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Abstract. This paper describes the verification module (the VipVerify Module)
of the VipTool [4]. VipVerify allows to verify whether a given scenaricais exe-
cution of a system model, given by a Petri net. Scenarios can be gadlpisipec-
ified by means of Labeled Partial Orders (LPOs). A specified LPO igecution

of a Petri net if it is a (partial) sequentialization of an LPO generated byeegs

of the net. We have shown in [2] that the executability of an LPO can be tegted
a polynomial algorithm. The VipVerify Module implements this algorithm. If the
test is positive, the corresponding process is computed and visudfiteel test

is negative, a maximal executable prefix of the LPO is computed andizisda
together with a corresponding process and the set of those followingsenehe
LPO which are not enabled to occur after the occurrence of the prefither, the
VipVerify Module allows to test in polynomial time whether a scenario equals a
execution with minimal causality. A small case study illustrates the verification
of scenarios w.r.t. business process models.

1 Introduction

Specifications of distributed systems are often formulateerms of scenarios. In other
words, it is often part of the specification that some scesashould or should not be
executable by the system. Given the system, a natural quéstivhether a scenario can
be executed. Answering this question can help to uncovégisysults or requirements,
to evaluate design alternatives and to validate the sysesigal.

There are basically two possibilities to express singleetiens of distributed sys-
tems, namely as sequences of actions (that means as totd#yed sets of action
names) or as partially ordered sets of action names. Sirpeesees lack any infor-
mation about independence and causality between actiensomsider executions (and
scenarios) as partially ordered sets of action names inafafistributed systems.

There exist several software packages, developed at gitiesror software com-
panies, which support the design and verification of disted systems based on sce-
narios. Some of them allow to compute the unfolding of a itisted system (given as
a Petri net, a communicating automaton or a process algeboajler to run LTL and



CTL model checking algorithms on this unfolding (the toolFPP&hd the Model Check-
ing Kit, [13—15]). Other tools use message sequence chd8€E) or their extension to
live sequence charts (LCSs) to describe scenario-basatteatgnts. These are used to
guide the system design (the tool Mesa or the Playengine lF§, for test generation
and validation (the tool TestConductor integrated into pioaly, [20, 21]), or for the
synthesis of SDL or statecharts models (the tool MSC2S2,,23]). In [24, 25] a ver-
ification environment is described in which LSCs are usedpress requirements that
are verified against a statemate model implementation,enher verification is based
on translating LSCs into automata.

Up to now, there exists no tool support to verify a given scera be an execution
of a distributed system. One reason might be that there weeffitient verification
algorithms so far for this problem. In case a scenario isrga®a labeled partial order
(LPO) over the set of possible actions (events) and theildiséd system is given as a
(place/transition) Petri net, we presented in [2] a polyr@mlgorithm.

The notion ofexecutionf Petri nets is based on their non-sequential semantics
given by occurrence nets and processes [11, 12]. Abstgafitim the conditions in a
process gives an LPO, calledn. Runs capture the causal ordering of events. Events
which are independent can occur sequentially in any ordersTadding order to a run
still leads to a possible execution. For example, occugesarjuences of transitions
(understood as labeled total orders) sequentialize ruesefalizing this relationship,
an LPO which (partially) sequentializes a run is an executibthe net. The process
represented by such a run is caltzmresponding to the specified LR®the following.

If a specified LPO is an execution of a given Petri net, the naet algorithm com-
putes a process corresponding to the LPO. In the negatieeacasaximal executable
prefix of the LPO is computed as well as the set of those foligvévents in the LPO,
which are not enabled to occur after the occurrence of thixpk&fe further deduced
a polynomial algorithm to test if a specified LPO preciselytchas a process w.r.t.
causality and concurrency of the events in the specificaifitiis process represents a
minimal ordering of events among all processes.

Actually, we implemented the above described algorithnpsais of the new VipVer-
ify Module of the VipTool [3, 4, 7]. The algorithms are based @mputing the max-
imal flow in a flow network [8]. While the maximal flow algorithnrgsented in [8]
is only pseudo-polynomial in general, there came up stobtmomial algorithms run-
ning in cubic time (see e.g. [9]) and also faster (see [10&fooverview) during the last
decades. Since the basic algorithm from [8] turns out to et gtolynomial (running
in cubic time) in our special case, we started with an impletatgn of the algorithms
based on this basic algorithm. Moreover, we added a graphtegface (the VipLpoEd-
itor module) which allows the user to graphically specifgrsarios of a given Petri net
in terms of LPOs over the set of transition names of the Petri n

The paper is further organized as follows: In Section 2 wegmea description of
the new modules of the VipTool. A simple case study illugsathe new functionali-
ties in Section 3. Then, in section 4, we briefly describe hiogvriew functionalities
additionally fit into the existing validation and verificatti concept for business process
models the VipTool supports. In Section 5 we present somemeance results for the
implemented algorithms. Finally, the conclusion outlittes future development.



2 Description of the New VipTool Modules

To support the new functionalities, the VipEditor providiesee graphical submodules:
In the existing VipNetEditor Petri net models of distribditeystems can be designed.
In the new VipLpoEditor the user can specify scenarios imgeof LPOs. Finally, pro-
cesses (computed by the VipVerify Module) are visualizetth@existing VipProEditor.

The VipNetEditor is only slightly revised compared to thstlaersion of VipTool.
Very briefly, it has the following main functionalities: Dréng and painting features
can be used analogously as by any standard Windows apeplic&ize, colors, fonts
can by easily changed by the user for all draw elements sugitaaes, transitions,
arcs, labels etc. Furthermore, all standard editing featauch as select, move, copy,
paste etc. are implemented. Beyond that, for example atimaiaynment and click-
and-drag-points of net arcs are supported. Usual token gamaation is also a part of
the VipNetEditor. Figure 1 shows a screen-shot of the Vijdébr with an example of
a simple Petri net model of a business process.
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Fig. 1. Screenshot of the VipNetEditor, including an example net, which is exuldater in a
case study.

Given a Petri net in the VipNetEditor, the user may take athgaof the VipLpoEd-
itor. Clicking the appropriate button splits the screen tedVipLpoEditor is available.
A grid makes drawing the LPO easy. An arc is automaticallyeaidoetween two nodes



arranged on top of each other. For each added node, thedr&iatsition is chosen over
a popup menu. For clarity, only the skeleton arcs of an LPQiexen. Figure 2 shows
a screen-shot of the VipEditor consisting of the VipNetBdénd the VipLpoEditor.

g VipE ditor 1 {53

File Edit Draw Vew Info

2 OO @ 3% v 0w [« &

k@ O o5 @

suggestion

deal

check
Fuggestion
‘accept

dizcard

no deal

fjuery

Fig. 2. Screenshot of the VipLpoEditor, showing the popup menu for addireypanode.

The last building block appears by starting the VipVerify dde to calculate if the
LPO drawn in the VipLpoEditor is executable in the Petri ieég in the VipNetEditor.
The VipVerify Module distinguishes between the two follogicases:

— If the LPO is executable, then a process corresponding th. B is computed
by the VipVerify Module and is visualized in the VipProEditMoreover, then the
VipVerify Module tests whether the LPO is minimal execugghle. whether there
is another LPO with strictly less order between events wisciso executable. If
there is such another LPO, there are arcs in the given LP@septing an unnec-
essary ordering between events. Such arcs are highlighted.

— If the LPO is not executable, then the VipVerify Module cortgaia maximal ex-
ecutable prefix of the LPO and a process corresponding t@tafsx. The process
is visualized in the VipProEditor. In the VipLpoEditor, thpeefix and the set of
those events which are not concurrently enabled to occar #fe occurrence of
the prefix are highlighted by different colors.

Both cases will by described more precisely in the case sflidy processes are
visualized using the existing VipVisualizer module, whishbased on the Sugiyama
graph-drawing algorithm accommodated in [7]. Besides, tihat objects of the visual-
ized processes remain movable.



3 Functionality of the New VipTool Modules: A Case Study

In this section we briefly illustrate the functionality ofetVipVerify Module and the
VipLpoEditor by a simple case study.

The Petri net model of Figure 1 represents a possible bisspresess of some com-
pany. The company handles their tasks with two resources¢pRes landRes I)).
After a prospective customer asks for a product (transigeery) the business process
divides into two concurrent sub-processes. In the uppetf@eompany first checks on
their offers or special conditions (transitichech and then makes offerings to the cus-
tomer (transitiorsuggestioh Yet they may agree (transiticaagreemerjt In the lower
sub-process a parallel decision, for example on the sojmeitbe customer, has to take
place. Only if that decision is positive, the customer areldbmpany close a bargain
(transitiondeal).

Figure 3 shows an LPO drawn in the VipLpoEditor, which représ a scenario that
should be supported by the business process model. Fomthikeexample it is easy to
see that the specified scenario is minimal executable. Bgkitng on the executability,
a process corresponding to the scenario is computed aralizisdiin the VipProEditor.
All nodes of the LPO are marked green.
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Fig. 3. The VipLpoEditor shows an executable LPO, and the VipProEditor shaesesponding
process of the Petri net.

Figure 4 shows another LPO which represents a scenariohbatdsalso be sup-
ported by the business process model. It is not an executi@uch a case, the VipVer-
ify Module computes four other helpful contributions:



— A maximalexecutable prefix of the LPO. It is highlighted green and ia®f the
eventgquery, checkandsuggestiorin the example.

— The successor events which fail to be concurrently enalftedthe occurrence of
this prefix. They are highlighted red and are the evagteementnddiscardin
the example.

— The place in the Petri net which does not carry enough tokitasthe occurrence
of the prefix to enable the red highlighted transitions. lthis placeRes Ilin the
example and highlighted red.

— A process corresponding to the executable prefix, whichssalized in the Vip-
ProEditor.
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Fig. 4. Screenshot showing an LPO which is not executable in the given Petri ne

For the interpretation of this information we have to ddsethe verification algo-
rithm more precisely. For this, we say an LBOan execution w.r.t. a placg, if this
LPO is an execution of the given Petri net restricted to tlaegkset containing only.

An inductive procedure verifies separately for every plaad the Petri net model, if
the given LPO is an execution w.rt. This is done by considering prefixes of the LPO
increasing according to a calculated order over the set @ésioespecting the LPO. If
for a placep this procedure stops before all nodes were consideredfia pféhe LPO

is computed

— which is an execution w.r.h, and
— whose extension by the set of its direct successor nodes &rexecution w.r.tp.

This prefix serves as input-LPO of this procedure for the péate. Thus, if there
are more places preventing the execution of the LPO, thearfip/Module computes
that place (highlighted red in the VipNetEditor) with the a&fast corresponding exe-
cutable prefix among all places (resp. one of them). Thosdsuccessor nodes of



the prefix representing transitions which consume tokems fs are highlighted red
in the VipLpoEditor (and therewith all events preventing txecutability of the LPO
w.r.t. p). Those direct successor nodes of the prefix representingitions which do
not consume tokens fromare highlighted yellow. Observe that possibly several ef th
red highlighted events are enabled after the occurrendeeqgirefix, but not all of them
concurrently. Extending the prefix by such events wouldltésia bigger executable
prefix, but with less information about the non-executapilfhe executable prefix cor-
responding to a placg depends on the calculated total ordering of the LPO-nodes.
Nevertheless it is maximal w.r.t. the red highlighted nodegrefix corresponding to
p computed w.r.t. another total ordering, which containsahighlighted node, can
not include the first prefix. Finally, a process correspogdmthe prefix is visualized,
showing a possible distribution of tokens among the pre- @ogt-conditions of the
events of the prefix. In the example, that means:

— The prefix consisting of the evergsery, checkandsuggestions an execution w.r.t.
all places.

— After the occurrence of the everdgsiery, checkandsuggestionthe eventsaigree-
mentanddiscardare not concurrently enabled, since pl&=s licarries not enough
tokens.

— Each of the eventagreemenanddiscardis enabled on its own and could be used
to construct a bigger executable prefix. But then the usetdwget only the infor-
mation that the evergigreemen(or, respdiscard consumes too much tokens from
placeRes Il and not the information that tr@ombination of both eventeeds too
many tokens.

This gives the user clear information about how to changartbdel in order to
support the scenario given by the LPO (namely how to reorgethie distribution of the
resources), resp. about how the given distribution of teurces restricts the desired
behavior.

4 Relating Old and New Functionalities of VipTool

In this section, we discuss, how the new implemented funatittes described in the
previous two sections additionally fit into the existingigation and verification con-
cept supported by VipTool. For this we briefly introduce ttosicept, but omit a detailed
motivation, discussion and comparison to other approaie® we refer to several
publications from the last years ([3, 5-7]).

VipTool was originally developed at the University of Kar&e within the research
project VIP! as a tool for modeling, simulation, validation and verifioatof business
processes using Petri nets. It was implemented in the sagifgtnguage Python [7]. In
[3] we presented a completely new and modular implememt&tidava (using standard
object oriented design) that allows to add extensions in gerfiexible way.

The paper [6] proposes the following iterative validatioagedure of Petri net mod-
els:

! Verification of Information systems by evaluation of Partially orderedsrun



1. Arequirementto be implemented is identified and fornealiin terms of the graph-
ical language of the model.

2. This formal specification is validated by distinction bbse process nets that sat-
isfy the specification from all other process nets. This whg, question What
behavior is excluded by the specificatidifets a clear and intuitive answer. The
specification is changed until it precisely matches thenitkéel property.

3. The valid specification is implemented, i.e. new elemanésadded to the model
such that the extended model matches all previous and thepesifications. Ob-
viously this step requires creativity and cannot be autethatiowever, again by
generation and analysis of process nets it can be testetieriibe extended model
satisfies the specifications (actually, when all runs aretrooted, this test can be
viewed as a verification). At this stage, other verificatioethhods can be applied
as well.

4. If some requirements are still missing, we start agaim Wit first item, until all
specifications are validated and hold for the designed model

VipTool supports all these four steps. In particular, pescaets representing par-
tially ordered runs of Petri net models are generated. Theyiaualized, employing
particularly adopted graph-drawing algorithms. Spedifices can be expressed on the
system level by graphical means. Process nets are analyzedhese specified prop-
erties. The distinction of process nets that satisfy a fipation is supported. For the
test phase, the simulation stops when an error was detected.

The new functionalities now complement the second and #tieg of the above
described validation procedure as follows: First, for ceargPetri nets it can be (too)
time consuming to construct all processes. In such casesdpful to have the possi-
bility not to check on all the processes by unfolding the iRedt, but to directly test a
particular scenario to be a possible execution of the Petronnot. Second, the user
now can specify concurrency of events. If an LPO represgmidesired behavior turns
out to be not executable, then the user gets detailed infamabout the reasons by
visualizing the first state of the system which does not enalslet of concurrent events
of the LPO. This facilitates the creative step of changirgggpecification in the second
step as well as changing the model in the third step. Finallthe third step the user
now can verify particular concurrent runs directly.

5 Experimental results

In this Section we test the performance of the presenteditiigts by means of ex-
perimental results for the example instan¢8s ,,, lpo: ,,) and (Na,,, lpos ) shown

in Figure 5 withn € N increasing. All experiments were performed on a Windows PC
with 256 MByte of RAM andl GHz Intel Pentium Il CPU. The times are measured
in seconds. Table 5 shows the results for the following faocedures executed by the
VipVerify Module: (A) Translation into the associated flowtwork, (B) Test whether
lpo; , is an execution oV, ,,, i« € {1,2}, (C) Test whethetpo, ,, is a minimal execu-
tion of N, ,,, @ € {1,2}, and (D) Computation and Visualization of the correspogdin
process. The results show that the algorithms work betteLROs with much con-
currency between events. The weaker performance for LP@slittie concurrency is
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Fig. 5. Two place/transition Petri net’; ,,, each together with an executable LP&; ,, i =
1,2, dependent on the parametee N.

partially due to the quite general construction of the aséed flow network, which
could be further optimized.

[ (N1,n, lpo1,n) I (Na2,n, lpoa,n) |
[n] 10 ] 50 | 100 | 500 || 10 | 50 | 100] 500 |
(A)|{0.001| 0.008 | 0.037 | 3.139 |{0.001|0.001]|0.001| 0.013
(B)[|0.004| 0.679 | 8.564 {959.205|{0.001|0.008|0.031| 0.534
(C)||0.027| 5.063 |55.356 - 0.039|0.198(1.273|78.413

(D)||0.476|170.719| — - 0.008(0.297]0.591| 7.396
Table 1.Results of the executability test

6 Conclusion

We have presented the new VipVerify Module of the VipToolsoiping scenario based
verification of Petri net models of distributed systems aadcdibed its functionality
within a small case study. VipVerify fits in the existing fuiomalities of the VipTool
of supporting the step-wise design of business process Isjagtaploying validation
of non-sequential specifications and verification of the ehdleach step. The further
development of VipTool includes the following tasks:

— We plan to implement more efficient maximal flow algorithmsierying the pre-
sented verification algorithms.

— At present, VipTool only supports low level Petri nets. Warpto extend its func-
tionalities to an appropriate restricted kind of predidasémsition nets.

— We are currently working on the synthesis of place/tramsitiets from given sets
of LPOs. In [1] we present the first theoretical results whighplan to adapt for
practical use and then to implement into VipTool.



We acknowledge the work of all other members of the VipTooelkdi@oment team,

namely Niko Switek and Sebastian Mauser.
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