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Abstract havior. The complexity of Petri net synthesis as well as the
complexity of the synthesis problem varies according to the
In this paper we present an algorithm to synthesize a considered Petri net class and to the considered behavioral
finite place/transition Petri net (p/t-net) from a finite par  specification formalism.
tial language. This synthesized p/t-net has minimal non-  The aim of this paper is to solve the synthesis problem
sequential behavior including the specified partial lan- for p/t-nets where the behavior is given in terms of a finite
guage. Consequently, either this net has exactly the non-partial language, i.e., as a finite set of labeled partiatsrd
sequential behavior specified by the partial language, or (LPOs). Moreover, we provide a synthesis algorithm. Thus,
there is no such p/t-net. We finally develop an algorithm in contrast to previous work on the synthesis problem, we
to test whether the synthesized net has exactly the noneonsider partial order behavior of Petri nets, truly repns
sequential behavior specified by the partial language. ing the concurrency of events, which is often considered the
The algorithms are based on the theory of regions for most appropriate representation of behavior of concurrent
partial languages presented inJ[L0]. Thus, this paper shows systems modeled by Petri nets.
the applicability of the concept introduced in10] and, for ~ As mentioned above, we start our procedure with a finite
the first time, provides an effective algorithm for the sgath  set of partially ordered sets of events together with a label

sis of system models from partial languages. ing function associating a transition to each event. Thus, a
single possible run (of the unknown p/t-net) is represented
1 Introduction by an LPO of events. The ordering relation defingsoa-

sible ordering of the transition occurrenge<., if events
Synthesis of Petri nets from behavioral descriptions hasande’ are orderedd < ¢’) and if moreovee is labeled by
been a successful line of research since the 1990ies. Theréande’ is labeled byt’, then in this run’ can occur after
is a rich body of nontrivial theoretical results, and there a  the occurrence of. If two eventse ande’ are not ordered
important applications in industry, in particular in hamte  (neithere < ¢’ nore’ < ¢) then the respective transitions
system design(]3], and recently also in workflow design can occur concurrently. Notice that this interpretatioraof
[3]. Moreover, there are a number of synthesis tools thatPartial order semantics is different to the so-called pssce
are based on the theoretical resuis [2]. semantics, where < ¢’ means that the respective occur-
Originally, synthesis means algorithmic construction of rences of the labels, andt’, have to be causally ordered
a Petri net from sequential observations. It can be applied(@nd cannot be concurrent) whereas in our semaatics’
to various classes of Petri nets, including elementary netsmeans that the respective transitigrendt’ can either oc-
[B, [7] and place/transition nets (p/t-nefS) [1]. Synthesis cur concurrently (and thus in any order) or only in the spec-
start with a transition system representing the sequéseial ified order. LPOs representing an order between specified
havior of a system as well as with a step transition Systemtransition occurrences which is in the above describedssens
which additionally represents steps of concurrentev@jts[ Possible in a p/t-net we formally call enabled w.r.t. this.ne
Synthesis can also be based on a language, i.e., on a set of Like previous results, our approach is based on the no-
occurrence sequences or step sequeites [4]. tion of regions. All approaches to Petri net synthesis based
The synthesigroblemis the problem to decide whether, ©on regions roughly follow the same idea:
for a given behavioral specification (transition system; la
guage), there exists a Petri net of the respective class such e Instead of solving the synthesis problem first (is there a
that the behavior of this net coincides with the specified be- net with the specified behavior?) and then —in the pos-



itive case — synthesizing the net, a net is synthesized The second problem addressed in this paper is concerned
for any specification. with the problem to check whether the behavior of this finite
net coincides with the specified behavior. One possib#ity i

to compute the (complete) behavior of the finite net (which
itself turns out to be finite) and to compare it with the spec-
ified behavior. The behavior of the synthesized net can be
computed through the set of its process nets (implemented

e Since this net has too much concurrency in general, itsin our tool VipTool [8]) considering the LPOs underlying
behavior will be restricted by the addition of places. Process nets. Another possibility is to check for all LPOs
In particular, a place constitutes a dependency relationnot specified whether they do not belong to the behavior of
between the occurrences of the transitions in its pre-setthe net. Since the set of not specified LPOs is infinite, we
and the occurrences of the transitions in its post-set. ~ construct a finite representation of it. This way, the proble

reduces to the problem of checking whether these finitely

e A single region identifies a dependency between two many LPOs are runs of the synthesized net. This can be
sets of transitions. Regions are defined for the behav-sglved using the verification result frof [8].
ioral description (in our case, for a partial language).  The rest of the paper is organized as follows: We start
Each region yields a corresponding place, togetherith brief introduction to LPOs, partial languages, p/tae
with its initial marking, in the constructed net. A re- and enabled LPOs in SectiBh 2. In Secfibn 3 we recall def-
gion is defined in such a way that the behavior of the jnitions and main results froni.[1L0] on the theory of regions
netwith its corresponding place still includes the spec- for partial languages. In the subsequent sections we develo
ified behavior. The same holds for any net with many the new results of this paper: In Sectdn 4 we show how to
places corresponding to regions. compute regions as integer solutions of an homogenous lin-

regions are identified, ear inequation system (Subsectiod 4.1) and we prove that a

e When all, or sufficiently many, fini f basi uti ina th f all sohsi
all places of the synthesized net are constructed. The Inite set of basis solutions generating the set ofa I

crucial point for this step is that the set of all regions 2i'€ady appropriately represents the set of all regionb{Su

can be very large or even infinite whereas in most casesSeCtiOrLAR). Finally, in Sectidd 5 we present methods to
finite, smaller sets of regions suffice to represent all test whether the finite p/t-net synthesized from the finite se

of basis solutions has exactly the specified non-sequential
behavior, i.e., whether its set of enabled LPOs equals the
e If the behavior of the synthesized net coincides with specified partial language.

the specified behavior (where coincide is defined by an

appropriate notion of isomorphism) then the synthesis 2 Preliminaries

problem has a positive solution; otherwise there is no

Petri net with the specified behavior and therefore the  |n this Section we shortly recall the definitionsiabeled

synthesis problem has a negative solution. partial orders (LPOs), partial languages place/transition
nets(p/t-nets) and LPOgnabled w.r.t. p/t-netsWe start
with basic mathematical notations: BY we denote the
nonnegative integers N* denotes the positive integers.
Given a functionf from A to B and a subset’ of A we
write f|c to denote theestrictionof f to the setC. Given
a finite set4, the symbol A| denotes theardinality of A.
SThe set of allmulti-setsover a setA is the setN“ of all
functionsf : A — N. Addition + on multi-sets is defined
as usual bym + m’)(a) = m(a) + m’(a). We also write

e The construction starts with the transitions taken from
the behavioral specification. In our case, transitions
are the labels of the events of the LPOs. So we start
with a net with many transitions and without places.

relevant dependencies.

The notion of region employed in this work was already
introduced in our previous workTlL0]. We showed that each
region defines a place and that addition of all such places
yields a net such that the behavior of this net includes the
specified behavior. Moreover, there is no p/t-net with this
property which enables less LPOs. If we could effectively
check whether the behavior of the constructed net coincide
with the specified behavior, we would be finished. However,

this simple approach is unfeasible for two reasons: q " 1 Gi bi
First, the set of regions defined previously is infinite, and 2_aeam(a)a to denote a multi-set over A. Given a bi-
nary relationk C A x A over a set4, the symbolR™

so is the set of places of the synthesized net. In other Words,OI h = | £ We wi b0 d
this net can be defined mathematically, but it can never be enotes thiransitive closuref k. We writea 26 to denote

constructed effectively. The first main result of this paper ]E,a’.b) € R‘fA dlrecteddgrzaCrJhs a pglr(X/E)_—>), whlergv IS a
provides a solution to this problem. It shows that a finite Inite set of verticeand—C V' V'is a binary relation over

subset of regions (places) suffices for generating the samev’ called theset of edgesNotice that all graphs considered

behavior as all regions (places). It is based on a linear al-" this paper are finite.
gebraic representation of regions and employs finiteness re Definition 1 (Partial order) A partial orderis a directed
sults from convex geometry. graphpo = (V, <), where< is a binary relation onV/



which is irreflexive Yv € V
(<=<).

v ¢ wv) and transitive

Two nodesv,v' € V of a partial ordeV, <) are called
independenif v £ v andv’ £ v. By co C V x V we de-
note the set of all pairs of independent node¥ ofA co-set
is a subset” C V fulfilling: Vz,y € C': zcoy. A cutisa
maximal co-set. For a co-s€tof a partial ordefV, <) and
anodev € V' \ C'we writev < C, if v < s for an element
s € CandvcoC, if vcos for all elementss € C. A par-
tial order(V’, <’) is aprefixof another partial ordefl, <)
if V/".C Vwith (@ € VAv <) = (veV)and
<'=< |y xv. Given two partial ordergo, = (V, <;) and
po, = (V,<2), we say thapo, is a sequentializatiorof
po, if <1C<5, and aproper sequentializatioif addition-
ally <1#<5. We will use partial orders with nodéabeled
by action name#o specify scenarios describing the behav-
ior of systems.

Definition 2 (Labeled partial order)A labeled partial order
(LPO) is a triplelpo = (V, <, 1), where(V, <) is a partial
order, and! : V. — T is a labeling functionwith set of
labelsT'.

Definition 4 (Place/transition net)A place/transition-net
(shortly p/t-ne) N is a quadruple(P,T, F,W), where
(P,T,F)isanet,andV : F — NT is aweight function

We extend the weight functioll” to pairs of net ele-
ments(z,y) € (P x T) U (T x P) with (z,y) ¢ F by
W(z,y) = 0. A markingof a netN = (P,T,F, W) is
a functionm : P — N assigningm(p) tokens to a place
p € P, ie. a multi-set overP. A marked p/t-neis a
pair (N, mg), whereN is a p/t-net, andn is a marking of
N, calledinitial marking. Figure[2 shows a marked p/t-net
(N, mgp). As usual, places are drawn as circles including to-
kens representing the initial marking, transitions asamect
gles and the flow relation as arcs which have annotated the
values of the weight function (the weighis not shown).
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Figure 2. A marked p/t-net (N, my).
A multi-set of transitionsr € N7 is called astep of

We use the above notations defined for partial orders alsoN. A stepr is enabled to occufconcurrently) in a mark-

for LPOs. We will often consider LPOs only up to isomor-
phism. Two LPOYV, <,1) and(V’, <’,l’) are calledso-
morphig if there is a bijective mapping : V' — V' such
that!(v) = U'(y(v)) forv € V, andv < w <= ¢(v) <’
Y(w) for v,w € V. By [lpo] we will denote the set of all
LPOs isomorphic tdpo. The LPOlpo is said torepresent
the isomorphism clagipo]. The behavior of systems is for-
mally specified by sets of (isomorphism classes of) LPOs.
Such sets are also calledrtial languages

Definition 3 (Partial language)Let T be a set. A sef C
{[Ipo] | Ipo is an LPO with set of label§'} is calledpartial
language over'.

ing m if and only if m(p) > 3, . 7(t)W(p,t) for each
placep € P. In this case, its occurrence leads to the mark-
ing m/(p) = m(p) + Yy, TO(W(t,p) — W(p.1)). In
the marked p/t-netv from Figurel2 only the steps and

b are enabled to occur in the initial marking. In the mark-
ing reached after the occurrencewthe stepa + b is en-
abled to occur. There are two equivalent formal notions of
runs of p/t-nets defining non-sequential semantics based on
LPOs. The notion of LPOsxecutable in a p/t-ngiwhich

is strongly related to process nets) and the notion of LPOs
enabled w.r.t. a p/t-nét We only introduce enabled LPOs
here: An LPO is enabled w.r.t. a marked p/t-net, if for each
cut of the LPO the marking reached by firing all transitions

Usually, partial languages are given by sets of concretecorresponding to events smaller than the cut enables the ste
LPOs representing isomorphism classes. We always as{of transitions) given by the cut.

sume that each label froffi occurs in a partial language

overT. Figure[l shows a partial language represented by

the set of LPO4. = {Ipoy, Ipo,} which we will use as a
running example.

Ipo, Ipo,
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Figure 1. A partial language.
A netis atriple(P, T, F'), whereP is a (possibly infinite)
set ofplaces T is a finite set oftransitionssatisfyingP N
T=0,andF C (P x T)U (T x P)is aflow relation

Definition 5 (Enabled LPQO) Let (N, m() be a marked
p/t-net, N (P, T,F,WW). An LPOlpo = (V,<,I)

with [ : V' — T is calledenabled (to occur) ifN, mg)

if mo(p) + ZUGV/\U<C(W(Z(U)7P) B W(p,l(U))) 2

> vec W(p,1(v)) for every cutC of Ipo and everyp €

P. lts occurrencdeads to thefinal markingm’ given by
m'(p) = m(p) + ey (W), p) = W(p,1(v))).

The set of all isomorphism classes of LPOs enabled
w.rt. a given marked p/t-netN,m,) is denoted by
Lpo(N, mg). £po(N,my) is called thepartial language of
runsof (N, mg). Enabled LPOs are also calledins

Observe thatpo(N,mg) is always sequentialization
and prefix closed, i.e. every sequentialization and every

1Their correspondence was proven[ih[9, 14].



prefix of an enabled LPO is again enabled w.(A, my). connecting them to each transition (see Fidire 3).
Moreover, the set of labels ofpo(N,mg) is always fi-

nite. Therefore, when specifying the non-sequential behav
ior of a searched p/t-net by a partial language, this partial
language must be necessarily sequentialization and prefix
closed and must have a finite set of labels. We assume that
such a partial languageis given by a set of concrete LPOs )
L representing’ in the sense thdtpo] € £ <= Jlpo’ € Figure 3. An unknown place of a p/t-net.

L : [lpo] = [Ipo’]. Usually, we specify the non-sequential Two kinds of such places can be distinguished. In the
behavior by a set of concrete LP@swhich isnotsequen-  case that there is an LPO inwhich is no run of the cor-
tialization and prefix closed and then consider the partial responding "one place”-net, this place restricts the bielmav
language which emerges by adding all prefixes of sequen-+too much. Such a place it feasible In the other case, the
tializations of LPOs inl.. In this sense, the partial language considered place igasible

L given in Figurddl specifies the non-sequential behaviorof _ ) )

a searched p/t-net. Observe that both LPOs shown in thisDefmItlon 6 (_FeaS|bIe place)Let £ be a partial language
Figure are enabled w.r.t. the marked p/t-it mo) shown ~ OVer the finite set of labeld” and let (N,m;), N =

in Figurel?, that means the non-sequential behavior (partia ({p}, T, F, W) be a marked p/t-net with only one place
language of runs) of N, o) includesL p (Fp, Wy, m,, are defined according to the definition;gf
P ' The placep is calledfeasible (w.r.t.L), if £ C £po(N,m,),

otherwisenot feasible (w.r.t£).

3 Region based synthesis
Figureld shows on the left side a place which is feasible
We consider the problem of synthesizing a p/t-net from a W.I.t. the partial language specified byn Figurell. This is
partial language specifying its non-sequential behavier. ~ because, after the occurrencewothe place is marked by
mentioned above, such a partia| |angud‘gw|” be repre- tOkenS, i.e. inthis marking the StQH—b is enabled to occur
sented by a set of concrete LPO$which is not necessarily ~ (as specified bypo,). The place shown on the right side is
prefix or sequentialization closed). That means we will de- not feasible because, after the occurrence, dhe place is

velop an algorithm to compute a marked p/t-08t, m) agaiq marked by only token, i.e. in this marking the step
from a given set of LPO% such that the partia| |anguag‘e a-+bisnot enabled to occur. ThllllSOQ |S-n0t enabled w.r.t.
emerging froml is the partial language of runs 6V, m;), the one-place-net shown on the right side.

i.e. L = £po(N,mp) (if such a net exists). In this section

we recall the definitions and main results on region based
synthesis from[[10]. We present a consolidated version of
the approach il 10] which is better structured and easier to H o u n o n

understand: We explain the ideas of region based synthesis
in two independent parts, first defining axiomatically the so
called saturated feasible net as the best upper approrimati
to a p/t-net having the specified behavior and second intro-
ducing the notion of regions for the computation of this net.

Figure 4. left part: a feasible place; right part:
a place which is not feasible.

If we add all feasible places to the searched net, then
obviously the partial language of runs of the resulting net
o . includes£, and it is minimal with this property. We call

The basic idea to construct a neV,mo) solving the g net thesaturated feasible net (w.r.L). In general, the
synthesis problem is as follows: The set of transitions of 5 ia| language of runs of the saturated feasible net is not
the searched net is the finite set of labeld.ofThen clearly necessarily equal t6. If it is not equal toZ, there does not
each LPO inL is enabled w.r.t. the marked p/t-net consist- gyist 4 marked p/t-net whose partial language of runs equals
ing only of these transitions (having an empty set of places) » That means the synthesis problem has a solution if and

because there are no causal dependencies between trangjpy if the partial language of runs of the saturated feasibl
tions. That means, the transitions can occur arbitrarynofte ¢ equald.

in arbitrary order. Therefore, this net in general has many

runs not specified by.. Thus, one tries to restrict the be- Definition 7 (Saturated feasible p/t-net).et £ be a partial
havior of this net by creating causal dependencies betweeranguage over the finite set of lab&ls The marked p/t-net
the transitions through adding places. Such places are de{N,my), N = (P, T, F, W), such thatP is the set of all
fined by their initial marking and the weights on the arcs places feasible w.r.t is calledsaturated feasible (w.r.£)

3.1 Saturated feasible net



(F, W, mq are defined according to the definitions of the transition: In order to specify the number of tokens

feasible places). consumed by a transition from the initial marking, we
_ extend an LPO by ainitial eventvy representing a
Theorem 8. Let (N, mg) be saturated feasible w.r.t. a par- transition producing the initial marking.

tial language£. Then it holds:

e produce tokens in the new place which are not con-
sumed by some subsequent transition, i.e. tokens
which remain in the final marking after the occurrence

(i) £ Lpo(N, mo).

(i) The behavior of N, my) is minimal with property (i):

Y(N'm}) : (Lpo(N',m}) € €po(N,mo)) = (L & of all transitions: In order tp_ specify the r?u_mbgr of
Lpo(N',mb)). tokens produced by a transition and remaining in the
final marking, we extend an LPO byfiaal event, ..
(iii) Either £po(N,mo) = L or the synthesis problem has representing a transition consuming the final marking.

a negative answer.
) . . The sum of the natural numbers assigned to outgoing
Altogethgr, the saturated fea_S|bIe net is a solution of edges(vo, y) of the initial eventu, can be interpreted as
the synthesis problem or there is no solution. Note that ihe initial marking of the new place.

there are always infinitely many feasible places. For ex-
ample, each place, with W (a, p,,) = 2n, W(pn,a) = n,

W (pn,b) = n, W(b,p,) = 0 andmg(p,) = n is feasible
w.r.t. the partial language given Wyin Figurell. Therefore,

in particular the problem of representing the infinite set of
feasible places by a finite subset (restricting the behanior
the same way) must be solved.

3.2 Regions
By so calledregionsof partial languages it is possible to Figure 5. x-extensions of LPOs.
define the set of all feasible places structurally on thelleve ~ Figure[d shows the LPOgo, andlpo, from Figure[l

of the partial language given . The idea of defining re-  €xtended by an initial and a final event. Such extensions we
gions of partial languages is as follows: If two eventand ~ callx-extensions of LPOs.

y are ordered in an LP@o = (V, <,l) € L —that means _— .
x < y—this specifies that the c(orresp)onding transitign$ Definition 9 (x-extension) For a set of LPOsL we de-
and!(y) are causally dependent. Such a causal dependenc ote W, = U(V-,<-,l)€L v, E_L - *U(V~,<~,l)€L < and
arises exactly if the occurrence of transitign) produces 'z = U.<.er - Ax-extensionipo” = (V*, <*,1*) of
tokens in a place, and some of these tokens are consumeltbo = (V, <.!) is defined by

by the occurrence of the other transitidy). Such a place
can be defined as follows: Assign to every edgey) of

an LPO inL a natural number representittte number of
tokens which are produced by the occurrencé(ef and
consumed by the occurrencel) in the place to be de-
fined Then the number of tokens consumed overall by a
transition/(y) in this place is given as the sum of the nat-
ural numbers assigned to ingoing edgesy) of y. This
number can then be interpreted as the weight of the arc con
necting the new place with the transitiéfy). Similarly,

the number of tokens produced overall by a transitiar)

in this place is given as the sum of the natural numbers as-(iv) For each two LPOs(V, <,),(V', <", lI') € L:
signed to outgoing edgds:;, y) of x and this number can l*(Uépo) _ (l/)*(UépO/) _

then be interpreted as the weight of the arc connecting the

transition(x) with the new place. Of course, transitions (v) For each two distinct LPO§V, <, 1), (V’, <',l') € L:
can also *(wlee ) # (I)* (02 ) (& 1, (W1)).

max max

() V* = (VU {vf’,vlpe}) with o, vlpe, ¢ v,

0 » Ymax ’ Ymax

(i) <*=< U({v°yxV)U(V x{vlro )U{ (0P, vlpo )3,

max max

(iil) 1*(ug°), 1" (vl ¢ U(V), I*(vg?°) # 1*(v!2%,) and

max max
Iy =1.

v is calledinitial event oflpo and v/7?_ maximal event

of Ipo. Letlpo® = (V*, <* 1*) be ax-extension of each
Ipo € L such that:

e consume tokens from the initial marking of the new Then the seL* = {Ipo* | Ipo € L} is calledx-extension
place, i.e. tokens which are not produced by anotherof L. We denotéV} = W+, E} = Er- andl} = I-.



According to the above explanation we can define a new
placep, by assigning in each LP@o = (V,<,l) € L a
natural number(x, y) to each edgéz, y) of ax-extension
of Ipo through a function' : E7 — Ny:

e The sum of the natural numberBn,,(y, )
ZK*y r(z,y) assigned to ingoing edgés, y) of a
nodey € Wiy is interpreted as the weight of the
arc connecting the new place with the transiti¢n),
i.e. we defineW(p,,l(y)) = Inpo(y,r). We call
Inipo(y, r) theintoken flowof y.

The sum of the natural numbeGutip,(x,r)
ZKW r(z,y) assigned to outgoing edgés, y) of

a nodex € Wy is interpreted as the weight of the
arc connecting the transitidifz) with the new place,
i.e. we defineW (i(x),p,) = Outipo(x, 7). We call
Outipo(x, r) theouttoken flovof z.

e the sum of the natural numbers assigned to outgoing
edgeq vy, y) of an initial nodeu}}’” (the outtoken flow
of vg’") is interpreted as the initial marking of the new
place, i.e. we definew(p,) = Outipo(v®, 7). We

call Outlpo(v}}m, r) theinitial token flowof Ipo.

The valuer(z, y) we call thetoken flowbetween: andy.

e Definer on a prefix of an LPO il by gluing all nodes
subsequent to the prefix to a maximal node of the pre-
fix. If thereby several edges are glued to one edge, then
sum up the values of on the glued edges. Keep the
values ofr on all remaining edges.

Thus, it is enough to specify a function fulfilling (IN) and
(OUT) on some set of LPO$ to define a region of the
partial language defined byL. Figurd® shows a function

r fulfilling (IN) and (OUT) on the sef. of LPOs given in
Figured, which in this sense can be extended to a region of
the partial language defined liy The corresponding place

p, is defined bW (p,.,a) = 1, W{(a, p,) = 2, W(p,,b)
1, W(b,p,) = 0 andmg(p,) = 1, i.e. p, is the middle
place of the p/t-net in Figuid 2.

Figure 6. Region of a partial language.

Since equally labeled nodes formalize occurrences of the  A¢ the main result we showed iA]10] that the set of

same transition, this is well-defined only if equally lalzele
events have equal intoken flow and equal outtoken flow. In
particular all LPOs must have the same initial token flow.
We say that- : E7 — Ny fulfills the properties (IN) and
(OuUT) on L if for all Ipo = (V, <,1),1po’ = (V/,<',I') €

L andforallv € V*,v" € (V')* holds

(IN) i(v) =1V (V") = Inipo(v,7) = Inype (V/, 7).
(OUT) I(v) =1'(v") = Outipo(v,7) = Outipy (v, 7).

Observe that (OUT) in particular ensures that all LPOs have
the same initial token flow. Altogether each such function
fulfilling (IN) and (OUT) on L defines a place,.. We call

pr corresponding placef r.

Definition 10 (Region) Let L be a set of LPOs which is se-
guentialization and prefix closed. Let furthérbe the par-
tial language represented biy. Aregionof L is a function
r: BT — Ny fulfilling (IN) and (OUT) onL.

If we define a function- fulfilling (IN) and (OUT) on
a set of LPOsL which is not sequentialization and prefix
closed, then this function is easily extended to a region of
the partial language defined by the set of all prefixes of se-
guentializations of LPOs i as follows:

e Assign the value) to each additional edge within a
sequentialization of an LPO ih and keep the values
of r on all other edges.

places corresponding to regions of a partial language squal
the set of feasible places w.r.t. this partial language.

Theorem 11([A0]). Let £ be a partial language. Then it
holds (i) that each place corresponding to a regionfofs
feasible w.r.t.£ and (ii) that each place feasible w.r.t. 10
corresponds to a region .

Thus the saturated feasible net can be given by the set of
places corresponding to regions:

Corollary 12. Let £ be a partial language represented by
the set of LPO4.. DenoteP = {p, | ris aregion ofL},

T the set of labels of, W (p,,lr(v)) = Inipe(v,r) and
W(lr(v),pr) = Outipe(v, ) for p, € P and somépo =
(V.<,l) € Lwithv € V, F = {(z,y) | W(z,y) >

0} andmy,(p,.) = Outipe (v, 7) for p, € P (and some
Ipo € L). Then the p/t-netNy, mr), N, = (P, T, F,W),

is thesaturated feasible p/t-net (w.r4).

Remember that the saturated feasible net has infinitely
many places, i.e. there are infinite many regionsCof
Moreover, even the description of one region may be infinite
since there may exist infinitely many edgeshf. There-
fore we restrict ourselves in the following to finite partial

2|n [i0] we assumed that the set of LP@srepresentingl fulfills
some technical requirements. These will be automaticallyliéd for all
such setsl. we consider in the following. Thus, we omit their detailed
presentation here.



languages, i.e. to partial languages which are represented\ , - x,, = 0. This can be done by, loosely speaking, defin-

by a finite set of LPO4.. ing for pairs of equally labeled nodes a ravof A ;, count-

ing the token flow on ingoing edges of one node positively

and of the other node negatively and similarly defining a

row b of Ay counting the token flow on outgoing edges of

one node positively and of the other node negatively. It is

enough for each labelto ensure that the intoken (outtoken)
For finite partial languages we show in this section that flow of the first and second node with lalielre equal, that

the set of regions can be computed as the set of non-negativéhe intoken (outtoken) flow of the second and third node

integer solutions of a homogenous linear equation systemwith labelt are equal, and so on.

A - x = 0 (Subsectiof411). Itis well known that there is a Formally, we denotéV, = {v € W} | I7(v) =t} =

finite set of basis-solutions, such that every solution is-ge  {v!,v,...} for all labelst € T' and denote

erated as a non-negative linear sum of basis-solutions. In

4 Computing a finite representation of all re-
gions

SubsectioL4]2 we prove that the set of places correspond- &m = (@15 - O )

ing to basis-solutions already restricts the behavior ef th 1 if e; is an ingoing edge of!,
searched netin the same way as the set of all feasible places, ajn,j = —1 if ¢; isaningoing edge of!,,
i.e. there is a representation of the saturated feasiblbynet 0 else.

a net with finite many places having the same partial lan-

guage of runs. For this finite net it can be tested effectively for 1 < m < [W;| — 1. Clearly,al, - x,, = 0 if and only if

if it has £ as its partial language of runs (Sectidn 5). Inipo(vy,,7) = Inpo (v), 11, 7) for the LPOslpo = (V, <
,)andlpo’ = (V/, <, l') with v}, € V andvf,,, € V.

4.1 Computing regions Similarly, we set

bfn = (bfnlv""bfnn>
In this subsection we show how to compute regions (and ’ L .
) . 1 if e; is an outgoing edge af’ ,
thus feasible places) of a partial languayyeepresented by + - 1 if e is an outaoing edae of
a finite set of LPO4.. For this, we rewrite the properties mj 0 eIsJe going edge at,, 1,

(IN) and (OUT) as a homogenous linear equation system
A -x = 0. The LPOs inL are assumed to have pairwise 4, | < m < |W,| - 1. Clearly,bt, -x, = 0 if and

disjoint node sell.To computearegiOﬁ.we ne(?d.to assign only if Outipo(vt,,r) = Outipy (vf,.,,7) for the LPOs
a valuer(z,y) to every edge = (z,y) in the finite set of Ipo = (V,<,1) andlpo’ = (V',<’,I') with v/, € V and

edgesEy. Thereto we interpret as a|Ej|-dimensional LEV
vectorx, = (z1,..., ), n= |E7 | Considering a fixed Finally, to ensure that all LPOs have the same initial to-
numbering of the edges ifi;, = {e1, ..., ¢, }, avaluer(e;) ken flow, we denotd. = {Ipo,, Ipo,, ...} and add rows
equalsz;. Figure[T shows a numbering of the edges of the
*-extension of the set of LPQs given in FigurdL. ¢ = (Cmiye--rCmom)

1 if ¢; is an outgoing edge af"*™,

Cm,j = —1 if ¢; is an outgoing edge af” "+
0 else.

for1 < m < |L| — 1. Clearly,c,, - x,, = 0 if and only if
Outypo (vépom ;1) = Outipo, (vépom“,r).

Figure[® shows the described homogenous linear equa-
tion systemA ;, - x = 0 for the numbering of edges given
in Figure[T. The first row of the matrix ensures that both
initial nodes of thex-extentions of the two LPOs have the
Figure 7. A numbering of edges. same outtoken flow, i.e. that both LPOs have the same ini-

. tial token flow. Therefore the sum of the values on all out-
Now, we encode the properties (IN) and (OUT) by a ho- _ . Ipo,
mogenous linear equation systei}, - x = 0 in the sense going edges oy, (namelye, andes) must equal the

thatr : £ — No fulflls (IN) and (OUT) onL ifand onlyif  Sum of the values on all outgoing edgesif™ (namely
e4, €5, eg andez). We get the corresponding equation

3This ensures that requires all technical requirements usecif [10] to 1 T %2 = %4 —Z5 — L6 — L7 = 0 (this equatio.n corresppnds
prove theorerf 1. to the first rowc; of A ;). Moreover there exist two pairs of
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in the worst case the time complexity is exponential in the

number of nodes, whereas in most practical examples of
polyhedral cones there are only few basis solutions. It is a
topic of further research to evaluateor typical instances

of polyhedral cones in our setting.

We finally claim that all places which do not corre-
spond to basis solutions can be deleted from the saturated
feasible p/t-net without changing its partial language of
0 runs. Thus, the saturated feasible p/t-net has a finite rep-
resentation. Consider placgsps, .. ., pr of some marked
p/t-net (N, my), N = (P,T,F,W), and non-negative

Figure 8. Equation system defining regions. real numbers\y, ..., A; (k € N) such that (iymo(p) =

S Amo(pa), (i) W(pt) = S0, AW (pis ) for all
equally labeled nodes and we need to ensure that each pairansitionst and (jii) W (t,p) = %, ;W (¢, p;) for all
has the same intoken and outtoken flow. Row number twognsitionst. In such a case we write = Zle \ip;. Fig-

botha-labeled nodes have the same intoken flow, row num- n/ by adding the two places, andps. Neitherp, nor ps

ber threeb§ guarantees equal outtqkenbflow of tvabeled restrict the behavior oV’ more then{p;, p, p3}. In other
nodes. Rows number fou; and fiveb? do the same for  \yords each LPO enabled iN is also enabled iV’. That
both nodes labeled by. A possible non-negative integer s pecause the places andps are positive linear combi-

solution would bex, = (0,1,0,0,1,0,0,1,1,0,0,2) cor-  nations of the other three places. It hojds = 2ps and
responding to the region drawn in Figlile 6 and thereby t0,, = %p1 + %pQ + %pg.

the mid place shown in Figulg 2.

By the above considerations the set of regioissin one-
to-one-correspondence to the set of non-negative integer s
lutionsx = (21,...,2,) Of Ay -x =0viar(e;) = ay, i.e.
every feasible place can be computed by such a solution.
The place corresponding to a solutiemwe denote by, .

Note that the number of rows of A, linearly depends
on the number of nodesl’;, | and the number of LPO4.|.
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Figure 9. Summing places.

4.2 Finite representation Lemma 13. Let(N,mg), N = (P, T, F,W), be a marked
. . _plt-net with P = {p1,....pr,p} andp = S5 Aip;
The homogenous linear equation system developed ing,, non-negative real numbers,, ..., \, (k € N). De-

the last section is in fact an inequation system, since wepgte pr — {(p1,...,px}, my = mo|p and N’ =
search for non-negative solutions, i.e. we requirez 0 (P, T, F|(praryors pr» Wl (prxmyurspry)- Then each

for solutionsx. Thus we can compute regions of a finite | po enabled W.Lt(N', ml,) is enabled w.t.t(N, m).
partial language and subsequently places of the searched Y ’

saturated feasible p/t-net by solving the finite homogenousPTo0f. Letlpo be enabled w.rt{N", mg), Ipo = (V, <, 1).
linear inequation system; x <0, ~A;-x <0, —x < 0 According tol Definition[b for a cutC of lpo and
with n + 2V rows (V is the number of rowsy the num-  # € {1, -, k}itholdsmo(pi)+3> ", cypycc (W (), pi) -
ber of columns ofA ;). The set of solutions of such a sys- W (i l(v))) = > ,cc W(pi,l(v)). ~ This implies
tem is called gpolyhedral cone According to a theorem for an arbitrary cut C' of Ipo and the placep:
of Minkowski [I1] polyhedral cones are finitely generated, mo(P) + YevavccW((),p) — Wip,l(v)) =
i.e. there are finitely many vectoss, . ..,y (also called Zle Ailmo(pi)  +  YPievrvce (W), pi)

basis solutiongsuch that each elemen}gof the polyhedral W (p;,1(v)))) > Zle Ai Y pee Wipisl(v) =
cone is a non-negative linear sum= » | \;y; forsome Y= _ W (p,I(v)). Thuslpois enabled W.r.t(N,mg). O
A1, ..., A = 0. Such basis solutiongy,...,y, can be

effectively computed fromA ;, (see for example]12]). If Clearly, ifx = | \;y; for basis solutiong1, ...,y

all entries of A are integers, then also the entries of all of A - x = 0, thenpx = Zle Aipy,. Thus, to compute
yi can be chosen as integers. The time complexity of thea finite representation of the saturated feasible p/t-net of
computation essentially depends on the nunibef basis finite partial languag#, we compute a finite set of integer
solution which is bounded by < (":fiv) That means,  basis solutions oA ;, - x > 0, whereL representg£..



5 Equality test of maximal process nets of a p/t-net is for example imple-
mented in our tool VipTool5].

Let £ be a finite partial language specified through a fi-  In general the number of process nets is exponential in
nite set of LPOsL which is not necessarily prefix and se- the size of the p/t-net and the calculation of the process net
guentialization closed (that meadsis the set of isomor-  requires an exponential run time. But in our special situa-
phism classes of prefixes of sequentializations of LPOs intion the number of process nets(a¥, m) should in most
L). Up to now we have shown how to compute frdima cases roughly coincide with the size of the inguof the
finite marked p/t-nef{N, mo) which has a minimal partial ~ algorithm because in the case of a positive solution of the
language of run€po (N, mo) including a specified partial ~ synthesis problem there holdgo (N, mo) = £ and in the
languageC. Finally, we have to test whether this net has ex- negative cas€po(N,my) is the best upper approximation
actly the specified behavior or not, i.egpo(N, mg) = L. to £. To detect the negative case there can easily be devel-

Let L, be the set of all sequentilizations of prefixes of oped some heuristics to find not specified enabled LPOs be-

LPOs inL. Since we already knowpo(N,mg) 2 L, in fore the whole set of process netg &f, mg) is constructed.

order to testCpo(N,mo) = L, we (1) either have to check The alternative possibility (2) for an equality test
if each enabledpo of (N, mg) is isomorphic to an LPO in £po(N, mg) = L checks if no LPOlpo not specified by
Lp, or (2) to test that no LP@o which is notisomorphic 1, (not isomorphic to some LPO iii,,) is enabled w.r.t.
to an LPOinLy, is enabled w.r.t(IV, mo). (N, my). For one such LP@po this can be tested in poly-

In the first case (1) we have to calculate all enabled nomial time in the number of nodes hfo using the algo-
LPOs of (N, mg). The set of (pairwise non-isomorphic) rithm we presented i [8]. The problem is, that there are
enabled LPOs of a p/t-net in general can be infinite, but infinite many such LPOs. That means, we must find a finite
we can show that the synthesized representgtidnm,) setL§,, of LPOs representing the set of all LP@$ not
of the saturated feasible p/t-net always has a finite partialspecified byL in the following sense: if no LPO iti,,,
language of runs. For this it is enough to show that the sat-is enabled w.r.t. (N, mo) then no LPO inL¢ is enabled
urated feasible p/t-net has a finite partial language of.runs w.r.t. (N,mg). The idea for the construction a5, is
This is true because for every transitiomnd every LPO  to append one event for each possible continuation to each
Ipo = (V, <,1) € L there is a finite number,;,, , of nodes  Ipo € L, and add the resulting LPDo’ to L§,,, if Ipo’ is
v € V labeled byt. SinceL is finite we get a finite up-  not specified byL. That meand.s,, consists of all LPOs
per boundy; = max({nipo,: | Ipo € L}) for the maximal 1,5 not isomorphic to an LPO itl.,, defined bylpo’ =
number of occurrences @fin an LPOlpo € L. Conse- (VU {v}, < U <, 1 U (v, 1)), where(V, <,1) € L,
quently the place; with the initial markingmo(p;) = n., teT, v ¢ Vand<,={v | v e V' Vv < V'} x {t}
an empty pre-set andas the only transition in its post-set  for a co-set/” of (V, <, ). The algorithm from[[B] can now
with W (py, t) = 1is feasible w.rtL. That meansthateach testif each LPQpo’ € L&, is enabled W.r.t(N, my).
transitiont can maximally occur, times and thus every

LPO enabled w.r.t. the saturated feasible p/t-net has at mos. There are tV\iO possibilities: On the one hand, if there ex-
ists an LPOlpo” € LS, enabled w.r.t.(N,mg) then the
> e e NOdes. fin

- . . .. equality test obviously has a negative answer. On the other
The f|n|tgne§s oﬂp.o(].\f, mo) potentiates its algor|thm| hand, if every such LP@o’ is not enabled w.r.t( N, mg)
cal calculation: In principle we have to check if each run we conclude that the equality test has a positive answer, i.e
Ipo of (N, myg) is specified byL (isomorphic to an LPO in quatty P T

PR o there exists no LP@po € L° enabled w.r.t.( N, mg). The
Ly,). But for a runlpo’ which is a sequentialization of a ) .
: o : latter can be proven as follows: Assume that there exists an
prefix of another rurpo it is enough to consider onlpo

c / c
because ifpo’ is notisomorphic to an LPO if, then the }po € L enabledw.r.{N, mo), butevery I__Pon < Lin
is not enabled w.r.t(V, mq). Then there is a maximal pre-
same holds fotpo. Therefore we only have to regard runs f . . . i
. L . iX Ipo,,.. of Ipo (possibly empty) isomorphic to an LPO in
which are not sequentializations of prefixes of other runs. I LP“ " be a furth fix oo havi 4di
The set of all such runs can be computed through the (fi- 7*P* etipoy,. b€ a/ ur e_r prefix olpo aylng o.ne addr-
nite) set of process nets with maximal length(f, m) tional node (suchipo,,,.. exists becausko is not isomor-
[4]: Omitting conditions in a process net and only keeping PNiC t0 an LPO inL;). The maximality ofipo,,,.. implies
the ordering between events yields an LPO and it is well thatlpoy, is not isomorphic to an LP(/J ids,. By con-
known that each such LPO underlying a process netis a runstruction ofL%,, we can conclude thapo,,,.. is isomorphic
Moreover, each run is a sequentialization of a prefix of an to an LPO inL¢,,. Sincelpo;T6 is a prefix of an enabled
LPO underlying a process net with maximal length. Thus, LPO it is also enabled w.r.{N, mg). This is a contradic-
for our test it is enough to regard the LPOs underlying such tion. Note that the set,,, in general can have exponential
process nets of N, mg) and to test for all these LPOs if many LPOs in the number of specified LPdg. We are

they are specified by. An algorithm that calculates the set  currently working on methods to reduce the £8f,,.

pre



6 Conclusion versions for the second part, examination of the special in-
stances of polyhedral cones used in the algorithm in view

In this paper we presented, given a finite set of LPOs Of a better upper bound for the number of basis solutions

representing a partial language, how to compute a (finite) and generalization of the presented results to infinitdgdart

marked p/t-net with minimal set of runs, such that each languages which allow a finite representation (for example

specified LPO is a run of the net. Finally we presented & term based representation).
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