
Synthesis of Petri Nets from Finite Partial Languages

Robert Lorenz, Robin Bergenthum, Jörg Desel, Sebastian Mauser
Department of Applied Computer Science
Catholic University of Eichstätt-Ingolstadt

85072 Eichstätt, Germany
firstname.lastname@ku-eichstaett.de

Abstract

In this paper we present an algorithm to synthesize a
finite place/transition Petri net (p/t-net) from a finite par-
tial language. This synthesized p/t-net has minimal non-
sequential behavior including the specified partial lan-
guage. Consequently, either this net has exactly the non-
sequential behavior specified by the partial language, or
there is no such p/t-net. We finally develop an algorithm
to test whether the synthesized net has exactly the non-
sequential behavior specified by the partial language.

The algorithms are based on the theory of regions for
partial languages presented in [10]. Thus, this paper shows
the applicability of the concept introduced in [10] and, for
the first time, provides an effective algorithm for the synthe-
sis of system models from partial languages.

1 Introduction

Synthesis of Petri nets from behavioral descriptions has
been a successful line of research since the 1990ies. There
is a rich body of nontrivial theoretical results, and there are
important applications in industry, in particular in hardware
system design [3], and recently also in workflow design
[13]. Moreover, there are a number of synthesis tools that
are based on the theoretical results [2].

Originally, synthesis means algorithmic construction of
a Petri net from sequential observations. It can be applied
to various classes of Petri nets, including elementary nets
[6, 7] and place/transition nets (p/t-nets) [1]. Synthesiscan
start with a transition system representing the sequentialbe-
havior of a system as well as with a step transition system
which additionally represents steps of concurrent events [1].
Synthesis can also be based on a language, i.e., on a set of
occurrence sequences or step sequences [4].

The synthesisproblemis the problem to decide whether,
for a given behavioral specification (transition system, lan-
guage), there exists a Petri net of the respective class such
that the behavior of this net coincides with the specified be-

havior. The complexity of Petri net synthesis as well as the
complexity of the synthesis problem varies according to the
considered Petri net class and to the considered behavioral
specification formalism.

The aim of this paper is to solve the synthesis problem
for p/t-nets where the behavior is given in terms of a finite
partial language, i.e., as a finite set of labeled partial orders
(LPOs). Moreover, we provide a synthesis algorithm. Thus,
in contrast to previous work on the synthesis problem, we
consider partial order behavior of Petri nets, truly represent-
ing the concurrency of events, which is often considered the
most appropriate representation of behavior of concurrent
systems modeled by Petri nets.

As mentioned above, we start our procedure with a finite
set of partially ordered sets of events together with a label-
ing function associating a transition to each event. Thus, a
single possible run (of the unknown p/t-net) is represented
by an LPO of events. The ordering relation defines apos-
sible ordering of the transition occurrences, i.e., if eventse
ande′ are ordered (e < e′) and if moreovere is labeled by
t ande′ is labeled byt′, then in this runt′ can occur after
the occurrence oft. If two eventse ande′ are not ordered
(neithere < e′ nor e′ < e) then the respective transitions
can occur concurrently. Notice that this interpretation ofa
partial order semantics is different to the so-called process
semantics, wheree < e′ means that the respective occur-
rences of the labels,t and t′, have to be causally ordered
(and cannot be concurrent) whereas in our semanticse < e′

means that the respective transitionst andt′ can either oc-
cur concurrently (and thus in any order) or only in the spec-
ified order. LPOs representing an order between specified
transition occurrences which is in the above described sense
possible in a p/t-net we formally call enabled w.r.t. this net.

Like previous results, our approach is based on the no-
tion of regions. All approaches to Petri net synthesis based
on regions roughly follow the same idea:

• Instead of solving the synthesis problem first (is there a
net with the specified behavior?) and then – in the pos-

itive case – synthesizing the net, a net is synthesized
for any specification.

• The construction starts with the transitions taken from
the behavioral specification. In our case, transitions
are the labels of the events of the LPOs. So we start
with a net with many transitions and without places.

• Since this net has too much concurrency in general, its
behavior will be restricted by the addition of places.
In particular, a place constitutes a dependency relation
between the occurrences of the transitions in its pre-set
and the occurrences of the transitions in its post-set.

• A single region identifies a dependency between two
sets of transitions. Regions are defined for the behav-
ioral description (in our case, for a partial language).
Each region yields a corresponding place, together
with its initial marking, in the constructed net. A re-
gion is defined in such a way that the behavior of the
net with its corresponding place still includes the spec-
ified behavior. The same holds for any net with many
places corresponding to regions.

• When all, or sufficiently many, regions are identified,
all places of the synthesized net are constructed. The
crucial point for this step is that the set of all regions
can be very large or even infinite whereas in most cases
finite, smaller sets of regions suffice to represent all
relevant dependencies.

• If the behavior of the synthesized net coincides with
the specified behavior (where coincide is defined by an
appropriate notion of isomorphism) then the synthesis
problem has a positive solution; otherwise there is no
Petri net with the specified behavior and therefore the
synthesis problem has a negative solution.

The notion of region employed in this work was already
introduced in our previous work [10]. We showed that each
region defines a place and that addition of all such places
yields a net such that the behavior of this net includes the
specified behavior. Moreover, there is no p/t-net with this
property which enables less LPOs. If we could effectively
check whether the behavior of the constructed net coincides
with the specified behavior, we would be finished. However,
this simple approach is unfeasible for two reasons:

First, the set of regions defined previously is infinite, and
so is the set of places of the synthesized net. In other words,
this net can be defined mathematically, but it can never be
constructed effectively. The first main result of this paper
provides a solution to this problem. It shows that a finite
subset of regions (places) suffices for generating the same
behavior as all regions (places). It is based on a linear al-
gebraic representation of regions and employs finiteness re-
sults from convex geometry.

The second problem addressed in this paper is concerned
with the problem to check whether the behavior of this finite
net coincides with the specified behavior. One possibility is
to compute the (complete) behavior of the finite net (which
itself turns out to be finite) and to compare it with the spec-
ified behavior. The behavior of the synthesized net can be
computed through the set of its process nets (implemented
in our tool VipTool [5]) considering the LPOs underlying
process nets. Another possibility is to check for all LPOs
not specified whether they do not belong to the behavior of
the net. Since the set of not specified LPOs is infinite, we
construct a finite representation of it. This way, the problem
reduces to the problem of checking whether these finitely
many LPOs are runs of the synthesized net. This can be
solved using the verification result from [8].

The rest of the paper is organized as follows: We start
with brief introduction to LPOs, partial languages, p/t-nets
and enabled LPOs in Section 2. In Section 3 we recall def-
initions and main results from [10] on the theory of regions
for partial languages. In the subsequent sections we develop
the new results of this paper: In Section 4 we show how to
compute regions as integer solutions of an homogenous lin-
ear inequation system (Subsection 4.1) and we prove that a
finite set of basis solutions generating the set of all solutions
already appropriately represents the set of all regions (Sub-
section 4.2). Finally, in Section 5 we present methods to
test whether the finite p/t-net synthesized from the finite set
of basis solutions has exactly the specified non-sequential
behavior, i.e., whether its set of enabled LPOs equals the
specified partial language.

2 Preliminaries

In this Section we shortly recall the definitions oflabeled
partial orders (LPOs),partial languages, place/transition
nets(p/t-nets) and LPOsenabled w.r.t. p/t-nets. We start
with basic mathematical notations: ByN we denote the
nonnegative integers. N+ denotes the positive integers.
Given a functionf from A to B and a subsetC of A we
write f |C to denote therestrictionof f to the setC. Given
a finite setA, the symbol|A| denotes thecardinality of A.
The set of allmulti-setsover a setA is the setNA of all
functionsf : A → N. Addition + on multi-sets is defined
as usual by(m +m′)(a) = m(a) +m′(a). We also write
∑

a∈Am(a)a to denote a multi-setm overA. Given a bi-
nary relationR ⊆ A × A over a setA, the symbolR+

denotes thetransitive closureof R. We writeaRb to denote
(a, b) ∈ R. A directed graphis a pair(V,→), whereV is a
finite set of verticesand→⊆ V ×V is a binary relation over
V, called theset of edges. Notice that all graphs considered
in this paper are finite.

Definition 1 (Partial order). A partial orderis a directed
graph po = (V,<), where< is a binary relation onV

which is irreflexive (∀v ∈ V : v 6< v) and transitive
(<=<+).

Two nodesv, v′ ∈ V of a partial order(V,<) are called
independentif v 6< v′ andv′ 6< v. By co ⊆ V × V we de-
note the set of all pairs of independent nodes ofV . A co-set
is a subsetC ⊆ V fulfilling: ∀x, y ∈ C : x co y. A cut is a
maximal co-set. For a co-setC of a partial order(V,<) and
a nodev ∈ V \ C we writev < C, if v < s for an element
s ∈ C andv coC, if v co s for all elementss ∈ C. A par-
tial order(V ′, <′) is aprefixof another partial order(V,<)
if V ′ ⊆ V with (v′ ∈ V ′ ∧ v < v′) =⇒ (v ∈ V ′) and
<′=< |V ′×V ′ . Given two partial orderspo1 = (V,<1) and
po2 = (V,<2), we say thatpo2 is a sequentializationof
po1 if <1⊆<2, and aproper sequentializationif addition-
ally <1 6=<2. We will use partial orders with nodeslabeled
by action namesto specify scenarios describing the behav-
ior of systems.

Definition 2 (Labeled partial order). A labeled partial order
(LPO) is a triplelpo = (V,<, l), where(V,<) is a partial
order, andl : V → T is a labeling functionwith set of
labelsT .

We use the above notations defined for partial orders also
for LPOs. We will often consider LPOs only up to isomor-
phism. Two LPOs(V,<, l) and(V ′, <′, l′) are callediso-
morphic, if there is a bijective mappingψ : V → V ′ such
that l(v) = l′(ψ(v)) for v ∈ V , andv < w ⇐⇒ ψ(v) <′

ψ(w) for v, w ∈ V . By [lpo] we will denote the set of all
LPOs isomorphic tolpo. The LPOlpo is said torepresent
the isomorphism class[lpo]. The behavior of systems is for-
mally specified by sets of (isomorphism classes of) LPOs.
Such sets are also calledpartial languages.

Definition 3 (Partial language). Let T be a set. A setL ⊆
{[lpo] | lpo is an LPO with set of labelsT } is calledpartial
language overT .

Usually, partial languages are given by sets of concrete
LPOs representing isomorphism classes. We always as-
sume that each label fromT occurs in a partial language
overT . Figure 1 shows a partial language represented by
the set of LPOsL = {lpo1, lpo2} which we will use as a
running example.

b
a

b a

L

lpo 1 lpo 2

Figure 1. A partial language.
A netis a triple(P, T, F), whereP is a (possibly infinite)

set ofplaces, T is a finite set oftransitionssatisfyingP ∩
T = ∅, andF ⊆ (P × T) ∪ (T × P) is aflow relation.

Definition 4 (Place/transition net). A place/transition-net
(shortly p/t-net) N is a quadruple(P, T, F,W), where
(P, T, F) is a net, andW : F → N+ is aweight function.

We extend the weight functionW to pairs of net ele-
ments(x, y) ∈ (P × T) ∪ (T × P) with (x, y) 6∈ F by
W (x, y) = 0. A markingof a netN = (P, T, F,W) is
a functionm : P → N assigningm(p) tokens to a place
p ∈ P , i.e. a multi-set overP . A marked p/t-netis a
pair (N,m0), whereN is a p/t-net, andm0 is a marking of
N , calledinitial marking. Figure 2 shows a marked p/t-net
(N,m0). As usual, places are drawn as circles including to-
kens representing the initial marking, transitions as rectan-
gles and the flow relation as arcs which have annotated the
values of the weight function (the weight1 is not shown).

a b
2

Figure 2. A marked p/t-net (N,m0).
A multi-set of transitionsτ ∈ NT is called astepof

N . A stepτ is enabled to occur(concurrently) in a mark-
ing m if and only if m(p) ≥

∑

t∈τ τ(t)W (p, t) for each
placep ∈ P . In this case, its occurrence leads to the mark-
ing m′(p) = m(p) +

∑

t∈τ τ(t)(W (t, p) − W (p, t)). In
the marked p/t-netN from Figure 2 only the stepsa and
b are enabled to occur in the initial marking. In the mark-
ing reached after the occurrence ofa the stepa + b is en-
abled to occur. There are two equivalent formal notions of
runs of p/t-nets defining non-sequential semantics based on
LPOs. The notion of LPOsexecutable in a p/t-net(which
is strongly related to process nets) and the notion of LPOs
enabled w.r.t. a p/t-net.1 We only introduce enabled LPOs
here: An LPO is enabled w.r.t. a marked p/t-net, if for each
cut of the LPO the marking reached by firing all transitions
corresponding to events smaller than the cut enables the step
(of transitions) given by the cut.

Definition 5 (Enabled LPO). Let (N,m0) be a marked
p/t-net, N = (P, T, F,W). An LPO lpo = (V,<, l)
with l : V → T is calledenabled (to occur) in(N,m0)
if m0(p) +

∑

v∈V ∧v<C(W (l(v), p) − W (p, l(v))) ≥
∑

v∈C W (p, l(v)) for every cutC of lpo and everyp ∈
P . Its occurrenceleads to thefinal markingm′ given by
m′(p) = m(p) +

∑

v∈V (W (l(v), p)−W (p, l(v))).
The set of all isomorphism classes of LPOs enabled

w.r.t. a given marked p/t-net(N,m0) is denoted by
Lpo(N,m0). Lpo(N,m0) is called thepartial language of
runsof (N,m0). Enabled LPOs are also calledruns.

Observe thatLpo(N,m0) is always sequentialization
and prefix closed, i.e. every sequentialization and every

1Their correspondence was proven in [9, 14].

prefix of an enabled LPO is again enabled w.r.t.(N,m0).
Moreover, the set of labels ofLpo(N,m0) is always fi-
nite. Therefore, when specifying the non-sequential behav-
ior of a searched p/t-net by a partial language, this partial
language must be necessarily sequentialization and prefix
closed and must have a finite set of labels. We assume that
such a partial languageL is given by a set of concrete LPOs
L representingL in the sense that[lpo] ∈ L ⇐⇒ ∃lpo′ ∈
L : [lpo] = [lpo′]. Usually, we specify the non-sequential
behavior by a set of concrete LPOsL which isnot sequen-
tialization and prefix closed and then consider the partial
language which emerges by adding all prefixes of sequen-
tializations of LPOs inL. In this sense, the partial language
L given in Figure 1 specifies the non-sequential behavior of
a searched p/t-net. Observe that both LPOs shown in this
Figure are enabled w.r.t. the marked p/t-net(N,m0) shown
in Figure 2, that means the non-sequential behavior (partial
language of runs) of(N,m0) includesL.

3 Region based synthesis

We consider the problem of synthesizing a p/t-net from a
partial language specifying its non-sequential behavior.As
mentioned above, such a partial languageL will be repre-
sented by a set of concrete LPOsL (which is not necessarily
prefix or sequentialization closed). That means we will de-
velop an algorithm to compute a marked p/t-net(N,m0)
from a given set of LPOsL such that the partial languageL
emerging fromL is the partial language of runs of(N,m0),
i.e. L = Lpo(N,m0) (if such a net exists). In this section
we recall the definitions and main results on region based
synthesis from [10]. We present a consolidated version of
the approach in [10] which is better structured and easier to
understand: We explain the ideas of region based synthesis
in two independent parts, first defining axiomatically the so
called saturated feasible net as the best upper approximation
to a p/t-net having the specified behavior and second intro-
ducing the notion of regions for the computation of this net.

3.1 Saturated feasible net

The basic idea to construct a net(N,m0) solving the
synthesis problem is as follows: The set of transitions of
the searched net is the finite set of labels ofL. Then clearly
each LPO inL is enabled w.r.t. the marked p/t-net consist-
ing only of these transitions (having an empty set of places),
because there are no causal dependencies between transi-
tions. That means, the transitions can occur arbitrary often
in arbitrary order. Therefore, this net in general has many
runs not specified byL. Thus, one tries to restrict the be-
havior of this net by creating causal dependencies between
the transitions through adding places. Such places are de-
fined by their initial marking and the weights on the arcs

connecting them to each transition (see Figure 3).

a b?
?

?

?
?

Figure 3. An unknown place of a p/t-net.

Two kinds of such places can be distinguished. In the
case that there is an LPO inL which is no run of the cor-
responding ”one place”-net, this place restricts the behavior
too much. Such a place isnot feasible. In the other case, the
considered place isfeasible.

Definition 6 (Feasible place). LetL be a partial language
over the finite set of labelsT and let (N,mp), N =
({p}, T, Fp,Wp) be a marked p/t-net with only one place
p (Fp,Wp,mp are defined according to the definition ofp).
The placep is calledfeasible (w.r.t.L), if L ⊆ Lpo(N,mp),
otherwisenot feasible (w.r.t.L).

Figure 4 shows on the left side a place which is feasible
w.r.t. the partial language specified byL in Figure 1. This is
because, after the occurrence ofa, the place is marked by2
tokens, i.e. in this marking the stepa+b is enabled to occur
(as specified bylpo2). The place shown on the right side is
not feasible because, after the occurrence ofa, the place is
again marked by only1 token, i.e. in this marking the step
a+ b is not enabled to occur. Thuslpo2 is not enabled w.r.t.
the one-place-net shown on the right side.

a b
2

a b

Figure 4. left part: a feasible place; right part:
a place which is not feasible.

If we add all feasible places to the searched net, then
obviously the partial language of runs of the resulting net
includesL, and it is minimal with this property. We call
this net thesaturated feasible net (w.r.t.L). In general, the
partial language of runs of the saturated feasible net is not
necessarily equal toL. If it is not equal toL, there does not
exist a marked p/t-net whose partial language of runs equals
L. That means the synthesis problem has a solution if and
only if the partial language of runs of the saturated feasible
net equalsL.

Definition 7 (Saturated feasible p/t-net). LetL be a partial
language over the finite set of labelsT . The marked p/t-net
(N,m0), N = (P, T, F,W), such thatP is the set of all
places feasible w.r.t.L is calledsaturated feasible (w.r.t.L)

(F , W , m0 are defined according to the definitions of the
feasible places).

Theorem 8. Let (N,m0) be saturated feasible w.r.t. a par-
tial languageL. Then it holds:

(i) L ⊆ Lpo(N,m0).

(ii) The behavior of(N,m0) is minimal with property (i):
∀(N ′m′

0) : (Lpo(N ′,m′

0) (Lpo(N,m0)) =⇒ (L 6⊆
Lpo(N ′,m′

0)).

(iii) Either Lpo(N,m0) = L or the synthesis problem has
a negative answer.

Altogether, the saturated feasible net is a solution of
the synthesis problem or there is no solution. Note that
there are always infinitely many feasible places. For ex-
ample, each placepn with W (a, pn) = 2n,W (pn, a) = n,
W (pn, b) = n, W (b, pn) = 0 andm0(pn) = n is feasible
w.r.t. the partial language given byL in Figure 1. Therefore,
in particular the problem of representing the infinite set of
feasible places by a finite subset (restricting the behaviorin
the same way) must be solved.

3.2 Regions

By so calledregionsof partial languages it is possible to
define the set of all feasible places structurally on the level
of the partial language given byL. The idea of defining re-
gions of partial languages is as follows: If two eventsx and
y are ordered in an LPOlpo = (V,<, l) ∈ L – that means
x < y – this specifies that the corresponding transitionsl(x)
andl(y) are causally dependent. Such a causal dependency
arises exactly if the occurrence of transitionl(x) produces
tokens in a place, and some of these tokens are consumed
by the occurrence of the other transitionl(y). Such a place
can be defined as follows: Assign to every edge(x, y) of
an LPO inL a natural number representingthe number of
tokens which are produced by the occurrence ofl(x) and
consumed by the occurrence ofl(y) in the place to be de-
fined. Then the number of tokens consumed overall by a
transitionl(y) in this place is given as the sum of the nat-
ural numbers assigned to ingoing edges(x, y) of y. This
number can then be interpreted as the weight of the arc con-
necting the new place with the transitionl(y). Similarly,
the number of tokens produced overall by a transitionl(x)
in this place is given as the sum of the natural numbers as-
signed to outgoing edges(x, y) of x and this number can
then be interpreted as the weight of the arc connecting the
transitionl(x) with the new place. Of course, transitions
can also

• consume tokens from the initial marking of the new
place, i.e. tokens which are not produced by another

transition: In order to specify the number of tokens
consumed by a transition from the initial marking, we
extend an LPO by aninitial event v0 representing a
transition producing the initial marking.

• produce tokens in the new place which are not con-
sumed by some subsequent transition, i.e. tokens
which remain in the final marking after the occurrence
of all transitions: In order to specify the number of
tokens produced by a transition and remaining in the
final marking, we extend an LPO by afinal eventvmax

representing a transition consuming the final marking.

The sum of the natural numbers assigned to outgoing
edges(v0, y) of the initial eventv0 can be interpreted as
the initial marking of the new place.

b

v

v

a

b a

v

v

00

1 2

Figure 5. ⋆-extensions of LPOs.

Figure 5 shows the LPOslpo1 and lpo2 from Figure 1
extended by an initial and a final event. Such extensions we
call ⋆-extensions of LPOs.

Definition 9 (⋆-extension). For a set of LPOsL we de-
note WL =

⋃

(V,<,l)∈L V , EL =
⋃

(V,<,l)∈L < and
lL =

⋃

(V,<,l)∈L l. A ⋆-extensionlpo⋆ = (V ⋆, <⋆, l⋆) of
lpo = (V,<, l) is defined by

(i) V ⋆ = (V ∪ {vlpo
0 , vlpo

max}) with vlpo
0 , vlpo

max /∈ V ,

(ii) ≺⋆=≺ ∪({vlpo
0 }×V)∪(V ×{vlpo

max})∪{(v
lpo
0 , vlpo

max)},

(iii) l⋆(vlpo
0), l⋆(vlpo

max) /∈ l(V), l⋆(vlpo
0) 6= l⋆(vlpo

max) and
l⋆|V = l.

vlpo
0 is called initial event of lpo andvlpo

max maximal event
of lpo. Let lpo⋆ = (V ⋆, <⋆, l⋆) be a⋆-extension of each
lpo ∈ L such that:

(iv) For each two LPOs(V,<, l), (V ′, <′, l′) ∈ L:

l⋆(vlpo
0) = (l′)⋆(vlpo′

0) .

(v) For each two distinct LPOs(V,<, l), (V ′, <′, l′) ∈ L:
l⋆(vlpo

max) 6= (l′)⋆(vlpo′

max) (6∈ lL(WL)).

Then the setL⋆ = {lpo⋆ | lpo ∈ L} is called⋆-extension
of L. We denoteW ⋆

L = WL⋆ ,E⋆
L = EL⋆ andl⋆L = lL⋆ .

According to the above explanation we can define a new
placepr by assigning in each LPOlpo = (V,<, l) ∈ L a
natural numberr(x, y) to each edge(x, y) of a⋆-extension
of lpo through a functionr : E⋆

L → N0:

• The sum of the natural numbersInlpo(y, r) =
∑

x<⋆y r(x, y) assigned to ingoing edges(x, y) of a
node y ∈ WL is interpreted as the weight of the
arc connecting the new place with the transitionl(y),
i.e. we defineW (pr, l(y)) = Inlpo(y, r). We call
Inlpo(y, r) the intoken flowof y.

• The sum of the natural numbersOutlpo(x, r) =
∑

x<⋆y r(x, y) assigned to outgoing edges(x, y) of
a nodex ∈ WL is interpreted as the weight of the
arc connecting the transitionl(x) with the new place,
i.e. we defineW (l(x), pr) = Outlpo(x, r). We call
Outlpo(x, r) theouttoken flowof x.

• the sum of the natural numbers assigned to outgoing
edges(v0, y) of an initial nodevlpo

0 (the outtoken flow
of vlpo

0) is interpreted as the initial marking of the new
place, i.e. we definem0(pr) = Outlpo(v

lpo
0 , r). We

callOutlpo(v
lpo
0 , r) the initial token flowof lpo.

The valuer(x, y) we call thetoken flowbetweenx andy.
Since equally labeled nodes formalize occurrences of the
same transition, this is well-defined only if equally labeled
events have equal intoken flow and equal outtoken flow. In
particular all LPOs must have the same initial token flow.
We say thatr : E⋆

L → N0 fulfills the properties (IN) and
(OUT) onL if for all lpo = (V,<, l), lpo′ = (V ′, <′, l′) ∈
L and for allv ∈ V ⋆, v′ ∈ (V ′)⋆ holds

(IN) l(v) = l′(v′) =⇒ Inlpo(v, r) = Inlpo′(v′, r).

(OUT) l(v) = l′(v′) =⇒ Outlpo(v, r) = Outlpo′(v′, r).

Observe that (OUT) in particular ensures that all LPOs have
the same initial token flow. Altogether each such functionr
fulfilling (IN) and (OUT) onL defines a placepr. We call
pr corresponding placeof r.

Definition 10 (Region). LetL be a set of LPOs which is se-
quentialization and prefix closed. Let furtherL be the par-
tial language represented byL. A regionof L is a function
r : E⋆

L → N0 fulfilling (IN) and (OUT) onL.

If we define a functionr fulfilling (IN) and (OUT) on
a set of LPOsL which is not sequentialization and prefix
closed, then this function is easily extended to a region of
the partial language defined by the set of all prefixes of se-
quentializations of LPOs inL as follows:

• Assign the value0 to each additional edge within a
sequentialization of an LPO inL and keep the values
of r on all other edges.

• Definer on a prefix of an LPO inL by gluing all nodes
subsequent to the prefix to a maximal node of the pre-
fix. If thereby several edges are glued to one edge, then
sum up the values ofr on the glued edges. Keep the
values ofr on all remaining edges.

Thus, it is enough to specify a function fulfilling (IN) and
(OUT) on some set of LPOsL to define a region of the
partial languageL defined byL. Figure 6 shows a function
r fulfilling (IN) and (OUT) on the setL of LPOs given in
Figure 1, which in this sense can be extended to a region of
the partial language defined byL. The corresponding place
pr is defined byW (pr, a) = 1,W (a, pr) = 2,W (pr, b) =
1, W (b, pr) = 0 andm0(pr) = 1, i.e. pr is the middle
place of the p/t-net in Figure 2.

b

v

v

a

b a

v

v

00

1 2

1

11

2

0

0

0

0

0

0

0

1

Figure 6. Region of a partial language.

As the main result we showed in [10] that the set of
places corresponding to regions of a partial language equals
the set of feasible places w.r.t. this partial language.2

Theorem 11([10]). Let L be a partial language. Then it
holds (i) that each place corresponding to a region ofL is
feasible w.r.t.L and (ii) that each place feasible w.r.t. toL
corresponds to a region ofL.

Thus the saturated feasible net can be given by the set of
places corresponding to regions:

Corollary 12. LetL be a partial language represented by
the set of LPOsL. DenoteP = {pr | r is a region ofL},
T the set of labels ofL, W (pr, lL(v)) = Inlpo(v, r) and
W (lL(v), pr) = Outlpo(v, r) for pr ∈ P and somelpo =
(V,<, l) ∈ L with v ∈ V , F = {(x, y) | W (x, y) >

0} andmL(pr) = Outlpo(v
lpo
0 , r) for pr ∈ P (and some

lpo ∈ L). Then the p/t-net(NL,mL), NL = (P, T, F,W),
is thesaturated feasible p/t-net (w.r.t.L).

Remember that the saturated feasible net has infinitely
many places, i.e. there are infinite many regions ofL.
Moreover, even the description of one region may be infinite
since there may exist infinitely many edges inE⋆

L. There-
fore we restrict ourselves in the following to finite partial

2In [10] we assumed that the set of LPOsL representingL fulfills
some technical requirements. These will be automatically fulfilled for all
such setsL we consider in the following. Thus, we omit their detailed
presentation here.

languages, i.e. to partial languages which are represented
by a finite set of LPOsL.

4 Computing a finite representation of all re-
gions

For finite partial languages we show in this section that
the set of regions can be computed as the set of non-negative
integer solutions of a homogenous linear equation system
A · x = 0 (Subsection 4.1). It is well known that there is a
finite set of basis-solutions, such that every solution is gen-
erated as a non-negative linear sum of basis-solutions. In
Subsection 4.2 we prove that the set of places correspond-
ing to basis-solutions already restricts the behavior of the
searched net in the same way as the set of all feasible places,
i.e. there is a representation of the saturated feasible netby
a net with finite many places having the same partial lan-
guage of runs. For this finite net it can be tested effectively
if it hasL as its partial language of runs (Section 5).

4.1 Computing regions

In this subsection we show how to compute regions (and
thus feasible places) of a partial languageL represented by
a finite set of LPOsL. For this, we rewrite the properties
(IN) and (OUT) as a homogenous linear equation system
AL · x = 0. The LPOs inL are assumed to have pairwise
disjoint node sets.3 To compute a regionr we need to assign
a valuer(x, y) to every edgee = (x, y) in the finite set of
edgesE⋆

L. Thereto we interpretr as a|E⋆
L|-dimensional

vectorxr = (x1, . . . , xn), n = |E⋆
L|. Considering a fixed

numbering of the edges inE⋆
L = {e1, . . . , en}, a valuer(ei)

equalsxi. Figure 7 shows a numbering of the edges of the
⋆-extension of the set of LPOsL given in Figure 1.

b

v

v

a

b a

v

v

00

1 2

2

3

1 4

5

6 7

8 9

10

1211

Figure 7. A numbering of edges.

Now, we encode the properties (IN) and (OUT) by a ho-
mogenous linear equation systemAL · x = 0 in the sense
thatr : E⋆

L → N0 fulfills (IN) and (OUT) onL if and only if

3This ensures thatL requires all technical requirements used in [10] to
prove theorem 11.

AL · xr = 0. This can be done by, loosely speaking, defin-
ing for pairs of equally labeled nodes a rowa of AL count-
ing the token flow on ingoing edges of one node positively
and of the other node negatively and similarly defining a
row b of AL counting the token flow on outgoing edges of
one node positively and of the other node negatively. It is
enough for each labelt to ensure that the intoken (outtoken)
flow of the first and second node with labelt are equal, that
the intoken (outtoken) flow of the second and third node
with labelt are equal, and so on.

Formally, we denoteWt = {v ∈ W ⋆
L | l

⋆
L(v) = t} =

{vt
1, v

t
2, . . .} for all labelst ∈ T and denote

at
m = (at

m,1, . . . , a
t
m,n)

at
m,j =







1 if ej is an ingoing edge ofvt
m,

−1 if ej is an ingoing edge ofvt
m+1

0 else.

for 1 6 m 6 |Wt| − 1. Clearly,at
m · xr = 0 if and only if

Inlpo(v
t
m, r) = Inlpo′(vt

m+1, r) for the LPOslpo = (V,<
, l) andlpo′ = (V ′, <′, l′) with vt

m ∈ V andvt
m+1 ∈ V

′.
Similarly, we set

bt
m = (btm,1, . . . , b

t
m,n)

bt
m,j =







1 if ej is an outgoing edge ofvt
m,

−1 if ej is an outgoing edge ofvt
m+1

0 else.

for 1 6 m 6 |Wt| − 1. Clearly, bt
m · xr = 0 if and

only if Outlpo(v
t
m, r) = Outlpo′(vt

m+1, r) for the LPOs
lpo = (V,<, l) andlpo′ = (V ′, <′, l′) with vt

m ∈ V and
vt

m+1 ∈ V
′.

Finally, to ensure that all LPOs have the same initial to-
ken flow, we denoteL = {lpo1, lpo2, . . .} and add rows

cm = (cm,1, . . . , cm,n)

cm,j =











1 if ej is an outgoing edge ofvlpo
m

0 ,

−1 if ej is an outgoing edge ofv
lpo

m+1

0

0 else.

for 1 6 m 6 |L| − 1. Clearly,cm · xr = 0 if and only if

Outlpo
m

(v
lpo

m

0 , r) = Outlpo
m+1

(v
lpo

m+1

0 , r).
Figure 8 shows the described homogenous linear equa-

tion systemAL · x = 0 for the numbering of edges given
in Figure 7. The first row of the matrix ensures that both
initial nodes of the⋆-extentions of the two LPOs have the
same outtoken flow, i.e. that both LPOs have the same ini-
tial token flow. Therefore the sum of the values on all out-
going edges ofvlpo1

0 (namelye1 and e2) must equal the
sum of the values on all outgoing edges ofv

lpo2

0 (namely
e4, e5, e6 and e7). We get the corresponding equation
x1 +x2−x4−x5−x6−x7 = 0 (this equation corresponds
to the first rowc1 of AL). Moreover there exist two pairs of

11

12

10

9

8

7

6

5

4

3

2

1

11

12

10

9

8

7

6

5

4

3

2

1

-1

0

0

0

0

00000000100

000-10-100010

-11110000000

0000-1010000

0000-1-1-1-1011

-1

0

0

0

0

00000000100

000-10-100010

-11110000000

0000-1010000

0000-1-1-1-1011

1 2 3 4 5 6 7 8 9 10 11 12

0

0

…

0

0

0

0

…

0

0

=

Figure 8. Equation system defining regions.

equally labeled nodes and we need to ensure that each pair
has the same intoken and outtoken flow. Row number two
aa

1 ensures for every functionr given by a solutionxr that
botha-labeled nodes have the same intoken flow, row num-
ber threeba

1 guarantees equal outtoken flow of thea-labeled
nodes. Rows number fourab

1 and fivebb
1 do the same for

both nodes labeled byb. A possible non-negative integer
solution would bexr = (0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2) cor-
responding to the region drawn in Figure 6 and thereby to
the mid place shown in Figure 2.

By the above considerations the set of regionsr is in one-
to-one-correspondence to the set of non-negative integer so-
lutionsx = (x1, . . . , xn) of AL · x = 0 via r(ei) = xi, i.e.
every feasible place can be computed by such a solution.
The place corresponding to a solutionx we denote bypx.

Note that the number of rowsN of AL linearly depends
on the number of nodes|WL| and the number of LPOs|L|.

4.2 Finite representation

The homogenous linear equation system developed in
the last section is in fact an inequation system, since we
search for non-negative solutions, i.e. we requirex > 0
for solutionsx. Thus we can compute regions of a finite
partial languageL and subsequently places of the searched
saturated feasible p/t-net by solving the finite homogenous
linear inequation systemAL·x 6 0, −AL·x 6 0, −x 6 0

with n + 2N rows (N is the number of rows,n the num-
ber of columns ofAL). The set of solutions of such a sys-
tem is called apolyhedral cone. According to a theorem
of Minkowski [11] polyhedral cones are finitely generated,
i.e. there are finitely many vectorsy1, . . . ,yk (also called
basis solutions) such that each elementx of the polyhedral
cone is a non-negative linear sumx =

∑k

i=1 λiyi for some
λ1, . . . , λk > 0. Such basis solutionsy1, . . . ,yk can be
effectively computed fromAL (see for example [12]). If
all entries ofAL are integers, then also the entries of all
yi can be chosen as integers. The time complexity of the
computation essentially depends on the numberk of basis
solution which is bounded byk 6

(

n+2N
n−1

)

. That means,

in the worst case the time complexity is exponential in the
number of nodes, whereas in most practical examples of
polyhedral cones there are only few basis solutions. It is a
topic of further research to evaluatek for typical instances
of polyhedral cones in our setting.

We finally claim that all places which do not corre-
spond to basis solutions can be deleted from the saturated
feasible p/t-net without changing its partial language of
runs. Thus, the saturated feasible p/t-net has a finite rep-
resentation. Consider placesp, p1, . . . , pk of some marked
p/t-net (N,m0), N = (P, T, F,W), and non-negative
real numbersλ1, . . . , λk (k ∈ N) such that (i)m0(p) =
∑k

i=1 λim0(pi), (ii) W (p, t) =
∑k

i=1 λiW (pi, t) for all
transitionst and (iii) W (t, p) =

∑k
i=1 λiW (t, pi) for all

transitionst. In such a case we writep =
∑k

i=1 λipi. Fig-
ure 9 shows the p/t-netN from Figure 2 extended to a net
N ′ by adding the two placesp4 andp5. Neitherp4 nor p5

restrict the behavior ofN ′ more then{p1, p2, p3}. In other
words each LPO enabled inN is also enabled inN ′. That
is because the placesp4 andp5 are positive linear combi-
nations of the other three places. It holdsp5 = 2p3 and
p4 = 1

2p1 + 1
2p2 + 1

2p3.

a b
2

2

p1 p2 p3

p4 p5

Figure 9. Summing places.

Lemma 13. Let (N,m0), N = (P, T, F,W), be a marked
p/t-net withP = {p1, . . . , pk, p} and p =

∑k
i=1 λipi

for non-negative real numbersλ1, . . . , λk (k ∈ N). De-
note P ′ = {p1, . . . , pk}, m′

0 = m0|P ′ and N ′ =
(P ′, T, F |(P ′×T)∪(T×P ′),W |(P ′×T)∪(T×P ′)). Then each
LPO enabled w.r.t.(N ′,m′

0) is enabled w.r.t.(N,m0).

Proof. Let lpo be enabled w.r.t.(N ′,m′

0), lpo = (V,<, l).
According to Definition 5 for a cutC of lpo and
i ∈ {1, . . . , k} it holdsm0(pi)+

∑

v∈V ∧v<C(W (l(v), pi)−
W (pi, l(v))) ≥

∑

v∈C W (pi, l(v)). This implies
for an arbitrary cut C of lpo and the place p:
m0(p) +

∑

v∈V ∧v<C(W (l(v), p) − W (p, l(v))) =
∑k

i=1 λi(m0(pi) +
∑

v∈V ∧v<C(W (l(v), pi) −

W (pi, l(v)))) >
∑k

i=1 λi

∑

v∈C W (pi, l(v)) =
∑

v∈C W (p, l(v)). Thus,lpo is enabled w.r.t.(N,m0).

Clearly, ifx =
∑k

i=1 λiyi for basis solutionsy1, . . . ,yk

of AL · x = 0, thenpx =
∑k

i=1 λipyi
. Thus, to compute

a finite representation of the saturated feasible p/t-net ofa
finite partial languageL, we compute a finite set of integer
basis solutions ofAL · x ≥ 0, whereL representsL.

5 Equality test

Let L be a finite partial language specified through a fi-
nite set of LPOsL which is not necessarily prefix and se-
quentialization closed (that meansL is the set of isomor-
phism classes of prefixes of sequentializations of LPOs in
L). Up to now we have shown how to compute fromL a
finite marked p/t-net(N,m0) which has a minimal partial
language of runsLpo(N,m0) including a specified partial
languageL. Finally, we have to test whether this net has ex-
actly the specified behavior or not, i.e. ifLpo(N,m0) = L.

Let Lsp be the set of all sequentilizations of prefixes of
LPOs inL. Since we already knowLpo(N,m0) ⊇ L, in
order to testLpo(N,m0) = L, we (1) either have to check
if each enabledlpo of (N,m0) is isomorphic to an LPO in
Lsp, or (2) to test that no LPOlpo which is not isomorphic
to an LPO inLsp is enabled w.r.t.(N,m0).

In the first case (1) we have to calculate all enabled
LPOs of (N,m0). The set of (pairwise non-isomorphic)
enabled LPOs of a p/t-net in general can be infinite, but
we can show that the synthesized representation(N,m0)
of the saturated feasible p/t-net always has a finite partial
language of runs. For this it is enough to show that the sat-
urated feasible p/t-net has a finite partial language of runs.
This is true because for every transitiont and every LPO
lpo = (V,<, l) ∈ L there is a finite numbernlpo,t of nodes
v ∈ V labeled byt. SinceL is finite we get a finite up-
per boundnt = max({nlpo,t | lpo ∈ L}) for the maximal
number of occurrences oft in an LPOlpo ∈ L. Conse-
quently the placept with the initial markingm0(pt) = nt,
an empty pre-set andt as the only transition in its post-set
withW (pt, t) = 1 is feasible w.r.t.L. That means that each
transitiont can maximally occurnt times and thus every
LPO enabled w.r.t. the saturated feasible p/t-net has at most
∑

t∈T nt nodes.
The finiteness ofLpo(N,m0) potentiates its algorithmi-

cal calculation: In principle we have to check if each run
lpo of (N,m0) is specified byL (isomorphic to an LPO in
Lsp). But for a runlpo′ which is a sequentialization of a
prefix of another runlpo it is enough to consider onlylpo
because iflpo′ is not isomorphic to an LPO inLsp then the
same holds forlpo. Therefore we only have to regard runs
which are not sequentializations of prefixes of other runs.
The set of all such runs can be computed through the (fi-
nite) set of process nets with maximal length of(N,m0)
[14]: Omitting conditions in a process net and only keeping
the ordering between events yields an LPO and it is well
known that each such LPO underlying a process net is a run.
Moreover, each run is a sequentialization of a prefix of an
LPO underlying a process net with maximal length. Thus,
for our test it is enough to regard the LPOs underlying such
process nets of(N,m0) and to test for all these LPOs if
they are specified byL. An algorithm that calculates the set

of maximal process nets of a p/t-net is for example imple-
mented in our tool VipTool [5].

In general the number of process nets is exponential in
the size of the p/t-net and the calculation of the process nets
requires an exponential run time. But in our special situa-
tion the number of process nets of(N,m0) should in most
cases roughly coincide with the size of the inputL of the
algorithm because in the case of a positive solution of the
synthesis problem there holdsLpo(N,m0) = L and in the
negative caseLpo(N,m0) is the best upper approximation
to L. To detect the negative case there can easily be devel-
oped some heuristics to find not specified enabled LPOs be-
fore the whole set of process nets of(N,m0) is constructed.

The alternative possibility (2) for an equality test
Lpo(N,m0) = L checks if no LPOlpo not specified by
L (not isomorphic to some LPO inLsp) is enabled w.r.t.
(N,m0). For one such LPOlpo this can be tested in poly-
nomial time in the number of nodes oflpo using the algo-
rithm we presented in [8]. The problem is, that there are
infinite many such LPOs. That means, we must find a finite
setLc

fin of LPOs representing the set of all LPOsLc not
specified byL in the following sense: if no LPO inLc

fin

is enabled w.r.t. (N,m0) then no LPO inLc is enabled
w.r.t. (N,m0). The idea for the construction ofLc

fin is
to append one event for each possible continuation to each
lpo ∈ Lsp and add the resulting LPOlpo′ toLc

fin if lpo′ is
not specified byL. That meansLc

fin consists of all LPOs
lpo′ not isomorphic to an LPO inLsp defined bylpo′ =
(V ∪ {vt}, < ∪ <t, l ∪ (vt, t)), where(V,<, l) ∈ Lsp,
t ∈ T , vt 6∈ V and<t= {v′ | v′ ∈ V ′ ∨ v′ < V ′} × {t}
for a co-setV ′ of (V,<, l). The algorithm from [8] can now
test if each LPOlpo′ ∈ Lc

fin is enabled w.r.t.(N,m0).

There are two possibilities: On the one hand, if there ex-
ists an LPOlpo′ ∈ Lc

fin enabled w.r.t.(N,m0) then the
equality test obviously has a negative answer. On the other
hand, if every such LPOlpo′ is not enabled w.r.t.(N,m0)
we conclude that the equality test has a positive answer, i.e.
there exists no LPOlpo ∈ Lc enabled w.r.t.(N,m0). The
latter can be proven as follows: Assume that there exists an
lpo ∈ Lc enabled w.r.t(N,m0), but every LPOlpo′ ∈ Lc

fin

is not enabled w.r.t.(N,m0). Then there is a maximal pre-
fix lpopre of lpo (possibly empty) isomorphic to an LPO in
Lsp. Let lpo′pre be a further prefix oflpo having one addi-
tional node (suchlpo′pre exists becauselpo is not isomor-
phic to an LPO inLsp). The maximality oflpopre implies
that lpo′pre is not isomorphic to an LPO inLsp. By con-
struction ofLc

fin we can conclude thatlpo′pre is isomorphic
to an LPO inLc

fin. Sincelpo′pre is a prefix of an enabled
LPO it is also enabled w.r.t.(N,m0). This is a contradic-
tion. Note that the setLc

fin in general can have exponential
many LPOs in the number of specified LPOs|L|. We are
currently working on methods to reduce the setLc

fin.

6 Conclusion

In this paper we presented, given a finite set of LPOs
representing a partial language, how to compute a (finite)
marked p/t-net with minimal set of runs, such that each
specified LPO is a run of the net. Finally we presented
methods to test, whether the computed net has more runs
than specified or not. This decides the synthesis problem,
since the synthesis problem has a solution if and only if the
computed net does not have more runs than specified.

The computed net is a finite representation of the so
called saturated feasible net whose places correspond to re-
gions of the given partial language. For the computation of
the net, we first represented regions as non-negative inte-
ger solutions of an homogenous linear equation system and
then showed that the set of places corresponding to the fi-
nite set of basis solutions of such a system represents the
saturated feasible net. Summarizing the results, Algorithm
1 can be used to decide the synthesis problem. It applies the
equality test (1) described first in the last section generating
all process nets of the computed net.

1: A← EmptyMatrix
2: for all t ∈ T do
3: Wt ← {v ∈ W ⋆

L | l
⋆
L(v) = t}

4: for m = 1 to |Wt| − 1 do
5: A.addRow(at

m)
6: A.addRow(btm)
7: end for
8: end for
9: for m = 1 to |L| − 1 do

10: A.addRow(cm)
11: end for
12: Solutions← A.getBasisSolutions
13: (N,m0)← (∅, T, ∅, ∅, ∅)
14: for all r ∈ Solutions do
15: (N,m0).addCorrespondingP lace(r)
16: end for
17: Process← (N,m0).getAllMaxProcesses
18: for all pro ∈ Process do
19: if L.notContains(pro.getLPO) then
20: return [false, (N,m0)]
21: end if
22: end for
23: return [true, (N,m0)]

Algorithm 1: Calculates a net(N,m0) from a partial lan-
guage overT given byL which solves the synthesis prob-
lem, if it is solvable (indicated by a boolean variable).

The next steps of research are the implementation of Al-
gorithm 1 into VipTool [5] in different versions w.r.t. the
equality test, evaluation of the performance of the first part
of the algorithm (lines 1-16) and of the different mentioned

versions for the second part, examination of the special in-
stances of polyhedral cones used in the algorithm in view
of a better upper bound for the number of basis solutions
and generalization of the presented results to infinite partial
languages which allow a finite representation (for example
a term based representation).

References

[1] E. Badouel and P. Darondeau. On the synthesis of general
petri nets. Technical Report 3025, Inria, 1996.

[2] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,
and A. Yakovlev. Petrify: A tool for manipulating con-
current specifications and synthesis of asynchronous con-
trollers. IEICE Trans. of Informations and Systems, E80-
D(3):315–325, 1997.

[3] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,
and A. Yakovlev. Hardware and petri nets: Application to
asynchronous circuit design. In M. Nielsen; D. Simpson,
editor,ICATPN, volume 1825 ofLecture Notes in Computer
Science, pages 1–15. Springer, 2000.

[4] P. Darondeau. Deriving unbounded petri nets from formal
languages. In D. Sangiorgi; R. de Simone, editor,CONCUR,
volume 1466 ofLecture Notes in Computer Science, pages
533–548. Springer, 1998.

[5] J. Desel, G. Juhás, and R. Lorenz. Viptool-homepage., 2003.
http://www.informatik.ku-eichstaett.de/projekte/vip/.

[6] A. Ehrenfeucht and G. Rozenberg. Partial (set) 2-structures.
part i: Basic notions and the representation problem.Acta
Inf., 27(4):315–342, 1989.

[7] A. Ehrenfeucht and G. Rozenberg. Partial (set) 2-structures.
part ii: State spaces of concurrent systems.Acta Inf.,
27(4):343–368, 1989.

[8] G. Juhás, R. Lorenz, and J. Desel. Can i execute my sce-
nario in your net?. In G. Ciardo and P. Darondeau, editors,
ICATPN, volume 3536 ofLecture Notes in Computer Sci-
ence, pages 289–308. Springer, 2005.

[9] A. Kiehn. On the interrelation between synchronized
and non-synchronized behaviour of petri nets.Elektron-
ische Informationsverarbeitung und Kybernetik, 24(1/2):3–
18, 1988.

[10] R. Lorenz and G. Juhás. Towards synthesis of petri nets
from scenarios. In S. Donatelli and P. S. Thiagarajan, edi-
tors, ICATPN, volume 4024 ofLecture Notes in Computer
Science, pages 302–321. Springer, 2006.

[11] H. Minkowski. Geometrie der Zahlen. Teubner, 1896.
[12] T. Motzkin. Beiträge zur Theorie der linearen Ungleichun-

gen. PhD thesis, Jerusalem, 1936.
[13] W. M. P. van der Aalst, T. Weijters, and L. Maruster. Work-

flow mining: Discovering process models from event logs.
IEEE Trans. Knowl. Data Eng., 16(9):1128–1142, 2004.

[14] W. Vogler. Modular Construction and Partial Order Seman-
tics of Petri Nets., volume 625 ofLecture Notes in Computer
Science. Springer, 1992.

	Introduction
	Preliminaries
	Region based synthesis
	Saturated feasible net
	Regions

	Computing a finite representation of all regions
	Computing regions
	Finite representation

	Equality test
	Conclusion

