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Abstract

In this paper we introduce executions of place/transition
Petri nets with weighted inhibitor arcs (PTI-net) as en-
abled labeled stratified order structures (LSOs) and present
a polynomial algorithm to decide whether a scenario given
by an LSO is an execution of a given PTI-net.

The algorithm is based on an equivalent characteriza-
tion of enabled LSOs called token flow property. Although
the definition of the token flow property involves exponen-
tial many objects in the size of the LSO, there is a nontrivial
transformation into a flow optimization problem which can
be solved in polynomial time.

1 Introduction

Specifications of concurrent systems are often formu-
lated in terms of scenarios expressing causal dependencies
and concurrency among events. In other words it is of-
ten part of the specification that some scenario should or
should not be an execution of the system. Thus, given a
system, a natural question is whether a scenario is an exe-
cution of the system. In [5] we presented a polynomial al-
gorithm to answer this question when the system is given by
a place/transition Petri net (p/t-net) and a scenario is given
as a labeled partial order (LPO).

”Petri nets with inhibitor arcs are intuitively the most di-
rect approach to increase the modeling power of Petri nets”
[9] and have been found appropriate in various application
areas [1, 2]. In fact, it is well known that such nets are
even equivalent to Turing-machines (w.r.t. to their sequen-
tial behavior) and thus several decision problems such as
the reachability problem which are decidable for p/t-nets
are undecidable for nets with inhibitor arcs. Nevertheless,
we can show in this paper that the results from [5] can be
generalized to p/t-nets with weighted inhibitor arcs (PTI-
nets), the most general notion of Petri nets with inhibitor
arcs. For such nets, scenarios can be formally given as la-

beled stratified order structures (LSOs), a proper general-
ization of LPOs.
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Figure 1. PTI-net with executions.

As an example, Figure 1 shows a p/t-net with inhibitor
arc(p, d) having weight2. This inhibitor arc specifies that
d is only enabled to occur ifp is not marked by more than
two tokens. Thus the enabledness of a transition depends on
tests via weighted inhibitor arcs whether the number of to-
kens in places does not exceed the weight of the inhibitor
arc (beside the classical enabling conditions of p/t-nets).
Throughout the paper, we consider thea priori semantics
of PTI-nets (other semantics are briefly discussed in the
conclusion). According to the a priori semantics the test of
markings of places via inhibitor arcs precedes the execution
of transitions. In Figure 1 the behavior of the transitionsa,
b andc is not restricted by inhibitor arcs: In the initial mark-
ing the transitionsa andb can be executed concurrently (that
means in any order and as well at the same time). Then tran-
sition c can be executed twice and for example consumes
once the tokens produced bya and once the tokens pro-
duced byb. That means the transitionsa andb are executed
”earlier than” transitionc (respectively). Consider now tran-
sitiond: Since after the occurrence ofa andb the placep is
marked by four tokens,d cannot be executed concurrently
to a andb (since then the occurrence ofd is prohibited by
the inhibitor arc(p, d)). Butd can be executed concurrently
to a, if it does not occur later thanb (since then the number
of tokens in placep does not exceed the inhibitor arc weight
2). In other words, the transitionsb andd, when executed
concurrently toa (independent froma), cannot occur con-



currently or sequentially in orderb → d. But they still can
occur at the same time (because of the occurrence rule ”test-
ing before execution”) or sequentially in orderd→ b – this
is exactly the behavior described by ”d not later thanb”.

The described causal relations between transitions of the
net are illustrated by the execution shown most left in Fig-
ure 1. The solid arcs represent the ”earlier than” relation be-
tween events and the dashed arc depicts the ”not later than”
relation explained above. There are also other possible exe-
cutions of the PTI-net from Figure 1: Ifc is executed once
”not later than”b, then the number of tokens in the placep
can’t exceed the value2 and thusd can be executed concur-
rently to the executions ofa, b and (two times)c (see the
second execution in Figure 1). Further (with the same argu-
ment), it is possible thatc is executed once ”earlier than”d
(see the third execution in Figure 1).

Of course also symmetric ”not later than” relations are in
general possible between events, in which case these events
can only occur at the same time, but not sequentially in any
order. Such events are calledsynchronous. With partial or-
ders one can only model ”earlier than” relations between
events but it is not possible to describe relationships, where
synchronous occurrence is possible but concurrency is not
existent. In [7] causal semantics based on LSOs like the
executions in Figure 1 consisting of a combination of ”ear-
lier than” and ”not later than” relations between events were
proposed to cover such cases. Thus, we consider scenarios
to be formally given through LSOs.

In this paper we present a polynomial algorithm running
in O(|P |n4) time to test whether a given LSO is an exe-
cution of a given PTI-net, wheren is the number of nodes
of the LSO and|P | is the number of places of the PTI-net.
Since up to now for PTI-nets there is no formal definition
of executions, it is thereto first necessary to lift this notion
for p/t-nets to the PTI-net level. There are three equiva-
lent characterizations (definitions) of executions of p/t-nets,
namely (i) LPOsenabledw.r.t. a p/t-net, (ii) LPOsexe-
cutablein a p/t-net, and (iii) LPOs fulfilling thetoken flow
propertyw.r.t. a p/t-net. The first two characterizations do
not lead to efficient tests. Their equivalence was shown
in [6, 11]. In [5] we introduced the token flow property
of LPOs, showed its equivalence to the other two char-
acterizations and developed an efficient algorithm to test
whether a given LPO satisfies the token flow property w.r.t.
a given marked p/t-net. Of course, it is desirable to extend
all three characterizations to LSOs and PTI-nets and prove
their equivalence also on the PTI-net level.

We propose a definition ofLSOs enabled w.r.t. a PTI-net
which is a proper generalization of the definition of LPOs
enabled w.r.t. a p/t-net and allows the representation of ex-
ecutions with minimal causal dependencies between tran-
sition occurrences of PTI-nets (Subsection 3.1). We also
define thetoken flow propertyof LSOs w.r.t. PTI-nets as a

generalization of the respective notion for LPOs and p/t-nets
(Subsection 3.2) and show the equivalence of these two no-
tions (Subsection 3.3).1 The polynomial algorithm is then
developed from the token flow property (Section 4). It is
based on a nontrivial transformation of the token flow prop-
erty into a flow optimization problem. In the Appendix we
briefly explain necessary results from flow theory for com-
pleteness of the presentation to support the reviewing pro-
cedure. In Figure 2 the relationships between the different
characterizations of executions are depicted for p/t-nets(left
part) and PTI-nets (right part) thus illustrating the theorems
shown in this paper in relation to analogue results known
for p/t-nets. We start with a short introduction of LSOs and
PTI-nets in Section 2.

„enabled“ „executable“

„token flow property“

p/t-nets

[6,11]

[5][5]

Polynomial test

[5]

„enabled“ „executable“

„token flow property“

PTI-nets

Polynomial test

This paper

This paper

Not valid
for known

process net
Definition [7]

Figure 2. Theorems in this paper.

2 Preliminaries

In this section we recall the basic definitions ofstratified
order structuresandp/t-nets with weighted inhibitor arcs.

We useN to denote the nonnegative integers. Given a
functionf fromA toB and a subsetC of A we writef |C
to denote the restriction off to the setC. Given a finite set
A, the symbol|A| denotes the cardinality ofA. The set of
all multi-sets over a setA is denoted byNA. Finally, we
denote the identity relation overA by idA.

2.1 Stratified order structures

We start with some basic notions preparative to the def-
inition of stratified order structures(so-structures). A di-
rected graphis a pair(V,→), whereV is a finite set of

1The definition ofexecutableLPOs is strongly related to the definition
of process nets of p/t-nets. Since the most general notion ofprocess nets
existent for PTI-nets ([7]) does not define minimal causal dependencies
between transition occurrences, there are enabled LSOs which are not ex-
ecutable when lifting this notion to the PTI-net level. Therefore, we do
not consider executable LSOs here. The exact relationship between the
generalizations of the characterizations (i) and (ii) to the PTI-net level is
examined in another paper we submitted to the InternationalConference
on Application and Theory of Petri Nets (ATPN)2007.



nodesand→⊆ V × V is a binary relation over V called
the set of arcs. As usual, given a binary relation→, we
write a → b to denote(a, b) ∈→. Two nodesa, b ∈ V are
called independentw.r.t. the binary relation→ if a 6→ b
andb 6→ a. We denote the set of all pairs of nodes inde-
pendent w.r.t.→ by co→ ⊆ V × V . A partial order is a
directed graphpo = (V,<), where< is an irreflexive and
transitive binary relation onV . If co< = idV then(V,<)
is calledtotal. Given two partial orderspo1 = (V,<1) and
po2 = (V,<2), we say thatpo2 is a sequentialization(or
extension) of po1 if <1⊆<2.

So-structures are, loosely speaking, combinations of two
binary relations on a set of events where one is a partial
order representing an ”earlier than” relation and the other
represents a ”not later than” relation. Thus so-structures
describe finer causalities than partial orders. Formally, so-
structures arerelational structuressatisfying certain prop-
erties. Arelational structure(rel-structure) is a tripleS =
(V,≺,<), whereV is a set (ofevents), and≺⊆ V × V
and<⊆ V × V are binary relations onV . A rel-structure
S′ = (V,≺′,<′) is said to be anextensionof another rel-
structureS = (V,≺,<), written S ⊆ S′, if ≺⊆≺′ and
<⊆<

′.

Definition 1 (Stratified order structure [7]). A rel-structure
S = (V,≺,<) is called stratified order structure(so-
structure) if the following conditions are satisfied for all
u, v, w ∈ V :
(C1)u 6< u.
(C2)u ≺ v =⇒ u < v.
(C3)u < v < w ∧ u 6= w =⇒ u < w.
(C4)u < v ≺ w ∨ u ≺ v < w =⇒ u ≺ w.

In figures≺ is graphically expressed by solid arcs and<

by dashed arcs. According to (C2) a dashed arc is omitted if
there is already a solid arc. Moreover, we omit arcs which
can be deduced by (C3) and (C4). It is shown in [7] that
(V,≺) is a partial order. Therefore so-structures are a gen-
eralization of partial orders which turned out to be adequate
to model the causal relations between events of PTI-nets
under the a priori semantics. In this context≺ represents
the ordinary ”earlier than” relation (as for p/t-nets) while
< models a ”not later than” relation. According to [7] for
nodesu, v ∈ V there is an extensionS′ = (V,≺′,<′) of S
with u ≺′ v if and only if v 6< u andu 6= v. In particular,
there holdsu ≺ v =⇒ v 6< u. These properties justify the
described causal interpretation of≺ and<. The executions
shown in Figure 1 are so-structures with labeled nodes.

We introduce a subclass of so-structures which turns out
to be associated to sequences of (synchronous) transition
steps of PTI-nets.

Definition 2 (Total linear so-structures). LetS = (V,≺,<)
be an so-structure, thenS is called total linearif co≺ =

(< \ ≺) ∪ idV . The set of alltotal linear extensions(or
linearizations) of an so-structureS is denoted bylin(S).
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Figure 3. Total linear so-structures.

Figure 3 shows four total linear so-structures with la-
beled nodes (LSOs), where the first and second LSOs are
extensions of the second execution shown in Figure 3 and
the third and fourth LSOs are extensions of the first exe-
cution shown in Figure 3 (using the results from [7] about
augmenting so-structures one can conclude that every so-
structure is extendable to a total linear so-structure).

For the definition of the token flow property for LSOs
we need the notion of prefixes (of nodes) of so-structures.
These are defined by subsets of nodes which are downward
closed w.r.t. the<-relation:

Definition 3 (Prefix (of a node)). LetS = (V,≺,<) be an
so-structure and letV ′ ⊆ V be such that(u′ ∈ V ′ ∧ u <

u′) =⇒ u ∈ V ′. ThenS′ = (V ′,≺ |V ′×V ′ ,< |V ′×V ′) is
called prefix of S. We say that the prefixS′ is defined by
V ′. If additionally{v′ ∈ V | v′ ≺ v} ⊆ V ′ and{v′ ∈ V |
v = v′ ∨ v < v′} ∩ V ′ = ∅ for somev ∈ V , thenS′ is
calledprefix ofv (w.r.t. S).

This definition of prefixes is compatible with the set of
linearizations of an so-structure in the following sense:

Lemma 4. LetS = (V,≺,<) be an so-structure,V ′ ⊆ V
andv ∈ V . ThenV ′ defines a prefix ofv w.r.t. S if and only
if there is a linearizationS′ ∈ lin(S) such thatV ′ defines
a prefix ofv w.r.t. S′.

Proof. if : Let S′ = (V,≺′,<′) ∈ lin(S) and letV ′ ⊂ V
define a prefix ofv w.r.t. S′. Consider nodesu′ ∈ V ′ and
u ∈ V with u < u′. SinceS′ is an extension ofS this
impliesu <

′ u′. BecauseV ′ defines a prefix ofS′ we get
u ∈ V ′. ThusV ′ also defines a prefix ofS. Let further
v′ ≺ v. Again, sinceS′ is an extension ofS this implies
v′ ≺′ v and therefore we havev′ ∈ V ′. Finally, if v < v′

thenv <
′ v′ and thereforev′ 6∈ V ′. Thus,V ′ defines in fact

a prefix ofv.
only if : LetV ′ define a prefix ofv w.r.t. S. We construct

a linearizationS′ = (V,≺′,<′) of S such thatV ′ also de-
fines a prefix ofv w.r.t. S′. For this denoteV0 ⊆ V ′ the
set of all nodes which are minimal w.r.t.≺ in S. Then con-
sider the restriction ofS onto the node setV \V0 and denote
V1 ⊆ V ′ the set of all nodes which are minimal w.r.t.≺ in
this new so-structure. Following this technique, we define
inductivelyVn ⊆ V ′ as the set of nodes which are minimal



w.r.t. the restriction of≺ onto the node setV \ (
⋃n−1

i=0 Vi),
as long asV ′ \ (

⋃n−1
i=0 Vi) 6= ∅. If V ′ \ (

⋃N−1
i=0 Vi) = ∅

andV \ (
⋃N−1

i=0 Vi) 6= ∅ for someN , then further define
VN ⊆ V as the set of nodes which are minimal w.r.t. the
restriction of≺ onto the node setV \ (

⋃N−1
i=0 Vi) and so on

(note thatv ∈ VN becauseV ′ defines a prefix ofv).
We now can defineS′ through≺′=

⋃
i<j Vi × Vj and

<
′= ((

⋃
i Vi×Vi)\idVi

)∪ ≺′. By constructionS′ is a total
linear so-structure. It remains to show that≺⊆≺′, <⊆<

′,
{v′ ∈ V | v′ ≺′ v} ⊆ V ′ and{v′ ∈ V | v = v′ ∨ v <

′

v′} ∩ V ′ = ∅.
Let u, v ∈ V with u ≺ v: SinceV ′ defines a prefix of

S, it is not possible thatv ∈ V ′ andu 6∈ V ′. Suppose
u, v ∈ V ′, u, v ∈ V \ V ′ or u ∈ V ′ andv 6∈ V ′: Then by
construction there must bei < j with u ∈ Vi andv ∈ Vj .
This givesu ≺′ v.

Let u, v ∈ V with u < v: SinceV ′ defines a prefix
of S, it is not possible thatv ∈ V ′ andu 6∈ V ′. Suppose
u, v ∈ V ′ oru, v ∈ V \V ′: Letu ∈ Vi andv ∈ Vj . Assume
thatv is minimal w.r.t.≺ in an earlier step thanu. Then in
this step there isu′ ≺ u butu′ 6≺ v. This contradicts (C4).
Therefore eitheru andv are minimal in the same step or
u is minimal in a step earlier thanv. This givesu <

′ v.
Supposeu ∈ V ′ andv 6∈ V ′: Then by construction there
must bei < j with u ∈ Vi andv ∈ Vj . This givesu ≺′ v.

Let v′ ∈ V with v′ ≺′ v: Since by constructionv ∈ VN

there isn < N with v′ ∈ Vn ⊆ V ′. If finally v <
′ v′, then

v′ ∈ Vn for somen > N , i.e. v′ 6∈ V ′.

We will often uselabeled so-structures(LSOs) in the
following. These are so-structuresS = (V,≺,<) together
with a set of labelsT and alabeling functionl : V → T .
We use the above notations defined for so-structures also
for LSOs. IfT is a set of labels ofS, i.e. l : V → T , then
for a setU ⊆ V , we define the multi-set|U |l ⊆ N

T by
|U |l(t) = |{v ∈ V | v ∈ U ∧ l(v) = t}|.

We will consider LSOs only up to isomorphism. As
usual, two LSOs(V,≺,<, l) and(V ′,≺′,<′, l′) are called
isomorphic, if there is a bijective mappingψ : V → V ′ such
that l(v) = l′(ψ(v)) for v ∈ V , v ≺ w ⇔ ψ(v) ≺′ ψ(w)
andv < w ⇔ ψ(v) <

′ ψ(w) for v, w ∈ V .
We will use the same notions for LPOs, too (since an

LPO can be understood as an LSO with a not later than
relation that equals the earlier than relation).

2.2 PTI-nets

A net is a triple (P, T, F ), whereP is a finite set of
places, T is a finite set oftransitions, satisfyingP ∩T = ∅,
andF ⊆ (P ∪T )×(T ∪P ) is aflow relation. Let (P, T, F )
be a net andx ∈ P ∪ T be an element. Thepreset•x is the
set{y ∈ P ∪ T | (y, x) ∈ F}, and thepost-setx• is the set

{y ∈ P ∪T | (x, y) ∈ F}. Given a setX ⊆ P ∪T , this no-
tation is extended by•X =

⋃
x∈X •x andX• =

⋃
x∈X x•.

For technical reasons, we consider only nets in which every
transition has a nonempty pre-set and post-set.

A place/transition net(shortlyp/t-net) N is a quadruple
(P, T, F,W ), where(P, T, F ) is a net andW : F → N

+

is a weight function. We extend the weight functionW to
pairs of net elements(x, y) ∈ (P ×T )∪ (T ×P ) satisfying
(x, y) 6∈ F byW ((x, y)) = 0.

Definition 5 (PTI-net). A PTI-net N is a quadruple
(P, T, F,W, I), where (P, T, F,W ) is a p/t-net andI :
P × T → N ∪ {ω} is theweighted inhibitor relation. If
I(p, t) 6= ω, then(p, t) ∈ P × T is called(weighted) in-
hibitor arcandp is an inhibitor place oft.

In the following we denoten < ω for n ∈ N. A marking
of a PTI-netN = (P, T, F,W, I) is a functionm : P → N,
i.e. a multi-set overP . A marked PTI-netis a pair(N,m0),
whereN is a PTI-net andm0 is a marking ofN calledini-
tial marking. A transitiont can only be executed ifp carries
at mostI((p, t)) tokens. In particular, ifI((p, t)) = 0 then
p must be empty.I((p, t)) = ω means thatt can never be
prevented from occurring by the presence of tokens inp. In
diagrams, inhibitor arcs have small circles as arrowheads.
Just as normal arcs, inhibitor arcs are annotated with their
weights. Now however, the weight0 is not shown. Figure 1
shows a marked PTI-net.

According to the a priori semantics of PTI-nets, the in-
hibitor test for enabledness of a transition precedes the con-
sumption and production of tokens in places. Thus, a multi-
set (a step) of transitions is (synchronously) enabled in a
marking, only if in this marking each transition in the step
obeys the inhibitor constraints before the step is executed.

Definition 6 (Occurrence rule). LetN = (P, T, F,W, I) be
a PTI-net. A multi-set of transitionsτ (a step) isenabled to
occur in a markingm w.r.t. the a priori semanticsif m(p) ≥∑

t∈τ τ(t)W ((p, t)) for every placep ∈ •τ andm(p) ≤
I((p, t)) for each placep and each transitiont ∈ τ .

The occurrenceof a step (of transitions)τ leads to
the new markingm′ defined bym′(p) = m(p) −∑

t∈τ τ(t)(W ((p, t)) − W ((t, p))) for everyp ∈ P . We

write m
τ
−→ m′ to denote thatτ is enabled to occur inm

and that its occurrence leads tom′. A finite sequence of
stepsσ = τ1 . . . τn, n ∈ N, is called astep occurrence
sequence enabled in a markingm and leading tomn, de-
noted bym

σ
−→ mn, if there exists a sequence of markings

m1, . . . ,mn such thatm
τ1−→ m1

τ2−→ . . .
τn−→ mn. The

markingmn is said to bereachable from the markingm.
Moreover each marking is reachable from itself too, by the
occurrence of the empty occurrence sequence. In a marked
p/t-net, markings reachable from the initial markingm0 are
shortly calledreachable markings.



A step occurrence sequence can be understood as a pos-
sible singleobservationof the behavior of a PTI-net, where
the occurrences of transitions in one step are observedat the
same timeor synchronously.

We will use the same notions for (marked) p/t-nets, too
(since a p/t-net can be understood as a PTI-net with an in-
hibitor relation which equals the constantω).

3 Executions

In this Section we lift the notions of ”enabled LPOs” and
”token flow property” known for LPOs w.r.t. p/t-nets to the
setting of PTI-nets w.r.t. the a priori semantics.

3.1 Enabled LSOs

We now introduce LSOs to model executions of PTI-
nets. For this, the two relations of an LSO are interpreted
as ”earlier than” resp. ”not later than” relations between
transition occurrences. If two transition occurrences arein
not later than relation, that means they can be observed (are
allowed to be executed) synchronously or sequentially in
one specific order. If two transitions are neither in earlier
than relation nor in not later than relation, they are concur-
rent and can be observed (are allowed to be executed) syn-
chronously or sequentially in any order. In this sense one
LSO ”allows” many observations (step sequences). If all
these observations are enabled step occurrence sequences,
this LSO is calledenabled.

Formally, the set of step sequences ”allowed” by an LSO
is defined as the set of step sequences extending (sequential-
izing) the LSO, where a step sequence can be easily inter-
preted itself as an LSO: Each step is represented by a set of
events labeled by transitions (transition occurrences) which
are in not later than relation with each other (representing
synchronous transition occurrences) and transition occur-
rences in different steps are ordered in appropriate earlier
than relation. Formally, for a sequence of transition steps
σ = τ1 . . . τn define the LSOSσ = (V,≺,<, l) underlying
σ by: V =

⋃n

i=1 Vi andl : V → T with |Vi|l(t) = τi(t),
≺=

⋃
i<j Vi × Vj and<= ((

⋃
i Vi × Vi)∪ ≺) \ idV .

It is easy to see that LSOs underlying a sequence of
transition steps are total linear. This is becauseco≺ =⋃n

i=1 Vi × Vi (see Definition 2). For example, the LSOs
shown in Figure 3 are associated to the sequences of transi-
tion steps (from left to right):a(b+c+d)c, (a+d)(b+c)c,
(a + b + d)(2c) and(b + d)a(2c). Of course, also the re-
verse is valid, i.e. for each total linear LSOS = (V,≺,<, l)
there is a step sequenceσ such thatS andSσ are isomor-
phic. Thus, for LSOs which have transition names as labels
we can identify total linear LSOs with sequences of transi-
tion steps.

Definition 7 (enabled LSO). Let (N,m0), N =
(P, T, F,W, I), be a marked PTI-net.

An LSOS = (V,≺,<, l) with l : V → T is calleden-
abled (to occur) w.r.t.(N,m0) (in the a priori semantics)
if the following statement holds: Each finite step sequence
σ = τ1 . . . τn with Sσ ∈ lin(S) is a step occurrence se-
quence of(N,m0). Its occurrence leads to the marking
m′(p) given bym′(p) = m(p) +

∑
v∈V (W ((l(v), p)) −

W ((p, l(v)))).

This definition is consistent with and a proper general-
ization of the notion of enabled LPOs: An LPOlpo = (V,≺
, l) with l : V → T is enabled to occur in a markingm
of a marked p/t-net(P, T, F,W,m0) if each step sequence
which extends (sequentializes)lpo is a step occurrence se-
quence enabled inm0. Since in LPOs concurrent and syn-
chronous transition occurrences are not distinguished, here
a step is considered as a set of events labeled by transitions
(transition occurrences) which are concurrent.

Beside this there are two general semantical arguments
justifying this definition: First an (enabled) LSOS is com-
pletely represented by the set of its linearizationslin(S)
consisting of step occurrence sequences (in the sense that
it can be reconstructed fromlin(S) through intersection, as
shown in [7]). Second the setlin(S) can express arbitrary
concurrency relations between transition occurrences of a
PTI-net, since concurrency equals the possibility of syn-
chronous and sequential occurrence in any order.
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It is easy to check that the LSOs from Figure 1 are in-
deed enabled LSOs w.r.t. the shown PTI-net. As a further
example consider the three LSOs shown in Figure 4: In all
three cases, the step sequence(a+ b)(c+ d)c is a lineariza-
tion of the LSO, but it is not an enabled step occurrence
sequence. This is because after the execution of(a + b)
the placep carries four tokens disabling the following step
(c+ d). Therefore, all three LSOs are not enabled w.r.t. the
shown marked PTI-net.

Observe that there is no efficient test of definition 7 since
there may be exponential many sequences of transition steps
in the number of nodes linearizing the LSO.

3.2 Token flow property

In this subsection we extend the notions of token flow
function and token flow property known for LPOs and p/t-



nets to the setting of PTI-nets. In [5] it is shown that LPOs
are enabled if and only if they fulfill the token flow property
w.r.t. a p/t-net. Our aim is to show the same for LSOs and
PTI-nets.

Fix a marked PTI-net(N,m0), N = (P, T, F,W, I), a
placep ofN and an LSOS = (V,≺,<, l) with l : V → T .
Assume thatS is enabled to occur w.r.t.(N,m0) in the a
priori semantics. Since the inhibitor relationI of (N,m0)
restricts the behavior of the underlying p/t-net(N ′,m0) =
(P, T, F,W,m0), S is then also enabled w.r.t.(N ′,m0). In
a p/t-net transitions which can be executed as one step also
can be executed in arbitrary order. Therefore, also the LPO
lpoS = (V,≺, l) underlyingS is enabled w.r.t. the p/t-net
(N ′,m0). Altogether we get that the enabledness of the
LPO underlyingS w.r.t. the p/t-net underlying(N,m0) is a
necessary condition for the enabledness ofS w.r.t. (N,m0).

Lemma 8. LetS = (V,≺,<, l) be an LSO enabled w.r.t. a
marked PTI-net(N,m0), N = (P, T, F,W, I), according
to the a priori semantics. Then the LPO(V,≺, l) is enabled
w.r.t. the marked p/t-net(P, T, F,W,m0).

That means the token flow property forS w.r.t. (N,m0)
should include the token flow property forlpoS w.r.t.
(N ′,m0). The token flow property for LPOs w.r.t. p/t-nets
is based on the notion oftoken flow functions. For every
placep a token flow functionxp assigns non-negative in-
tegers to the edges of an LPO. The valuexp((v, v

′)) of an
edge(v, v′) is interpreted as the number of tokens which
are produced by the transitionl(v) and consumed by the
transitionl(v′) in the placep. By this construction we still
cannot specify the number of tokens which are consumed
by a transition from the initial marking of a place, and the
number of tokens which are produced by some transition
in a placep, but not consumed by further transitions (and
thus remain in the final marking). Therefore, we extend a
considered LPO by aninitial eventwhich is interpreted as
the occurrence of a transition producing the initial marking,
and afinal eventwhich is interpreted as the occurrence of a
transition consuming the final marking.

Definition 9 (⋆-extension of LPOs). Let lpo = (V,≺, l) be
an LPO. Then an LPOlpo⋆ = (V ⋆,≺⋆, l⋆), whereV ⋆ =
(V ∪{v0, vmax}), v0, vmax /∈ V ,≺⋆=≺ ∪({v0}×V )∪(V ×
{vmax})∪{(v0, vmax)}, l⋆(v0), l⋆(vmax) /∈ l(V ), l⋆(v0) 6=
l⋆(vmax) andl⋆|V = l, is called⋆-extension oflpo.

By assigning natural numbers to the arcs of a⋆-extension
of an LPO we define a so called token flow functionx of
this LPO (with v0 as its only smallest element andvmax

as its only maximal element). It is clear that equally (with
the same transition) labeled events should produce and con-
sume the same overall number of tokens in a place. The
overall number of tokens produced by an eventv of lpo⋆ =
(V ⋆,≺⋆, l⋆) is called theouttoken flow ofv w.r.t. x and

is denoted and defined byOut(v, x) =
∑

v<⋆w x((v, w)).
The overall number of tokens consumed by an eventv of
lpo⋆ is called theintoken flow ofv w.r.t. x and is denoted
and defined byIn(v, x) =

∑
w≺⋆v x((w, v)).

Definition 10 (Token flow function of LPOs). Let lpo =
(V,≺, l) be an LPO andlpo⋆ = (V ⋆,≺⋆, l⋆) be a ⋆-
extension oflpo. A functionx :≺⋆→ N is called token
flow functionof lpo, if equally labeled nodes have equal in-
token and outtoken flow(∗) ∀v, w ∈ V : l(v) = l(w) =⇒
(In(v, x) = In(w, x) ∧Out(v, x) = Out(w, x)).

An LPO lpo = (V,≺, l) satisfies thetoken flow property
w.r.t. a marked p/t-netif for each placep of this net there is
a token flow functionxp compatible withp in the sense that
its intoken and outtoken flows respect the weight function
and the initial marking of the net as follows:

Definition 11 (Token flow property of LPOs). Let
(N ′,m0), N ′ = (P, T, F,W ), be a marked p/t-net and
let lpo = (V,≺, l) be an LPO withl(V ) = T and let
lpo⋆ = (V ⋆,≺⋆, l⋆) be a ⋆-extension oflpo. Denote
W ((l(v0), p)) = m0(p) for each placep. We say thatlpo
fulfills the token flow property w.r.t.(N,m0) if the follow-
ing statement holds: For every placep ∈ P there exists a
token flow functionxp :≺⋆→ N such that
(IN) ∀v ∈ V : In(v, xp) = W ((p, l(v)))
(OUT)∀v ∈ V ∪ {v0} : Out(v, xp) = W ((l(v), p)).

In [5] we showed that an LPO fulfills the token flow
property w.r.t. a marked p/t-net if and only if it is enabled
w.r.t. this net.2

We now change back to the consideration ofS. Since
the not later than relation ofS does not describe the flow
of tokens (since token flow always produces an earlier than
relation between events), the token flow ofS w.r.t. a place
can be given by a token flow function oflpoS . Clearly (as
argued above), for each place there must be a token flow
function satisfying (IN) and (OUT), ifS is enabled.

The other way round the existence of such token flow
functionsxp satisfying (IN) and (OUT) is not enough to en-
sure thatS is enabled. This is because the execution of a
prefix of S still might produce too many tokens in a place
p (according toxp) disabling a subsequent transition which
tests this place via an inhibitor arc. Thus, we now require
that token flow functions fulfill an additional property. This
property should only allow token flow functionsxp accord-
ing to which for each event the execution of one of its pre-
fixes does not put too many tokens intop. In other words,
each marking which is reachable through the execution of
a prefix of some event should respect the inhibitor relations
of the corresponding transition to all places.

2In particular, we showed that a token flow function satisfying (IN) and
(OUT) w.r.t. a place abstracts from the individuality of conditions of a
process of the net and encodes the flow relation of this process by natural
numbers.



Assume that we have given a token flow functionxp on
the edges oflpo⋆

S satisfying (IN) and (OUT) for some place
p. We have to compute the number of tokens in this place
after the execution of some prefix ofS. Let the prefix be
defined by the set of eventsV ′. On the one hand, by con-
struction, the value ofxp on edges between events inV ′

correspond to tokens which are produced and consumed by
events in this prefix. On the other hand, the value ofxp on
edges from events inV ′ to events inV \ V ′ corresponds
to tokens which are produced by events inV ′ and remain
in p after the execution of the prefix. Thus, the marking of
the place after the execution of the prefix is given by the
sum of the values ofxp on such edges. We define this sum
for arbitrary token flow functions and call its value thefinal
markingof the prefix w.r.t. the token flow function. For-
mally, the initial event oflpo⋆

S belongs to each prefix.

Definition 12 (Final marking). LetS = (V,≺,<, l) be an
LSO and letS′ = (V ′,≺′,<′, l′) be a prefix ofS. Let fur-
ther x : V ⋆ → N be a token flow function of(V,≺, l) and
let v0 be the initial event of(V ⋆,≺⋆, l⋆). Thefinal mark-
ing of S′ (w.r.t. x) is denoted and defined bymS′(x) =∑

u∈V ′, v 6∈V ′, u≺⋆v x((u, v)) +
∑

v 6∈V ′ x((v0, v)).

We are now ready to state the token flow property for
LSOs w.r.t. PTI-nets: For each event the final marking of
every of its prefixes must not exceed the weight of the in-
hibitor arc between the corresponding transition and place.
Formally we also lift the notions of⋆-extension and token
flow function to LSOs.
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Figure 5. LSO with token flow function.

Definition 13 (Token flow property of LSOs). Let S =
(V,≺,<, l) be an LSO. An LSOS⋆ = (V ⋆,≺⋆,<⋆, l⋆),
where (V ⋆,≺⋆, l⋆) is a ⋆-extension of the LPO(V,≺, l)
and<

⋆=< ∪ ≺⋆, is called⋆-extension ofS. A function
x :≺⋆→ N is calledtoken flow function ofS, if it is a token
flow function of(V,≺, l).

Let further(N,m0), N = (P, T, F,W, I), be a marked
PTI-net and letl(V ) = T . We say thatS fulfills the to-
ken flow property w.r.t.(N,m0) if the following statement
holds: For every placep ∈ P there exists a token flow func-
tion xp :≺⋆→ N satisfying (IN), (OUT) and
(FIN) For all nodesv ∈ V and all prefixesS′ of v there
holds:mS′(xp) 6 I((p, l(v))).

Figure 5 shows one of the executions from Figure 1 (four
times) with annotated token flow functionxp w.r.t. the place

p. Here, we omitted to draw the initial and maximal event
and corresponding arcs, because there are no tokens inp in
the initial marking and in the final marking after the exe-
cution of the LSO. The node labeled bya has intoken flow
0 = W ((p, a)) and outtoken flow2 = W ((a, p)). The
same holds for the node labeled byb. The nodes labeled
by c have intoken flow2 = W ((p, c)) and outtoken flow
0 = W ((c, p)). Finally the node labeled byd has into-
ken flow0 = W ((p, d)) and outtoken flow0 = W ((d, p)).
Therefore,xp satisfies (IN) and (OUT) w.r.t.p. To exam-
ine condition (FIN) we must only consider the node labeled
by d (node filled by black color): The execution is depicted
four times showing all prefixes (nodes filled by grey color)
of this node. The arcs which count for the final marking
of a prefix are highlighted: The first and third prefix have a
final marking of2 6 2 = I((p, d)), the second and fourth
prefix have a final marking of0 6 2 = I((p, d)). Thus, also
(FIN) is satisfied. The maximum over all final markings of
prefixes of thed-labelled node is displayed inside this node.

Observe that also the definition of the token flow prop-
erty is inherent exponential in the size of the LSO since it
involves in general exponential many prefixes of the LSO
(condition (FIN)). Nonetheless, as will be explained in Sec-
tion 4, the test of condition (FIN) can be transformed into a
flow optimization problem which can be solved in polyno-
mial time.

3.3 Enabledness vs. token flow property

In this Subsection we will prove the first main result of
this paper given by the following Theorem. In the subse-
quent Subsection we will finally present a polynomial test
of the token flow property as the second main result.

Theorem 14. Let (N,m0), N = (P, T, F,W, I), be a
marked PTI-net and letS = (V,≺,<, l) be an LSO with
l(V ) = T . ThenS is enabled w.r.t.(N,m0) if and only if it
fulfills the token flow property w.r.t.(N,m0).

Proof. only if : Let S be enabled w.r.t.(N,m0). Then,
by Lemma 8(V,≺, l) is enabled w.r.t.(P, T, F,W,m0),
that means for eachp ∈ P there is a token flow function
xp :≺⋆→ N of (V,≺, l) satisfying (IN) and (OUT).

We claim, that eachxp also fulfills (FIN). For this let
v ∈ V andS′ be a prefix ofv defined byV ′. By Lemma
4 there is a linearizationSlin of S such thatV ′ also defines
a prefixS′lin of v w.r.t. Slin. There is a step occurrence
sequenceσ = τ1 . . . τn of (N,m0) whose underlying LSO
Sσ equalsSlin. Since prefixes are downward<-closed a
prefixσ′ = τ1 . . . τm (m < n) of σ with l(v) ∈ τm+1 must
exist which corresponds toS′lin. In other words, the LSO
Sσ′ underlyingσ′ equalsS′lin. It is enough to show now
thatm(p) = mS′(xp) for the markingm reached after the
execution ofσ′, sincem(p) ≤ I((p, t)) for each placep and
each transitiont ∈ τm+1 by Definition 6.



We finally compute: m(p) = m0(p) −∑m

i=1

∑
t∈τi

τ(t)(W ((p, t)) − W ((t, p))) =
Out(v0, xp) −

∑
v∈V ′(In(v, xp) − Out(v, xp)) =∑

v∈V ′∪{v0}
(
∑

v≺⋆w xp((v, w)) −
∑

w≺⋆v xp((w, v))) =

mS′(xp), since the values on edges withinV ′ cancel each
other out.

if : Let S fulfill the token flow property w.r.t.(N,m0)
and letxp be a token flow function satisfying (IN), (OUT)
and (FIN) w.r.t. the placep. Consider a sequence of tran-
sition stepsσ = τ1 . . . τn, whose underlying LSOSσ is a
linearization ofS. We have to show thatσ is a step occur-
rence sequence of(N,m0). For this, we show inductively
that if σk = τ1 . . . τk is a step occurrence sequence then
τk+1 is a transition step enabled in the markingm reached
after the execution ofσk for 0 6 k 6 n− 1.

First observe thatσ is a step occurrence sequence of
(P, T, F,W,m0), since (V,≺, l) satisfies the token flow
property on the p/t-net level and theLPO underlyingσ
clearly sequentializes(V,≺, l). That means the first condi-
tion of Definition 6 thatm(p) ≥

∑
t∈τk+1

τk+1(t)W ((p, t))
for every placep ∈ •τk+1 is always satisfied. We still have
to verify the condition of Definition 6 thatm(p) ≤ I((p, t))
for each placep and each transitiont ∈ τk+1. If Sσk

is
the LSO underlyingσk, thenSσk

is a prefix ofSσ. Denot-
ing Sσk

= (Vk,≺k,<k, lk), by Lemma 4,Vk also defines
a prefixSk of S. Fix t ∈ τk+1 andp ∈ P and letv ∈ V
with l(v) = t such thatSσk

is a prefix ofv. Then also
(Lemma 4)Sk is a prefix ofv. It is enough to show now
thatm(p) = mSk

(xp), sincemSk
(xp) 6 I((p, l(v)) by

(FIN). The necessary computation is as above.

4 Testing the token flow property

In this section we give a polynomial algorithm to test
whether an LSOS = (V,≺,<, l) with l(V ) = T fulfills
the token flow property w.r.t. a marked PTI-net(N,m0).
In the case thatS fulfills the flow property, the algorithm
constructs respective token flow functions for every place
satisfying (IN), (OUT), and (FIN).

From [5] we have a polynomial test whether for each
place there is a token flow function satisfying (IN) and
(OUT). If such token flow functions do not exist, then
clearly the LSO does not fulfill the token flow property. In
the positive case the algorithm from [5] generates such to-
ken flow functions. We claim that either these token flow
functions also satisfy (FIN) or the LSO does not fulfill the
token flow property (i.e. there are no such token flow func-
tions). This observation is based on the following lemma
stating that the final marking of a prefix w.r.t. a token flow
functionxp satisfying (IN) and (OUT) forp only depends
on the initial makingm0(p) and the arc weightsW ((p, t))
andW ((t, p)) for t ∈ T , but not on the concrete distribution
of the token flow given byxp. This follows directly from the

fact that the final marking can be computed as the marking
reached after the execution of the prefix (the corresponding
computation can be found in the proof of Theorem 14).

Lemma 15. Let p be a place and letxp be a token flow
function satisfying (IN) and (OUT). Then it holds for each
prefix S′ = (V ′,≺′,<′, l′) of S: mS′(xp) = m0(p) +∑

t∈T |V
′|l(t)(W ((t, p)) −W ((p, t))).

Thus, for different token flow functionsxp andx′p satis-
fying (IN) and (OUT) for a placep the valuesmS′(xp) and
mS′(x′p) coincide and thus either both fulfill (FIN) or both
do not fulfill (FIN). It remains to test property (FIN) for
the computed token flow functionsxp satisfying (IN) and
(OUT). For this it is enough to compute for each nodev the
maximum of the valuesmS′(xp) over all prefixesS′ of v
and to compare this maximum with the valueI((p, l(v))).

Definition 16 (Inhibitor value). The inhibitor value
Inh(v, x) of an eventv w.r.t. a token flow functionx is
defined byInh(v, x) = max{mS′(x) | S′ is prefix ofv}.

A straightforward way to compute the inhibitor value of
some nodev is to enumerate all prefixes of this node and
compute the final markings of all these prefixes according
to Lemma 15. Unfortunately this is not efficient since there
may be exponential many prefixes in the number of nodes
(as already stated).

Another possible formalization of the problem is as fol-
lows: The final marking of a prefix is defined as the sum
over the values of the token flow function on edges leaving
the prefix. These edges separate the node set of the prefix
from the subsequent nodes. Formally, this separation can be
seen as a cut throughS (resp.lpoS) partitioning the nodes
of S into two node sets. Such cuts are considered in flow
theory and to avoid confusion we use the termflow cutsfor
this kind of cuts from now on. In flow theory one searches
for maximal or minimal flows through flow networks with
upper and/or lower capacities on edges. Thereto, one con-
siders capacities of flow cuts. InterpretinglpoS as a flow
network and the values of the token flow function as lower
capacity bounds for flows through this network, the final
marking of a prefix is given as the capacity of some flow
cut and the inhibitor value of some node can be seen as
the maximum capacity of flow cuts of the network. This
maximum then can be computed efficiently through its cor-
respondence to minimal flows (see the Appendix).

Definition 17 (Flow network, flow, flow cut, capacity). A
flow network (with lower capacities)is a tuple(G, c, s, t)
whereG = (W,E) is a directed graph,c : E → N0 is a
capacity function,s ∈ W is a node with∀v ∈ W : (v, s) 6∈
E called sourceand t ∈ W is a node with∀v ∈ W :
(t, v) 6∈ E calledsink.

The capacity is interpreted as a lower bound for flows,
that means aflow is a functionf : E → N0 such that



(a) ∀(v, v′) ∈ E : f((v, v′)) > c((v, v′)) and (b)
∀v ∈ W :

∑
(w,v)∈E f((w, v)) =

∑
(v,w)∈E f((v, w)).

The value |f | of a flowf is defined as the outgoing flow
of the source (or equivalently the ingoing flow of the sink)∑

(s,v)∈E f((s, v)). A minimal flow is the flow with mini-
mal value among all flows.

A flow cut is a tuple(S, T ) ⊆ W ×W such thats ∈ S,
t ∈ T , S ∩ T = ∅ andS ∪ T = W . The capacity of a flow
cut is defined byc((S, T )) =

∑
v∈S, w∈T, (v,w)∈E c((v, w))

if (T × S) ∩ E = ∅ andc((S, T )) = 0 else.

In the following we describe how the inhibitor value of a
nodev can be interpreted as the maximal capacity of some
flow cut in a flow network. For this we interpret, loosely
speaking,S as a flow network. Therefore, we first have to
omit the not later than relation. Clearly, we can glue events
of S which are in a symmetric not later than relation. If
u < v but v 6< u, then there might be prefixes containing
u but notv and there might be prefixes which contain or
do not contain both eventsu andv together. Since the same
holds ifu ≺ v, we replace remaining not later than relations
by earlier than relations. An additional difficulty is that we
do not want to consider all flow cuts of this flow network,
but only those corresponding to prefixes ofv. Therefore, we
only consider (lower) capacity constraints on edges leaving
some prefix ofv.

Definition 18 (Associated flow network). Let S = (V,≺
,<, l) be an LSO,v ∈ V , S⋆ = (V ⋆,≺⋆,<⋆, l⋆) be a⋆-
extension ofS with initial eventv0 and maximal eventvmax

andx be a token flow function ofS. Let furtherU be the set
of all nodes occurring in some prefix ofv. Define theflow
network(G, c, s, t),G = (W,E), associated tox andv by

• For u ∈ V ⋆ denote[u] = [u]< = {w ∈ V ⋆ | w =
u∨(w <

⋆ u∧u <
⋆ w)}. DefineW = {[u] | u ∈ V ⋆},

s = [v0] (= {v0}) andt = [vmax] (= {vmax}).

• SetE = {([u], [w]) | u <
⋆ w}.

• Setc(([u], [w])) =
∑

u′∈[u], w′∈[w], u′≺⋆w′ x((u′, w′))

if u ∈ U ∧ w 6≺ v andc(([u], [w])) = 0 else.

Observe that the associated flow network is well-defined,
that means foru′ ∈ [u] andw′ ∈ [w] we haveu <

⋆ w =⇒
u′ <

⋆ w′ andc(([u], [w])) = c(([u′], [w′])). The follow-
ing lemma states that the final marking of prefixes can be
computed by capacities of flow cuts in the associated flow
network.

Lemma 19. LetS′ = (V ′,≺′,<′, l′) be a prefix of a node
v. Let furtherx be a token flow function ofS and(G, c, s, t),
G = (W,E), be the flow network associated tox and v.
DenoteS = {[v] | v = v0∨v ∈ V

′} andT = W \S. Then
mS′(x) = c((S, T )).

Proof. Since V ′ ⊆ U for the setU of all nodes oc-
curring in some prefix ofv we have for eachu ∈
V ′ ∪ {v0} and w 6∈ V ′ ∪ {v0} that c(([u], [w])) =∑

u′∈[u], w′∈[w], u′≺⋆w′ x((u′, w′)) . The statement is now
an easy computation. Just observe that(T × S) ∩ E = ∅
sincew 6<⋆ u for [u] ∈ S, [w] ∈ T .

Since flow cuts which do not correspond to prefixes ofv
do not have bigger capacities than flow cuts corresponding
to such prefixes we get:

Theorem 20. Let v be a node andx be a token flow func-
tion of an LSOS. Let further(G, c, s, t), G = (W,E), be
the flow network associated tox andv. ThenInh(v, x) =
max{c((S, T )) | (S, T ) flow cut of(G, c, s, t)}.

Proof. Let (S, T ) be a flow cut of(G, c, s, t) which does
not correspond to a prefix ofv in the sense thatS 6= {[u] |
u = v0 ∨u ∈ V ′} for each prefixS′ = (V ′,≺′,<′, l′) of v.

We first claim that if(S, T ) does not correspond to a
prefix of S = (V,≺,<, l) thenc((S, T )) = 0 since there
is [u] ∈ S and [w] ∈ T with ([w], [u]) ∈ E. Indeed, in
this caseVS =

⋃
[u]∈S\[v0]

[u] does not define a prefix ofS.
That means that there isu ∈ VS andw 6∈ VS with w < u.
By the definition ofVS it is not possible that alsou < w
(because then[w] = [u]). Therefore, by the definition ofE
we get([w], [u]) ∈ E.

Let finally (S, T ) correspond to a prefixS′ = (V ′,≺′

,<′, l′) of S = (V,≺,<, l) which is not a prefix ofv. We
claim that then there is a prefixS′′ = (V ′′,≺′′,<′′, l′′) of
v such thatc((S, T )) 6 c((S′′, T ′′)) for the flow cutS′′ =
{[u] | u = v0 ∨ u ∈ V ′′} andT ′′ = W \ S′′.

Observe that the intersection and the union of two node
sets defining two prefixes always defines a prefix again.
This implies that there is a maximal prefix ofv which is
defined exactly by the setU of all nodes occurring in some
prefix of v and that there is also a minimal prefix ofv de-
fined by the setU ′ = {u ∈ V | u ≺ v}.

In particular, the intersectionV ′′ = V ′ ∩ U defines a
prefixS′′. LetS′′ = {[v] | v = v0∨v ∈ V ′′} andT ′′ = W\
S′′ be the corresponding flow cut. Then clearlyc((S, T )) 6

c((S′′, T ′′)) sincec(([u], [w])) = 0 if u 6∈ U and there may
be edges([u], [w]) ∈ E with u ∈ V ′′ andw ∈ V ′ \ V ′′

which only count in the second case. Thus, ifS′′ is a prefix
of v, we are done. Assume thatS′′ is not a prefix ofv. Then
V ′′′ = V ′′ ∪ U ′ defines a prefix ofv andc((S′′, T ′′)) 6

c((S′′′, T ′′′)) for S′′′ = {[v] | v = v0 ∨ v ∈ V ′′′} and
T ′′′ = W \ S′′′ (sincec(([u], [w])) = 0 if w ≺ v and there
may be edges([u], [w]) ∈ E with u ∈ V ′′′ \V ′′ which only
count in the second case).

Thus inhibitor values can be computed through the max-
imal capacity of a flow cut in the associated flow network.
This maximal capacity equals the minimal flow through this
network. The proof for this statement is analogous to the



proof of the better knownmaximal flow equals minimal cut
theorem of Ford/Fulkerson [3] in flow networks with upper
capacities. As for maximal flows in flow networks with up-
per capacities there are polynomial algorithms to compute
minimal flows in flow networks with lower capacities run-
ning inO(n3) time wheren is the number of nodes of the
flow network resp. the given LSO (we give a short explana-
tion of the main arguments in the Appendix).

If p is a place for which there is a token flow function of
the given LSO satisfying (IN) and (OUT) then the inhibitor
value w.r.t. this token flow function must be computed for
each node of the LSO. Altogether, the polynomial test of the
token flow property takesO(|P |n4) time and looks formally
as follows:

1: test← true
2: for all (p ∈ P ) do
3: if ((V,≺, l) does not fulfill token flow property w.r.t.

(P, T, F,W,m0) andp) then
4: test← false
5: else
6: xp ← token flow function ofS satisfying (IN) and

(OUT) w.r.t. p
7: for all (v ∈ V ) do
8: (G, c, s, t)← flow network associated toxp and

v
9: M ← value of a minimal flow in(G, c, s, t)

10: if (M > I((p, l(v)))) then
11: test← false
12: end if
13: end for
14: end if
15: end for
16: return test

Algorithm 1: Tests whetherS = (V,≺,<, l) fulfills the
token flow property w.r.t.(N,m0),N = (P, T, F,W, I).

5 Conclusion

We defined executions of PTI-nets w.r.t. the a priori
semantics as enabled LSOs. This definition of enabled
LSOs is a proper generalization of the definition of enabled
LPOs and allows the representation of executions of PTI-
nets with minimal causal dependencies between transition
occurrences. As the first main result we showed that en-
abled LSOs can be characterized through the so called to-
ken flow property which we lifted from LPOs to LSOs, thus
establishing a part of the semantical framework of p/t-net-
executions to PTI-nets (Figure 2). As the second main result
we developed a polynomial test of the token flow property.

These results are also valid for the a posteriori seman-
tics of PTI-nets. In this case, the test of inhibitor conditions
need not precede the execution of transitions, therefore syn-

chronicity and concurrency are not distinguished and exe-
cutions are represented by enabled LPOs. Nonetheless, the
generalized notion of the token flow property (definition 13)
can be used for such LPOs, where in condition (FIN) classi-
cal prefixes of LPOs and a modified notion of final markings
corresponding to the a posteriori occurrence rule must be
considered. Then the equivalence of enabledness and token
flow property follows by construction. For the efficient test
of the token flow property one needs to consider a modified
flow network to compute the inhibitor value of nodes.
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Appendix (only for the reviewing procedure)

We finally present briefly the ideas how to prove amini-
mal flow equals maximal cuttheorem in flow networks with
lower capacities and how to compute efficiently such mini-
mal flows.

It is easy to see that the following statements are equiva-
lent for flow networks with lower capacities:

(i) f is a minimal flow.

(ii) There is no flow reducing path in theresidual network
w.r.t. f .

(iii) There is a flow cut(S, T ) with c((S, T )) = |f |.

Here the residual network(G, cf , s, t),G = (W,Ef ), w.r.t.
f is defined as follows: For(v, v′) ∈ E definecf ((v, v′)) =
f((v, v′))−c((v, v′)) and denoteEf = {(v, v′) ∈W×W |
((v, v′) ∈ E ∧ cf ((v, v′)) > 0) ∨ ((v′, v) ∈ E)}. A flow
reducing path w.r.t. a flowf in the residual network is a
simple path from source to sink in the residual network w.r.t.
f .

Clearly, if f is a minimal flow then there is no flow re-
ducing path in the residual network w.r.t.f . This is because
along a flow reducing path the flowf can be reduced as fol-
lows: for edges(v, v′) ∈ E, if (v, v′) belongs to the path
then reduce the flow on this edge by1, if (v′, v) belongs
to the path then augment the flow on this edge by1. Then
by construction the reduced flow still satisfies the capacity
constraint (a) and also constraint (b) since either the flow
ingoing (outgoing) a node is once reduced and once aug-
mented by1 (along the path) or ingoing and outgoing flow
of a node are both reduced or both augmented by1 (along
the path). Moreover|f | is reduced by1 since this is the case
for the flow ingoing the sink.

If there is no flow reducing path in the
flow network w.r.t. f then we define a flow
cut (S, T ) as follows: S = {w ∈ W |
there is a simple path froms tow in the residual network}
andT = W \ S. Thenf((u, v)) = c((u, v)) for each edge
(u, v) ∈ E∩(S×T ) (otherwisev ∈ S) andE∩(T×S) = ∅
(otherwiseu ∈ S for (u, v) ∈ E ∩ (T × S)). It is easy to
see that|f | =

∑
e∈E∩(S×T ) f(e)−

∑
e∈E∩(T×S) f(e) (for

each flow cut(S, T )). This givesc((S, T )) = |f |.
Finally, if there is a flow cut(S, T ) with |f | = c((S, T ))

thenf must be minimal since|f | =
∑

e∈E∩(S′×T ′) f(e)−
∑

e∈E∩(T ′×S′) f(e) > c((S′, T ′)) for all flow cuts(S′, T ′)

(becausec((S′, T ′)) = 0 in the caseE ∩ (T ′ × S′) 6= ∅).
In particular,|f | = c((S, T )) if and only if (S, T ) is a

flow cut with maximal capacity andf is a minimal flow in
the flow network.

We end up with a polynomial algorithm for the compu-
tation of minimal flows in flow networks with lower capaci-
ties therewith offering the possibility to efficiently compute

the maximal capacity of flow cuts in such flow networks:
Compute an arbitrary (feasible) flow of the flow network
satisfying the lower capacity constraint (a) by a transforma-
tion into a maximal flow problem ([10]). There are maxi-
mal flow algorithms running inO(n3) time and faster ([8])
wheren is the number of nodes of the LSO. Then itera-
tively reduce this flow along (shortest) flow reducing paths.
This takes again maximalO(n3) time (a proof is analogous
to the case of computing maximal flows in flow networks
with upper capacities along so called flow augmenting paths
([3, 8])). This gives a overall time complexity ofO(n3).
See also [4] for an overview on flow theory and efficient
algorithms.


