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Abstract proper generalization of LPOs. Stratified order structures
were originally introduced independently in [4] (under the
In this paper we introduce executions of place/transition name prossets) and in [5] (under the name composets).

Petri nets with weighted inhibitor arcs (PTI-net) as en-
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abled labeled stratified order structures (LSOs) and présen
a polynomial algorithm to decide, whether a scenario given
by an LSO is an execution of a given PTI-net.

The algorithm is based on an equivalent characteriza-
tion of enabled LSOs called token flow property. Although

the definition of the token flow property involves exponen- ~ pit-net Executions
tially many objects in the size of the LSO, there is a nontriy- it inhibitor arc (a priori semantics)
ial transformation into a flow optimization problem which Figure 1. PTI-net with executions.

can be solved in polynomial time. As an example, Figure 1 shows a p/t-net with inhibitor

arc(p, d) having weigh®. This inhibitor arc specifies, that
1 Introduction d is only enabled to occur, jf is not marked by more than
two tokens. Thus, the enabledness of a transition depends

Specifications of concurrent systems are often formu- on tests via weighted inhibitor arcs, whether the number
lated in terms of scenarios expressing causal dependenciesf tokens in places does not exceed the weight of the in-
and concurrency among events. In other words, it is of- hibitor arc (beside the classical enabling conditions &f p/
ten part of the specification, that some scenario should ornets). Throughout the paper, we consider ahgriori se-
should not be an execution of the system. Thus, given amanticsof PTI-nets (other semantics are briefly discussed
system, a natural question is, whether a scenario is an exin the conclusion). According to the a priori semantics, the
ecution of the system. In [7] we presented a polynomial test of markings of places via inhibitor arcs precedes the ex
algorithm to answer this question, when the system is givenecution of transitions. In Figure 1, the behavior of the tran
by a place/transition Petri net (p/t-net), and a scenario issitionsa, b andc is not restricted by inhibitor arcs: In the
given as a labeled partial order (LPO). initial marking, the transitiong andb can be executed con-

"Petri nets with inhibitor arcs are intuitively the most di- currently (that means in any order and as well at the same
rect approach to increase the modeling power of Petri nets"time). Then, transitior can be executed twice and, for ex-
[13] and have been found appropriate in various applica- ample, consumes once the tokens produced byd once
tion areas [1, 2]. In fact, it is well known that such nets are the tokens produced by. That means, the transitions
even equivalent to Turing-machines (w.r.t. their seqaénti andb are executed "earlier than” transitier(respectively).
behavior), and thus several decision problems, such as th&onsider now transition: Since, after the occurrence of
reachability problem, which are decidable for p/t-netg, ar « andb, the placep is marked by four tokeng] cannot be
undecidable for nets with inhibitor arcs. Nevertheless, we executed concurrently toandb (since then the occurrence
can show in this paper that the results from [7] can be gen-of d is prohibited by the inhibitor ar¢p, d)). Butd can be
eralized to p/t-nets with weighted inhibitor arcs (PTI8)et  executed concurrently to, if it does not occur later thah
the most general notion of Petri nets with inhibitor arcs. As (since then the number of tokens in placdoes not exceed
developed in [6, 10], for such nets, scenarios can be for-the inhibitor arc weigh®). In other words, the transitions
mally given as labeled stratified order structures (LSOs), ab andd, when executed concurrently to(independently



from @), cannot occur concurrently or sequentially in order tions (Subsection 3.3).The polynomial algorithm is then

b — d. But they still can occur at the same time (because of developed from the token flow property (Section 4). It is

the occurrence rule "testing before execution”) or sequen-based on a nontrivial transformation of the token flow prop-

tially in orderd — b —this is exactly the behavior described erty into a flow optimization problem.

by "d not later tharb”. In Figure 2, the relationship between the different char-
The described causal relations between transitions of theacterizations of executions is depicted for p/t-nets (iaft)

net are illustrated by the execution shown most left in Fig- and PTI-nets (right part), thus illustrating the theorems

ure 1. The solid arcs represent the "earlier than” relaten b shown in this paper in relation to analogue results, known

tween events, and the dashed arc depicts the "not later thanfor p/t-nets. We start with the introduction of LSOs and

relation explained above. There are also other possible exePTI-nets in Section 2.

cutions of the PTI-net from Figure 1: fis executed once

"not later than”s, then the number of tokens in the place

cannot exceed the val@g and thusi can be executed con- ﬁlﬂ ﬁ This paper
currently to the. executions af b and (two tlmes): (see the [ token flow property* | [ token flow property* |
second execution in Figure 1). Further (with the same argu-

ment), it is possible, thatis executed once "earlier than” 0 7] This paper

(see the third execution in Figure 1).

. Of course, algo symmetric "not Iater. than’i relations are [ enabled" F_lﬂ jexecutable’| [ enabled” -] executable®
in general possible between events, in which case these o.14] Not valid

events can only occur at the same time, but not sequentially e ot

in any order. Such events are callsghchronous With Definition [10]

partial orders, one can only model "earlier than” relations
between events, but it is not possible to describe relation-
ships, where synchronous occurrence is possible, but con- Figure 2. Theorems in this paper.
currency is not existent. In [6, 10], causal semantics based

on LSOs, like the executions in Figure 1, consisting of a 2 Preliminaries

combination of "earlier than” and "not later than” relat®on

between events, were proposed to cover such cases. Thus, |n this section, we recall the basic definitionsthtified
we consider scenarios to be formally given through LSOs. order structuresandp/t-nets with weighted inhibitor arcs
In this paper, we present a polynomial algorithm running ~ We useN to denote the nonnegative integers. Given a
in O(|P|n?) time to test, whether a given LSO is an execu- function f from A to B and a subsef’ of 4, we write f|¢
tion of a given PTI-net, where is the number of nodes to denote the restriction gf to the selC. Given a finite set
of the LSO, andP| is the number of places of the PTI-net. A, the symbol A| denotes the cardinality of. The set of
Since up to now for PTI-nets there is no formal definition of all multi-sets over a set is denoted byN4. Form € N4,
executions, it is thereto necessary to lift this notion fifr p  m(a) denotes the number afs in the multi-setm. We
nets to the PTl-net level. There are three equivalent char-write a € m if m(a) > 0. Finally, we denote the identity
acterizations (definitions) of executions of p/t-nets, eBm  relation overA by id 4.
(i) LPOs enabledw.r.t. a p/t-net, (ii) LPOsxecutabldn
a p/t-net, and (iii) LPOs fulfilling theoken flow property 2.1 Stratified order structures
w.r.t. a p/t-net. The first two characterizations do not lead
to efficient tests. Their equivalence was shownin [9, 14]. In  We start with some basic notions preparative to the def-
[7], we introduced the token flow property of LPOs, showed inition of stratified order structureg¢so-structures A di-
its equivalence to the other two characterizations andldeve rected graphis a pair(V, —), whereV is a finite set of
oped an efficient algorithm to test, whether a given LPO nodesand—C V x V is a binary relation over V, called
satisfies the token flow property w.r.t. a given p/t-net. the set of arcs As usual, given a binary relatior:, we
We propose a definition ¢fSOs enabled w.r.t. a PTI-net  Write a — b to denote(a, b) €—. Two nodesz, b € V are
which is a proper generahzauon of the definition Qf LPOs 1The definition ofexecutabld_POs is strongly related to the definition
enabled w.r.t. a p/t—net and allows the representation of ex of process nets of p/t-nets. Since the most general notigmoafess nets
ecutions with minimal causal dependencies between tran-existent for PTI-nets [10] does not define minimal causaledelencies
sition occurrences of PTl-nets (Subsection 3.1). We alsobetween transition occurrences, there are enabled LSQsh ate not ex-
define heloken flow propertpf LSOs wr.. PThnets asa — SC/a0, Wher s s 1 b e et e, Mo e o
generalization of the respective notion for LPOs and pf§-ne  generaiizations of the characterizations (i) and (ii) te BTI-net level is
(Subsection 3.2) and show the equivalence of these two no-examined in [8].

p/t-nets PTI-nets




calledindependentv.r.t. the binary relation— if a 4 b
andb 4 a. We denote the set of all pairs of nodes inde-
pendent w.rt.— by co_, C V x V. A partial orderis a
directed graplpo = (V, <), where< is an irreflexive and
transitive binary relation oft". If co . = idy, then(V, <)

is calledtotal. Given two partial orderpo, = (V, <1) and
po, = (V,<2), we say thapo, is asequentializatior{or
extensiofof po, if <;C<o.

So-structures are, loosely speaking, combinations of two
binary relations on a set of events, where one is a partial

order representing an "earlier than” relation, and the iothe
represents a "not later than” relation. Thus, so-strusture
describe finer causalities than partial orders. Formatly, s
structures areelational structuressatisfying certain prop-
erties. Arelational structure(rel-structure) is a triple&s =
(V,=<,C), whereV is a set (ofeventy, and<C V x V
andC C V x V are binary relations of’. A rel-structure

S = (V,</,') is anextensionof another rel-structure
S=(V,<,0),writtenS C &', if <C<’andCC".

Definition 1 (Stratified order structure [6])A rel-structure
S (V,=<,C) is called stratified order structuréso-
structure), if the following conditions are satisfied foit al
u,v,w € V.

(Clu IZ w.

(CHu<v = ur .

CHuCvCwAu#w = ul w.
ClhHuCcv<wVu<vCw = u<w.

In figures,< is graphically expressed by solid arcs and

C by dashed arcs. According to (C2), a dashed arc is omit-

ted, if there is already a solid arc. Moreover, we omit arcs,
which can be deduced by (C3) and (C4). It is shown in
[6], that (V, <) is a partial order. Therefore, so-structures
are a generalization of partial orders, which turned out to

be adequate to model the causal relations between events

of PTI-nets under the a priori semantics. In this context,
< represents the ordinary "earlier than” relation (as for
p/t-nets), whileC models a "not later than” relation. Ac-
cording to [6], for nodes:,v € V, there is an extension
S = (V,</,’) of S with u <’ v if and only if v Z «w and

u # v. In particular, there holdg < v = v I u. These
properties justify the described causal interpretation<of
and_. The executions shown in Figure 1 are so-structures
with labeled nodes.

We introduce a subclass of so-structures which turns out

to be associated to sequences of (synchronous) transitio
steps of PTl-nets.

Definition 2 (Total linear so-structures).etS = (V, <,C)
be an so-structure, thef is calledtotal linearif co . =
(C \ <)Uidy. The set of altotal linear extensiongor
linearization} of an so-structures is denoted byin(S).

Figure 3 shows four total linear so-structures with la-

extensions of the second execution shown in Figure 1, and
the third and fourth LSO are extensions of the first execu-
tion shown in Figure 1 (using the results from [6] about
augmenting so-structures, one can conclude, that every so-
structure is extendable to a total linear so-structure).
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Figure 3. Total linear so-structures.

For the definition of the token flow property for LSOs,
we need the notion of prefixes (of nodes) of so-structures.
These are defined by subsets of nodes, which are downward
closed w.r.t. the_-relation:

Definition 3 (Prefix (of a node)) LetS = (V, <, C) be an
so-structure, and let’ C V be such thatu’ € V' Au C
u’) = u € V'. ThenS§’ (V/,-< |V’><V’7|: |V’><V’)
is calledprefix of S. We say, that the prefig’ is defined
by V’. If additionally (v < v = u € V') for some
v e V\V/ thenS' is calledprefix ofv (w.r.t. S).

This definition of prefixes is compatible with the set of
linearizations of an so-structure in the following sense:

Lemma 4. LetS = (V, <, C) be an so-structurey’ C V
andv € V. Then,V’ defines a prefix of w.rt. S, if and
only if there is a linearizatiorS’ € lin(S), such thatV’
defines a prefix aof w.r.t. S’.

Proof. if: LetS’ = (V,<’,C’) € lin(S) and letV’ C V
define a prefix ob» w.r.t. §’. Consider nodes’ € V' and
u € V withw C «/. SinceS’ is an extension of, this
impliesu ' «'. Becausd/’ defines a prefix of’, we get
u € V'. Thus,V’ also defines a prefix of. Let further
v’ < v. Again, sinceS’ is an extension of, this implies
v’ <’ v, and therefore we haw€ € V'. Finally, if v C ¢/,
thenv C’ v' and therefore’ ¢ V’. Thus,V’ defines in fact
a prefix ofv.

only if: Let V' define a prefix ob w.r.t. S. We construct
alinearizationS’ = (V, </, ') of S, such thal’’ also de-
fines a prefix ob w.r.t. §’. For this, denoté, C V' the set
of all nodes, which are minimal w.r.t< in S. Then, con-
sider the restriction of onto the node sét \ 1, and denote
V1 C V' the set of all nodes, which are minimal w.r.in

n

this new so-structure. Following this technique, we define
inductivelyV,, C V' as the set of nodes, which are minimal
w.r.t. the restriction of< onto the node sét’ \ (U?:_O1 Vi),

aslong as/’ \ (UZy Vi) # 0. 1f v/ \ (UL, Vi) = 0
andV \ (Uf\i’o1 V;) # 0 for someN, then further define
Vx C V as the set of nodes, which are minimal w.r.t. the

restriction of< onto the node sét’ \ (vazgl Vi), and so on

beled nodes (LSOs), where the first and second LSO arg(note thatv € Vi, becausé’’ defines a prefix ob).



We now can defing’ through<'= UKJ. Vi x V; and
C'= ((U; Vi x Vi) \ idy;,)U <'. By constructions’ is
a total linear so-structure. It remains to show that <’,
CCC, {v eV |V < v} CV and{v € V | v =
Vo' vinV =0.

Letu,v € V with u < v: SinceV’ defines a prefix of
S, it is not possible that € V' andu ¢ V'. Suppose
u,v € Viu,v e V\V'orue V' andv ¢ V': Then by
construction, there must be< j with v € V; andv € V.
This givesu <’ v.

Letu,v € V with u C v: SinceV’ defines a prefix
of S, it is not possible that € V' andu ¢ V’. Suppose
u,v € V'oru,v € V\V': Letu € V; andv € V;. Assume,
thatv is minimal w.r.t. < in an earlier step than. Then in
this step, there is’ < u butu’ £ v. This contradicts (C4).
Therefore either, andv are minimal in the same step or
u is minimal in a step earlier than This givesu ' v.
Suppose: € V' andv ¢ V’: Then by construction, there
must bei < j with v € V; andv € V;. This givesu <’ v.

Letv' € V with v' <’ v: Since by construction € Vy,
there isn < N with v’ € V,, C V. Iffinally v =’ v/, then
v’ € V, forsomen > N,ie.v' € V', O

We will often uselabeled so-structure$LSOs) in the
following. These are so-structur&s= (V, <, C) together
with a set of labelsT” and alabeling function/ : V —

Definition 5 (PTl-net) A PTl-net N is a quadruple
(P, T,F,W,I), where(P,T,F,W) is a p/t-net, andl :

P x T — NU {w} is theweighted inhibitor relation If

I(p,t) # w, then(p,t) € P x T is called(weighted) in-
hibitor arg andp is aninhibitor place oft.

In the following, we denote < w forn € N. A marking
of a PTl-netN = (P, T, F, W, I) is afunctionm : P — N,

i.e. a multi-set oveP. A marked PTI-neis a pair(V, my),
whereN is a PTI-net, andng is a marking ofV, calledini-

tial marking. A transitiont can only be executed,jifcarries

at most/((p, t)) tokens. In particular, if ((p,t)) = 0, then

p must be emptyI((p,t)) = w means, that can never be
prevented from occurring by the presence of tokens iim
diagrams, inhibitor arcs have small circles as arrowheads.
Just as normal arcs, inhibitor arcs are annotated with their
weights. Now however, the weightis not shown. Figure 1
shows a marked PTI-net.

According to the a priori semantics of PTI-nets, the in-
hibitor test for enabledness of a transition precedes the co
sumption and production of tokens in places. Thus, a multi-
set (a step) of transitions is (synchronously) enabled in a
marking, only if in this marking, each transition in the step
obeys the inhibitor constraints before the step is executed

Definition 6 (Occurrencerule)LetN = (P, T, F, W, I) be
a PTl-net A multi-set of transitions (a step) issnabled to

T. We use the notations defined for so-structures also foroccur in a markingn w.r.t. the a priori semantidém(p) >

LSOs. IfT is a set of labels o, i.e. [ : V — T, then
for a setU C V, we define the multi-seit/|, € N7 by
[Ui(t) = |{v eV |veUAI) = t}. We will consider
LSOs only up to isomorphism. Two LS@¥, <, , 1) and
(V’, <.’ ") are calledsomorphig if there is a bijective
mappingy : V. — V' such that(v) = I'(¢(v)) forv € V,
v<w < Pw) < Yw)andv C w < Y) °7 P(w)

> e T(OW((p,t)) for every placep € o7 andm(p) <
I((p,t)) for each placep and each transition € .

The occurrenceof a (possibly empty) step of transi-
tions  leads to the new marking’, defined bymn/(p) =
m(p) =3 e, T()(W((p, 1)) =W ((t,p))) foreveryp € P.
We writem — m/ to denote, that is enabled to occur in

forv,w € V. We will use the same notions for LPOs, too m, and that its occurrence leads#d. A finite sequence
(since an LPO can be understood as an LSO with a "notof stepsc = 71...7,, n € N, is called astep occurrence

later than”-relation, that equals the "earlier than”-tieln).

2.2 PTI-nets

A netis a triple (P, T, F'), where P is a finite set of
placesT is a finite set ofransitions satisfyingP N'T" = (),
andF C (PUT) x (T U P) is aflow relation Let
(P,T,F) be anet,andc € P UT be an element. The
pre-setex is the set{y € PUT | (y,x) € F}, and the
post-setre is the set{fy € PUT | (z,y) € F}. Given
a (multi-) setX C P U T, this notation is extended by
X = ,cxerandXe = J . ve. A place/transition
net(shortly p/t-ne) N is a quadruplé P, T, F, W), where
(P, T,F)is anet,andV : FF — N7 is aweight function
We extend the weight functioi to pairs of net elements
(z,y) € (P xT)U(T x P), satisfying(z,y) ¢ F, by

sequence enabled in a marking and leading tom,,, de-
noted bym -2 m,,, if there exists a sequence of markings
ma,...,my such thatm -5 m; — ... =% m,. The
markingm.,, is reachable from the marking.

A step occurrence sequence can be understood as a pos-
sible singleobservatiorof the behavior of a PTI-net, where
the occurrences of transitions in one step are obsexvibe
same timeor synchronously

We will use the same notions for (marked) p/t-nets, too
(since a p/t-net can be understood as a PTI-net with an in-
hibitor relation, which equals the constant

3 Executions

In this Section, we lift the notions of "enabled LPOs”
and "token flow property”, known for LPOs w.r.t. p/t-nets,
to the setting of PTI-nets w.r.t. the a priori semantics.



3.1 Enabled LSOs in mg. Since in LPOs, concurrent and synchronous transi-
tion occurrences are not distinguished, here a step is con-
We now introduce LSOs to model executions of PTI- sidered as a set of events labeled by transitions (transitio
nets. For this, the two relations of an LSO are interpreted asoccurrences), which are concurrént.

"earlier than” resp. "not later than” relations betweemtra
a b d a| b a b
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sition occurrences. If two transition occurrences are in no

later than relation, that means, they can be observed (are®
allowed to be executed) synchronously or sequentially in
one specific order. If two transitions are neither in earlier
than relation nor in not later than relation, they are concur

rent and can be observed (are allowed to be executed) syn- ~ p/t-net No Executions
chronously or sequentially in any order. In this sense one With inhibitor arc (a priori semantics)
LSO "allows” many observations (step sequences). If all Figure 4. LSOs, not enabled.

these observations are enabled step occurrence sequences

thlilc;rsrr?alls C;:f;i':i?gz sequences "allowed” by an LSO deed enabled LSOs w.r.t. the shown PTI-net. As a further
Y P sequ W y ?xample, consider the three LSOs shown in Figure 4: In all

is defined as the set of step sequences extending (sequentithee cases, the step sequefice b)(c + d)c is a lineariza-
izing) the LSO, where a step sequence can be easily inter-.On of the LSO Sastyeray € lin(S)), but it is not an

. . . a c c 1
pretetd Iltst? Ifl aj t? n tLSO_.t.Each tstep Its represented;)sy ?Wset O¢nabled step occurrence sequence. This is because after the
events at?f tﬁ rans: |(t)_ns( r%r:s' 'OE oiﬁurrenc . i execution of(a + b), the placep carries four tokens, dis-
are in not 1ater than retation with €ach other (re_p_resen 'ng abling the following stefic + d). Therefore, all three LSOs
synchronous transition occurrences), and transition mccu are not enabled w.rt. the shown marked PTl-net
rences in different steps are ordered in appropriate earlie Observe. that there is no efficient test of Definition 7
than relation. Formally, for a sequence of transition steps _. ' . . '

since the number of step sequeneewith S, € lin(S)

o=m...T,, definethe LSGS, = (V, <, , 1) underlying L
oby: V= U, V,andl : V — T with [Vi[,(t) = (1), may be exponential in the number of nodes .of

<=U;; Vi x VyandC= (U, Vi x Vi)U <) \ idy.
It is easy to see that LSOs underlying a sequence of

transition steps are total linear. This is because; = In this subsection, we extend the notions of token flow

o s nclon and fen low proper, known for PO and
tion steps (from left to right)a(b+ -+ d)c, (a-+d)(b+ c)c, nets, to the setting of PTI-nets. In[7], itis shown, that lSPO

(a-+b+d)(2¢) and(b-+d)a(2c). Of course, also the reverse are enabled, if and only if they fulfill the token flow property
i valid. ie. for each total Iiﬁear LSE T (V. =.C.1) w.r.t. a p/t-net. Our aim is to show the same for LSOs and

there is a step sequenegsuch thatS andS,, are isomor- PTl-nets.
phic. Thus, for LSOs, which have transition names as la- Fix a marked PTI-netN, mo), N = (P, T, F,W,I), a

bels, we can identify total linear LSOs with sequences of placep of N anq an LS = (V, <, L, 1) with L - V - T
" Assume, thatS is enabled to occur w.r.{ N, mg) in the a
transition steps.

priori semantics. Since the inhibitor relatidrof (N, mg)
Definiton 7 (enabled LSQ) Let (N,mg), N = restricts the behavipr of the underlying p/t-iét’, mg) =
(P, T, F,W,I), be a marked PTI-net. (P,T,F,W,my), S is then also enabled w.r¢N’, mg). In

An LSOS = (V,=<,C,0)withl : V — T is called apl/t-net, transitiops,which can be executed as one stp, al
enabled (to occur) W.r.t(N, mo) (in the a priori seman- ~ an be executed in arbitrary order. Therefore, also the LPO

tics), if the following statement holds: Each finite step se- P%s = (V> =<, 1), underlyingS, is enabled w.r.t. the p/t-net
quences = i ...7, with S, € lin(S) is a step oc- (N’,mg). Altogether, we get, that the enabledness of the

currence sequence dfV,mo). We say, that the occur- LPO underlyingslw.r.t. the p/t-net underlyingV, my) is a
rence ofS leadsto the markingm’(p), given bym/(p) = necessary condition for the enablednesS wfr.t. (N, my).

m(p) + 2, ey (W((U(v),p)) = W((p,1(v)))). Lemma 8. LetS = (V, <, L, 1) be an LSO enabled w.rt. a
This definition is consistent with and a proper general- marked P_TI-_ne(N, m,o)' N = (BT, FW.I), gccordlng
ization of the notion of enabled LPOs: An LR@ = (V, < to the a priori semantics. Then, the LR©, <, [) is enabled

,Dwith!: V' — T is enabled to occuw.r.t. a marked p/t- w.r.t. the marked p/t-ngtP, T, F, W, mo).
net(p, T,.F,.I/V, mO)’_ if each step sequence, which extends 24 giscussion of further general semantical argumentsifirsg this
(sequentializeslpo, is a step occurrence sequence enabled definition, can be found in [8].

"It is easy to check, that the LSOs from Figure 1 are in-

3.2 Token flow property




That means, the token flow property ®mw.r.t. (N, mo) W ((I(vo),p)) = mo(p) for each placen. We say, thatpo
should include the token flow property fdpos w.r.t. fulfills thetoken flow property w.r.t( N, my), if the follow-
(N’,mg). The token flow property for LPOs w.r.t. p/t-nets ing statement holds: For every plagec P, there exists a
is based on the notion dbken flow functions For every  token flow functior,, :<*— N such that
placep, a token flow functionr,, assigns non-negative in- (IN) Vo € V' : In(v,z,) = W((p,l(v)))
tegers to the edges of an LPO. The valyé(v,v’)) of an (OUT)Vv € VU {w} : Out(v,z,) = W((I(v),p)).
edge(v,v’) is interpreted as the number of tokens, which )
are produced by the transitidw) and consumed by the In [7], we showed that an LPO fulfills the token flow
transitioni(v') in the placep. By this construction, we still ~ Property w.r.t. a marked p/t-net, if and only if it is enabled
cannot specify the number of tokens, which are consumedW-I-t- this net’
by a transition from the initial marking of a place, and the ~ We now come back to the considerationfSince the
number of tokenS, which are produced by some transition"not later than”-relation ofS does not describe the flow of
in a placep, but not consumed by further transitions (and tokens (since token flow always produces an earlier than
thus remain in the final marking). Therefore, we extend a 'elation between events), the token flowfv.r.t. a place
considered LPO by ainitial event which is interpreted as ~ ¢an be given by a token flow function bfos. Clearly (as
the occurrence of a transition, producing the initial mark- argued above), for each place, there must be a token flow

ing, and dinal eventwhich is interpreted as the occurrence function, satisfying (IN) and (OUT), i is enabled.
of a transition, consuming the final marking. The other way round the existence of such token flow

functionsz,, satisfying (IN) and (OUT), is not enough to

Definition 9 (x-extension of LPOs)Letlpo = (V, <,l)be  ensure thatS is enabled. This is because the execution
an LPO. Then, an LP@o* = (V*, <*,1*), whereV* = of a prefix of S still might produce too many tokens in a
(VU{v0, Umax })s V0, Umax ¢ V, <*=< U({vo} x V)U(V x placep (according tor,), disabling a subsequent transition,
{Vmax}) U{(v0, Vmax) }» 1*(v0), * (Vmax) & U(V), I*(v0) # which tests this place via an inhibitor arc. Thus, we require
I*(vmax) andl*|y = 1, is calledx-extension ofpo. that token flow functions fulfill an additional property. Ehi
property should only allow token flow functionsg, accord-
ing to which for each event, the execution of one of its pre-
fixes does not put too many tokens intoIn other words,
each marking, which is reachable through the execution of
a prefix of some event, should respect the inhibitor relation
of the corresponding transition to all places.

Assume, that we have given a token flow functignon
the edges dfpoy, satisfying (IN) and (OUT) for some place
p. We compute the number of tokens in this place after the
execution of some prefix af. Let the prefix be defined
T ) ) by the set of event§”. On the one hand, by construction,
Ipo™ is (_:alled theintoken flow ofv w.rt. = and is denoted 10\ oies of:, on edges between eventsiii correspond
and defined byn(v, z) = 3_,, 1., 2((w, v)). to tokens, which are produced and consumed by events in

Definition 10 (Token flow function of LPOs) Letlpo =  thiS prefix. On the other hand, the valuesagfon edges
(V,<,1) be an LPO, andpo* — (V*,<*,1*) be ax- from events i/’ to events irl”\ V’ corresponds to tokens,

extension ofpo. A functionz :<*— N is called token which are produced by events IY and remain irp after

flow functionofIpo, if equally labeled nodes have equal in- the €xecution of the prefix. Thus, the marking of the place
token and outtoken flok) Yo, w € V : 1(v) = l(w) = after the execution of the prefix is given by the sum of the
(In(v,z) = In(w,z) A Out(v’ ) = Out(w, z)). values ofr,, on such edges. We define this sum for arbitrary

token flow functionse and call its value théinal marking
An LPOlpo = (V, <, 1) satisfies théoken flow property  of the prefix w.r.t. z. Formally, the initial event ofpo
w.r.t. a marked p/t-netf for each place of this net, thereis  belongs to each prefix.
a token flow functiorx,, compatible wittp in the sense, that

its intoken and outtoken flows respect the weight function Definition 12 (/Final r/narl/<inga) I/_etS = (V,<,E5,1) be an
and the initial marking of the net as follows: LSO, and lets” = (V', <', ", I') be a prefix ofS. Let fur-
therz : V* — N be a token flow function ¢V, <, 1), and

By assigning natural numbers to the arcs efextension
of an LPO, we define a so called token flow functioof
this LPO (withvg as its only smallest element angd .., as
its only maximal element). It is clear, that equally (with
the same transition) labeled events should produce and con
sume the same overall number of tokens in a place. The
overall number of tokens produced by an evenf Ipo* =
(V*,<*,1*) is called theouttoken flow ofv w.rt. = and
is denoted and defined Wyut(v,z) = 3, .., z((v, w)).
The overall number of tokens consumed by an eveat

Definition 11 (Token flow property of LPOSs) Let

3In particular, we showed, that a token flow function, satigfy(IN)
/ I _ B ) )
(N ,mo), N = (P’ T,F, W)’ be a marked p/t-net, and and (OUT) w.r.t. a place, abstracts from the individualifyconditions of

let Ipo = (V, 471) be an LPO With.l(V) = T, and let a process of the net and encodes the flow relation of this psdngnatural
Ipo* = (V*,<*,1*) be ax-extension oflpo. Denote numbers.



let vy be the initial event of V*, <*,1*). Thefinal mark-
ing of &’ (w.r.t. z) is denoted and defined bys: (z) =
ZuEV’, VgV u<*v x((u, ’U)) + Zv&\/’ x((vo, U))

We now state the token flow property for LSOs w.r.t.
PTI-nets: For each event, the final marking of every of its
prefixes must not exceed the weight of the inhibitor arc be-
tween the corresponding transition and place.

a[] A |oBEld a[] 4 JbBd a[] A4 ]oBld a[] , Hd
2 2 2 2 2 2 2 2
[ V[ e Lt [ [ [ e e[} e

An execution
(a priori semantics)

p/t-net
with inhibitor arc

Figure 5. LSO with token flow function.

Definition 13 (Token flow property of LSOs)Let S =
(V,<,,1) be an LSO. An LSG* (V*, <>, %, 0%),
where (V*, <* 1*) is a x-extension of the LPQV, <, 1)
andC*=C U <*, is calledx-extension ofS. A function
x :<*— N is calledtoken flow function ofS, if it is a token
flow function of(V, <, 1).

Let further(N,mg), N = (P, T, F,W, I), be a marked
PTI-net and let (V) = T. We say, thatS fulfills the to-
ken flow property w.r.t( N, my), if the following statement
holds: For every place € P, there exists a token flow func-
tion z, :<*— N, satisfying (IN), (OUT) and
(FIN) For all nodesv € V and all prefixesS’ of v, there
holds: ms: (z,) < I((p,1(v))).

Figure 5 shows one of the executions from Figure 1 (four
times) with annotated token flow functiaf) w.r.t. the place
p. Here, we omitted to draw the initial and maximal event
and corresponding arcs, because there are no tokenis in
the initial marking and in the final marking after the exe-
cution of the LSO. The node labeled byhas intoken flow
0 = W((p,a)) and outtoken flon2 = W((a,p)). The
same holds for the node labeled by The nodes labeled
by ¢ have intoken flon2 = W ((p,c)) and outtoken flow
0 = W((c,p)). Finally, the node labeled by has into-
ken flow0 = W ((p, d)) and outtoken flow) = W ((d, p)).
Thereforey,, satisfies (IN) and (OUT) w.r.{p. To examine
condition (FIN), we must only consider the node labeled by
d (node filled by black color): The execution is depicted
four times, showing all prefixes (nodes filled by grey color)
of this node. The arcs, which count for the final marking of
a prefix, are highlighted: The first and third prefix have a
final marking of2 < 2 = I((p, d)), the second and fourth
prefix have a final marking @f < 2 = I((p, d)). Thus, also
(FIN) is satisfied. The maximum over all final markings of
prefixes of thei-labeled node is displayed inside this node.

Observe that also the definition of the token flow prop-
erty is inherent exponential in the size of the LSO, since it

involves in general exponentially many prefixes of the LSO
(condition (FIN)). Nonetheless, as will be explained inSec
tion 4, the test of condition (FIN) can be transformed into a
flow optimization problem, which can be solved in polyno-
mial time.

3.3 Enabledness vs. token flow property

In this Subsection, we will prove the first main result of
this paper given by the following Theorem. In the subse-
guent Subsection, we will finally present a polynomial test
of the token flow property as the second main result.

Theorem 14. Let (N, mg), N = (P, T,F,W,I), be a
marked PTI-net, and lef = (V, <, , 1) be an LSO with
I(V) =T. Then,S is enabled w.r.t(N, my), if and only if
it fulfills the token flow property w.r.{N, my).

Proof. only if: Let S be enabled w.r.t.(N,mg). Then,
by Lemma 8,(V, <,1) is enabled w.r.t.(P, T, F, W, m),
that means for each € P, there is a token flow function
zp :=*— Nof (V, <,1), satisfying (IN) and (OUT).

We claim, that eaclr, also fulfills (FIN). For this, let
v € V andS’ be a prefix ofv, defined byV’. By Lemma 4,
there is a linearizatiots;;,, of S, such thatl’’ also defines
a prefixs;;, of v w.rt. Sy;,. There is a step occurrence
sequence = 7y ... 7, of (N, mg), whose underlying LSO
S, equalsS;;,. Since prefixes are downward-closed, a
prefixe’ = 71 ... 7 (m < n) of o with [(v) € 7,1 Must
exist, which corresponds t§/,,,. In other words, the LSO
Sos, underlyinge’, equalsS;,,. It is enough to show now
thatm(p) = ms () for the markingn, reached after the
execution ob’, sincem(p) < I((p,t)) for each place and
each transition € 7,11 by Definition 6.

We finally compute: m(p) mo(p)
S e, (W (9, ) W((t,p)))
Out(vo,zp) — Y ,c(Un(v,z,) — Out(v,zp))
ZUEV’U{UO}(ZU<*UJ pr((’U, ’U})) - Zw<*v xp((w, U)))
ms(xp), since the values on edges withiff cancel each
other out.

if: Let S fulfill the token flow property w.r.t.(IV, my),
and letz, be a token flow function satisfying (IN), (OUT)
and (FIN) w.r.t. the place. Consider a sequence of tran-
sition stepss = 7 ...7,, whose underlying LS®,, is a
linearization ofS. We have to show, that is a step occur-
rence sequence 0V, mg). For this, we show inductively,
that, if o, = 71 ... 7 IS @ Step occurrence sequence, then
Tk+1 IS @ transition step, enabled in the markingreached
after the execution of, for0 < & < n — 1.

First observe, that is a step occurrence sequence
of (P, T,F,W,mg), since (V,<,l) satisfies the token
flow property on the p/t-net level, and thd>O under-
lying o clearly sequentializegV,<,l). That means,
the first condition of Definition 6, thatm(p) >



Dter, Thr1 ()W ((p, 1)) forevery place € o711, is al-
ways satisfied. We still have to verify the condition of Def-
inition 6, thatm(p) < I((p,t)) for each place and each
transitiont € 4. If S, is the LSO underlying, then
S,, is a prefix ofS,. DenotingS,, = (Vi, <k, Tk, lk), by
Lemma 4,V also defines a prefi§, of S. Fixt € 7444
andp € P and letv € V with [(v) = ¢, such thaiS,,

is a prefix ofv. Then, also (Lemma 4% is a prefix of
v. Itis enough to show now, that(p) = ms, (x,), Since
ms, (zp) < I((p,l(v)) by (FIN). The necessary computa-
tion is as above. O

4 Testing the token flow property

In this section, we give a polynomial algorithm to test,
whether an LSQS = (V, <, C, 1) with [(V)) = T fulfills
the token flow property w.r.t. @ marked PTI-ne¥, mo).

In the case, tha$ fulfills the flow property, the algorithm
constructs respective token flow functions for every place,
satisfying (IN), (OUT), and (FIN).

From [7], we have a polynomial test, whether for each
place, there is a token flow function, satisfying (IN) and
(OUT). If such token flow functions do not exist, then
clearly, the LSO does not fulfill the token flow property.

In the positive case, the algorithm from [7] generates such

token flow functions. We claim, that either these token flow
functions also satisfy (FIN), or the LSO does not fulfill the
token flow property (i.e. there are no such token flow func-
tions). This observation is based on the following lemma,
stating that the final marking of a prefix w.r.t. a token flow
functionz,,, satisfying (IN) and (OUT) fop, only depends
on the initial makingnq(p) and the arc weight&/ ((p, t))
andW((¢,p)) fort € T, but not on the concrete distribution
of the token flow given by:,,. This follows directly from the

fact, that the final marking can be computed as the marking

A straightforward way to compute the inhibitor value of
some nodev is to enumerate all prefixes of this node and
compute the final markings of all these prefixes according
to Lemma 15. Unfortunately, this is not efficient, since eher
may be exponentially many prefixes in the number of nodes.

Another possible formalization of the problem is as fol-
lows: The final marking of a prefix is defined as the sum
over the values of the token flow function on edges leaving
the prefix. These edges separate the node set of the prefix
from the subsequent nodes. Formally, this separation can
be seen as a cut through(resp. lpog), partitioning the
set of nodes ofS into two node sets. Such cuts are con-
sidered in flow theory, and to avoid confusion, we use the
termflow cutsfor this kind of cuts from now on. In flow
theory, one searches for maximal or minimal flows through
flow networks with upper and/or lower capacities on edges.
Thereto, one considers capacities of flow cuts. Interpgetin
Ipos as a flow network and the values of the token flow
function as lower capacity bounds for flows through this
network, the final marking of a prefix is given as the capac-
ity of some flow cut, and the inhibitor value of some node
can be seen as the maximum capacity of flow cuts of the
network. This maximum then can be computed efficiently
through its correspondence to minimal flows.

Definition 17 (Flow network, flow, flow cut, capacity)A
flow network (with lower capacitiesy a tuple(G, ¢, s, t),
whereG = (W, E) is a directed graph¢ : E — Ny is a
capacity functions € W is a node withvv € W : (v, s) &
E, calledsource andt € W is a node withvv € W
(t,v) ¢ E, calledsink.

The capacity is interpreted as a lower bound for flows,
that means dlow is a functionf : £ — Ny such that
@ V(v,v') € E: f((v,v')) = ¢((v,v')) and (b)Vv €
w \ {S’ t} : Z(w,u)eE f((wvv)) = Z(v,w)eE f((’l}, w))

reached after the execution of the prefix (the corresponding! € value|f| of a flow f is defined as the outgoing flow

computation can be found in the proof of Theorem 14).

Lemma 15. Letp be a place, and let,, be a token flow
function, satisfying (IN) and (OUT). Then, it holds for each
prefix 8" = (V/, </, C’,l') of S: ms/(zp) = mo(p) +
Yer V@O W p)) = W((p,1)))-

Thus, for different token flow functions, andz’), satis-
fying (IN) and (OUT) for a place, the valuesns: (x,) and
ms: () coincide, and thus either both fuffill (FIN), or both
do not fulfill (FIN). It remains to test property (FIN) for
the computed token flow functions, satisfying (IN) and
(OUT). For this, it is enough to compute for each nade
the maximum of the valuesis/(x,,) over all prefixesS” of
v and to compare this maximum with the vallgp, [(v))).

Definition 16 (Inhibitor value) The inhibitor value
Inh(v,z) of an evenw w.r.t. a token flow function: is
defined byinh(v, z) = max{ms:(x) | S’ is prefix ofv}.

of the source (or equivalently the ingoing flow of the sink)
> (swyer f((s,0)). Aminimal flowis the flow with mini-
mal value among all flows.

Aflow cutis a tuple(S,7) C W x W such thats € S,
teT,SNT =0andSuUT = W. The capacity of a flow
cutis defined by((S, 7)) = 3" ,cs, wer, (v,u)er (v, w))
if (TxS)NE=0andc((S,T)) =0 else.

In the following, we describe, how the inhibitor value
of a nodev can be interpreted as the maximal capacity of
some flow cut in a flow network. For this, we interpret,
loosely speakingS as a flow network. We first omit the
"not later than”-relation: We can glue events &f which
are in a symmetric "not later than”-relation. «f C— v but
v [Z u, then there might be prefixes containiadput notv,
and there might be prefixes, which contain or do not contain
both events, andv together. Since the same holdsi& v,
we replace remaining "not later’-than relations by "earlie



than”- relations. We do not want to consider all flow cuts of

ViU {v} andw ¢ V' U {vo} that c(([u], [w]))

this flow network, but only those, corresponding to prefixes >, c (.1 wrefuw], w <= (/s w")) . The statement is now
of v. Therefore, we only define (lower) capacity constraints an easy computation. Just observe, Hat S)NE =0

on edges leaving a prefix of

Definition 18 (Associated flow network)LetS = (V, <

,C,l) bean LSOp € V, §* = (V*,<*,C*,1*) be ax-

extension of with initial eventvy and maximal event,, .,

andz be a token flow function &. Let furtherU be the
set of all the nodes occurring in the prefixes)oDefine the
flow network (G, ¢, s,t), G = (W, E), associated te and
v, by

e Foru € V*, denotelu] = [ul- = {w e V* | w =
uV(w C* uAu T* w)}. DefineW = {[u] | u € V*},
s = [vo] (= {wvo}) andt = [Umax]| (= {Vmax})-

o SetE = {([u],[w]) | u C* w}.

Minimal flow
and maximal cut

Associated
flow network

Execution with
token flow function

Figure 6. Associated flow network.

Observe, that the associated flow network is well-
defined, that means far' € [u] andw’ € [w], we have
uC*w= v " w ande(([u], [w])) = c(([v], [w'])).
Figure 6 shows the flow network associated thextension
of the) LSO with token flow function from Figure 5, the as-
sociated flow network (the nodes in are filled with grey
color), a flow cut(S,T") with maximal capacity (which
equal2) through this flow network (the nodes #andT
are filled with different colors) and a minimal flow in this
flow network. Capacity and flow values which eqOadre

not shown. The following lemma states, that the final mark-

sincew 7* wfor [u] € S, [w] € T. O

Since flow cuts, which do not correspond to prefixes,of
do not have bigger capacities than flow cuts, corresponding
to such prefixes, we get:

Theorem 20. Letv be a node, and be a token flow func-
tion of an LSQS. Let further(G, ¢, s,t), G = (W, E), be
the flow network associated toandv. ThenInh(v, x)
max{c((S,T)) | (S,T) flow cut of(G, ¢, s,t)}.

Proof. Let (S,T') be a flow cut of(G, ¢, s, t), which does
not correspond to a prefix ef in the sense thaff # {[u] |
u=wg Vu € V'}foreach prefixs’ = (V/, </, ', l') of v.

We first claim, that if(S,T") does not correspond to a
prefix of S = (V, <, C,1), thenc((S,T')) = 0, since there
is [u] € Sand[w] € T with ([w],[u]) € E. Indeed, in
this casel/s = Ujyje 51 (v [u] does not define a prefix of.
That means, that thereisc Vs andw ¢ Vs with w C w.
By the definition ofVs, it is not possible, that alse C w
(because thefw] = [u]). Therefore, by the definition df,
we get([w], [u]) € E.

Letfinally S’ = (V/, </, ', I') be a prefix ofS = (V, <
, [, 1), but not a prefix ob. Let further(S, T) correspond to
&’. We claim, that then there is a prefi¢ = (V" <", "
1) of v such that((S,T)) < ¢((S”,T")) for the flow cut
S"={[u] |u=voVueV"}andT” =W\ S”".

Observe, that the intersection and the union of two node
sets, defining two prefixes, always defines a prefix again.
This implies, that there is a maximal prefix of which is
defined exactly by the séf of all the nodes, occurring in
the prefixes ofy, and that there is also a minimal prefix of
v, defined by the sdl’ = {u € V | u < v}.

In particular, the intersectio” = V' N U defines
a prefixS”. LetS” = {[v] | v v Vo e V"}
and7” = W\ S” be the corresponding flow cut. Then
clearly ¢((S,T)) < ¢((S”,T")), sincec(([ul],[w])) = 0
if w ¢ U, and there may be edgég:|, [w]) € E with
u € V"andw € V' \ V", which only count in the sec-
ond case. Thus, i8” is a prefix ofv, we are done. As-
sume, thatS” is not a prefix ofv. Then, V""" = V" U U’

ing of prefixes can be computed by capacities of flow cuts defines a prefix ob andc((5”,T")) < ¢((S",T")) for

in the associated flow network.

Lemma 19. Let &' = (V/,</,’,l’) be a prefix of a
nodewv. Let furtherz be a token flow function af, and
(G,¢,s8,t), G = (W, E), be the flow network associated
to z andv. DenoteS = {[v] | v = vo Vv € V'} and
T =W\ S. Thenms: (z) = ¢((S,T)).

Proof. Since V' C U for the setU of all the nodes,
occurring in the prefixes ob, we have for each, €

S" =AW | v =vyVov e V" andT"” = W\ 5"
(sincec(([u], [w])) = 0if w < v, and there may be edges
([u], [w]) € Ewithw € V" \ V", which only count in the
second case). 0

Thus, inhibitor values can be computed through the max-
imal capacity of a flow cut in the associated flow network.
This maximal capacity equals the minimal flow through this
network. The proof for this statement is analogous to the
proof of the better knowmaximal flow equals minimal cut



theorem of Ford/Fulkerson [3] in flow networks with up- chronicity and concurrency are not distinguished, and exe-
per capacities (see the technical report [11] for detafls).  cutions are represented by enabled LPOs. Nonetheless, the
for maximal flows in flow networks with upper capacities generalized notion of the token flow property (Definition
[3, 12], there are polynomial algorithms to compute mini- 13) can be used for such LPOs. In condition (FIN) classical
mal flows in flow networks with lower capacities running prefixes of LPOs and a modified notion of final markings,
in O(n?) time, wheren is the number of nodes of the flow corresponding to the a posteriori occurrence rule, must be
network resp. the given LSO (an explanation of the main considered. Then, the equivalence of enabledness and token
arguments can be found in the technical report [11]). flow property follows by construction. For the efficient test

If p is a place, for which there is a token flow function of the token flow property, one needs to consider a modified
of the given LSO satisfying (IN) and (OUT) (which can be flow network to compute the inhibitor value of nodes.
computed inO(|P|n?) time), then the inhibitor value w.r.t.
this token flow function must be computed for each node of References
the LSO. Thus, the polynomial test of the token flow prop-

erty takesO(| P|n*) time and looks formally as follows: [1] J. Billington. Protocol specification using p-graphseah-
nique based on coloured petri nets. In W. Reisig; G. Rozen-
1: test < true berg [15], pages 293-330. » . .
2: forall (p € P)do [2] S. Donatelli and G. Franceschinis. Modelling and anialys

of distributed software using gspns. In W. Reisig; G. Rozen-

3. if ((V, <, 1) does not fulfill token flow property w.r.f. berg [15], pages 438-476.

(P, T, F,W,my) andp) then [3] L. Ford and D. Fulkerson. Maximal flow through a network.
4: test — false Canadian Journal of Mathematic8:399-404, 1956.
5. else [4] H. Gaifman and V. R. Pratt. Partial order models of con-
6: x, < token flow function ofS satisfying (IN) ang currency and the computation of functions. UICS, pages
(OUT) w.rt.p 72-85. IEEE Computer Society, 1987. _
7. forall (v e V) do [5] R. Janicki an(:] M. K(ljutgy.H Irljvz;rlants Jand If)aradlgms 0;
. : concurrency theory. In E. H. L. Aarts, J. v. Leeuwen, an
& (G, ¢,s,%) « flow network associated ta, and M. Rem, editorsPARLE (2) volume 506 of_ecture Notes
v - . in Computer Sciencgages 59-74. Springer, 1991.
o: M « value of a minimal flow in(G, ¢, s, t) [6] R. Janicki and M. Koutny. Semantics of inhibitor netsf.
10: if (M > I((p,1(v)))) then Comput, 123(1):1-16, 1995.
11 test «— false [7] G. Juhas, R. Lorenz, and J. Desel. Can i execute my sce-
12: end if nario in your net?. In G. Ciardo and P. Darondeau, editors,
13: end for ICATPN volume 3536 ofLecture Notes in Computer Sci-
14 endif ence pages 289-308. Springer, 2005.
15 end for [8] G.Juhas, R. Lorenz, and S. Mauser. Complete process se-
: mantics for inhibitor nets. IProceedings of ICATPN 2007
Algorithm 1: Tests, whetheS = (V, <, C, 1) fulfills the [9] A. Kiehn. On the interrelation between synchronized
token flow property w.r.t(N, mg), N = (P, T, F, W, I). and non-synchronized behaviour of petri net&lektron-
ische Informationsverarbeitung und Kybernet®d(1/2):3—
; 18, 1988.
5 Conclusion [10] H. C. M. Kleijn and M. Koutny. Process semantics of gen-

] ] o eral inhibitor netslnf. Comput, 190(1):18-69, 2004.
We defined executions of PTI-nets w.r.t. the a priori [11] R. Lorenz, S.Mauser, and R. Bergenthum. Test-

semantics as enabled LSOs. The definition of enabled ing the executability of scenarios in general inhibitor
LSOs is a proper generalization of the definition of enabled nets. Technical report, 2007. http://www.informatik.ku-
LPOs and allows the representation of executions of PTI- \e/'CpAStlf?]ettt-de{\'/?rf(“Z/teChregogsll\‘/l’eﬂf'cﬁt'on:pd;h -
nets with minimal causal dependencies between transition[ IV aihotra, M. Bumar, and . Manheshwar. (V1)

As the first . It h d. that algorithm for finding maximum flows in networkiforma-
occurrences. As the first main result, we showed, that en- tion Processing Letterd(6):277-278, 1978,
abled LSOs can be characterized through the so called to-[13] J. petersonPetri Net Theory and the Modeling of Systems
ken flow property, which we lifted from LPOs to LSOs, thus Prentice-Hall, 1981.

establishing a part of the semantical framework of p/t-net- [14] W. Vogler. Modular Construction and Partial Order Seman-
executions to PTI-nets (Figure 2). As the second main result tics of Petri Nets.volume 625 oLecture Notes in Computer
we developed a polynomial test of the token flow property. Science Springer, 1992. ,
. - [15] W. Reisig; G. Rozenberg, editok.ectures on Petri Nets Il

These results are also valid for the a posteriori seman- . ! !
. f hi h finhibi . Applications, Advances in Petri Netgolume 1492 ol_ec-
tics of PTI-nets. In this case,_t etesto Inhi itor coratis ture Notes in Computer Sciencgpringer, 1998.
need not precede the execution of transitions, therefare sy



