consider case (b): We have l(c) = x′ ∈ P ′ (l(c) has to
be a complement place, because c is in Act-relation to an
event), then c−1(x′) ∈ •t and c−1(x′) ∈ −s and therefore
Inf(α1) = (w1, a1), Inf(α4) = (w4, a4) with c−1(x′) ∈
w1 and c−1(x′) ∈ w4 ∪ a4. This contradicts the fact that
α = (α1;α3) ‖(α2; α4) is a defined process term. Case (c)
causes a contradiction analogously as in case (b).

Now we check axiom (7). For this axiom we have to dis-
cuss the equivalence transformation in both directions. Let
first α = (α1 ‖ pre(α2)); (α2 ‖ post(α1)) and β = α1⊕α2

(α1, α2 have to be synchronous step terms). Suppose that
in the run an <- ordering between an event in α2 and an
event in α1 exists. That means there are events s ∈ α1,
and t ∈ α2, and a condition c ∈ B such that the fol-
lowing relation holds: (c, t) ∈ Act and (c, s) ∈ R. We
have l(c) = x′ ∈ P ′, then c−1(x′) ∈ −t and c−1(x′) ∈
s• ⊆ post(alpha1) and therefore inf(α2) = (a2, b2, c2),

13This can directly be derived from the construction rule.

inf(post(α1)) = (a1, b1, c1) with c−1(x′) ∈ b2 ∪ c2

and c−1(x′) ∈ a1 = b1. This contradicts the fact that
α2 ‖ post(α1) is a defined process term.

Let on the other hand β = (α1 ‖ pre(α2)) ;
(α2 ‖ post(α1)) and α = α1⊕α2. Suppose that in
the run an ≺-ordering between an event in α1 and an
event in α2 exists. It means there are events t ∈ α1,
and s ∈ α2, and a condition c ∈ B such that one of the
following relation holds: (a) (t, c) ∈ R and (c, s) ∈ R or
(b) (t, c) ∈ R and (c, s) ∈ Act.

Consider case (a): If l(c) = x ∈ P , then we have x ∈ t• ,
x ∈ •s and therefore inf (α1) = (a1, b1, c1), inf (α2) =
(a2, b2, c2) with x ∈ b1 ∩ a2. This contradicts the fact that
α = α1⊕α2 is a defined process term. If l(c) = x′ ∈
P ′ then c−1(x′) ∈ •t and c−1(x′) ∈ s• causes the same
contradiction.

Consider case (b): We have l(c) = x′ ∈ P ′, then
c−1(x′) ∈ •t and c−1(x′) ∈ −s and therefore inf (α1) =
(a1, b1, c1), inf (α2) = (a2, b2, c2) with c−1(x′) ∈ a1

and c−1(x′) ∈ c2 ∪ b2. This contradicts the fact that
α = α1⊕α2 is a defined process term.

