Complete Process Semantics for Inhibitor Nets

Gabriel Juh&s Robert Loren, and Sebastian Mauser

! Department of Applied Computer Science,
Catholic University of Eichstatt-Ingolstadt,
{robert.lorenz, sebastian.mauser }@u-ei chstaett.de

2Faculty of Electrical Engineering and Information Tecloml
Slovak University of Technology, Bratislava, Slovakia
e-mail:gabri el . j uhas@t uba. sk

Abstract. In this paper we complete the semantical framework proposgkB]
for process and causality semantics of Petri nets by aniadditaim and develop
process and causality semantics of place/transition Retsi with weighted in-
hibitor arcs (pti-nets) satisfying the semantical framdwimcluding this aim.
The aim was firstly mentioned in [8] and states that causaéityantics deduced
from process nets should lbempletew.r.t. step semantics in the sense tbath
causality structure which is consistent with the step seitamorresponds to
some process net. We formulate this aim in termsrabledcausality structures.
While it is well known that process semantics of place/titaors Petri nets (p/t-
nets) satisfy the additional aim, we show that the most ggipeocess semantics
of pti-nets proposed so far [13] does not and develop ourggmsemantics as an
appropriate generalization.

1 Introduction

The study of concurrency as a phenomenon of system behétvatad much attention
in recent years. There is an increasing number of distribsystems, multiprocessor
systems and communication networks, which are concumethtir nature. An impor-
tant research field is the definition of non-sequential seit&f concurrent system
models to describe concurrency among events in system ixesuwhere events are
considered concurrent if they can occur at the same timeraadbitrary order. Such
non-sequential semantics is usually deduced from the sedcstep semantics of a con-
current system model.

For the definition of step semantics it is generally statectlvbvents can occur in
a certain state of the systeaihthe same timésynchronously) and how the system state
is changed by their occurrence. Such events forsteg (of events)Given an initial
state, from this information all sequences of steps whiah @ecur from the initial
marking can easily be computed. The set of all possible steghsequencekefines the
step semantics of a concurrent system model. A step sequandee interpreted as a
possibleobservatiorof the systems behavior, where the event occurrences intepe s
are observed at the same time and the event occurrenceteiredifsteps are observed
in the order given by the step sequence.

Non-sequential semantics are based on causal structureswilialso call them
scenarios in the following — which allow to specify arbitraroncurrency relations
among events. Non-sequential semantics for this paper & afscenarios. A sce-
nario allows (generates) several different observatisinge the occurrence of events
which are concurrentin the scenario can be observed symatsty or also in arbitrary
order. Therefore, a given scenario only represents beha¥ihe system if it is con-
sistent with the step semantics in the sense that all of itergg¢ed observations belong
to the step semantics of the system. Non-sequential sezsamttich consists only of
scenarios satisfying this property we cadlund w.r.t. step semantig3n the other hand,
all scenarios which are consistent with the step semanticeseptbehavior of the sys-
tem. Non-sequential semantics which contathsuch scenarios we calbmplete w.r.t.
the step semanticén other words, a complete non-sequential semanticsdesleach
causal structure satisfying that all observations geedrhy the causal structure are
possible observations of the system. Note here that if weadsality to a causal struc-
ture which is consistent with the step semantics the reguttausal structure is again
consistent with the step semantics (since it generate®lesrvations). Thus, a com-
plete non-sequential semantics can be given by such causetuses consistent with
the step semantics satisfying that removing causality fiteencausal structure results
in a causal structureot consistent with the step semantics. Such causal struatures
pressminimalcausal dependencies among events. Altogether, completeaguential
semantics represent minimal causalities.

Therefore, an important aim of each semantical frameworkte definition of
a non-sequential semantics of particular formalisms farccorent systems is that a
non-sequential semantics is defirsedind and complete w.r.t. the step semardfdbe
formalism. In this paper we consider this aim for Petri nétsese are one of the most
prominent formalisms for understanding the concurren@npimenon on the theoreti-
cal as well as the conceptual level and for modeling of reatoorent systems in many
application areas [7]. The most important and well-knownaggpt of hon-sequential
semantics of Petri nets are process semantics based omeytinets [4, 5]. From the
very beginning of Petri net theory processes were basedrtinlgaders relating events
labeled by transitions (an event represents the occur@éransition): Any process
directly defines a respective partial order among eventiedcthe associatedun, in
which unordered events are considered to be concurrertte Sidding causality to a
run still leads to possible system behavior, a non-seqalesgimantics of a Petri net can
also be given as the set of sequentializations of runs (aesiglization adds causality)
of the net. This set is also called causal semantics of theinet it describes its causal
behavior. Note that in most cases partial orders are seitabliescribe such behavior
but sometimes generalizations of partial orders are neaslegpropriate causal struc-
tures. In the case of inhibitor nets under the so-called@rigemantics [6], so called
stratified order structures (so-structures) representahesal semantics.

Since the basic developments of Petri nets, more and mdeeatitPetri net classes
for various applications have been proposed. It turnedmhbetnot easy to define pro-
cess semantics and related causality semantics in the foum®for such net classes.
Therefore, in [13] (in the context of defining respective aeatits for inhibitor nets)
a semantical framework aiming at a systematic presentafigmocess and causality

semantics of different Petri net models was developed (gped=-3 in Section 3): Any
process semantics should fulfill the reasonable aims statdatie framework. These
aims are reduced to several properties that have to be ah@tkeparticular practical
setting. The most important of these aims is the soundnepsootss semantics and
causality semantics w.r.t. step semantics as describaeabor Petri nets, soundness
means that each observation generated by a process or anpodsible step occurrence
sequence of the Petri net. But this general framework — dsas@hany other particular
process definitions for special Petri net classes — doesgatd the described aim of
completeness. In the Petri net context, process and cgusatnantics are complete
w.r.t. step semantics if each causality structure conttistéh the step semantics adds
causality to or is equal to some run of the Petri net. Insteedher aim of the frame-
work from [13] requires a kind of weak completeness, sayiirag ¢ach step occurrence
sequence should be generated by some process.

For place/transition nets (p/t-nets) a labeled partiato(dPO) which is consistent
with the step semantics is calledabled17, 18, 8]. It was shown in [11] that an LPO
is enabled if and only if it is a sequentialization of a runresponding to a process (see
also [17,18, 8]). Thus, process and causality semantic&-ofgts are sound and com-
plete w.r.t. step semantics. In particular, from the cortgriess we deduce that enabled
LPOs with minimal causal dependencies between events ftlaxgmal concurrency)
— so calledminimal enabled LPOs- are generated by procesdethis is an essen-
tial property of p/t-net processes and justifies their ss€es non-sequential semantics
describing system behavior.

Therefore, the aim of completeness should also hold forgg®semantics of other
Petri net classes. To this end, we included it in the semarfriamework of [13]. We
will discuss the aim of completeness for process definitafrishibitor nets. As stated
in [15], "Petri nets with inhibitor arcs are intuitively teost direct approach to increas-
ing the modeling power of Petri nets”. Moreover inhibitotsibave been found appro-
priate in various application areas [1, 3]. Accordingly, fllese net classes various au-
thors proposed process definitions regarding differeetjmetations of the occurrence
rule of inhibitor nets. In this paper we will focus on the mgsneral class of pti-nets
and its process definition from [13)We show that the general a-priori process defini-
tion of [13] does not fulfill the aim of completeness and pregappropriate changes of
the process semantics. Thus we develop an alternativegeadeginition which fulfills
the complete semantical framework of Figure 3 includingdime of completeness.

As mentioned in the context of the a-priori semantics, LP@&srot expressive
enough to describe the causal behavior of a pti-net. Inssadtructures are used on
the causal level. Thus the aim of completeness can be fotedlfler this net class in the
following way: For any enabled so-structure there is a pseagith associated run in
the form of an so-structure such that the enabled so-strisgquentializes the run. As
in the case of LPOs, an so-structure is enabled if it is ctersisvith the step semantics
of pti-nets in the above described sense.

1 1n case of p/t-nets and their processes (runs), not eacheehiaBO is a run and there are also
non-minimal runs, but each minimal enabled LPO is a miniraal r
2 We will briefly consider alternative process definitionsifaibitor nets in the conclusion.

The paper is structured as follows: First the basic notiditienets, processes of
pti-nets, so-structures (see [13]) and enabled so-stegtare introduced (section 2).
Then in section 3 the semantical framework of [13] will becdissed in the context of
introducing a new requirement — the aim of completenesss&uiently in the main
part of the paper (section 4) we will show why the a-priorigess semantics for pti-
nets in [13] does not fulfill the aim of completeness. Basedhmse considerations
we propose an alternative process semantics implemeriisngdmplete semantical
framework including the aim of completeness.

2 Preliminaries

In this section we recall the basic definitionsofstructurespti-nets (equipped with the
a-priori semanticsandprocess nets of pti-netand finally definenabled so-structures

Given a setX we will denote the set of all subsets &f by 2% and the set of all
multi-sets overX by NX. A set can always be viewed as a multi-sewith m < 1 and
correspondingly a multi-set: < 1 can always be viewed as a set. We further denote
the identity relation oveX by idy, the reflexive, transitive closure of a binary relation
R over X by R*, the transitive closure ok by R and the composition of two binary
relationsk, R’ overX by Ro R'.

Inhibitor nets are an extension of classical Petri nets ecdd with inhibitor arcs.
In their simplest version inhibitor arcs test whether a plisempty in the current mark-
ing (zero-testing) as an enabling condition for transiiom the most general version
of pti-nets, inhibitor arcs test if a place contai@tsmosta certain number of tokens
given by weights of the inhibitor arcs (instead of zeroitegt In pictures inhibitor arcs
are depicted by arcs with circles as arrowheads. Figure wslaopti-net, where the
transitionst andw test a place to be empty and transitionests a place to hold at most
one token. As explained in [6, 12, 13], "earlier than” caitgaxpressed by LPOs is not
enough to describe causal semantics of pti-nets w.r.t-ffr@a semantics. In Figure 1
this phenomenon is depicted: In the a-priori semanticsasting for absence of tokens
(through inhibitor arcs) precedes the execution of a ttemsiThust cannot occur later
thanu, because after the occurrencewthe place connected withby an inhibitor
arc (with weight O representing zero-testing) is markech€eguently the occurrence
of ¢ is prohibited by this inhibitor arc. Thereforeand v cannot occur concurrently
or sequentially in ordet, — ¢. But they still can occur synchronously or sequentially
in ordert — wu, because of the occurrence rule "testing before execufidetails on
the occurrence rule can be found later on in this sectionis iBrexactly the behavior
described by # not later thanu”. After firing ¢ andu we reach the marking in which
every non-bottom and non-top place of the Aelt contains one token. With the same
arguments as above the transitianandw can occur in this marking synchronously
but not sequentially in any order. The relationship betweandw can consequently
be expressed by a symmetric "not later than” relation betvitbe respective events -
none may occur later than the other. The described causaVioetof NI is illustrated
through the run:(AON) on the right side of Figure 1. The solid arcs represent a (com-
mon) "earlier than” relation. Those events can only occuih@expressed order but not
synchronously or inversely. Dashed arcs depict the "net léitan” relation explained

above. Partial orders can only model the "earlier than™tieta but it is not possible to
describe relationships as in the example betweand v as well as between andw,
where synchronous occurrence is possible but concurremuytiexistent.

Fig. 1. A pti-net N T (inhibitor arcs have circles as arrowheads), an a-proa€3N of N1 and
the associated run(AON).

Altogether there exist net classes including inhibitorsnghere synchronous and
concurrent behavior has to be distinguisfdd. [6] causal semantics based on so-
structures (like the rur(AON)) consisting of a combination of an "earlier than” and a
"not later than” relation between events were proposed teicsuch cases.

Before giving the definition o$tratified order structuregso-structure} we recall
the notion of airected graphThis is a pai(V, —), whereV is a finiteset of nodeand
—C V x Vis abinary relation over V called tteet of arcsGiven a binary relation-,
we writea — b to denote(a, b) € —. Two nodes:, b € V' are calledndependentv.r.t.
—if a /4 bandb 4 a. We denote the set of all pairs of nodes independent war.t.
by co_, C V x V. A (strict) partial orderis a directed graptpo = (V, <), where<
is an irreflexive and transitive binary relation &n If co. = idy then(V, <) is called
total. Given two partial orderpo; = (V, <1) andpoq = (V, <2), we say thatpo s is
asequentializatiorfor extensiohof po if <;C<s.

So-structures are, loosely speaking, combinations of twvari relations on a set
of events where one is a partial order representing an &gatan” relation and the
other represents a "not later than” relation. Thus, soettines describe finer causalities
than partial orders. Formally, so-structures are relafigtructures satisfying certain
properties. Arelational structure(rel-structurg is a tripleS = (V, <, C), whereV is
a set (ofeventy, and< C V x V and C V x V are binary relations oW. A rel-
structureS’ = (V, <’, ') is said to be arextensionor sequentialization) of another
rel-structureS = (V, <, C), writtenS C &', if < C <" andC C .

Definition 1 (Stratified order structure). A rel-structureS = (V,<,C) is called
stratified order structuréso-structurgif the following conditions are satisfied for all
u,v,w € V.

(Chu iZ u. (CHuCrvCwAu#w=— ul w.
(CHu<v=uCv. (CHhuCv<wVu<vLCw= u=<w.

% Further examples of such net classes are briefly mentioni iconclusion.

In figures,< is graphically expressed by solid arcs antly dashed arcs. According
to (C2) a dashed arc is omitted if there is already a solidMoreover, we omit arcs
which can be deduced by (C3) and (C4). It is shown in [6] {#at<) is a partial order
(thus a partial order can always be interpreted as an sotgteuwith_ = <). There-
fore, so-structures are a generalization of partial ordersy turned out to be adequate
to model the causal relations between events of complegmgstegarding sequential,
concurrent and synchronous behavior. In this contextpresents the ordinary "earlier
than” relation (as in partial order based systems) whilenodels a "not later than”
relation (recall the example of Figure 1).

Similar to the notion of the transitive closure of a binarkaten the{-closureS®
of a rel-structureS = (V, <, C) is defined byS® = (V, <s¢,Cg0) = (V, (R ULC)* o
<o(=<UC)*, (RUC)*\idy). Arel-structureS is called{>-acyclicif <g« is irreflexive.
The {-closureS® of a rel-structureS is an so-structure if and only & is {-acyclic
(for this and further results on thg-closure see [6]).

For our purposes we will only considibeled so-structuref.SO3. Nodes of an
LSO represent transition occurrences of a Petri net (dotesti by node labels as in
Figure 1). Formally LSOs are so-structues= (V, <, C) together with aet of labels
T and alabeling function/ : V' — T'. A labeling functiori is lifted to a subseY” of V'
in the following way:l(Y') is the multi-set ove” given byl(Y)(t) = [I=*(t) N Y| for
everyt € T. We use the notations defined for so-structures also for LSOs

We introduce an important subclass of so-structures sitaléhe subclass of total
orders in the case of partial orders.

Definition 2 (Total linear so-structure). An so-structureS = (V, <, C) is calledtotal
linearif cox = (C\<) Uidy. The set of all total linear extensions (mearization}
of an so-structure’ is denoted byin(S’).

Total linear so-structures are maximally sequentializedhe sense that no fur-
ther <- or - relations can be added maintaining the requirements aftrsmtures
according to Definition 1. Therefore the linearizatidas(S’) of an so-structures’
are its maximal extensions. Note that a total linear socttrelin = (V, <, C) rep-
resents a sequence of (synchronous) steps. 7,, (we also writelin = 71 ...7,). A
(synchronous) step is a set of cycticordered events (forming a so calledclique
— such events can only occur synchronously as explaineckidhtext of Figure 1)
and the sequential ordering is caused-byelations between these steps. That means
7 ...7, and (V,<,C) are related through = |J , 7,< = Ui<j 7; X 7; and
C = (U, = x 1) \ idv) U <. For example, the linearizations of the rAON) in
Figure 1 are the sequences of (synchronous) steps w} and{t,u}{v,w}. By ab-
stracting from the nodes of a total linear L$@ = (V, <, C, 1) representingy . . . 7,
every step (set) of events can be interpreted as a step (multi-sgt);) of transi-
tions using the labeling function. This is a general priteihat means we will in-
terpret such a (synchronous) step sequence. r of events based on a total linear
LSOlin = (V,<,C,1) as asequener;, = l(71) ...l(7,) of (Synchronous) transition
steps in a Petri net. Thus, we often do not distinguish tatablr LSOs and respective
sequences of transition steps in a Petri net. Lastly we rieedhdtion of prefixes of
so-structures. These are defined by subsets of nodes wieicdtoamnward closed w.r.t.
theC-relation:

Definition 3 (Prefix). LetS = (V, <, C) be an so-structure and 18" C V' be a set
of events such that’ € V', v C «' = u € V’. ThenV" is calledprefixw.r.t. S. A
prefix V' of u € V '\ V' is a prefix w.r.tS satisfying(v < u = v € V).

The prefixesw.r.ts(AON) in Figure 1 are the event sdts}, {¢, u} and{t, u, v, e}.
The only prefix ofw is {¢,u}, sincev andw may not occur in a prefix o (w C v)
andw has to occur in a prefix ab (u < w). We have the following relation between
prefixes and linearizations of so-structures:

Lemma 1. Let V' be a prefix (ofu € V) w.r.t. an so-structureéS = (V, <,C), then
there existdin € lin(S) such thatV”’ is a prefix (ofu) w.r.t. lin.

Proof. lin = 7 ... 7, can be constructed as follows; = {v € V' | Vo' € V' :

v A vl ={v e V\n | W € V'\n v £ wv}andsoon,ie. we define
7; C V' as the set of nodef € V' \ (UZ) | Yo' € V' \ (U;;ll) s v A v}
which are minimal w.r.t. the restriction ef onto the node sét”\ (U;;ll 7j), aslong as
V’\(Ué;l1 7;) # 0. Then continue with the same procedurdony”’ = V\(U;:1 ;)
ie.miy = {v e V\ (U;.:1 i) | W' e V' (U;:1 7j) : v 4 v} and so on. By
constructionV” is a prefix (ofu) w.r.t. lin. A straightforward computation also yields
lin € lin(S). O

A prefix V' w.r.t. a total linear so-structurén = 7 ...7, always represents a
primary part of the respective (synchronous) step sequéace’ = Uj<i 7; for some
i €{0,...,n}. If V'is a prefix ofu, thenu € 7;41.

Next we present the net class of pti-nets (p/t-nets with tteid inhibitor arcs). As
usual, go/t-netis atripleN = (P, T, W), whereP is a finite set of placeq; is a finite
set of transitions ant¥” : (P x T) U (T x P) — N is the weight function representing
the flow relation. The pre- and post-multi-set of a transitiacc 7" are the multi-sets of
places given by’t(p) = W (p, t) andt® (p) = W(t,p) for all p € P. This notation can
be extended t&/ € N” by *U(p) = 3,., U(t) *t(p) andU*® (p) = >, U(1)i* (p)
forall p € P. Analogously we can define pre- and post-multi-sets of nadts of places
as multi-sets of transitions. Eaeh € N” is called amarkingof NV and eaciV € NT
is called a step oNN. U is enabled to occuin m if and only if m > °U. In this case,
its occurrence leads to the marking = m — *U + U®.

Definition 4 (Pti-net). A markedpti-netis a quadrupleNI = (P, T, W, I, mg), where
Und(NI) = (P, T, W) is a plt-net (theinderlying nebf NI), m, theinitial markingof
NIandl: P xT — NU{oco} is theinhibitor (weight) function(we assumec > n
for everyn € N). For a transitiont the negative contextt € (N U {oo})” is given
by ~t(p) = I(p,t) for all p € P. For a step of transitiong/, ~U € (NU {co})¥ is
given by~ U(p) = min({oc}U{ "t(p) | t € U}). Aplacep with ~t(p) # oo is called
inhibitor placeof¢.

A step of transitiong/ is (synchronously) enabled to occuara markingm if and
only if it is enabled to occur in the underlying p/t-éhd(N) and in additionm <
~U. The occurrence df leads to the marking:’ = m — *U + U*®. This is denoted

by m T m/. A finite sequence of steps of transitions= U;...U,, n € N, is

called astep (occurrence) sequence enabled in a markiagd leading ton,,, denoted

by m —Zs m,,, if there exists a sequence of markings, . . .,m,, such thatm 2%

my Loy Dy my. ByEX(NT) we denote the set of all step sequences of a marked

pti-net N 1.

Note that/(p,t) = k € N implies thatt can only occur ifp does not contain
more thank tokens (as explained in the context of the inhibitor arc emted withw
in Figure 1);k = 0 coincides with zero-testing. Accordingl(p, t) = co means that
the occurrence of is not restricted through the presence of tokens. imhus a p/t-net
can always be interpreted as a pti-net with= co. In graphic illustrations, inhibitor
arcs are drawn with circles as arrowheads and annotatedheithweights (see Figure
1). Inhibitor arcs with weighto are completely omitted and the inhibitor weight
is not shown in diagrams. The definition of enabledness inndifh 4 reflects the
considerations about the a-priori testing explicated abthe inhibitor constraints are
obeyed before the step of transitions is executed. For amgeasee Figure 1 and the
explanations at the beginning of this section.

Now we introduce the process semantics for pti-nets as ptedé [13]. The prob-
lem is that the absence of tokens in a place — this is testedHilyiior arcs — cannot
be directly represented in an occurrence net. This is sdlyadtroducing local extra
conditions and read arcs — also called activator arcs — abatéo these conditions.
These extra conditions are introduced "on demand” to direepresent dependencies
of events caused by the presence of an inhibitor arc in thé&hetconditions are artifi-
cial conditions without a reference to inhibitor weightspteices of the net. They only
focus on the dependencies that result from inhibitor té&tsis, activator arcs repre-
sent local information regarding the lack of tokens in a glaithe process definition of
[13] is based on the usual notion of occurrence nets extebgedtivator arcs. These
are (labeled) acyclic nets with non-branching places (itmmg) (since conflicts be-
tween transitions are resolved). By abstracting from thdid@mns one obtains an LSO
representing the causal relationships between the evarite following definitionB
represents the finite set obnditions £ the finite set oevents R the flow relation and
Act the set of activator arcs of the occurrence net.

Definition 5 (Activator occurrence net). A labeled activator occurrence neb-net)
is a five-tupleAON = (B, E, R, Act, 1) satisfying:

— BandFE are finite disjoint sets,

- RC(BxE)U(ExB)andAct C B x E,

— |*b], |b®| < 1foreveryb € B,

— the relational structureS (AON) = (E, <ioc, Cioes U E) = (E, (RoR)|gx g U(Ro
Act), (Act™1 o R) \ idg, | g) is {-acyclic,

— lis alabeling forBU E.

The LSO generated byON is x(AON) = (E, <a0n, Caon, | z) = S(AON)®,

The relations<;,. andC;,. represent the local information about causal relation-
ships between events. Figure 2 shows their constructient((AON) captures all (not

[(FO-U -0 [-O—-L
iy g g
O—0 O—0 OO

Fig. 2. Generation of the orders;,. and_;,. in ao-nets.

only local) causal relations between the events (see atgod-i1). Note that Definition
5 is a conservative extension of common occurrence netsaoyaxes.

The initial markingMINon Of AON consists of all conditions without incom-
ing flow arcs (the minimal conditions w.r.R). The final markingMAX sonx of AON
consists of all conditions without outgoing flow arcs (theximzal conditions w.r.tR).
There are two different notions of configurations and slfces.o-nets. A set of events
D C Eis astrong configuratiomf AON, if e € D andf <, eimpliesf € D. D is
called aweak configuratiomf AON, if ¢ € D and f(<oc UC o) Te impliesf € D. A
strong sliceof AON is a maximal (w.r.t. set inclusion) set of conditiofisC B which
are incomparable w.r.t. the relatidho <;,_ o R, denoted by5 € SSL(AON). A weak
slice of AON is a maximal (w.r.t. set inclusion) set of conditiofsC B which are
incomparable w.r.t. the relatioR o (<, U Cioe)* © R, denoted bys € WSL(AON).

In the example occurrence net from FigurBXSL| = 4 and|SSL| = 12.

Every weak configuration is also a strong configuration amdyeweak slice is also
a strong slice. In [13] it is shown that the set of strong slioEAON equals the set of
all sets of conditions which are generated by firing the eveh& strong configuration.
An analogous result holds for weak slices and weak configumraitSSL(AON) equals
the set of all sets of conditions reachable from the initiarkmg MIN pon in AON
andWSL(AON) equals the set of all sets of conditions from which the finatkimey
MAX 0N is reachable iMON (using the standard a-priori occurrence rule of elemen-
tary nets with read arcs [13]). ByIAR(C') we denote the marking resulting from the
initial marking of a net by firing the multi-set of transitisorresponding to a (weak
or strong) configurationy'.

Now we are prepared to define processes of pti-nets as inTh8]mentioned arti-
ficial conditions are labeled by the special symholThey are introduced in situations,
when a transitiort € 7' tests a place in the pre- or post-multi-set of another ttimsi
w € T for absence of tokens, i.e. whdiip,t) # oo and *w(p) + w* (p) # 0 for
somep € P. Such situations are abbreviated toy— ¢. If w — ¢ holds, then any
two occurrenceg of w ande of ¢ are adjacent to a common-condition representing
a causal dependency ¢fande. That means there exists a conditio® B such that
(b,e) € Act and * f(b) + f* (b) # 0 (remember that f, f* € BY are multi-sets over
B) — abbreviated byf —e ¢ (see requirement 6. in Definition 6). Thus the axiomatic
process definition in [13] is as follows:

Definition 6 (Activator process).An activator procesga-process) ofVI is anao-net
AON = (BW B, E, R, Act,) satisfying:

1. (B)C Pandi(E)CT.

2. The conditions i3 = {b | 3e € E : (b,e) € Act} are labelled by the special
symbolxi.

. mo = I(MINso~ N B).

. Foralle € E, *l(e) =1(®en B) andi(e)® =i(e* N B).

5. For all b € B, there are uniqug, h € E such that*b + b* = {g}, (b,h) € Act
andi(g) — I(h).

6. Foralle, f € E, ifl(f) — I(e) then there is exactly onec B such thatf —e e
throughc. B

7. Foralle € FandS € SSL(AON), if *eU{b € B | (b,e) € Act} C S then
I(SNB) < ~le).

W

The set of a-processes &l (given by this axiomatic definition) is denoteddyV).
For AON € «(NT) the generated so-structurg AON) is called a run (associated to
AON).

The occurrence netON in Figure 1 is indeed an a-process: Altlabeled condi-
tions satisfy 5. Allx-labeled conditions which are necessary according to Glranen.
Condition 7. must be simply verified for the strong slicesdurced by strong configura-
tions, e. gMAR(0), MAR({t}), MAR({u}), MAR({u, t}) and so on. Thus;(AON)
isarun.

The requirements 1., 3., 4. in Definition 6 represent comneattures of processes
well-known from p/t-nets. They ensure that a-processestitate a conservative gen-
eralization of common p/t-net processes. That means, thed peocesses dind (N 1)
coincides with the set of processes resulting fre(VI) by omitting the x-labeled
conditions (omitting thex -conditions from an a-procegsON leads to the so called un-
derlying proces&TAON of AON). If N has no inhibitor arcs (thu¥ 7 = Und(NT))
a-processes coincide with common processes. Thus, Defigittan also be used to de-
fine processes of p/t-nets. The properties 2. and 5. togeittethe rule 6. — describing
when A-conditions have to be inserted — constitute the structfitheo.x -conditions.
The requirement 7. expresses that in the strong slicés)df the inhibitor constraints
of the pti-net have to be properly reflected. That means,fents enabled in a certain
slice of AON the respective transitions are also enabled in the respautirking in the
pti-net N 1.

We finally formally define, when we consider an LSto be consistent with the
step semantic§ X of a given pti-net (Definition 4). Such LSOs we caflabled(w.r.t.
the given pti-net). Intuitively it is clear what enableds@seans: The transitions associ-
ated to the events of an LSO can be executed in the net regaifigiven concurrency
and dependency relations. For the formal definition the eoeacy and dependency re-
lations described by are reduced to the set of step sequences sequentiafigigen
by lin(S)). Such step sequences can be considered as observati®nwlo¢re transi-
tion occurrences within a step are observed at the same siynet{ronously), and step
occurrences are observed in the order given by the step segui¢ each such obser-
vation of S is an enabled step occurrence sequences of the pthiegonsistent with
the step semantics.

Definition 7 (Enabled LSO).An LSOS = (V, <, Z, 1) is enabled w.r.t. a marked pti-
netNI = (P, T,W,I,my) if and only if everylin € lin(S) represents an enabled

(synchronous) step sequengg,, in EX(NI) (of NI). ELCS(NI) is the set of all
so-structures enabled w.r.t. a given marked pti-Ngt

With this definition one can easily check that the rllON) in Figure 1 is enabled
w.r.t. NI: The two linearizations of(AON) represent the sequences of synchronous
stepstu{v, w} and{¢, u}{v, w} which are both executable iN 1.

Definition 7 is consistent with and a proper generalizatibtine notion of enabled
LPOs in the context of p/t-nets: An LPo = (V, <,l) with[: V' — T is enabled
w.r.t. a marked p/t-netP, T, W, my) if each step sequence which extemhgs is a step
occurrence sequence enablediig. Since in LPOs concurrent and synchronous tran-
sition occurrences are not distinguished, here a step isidered as a set of events
labeled by transitions (transition occurrences) whichcargcurrent.

Beside the consistency of Definition 7 with the definition agbled LPOs, there
are two general semantical arguments justifying this d#dimi First the set of to-
tal linear LSOslin(S), which are tested for enabledness in the Petri net, repiesen
S. This is shown in [6] by the following generalization of Skzpjns theorem [16] to
so-structuresS = (V, (v, < oyetin(s) <> Nv,<.0)etin(s))+ Second the setin(S)
can express arbitrary concurrency relations betweenittameccurrences of a pti-net,
since concurrency equals the possibility of sequentialicence in any order and syn-
chronous occurrence. Thus, considering more generallyesegs of concurrent steps
of synchronous steps instead of simply sequences of synchsosteps does not lead
to a higher expressivity of concurrency. These two argumjestify the choice of syn-
chronous step sequences as the operational semantics(oitiexs) of pti-nets. Thus
the definition of enabled LSOs based on synchronous steesegs and total linear
LSOs constitutes the adequate causal semantics.

3 The Semantical Framework

In [13] a general framework for dealing with process sentanif Petri nets was pro-
posed (see Figure 3, left part). It aims at a support for aegyatic development of
process and causality semantics for various Petri netadassing a common scheme.
In Figure 3 the abbreviations mean the followifiy\ represents a Petri net model
together with an operational occurrence rdl&’ are executions such as step sequences
in accordance to the occurrence rule employe®y. LAN represents the process se-
mantics given by labeled acyclic nets such as occurrensef€f’ are labeled execu-
tions such as step sequences of nedi\V. Finally, LCS are labeled causal structures
describing net behavior through causality relations betwevents. The arrows indicate
functions that define and relate the different semanti@/si They represent the con-
sistency requirements for process semantics accordifgsdrameworkw yields the
set of executions (step sequences) providing the opeedtsamantics (Definition 4
for pti-nets).« defines the axiomatic process definition (Definition/6associates so
called runs to the process definition (Definition 6JLAN) C L£CS defines the set
of runs of a net represents the operational semantics of the process agfigiten
by labeled step sequences (defined through a slight modbficat the step occurrence
rule of elementary nets with read arcs under the a-prioriesgiits [13]). Throughy a

labeled execution can be interpreted as an ordinary exec(diefined as trivial mod-
ification omitting labels)e and. relate a labeled causal structure with its generated
labeled executiong fespectively are given as linearizations respectively intersections
in the case of LSOs). Finally; represents the operational process definition starting
from executions.

Fig. 3. Left: The semantical framework of [13]. Right: The left sertieal framework extended
by the completeness-requirement that any enabled caugeluste has to be a sequentialization
of a run; this is depicted throughZCS and the adjacent arcs labeled dgnd.

This framework defines reasonable requirements for prae@aantics. It provides
a schematic approach to ensure that process and causatignses developed for a
special Petri net class are consistently defined. In [13frdmmework is condensed to
five properties that have to be checked in each particulingeTwo of these properties
state that all mappings in Figure 3 are total and all mappietsning sets do not return
the empty setConsistencys formulated there as the following separated properties:
SoundnessThe process definitiod AN should besoundw.r.t. the step semanti¢sY
in the sense that every run should be consistent with thesst@jantics.

Weak completeness AN should beweak completav.r.t. £X in the sense thaf X
should be reproducible frofi. AN .

Construction of processes from step sequendeprocess inL AN should be con-
structible from each step sequence&ifr generated by the process (b

Consistency of runs and procesgeslledFitting in [13])): Processes and correspond-
ing runs should generate the same step sequences.

Runs are reconstructible from step sequen@adled Representatiorn [13])): Runs
from LCS should be reconstructible from step sequencestinby ¢ o e.

But an important feature of process semantics relatingandstep semantics is not
presentin this framework. On the one hand¢ ensures that each run is consistent with
the step semantics (soundness). On the other hand, theveégjnirement guarantee-
ing the converse, that each causal structure which is densiwith the step semantics
is generated by a run through adding causality to it (corepkets). For p/t-nets this is
fulfilled (as mentioned in the Introduction), since evergbled LPO is a sequentializa-
tion of arun [11]. Together with the reverse statement thias are enabled (soundness),
completeness guarantees that there are runs and procésskeexpress all valid causal

behavior of the net regarding as much concurrency as pes3ibat means, the minimal
causal dependencies in a net are reflected in the processtiesndo represent such
an aim of completeness, we add new relations to the sembindozework (Figure 3,
right part) by the introduction of enabled causal stru®étéCS. The arc labeled by

o0 represents the definition of enabled labeled causal stesfCCS from the opera-
tional semantic€ X. The arc labeled with) relates enabled labeled causal structures
(££CS8) and runs £(LAN) C LCS) in the above sense by assigning a run with less
causality to each enabled labeled causal structure (fochmrich a run exists). For-
mally, a labeled causal structure is said to hlags causalitghen a second one, if each
labeled execution i& X’ generated by the second one is also generated by the first one
(where the labeled executions generated by a labeled cstugelure are given by).
Thus, through) o § we add an additional property to the process framework tleat w
call the aim of completeness.

Definition 8 (Aim of completeness).The mapping assigns a set of step sequences
EX onto the set of causal structur€<CS enabled w.rt£X. The mapping) assigns
arun LCS with less causality to each enabled causal structu€4icS for which such
a run exists.

Theaim of completenesstates that the mapping is total, i.e. that each enabled
causal structure adds causality to some run.

The absence of the aim of completeness in the framework ¢fi¢a8s to process
definitions that do not have to represent minimal causal\iehaccording to [13]
a process definition that equals the operational step s@agptocesses are step se-
guences) is a valid process semantics. But the set of stejeisegs is not a reasonable
process semantics and process definitions not producingitfimal causalities are not
really useful. The aim of completeness in our frameworkesbhis problem. It implies
that minimal enabled labeled causal structures coincidle (minimal) runs: On the
one hand a minimal enabled labeled causal structure hasassbguentializations of
a run, on the other hand runs have to be enabled — so runs deawreotess causalities
than minimal enabled labeled causal structures.

4 Process Semantics of Pti-nets

The definition of a-processes from section 2 meets all requénts of the left semanti-
cal framework in Figure 3 as shown in [13]. In the setting ¢frets the additional aim

of completeness states that each enabled so-structuralex@eme run of the pti-net.
We show in this section that a-processes do not fulfill the @firompleteness. More-
over, we develop an alternative process definition presgril the other requirements
of the semantical framework, such that the aim of completereefulfilled.

The basic intuition behind the fact that the a-processeas fb&finition 6 do not
generate minimal causalities is as follows: The definitigeuconstraints introduced
through artificial A -labeled conditions. They do not have counterparts on thegbht
level, but rather represent dynamic causal relationshigp&den events. Therefore, it
is possible that the definition of the-conditions does not reflect the causalities in the
original pti-net such that too many constraints are into@tlin the runs generated by

a-processes. In this section we will step by step illustvéeexamples why the aim of
completeness does not hold for a-processes and adaptéfieitidn such that this aim
is finally fulfilled (all the other requirements will be presed).

O—ul—Co—{t }-O . 11)
OO Ol O
NI, W)

O O
O~LF—Ohon,, kaon,,)

Fig. 4. A pti-net N1, an a-proces®\ON;.; of NI; and the associated run(AON; 1) to-
gether with anao-net AON » that is a candidate to be a processMf,, and the associated
run x(AON;1.2). This example from [13] shows that a-processes (mandaittrpduce unneces-
sary causalities.

In the following we give two examples of LSOs enabled w.r.marked pti-net,
which do not extend a run of the considered net. Each of thesm@es leads to a spe-
cific modification of Definition 6. We assume that events irsthexamples are labeled
by the identity mapping, i.eu, t and z are events representing the occurrence of the
transitionsl(u) = w, I(t) = t andl(z) = z. The place connected toby an inhibitor
arc in each example we denote jay

The first example gave the authors of [13] themselves. TheeegsAON, ; in
Figure 4 shows that the technique of introducingabeled conditions according to Def-
inition 6 in general generates too many constraints in tise@ated run<(AON; 1):
"One may easily verify that we can safely delete one of thaictr arcs (but not both),
which leads to another a-process generating weaker conistilaanAON; ;”. Indeed,
deleting for example the -condition between andz the resultingzo-net AON; 5 is
a reasonable process. The othecondition orders: andz in sequence: — z andt
can occur concurrently to this sequence. On the other hanittirng the A -condition
between: andz contradicts 6. of Definition 6 because there halds z. That means
AON; 5 is notan a-process (in particular the quoted statement exaatly true). Thus,
the LSOx(AON; ») is enabled but does not sequentialize a run (since it cantwnly
generated by ano-net without ai-condition adjacent to andz). An analogous ob-
servations holds symmetrically when deleting theondition between andz instead
betweent andz. Consequently, the first modification of Definition 6 is to leege re-
quirement 6. by requirement 6.”. According to 6., the urgqronditionc € B is only
possible instead of required. Then the problem discussaksb solved and theo-net
AON;, 5 is actually a process.

6. Foralle, f € E,if f —ecthen there is exactly onec B such thatf —e ¢ through
C.

OAON2 K(AONZ)

Fig.5. A pti-net N1, an ao-net AON; that is a candidate to be a processNf», and the
associated rum(AON3z). The ao-net models executable causalities that cannot be gederate
with a-processes.

The netN I, of Figure 5 shows that the aim of completeness is still ndiiled: If
u andt occur causally ordered in sequence- ¢ thenz can fire concurrently to this se-
quence because the placeever contains more than one token. Itis even possible to fire
z concurrently to the synchronous step ¢t }. Consequentlyk(AON,), requiring solely
thatu occurs "not later thant, is enabled (check Definition 7). The only possibility to
introduce such a causal dependency betweandt on the process level is through a
A-condition between andt¢. This is illustrated by the ao-n&tON, (compare Figure
2). But according to 5. of Definition AON> is not an a-process, siné@u) o I(t).
Thus, a run which is extended ByAON>) has no ordering between ¢ andz. This is
not possible because such a run is not enabled (the stepmegue z — u cannot be
fired). That means(AON,) does not sequentialize a run. Altogether, in 5. an impor-
tant possibility of generating causal dependencies frdribitor arcs viai-conditions
is not present. Allowingk-conditions as inAON, solves this problem leading to a
process having(AON,) as its associated run. Thiscondition represents the causal
dependency of. and¢ caused by the inhibitor ar@, z). It reflects the inhibitor testing
of z and not ofu or t. A generalization of 5. allowing.-conditions also in situations
as in this example is a next necessary step towards the aiongfleteness. Loosely
speaking, we will allow to insert.-conditions additionally in the following situation:
If a transition, testing some place via an inhibitor arc,wscconcurrently to transi-
tions consuming and producing tokens in this place, thesssition occurrences must
eventually be ordered via a-condition. ThisA-conditions is intended to ensure that
tokens are consumed not later than produced in order taatetste maximal number
of tokens in this place according to the inhibitor weight.thies end, we replaces 5. by
the weaker requirement 5., It introduces a more generatstral construction rule of
A-conditions using this intuition as follows:

5. For allb € B, there are uniqug, h € E such that®b + b* = {g}, (b,h) € Act
and additionallyi(g) — I(h) or *I(h)Ni(g)* N ~z #(foraz e T.

But the modifications proposed so far still do not ensure #alN, is a process,
sinceAON,, does not fulfill 7. of Definition 6: The conditions resultingfm only firing
t in the initial marking establish a strong slideandz fulfills *z U {b € B | (b,z) €
Act} C S. That means that using the standard occurrence rule of atamyenets with
read arcs under the a-priori semantics [B3tonstitutes a reachable marking in the
process net andis enabled in this marking in the process net. But obvioustheé pti-
netz is not enabled in the marking resulting from firihgr' his problem can be resolved

as follows: INAON,, the event can fire in the initial marking, although the-condition
generates the ordering'hot later thart”. Thus, firingt in the initial marking disables
u. This means that we could have omittedrom AON, which leads to a different
ao-net. Consequently, it is a proper assumption thahets should model only such
behavior in which every event of the-net actually occurs. Under this assumption,
firing ¢ in the initial marking is not a valid behavior of the-net and therefore the
problematic marking is not a marking of interest. The markings of interest are the
markings reachable from the minimal conditiob$IN oo,) in the ao-net from which
we can reach the maximal conditiodd 4 X a0,). That means, all events of the-net
not fired yet can still be executed starting in the respeatigeking. These markings are
represented by the weak slices of thienet. Therefore, we replace 7. by 7., wh&&L.
(strong slices) are replaced BYSL (weak slices) reflecting the above assumption:

7. Foralle € E andS € WSL(AON), if *eU{b € B | (b,e) € Act} C S then
(SN B) < ~le).

This is a generalization of Definition 6 sin¥&SL C SSL. From the intuitive point
of view the two alternative formulations 7. and 7. focus dffiedlent aspects: While the
consideration oB8SL completely reflects the occurrence rule of elementary néts w
read arcs, the consideration BfSL additionally postulates that no event of thenet
may completely be disabled. This second assumption is a&sd in [13] for defining
the executionLEX through the mapping in the semantical framework of Figure
3:) represents all step sequences of an a-procegs4ifV’ in which every event of
the process occurs. In this sense the change of the occamalemfao-nets explained
above is an adaption to the idea of mandatory regardingeaiitewsed in the operational
semantics ofio-nets anyway. Therefore, this slightly altered occurremteof ao-nets
(that we will use) is completely consistent to the execigiohao-nets and thus even
fits better into the semantical framework.

Replacing 5., 6. and 7. by 5., 6." and 7." in Definition 6 asaésed here ensures
that theao-net AON, is a process. So the above considerations lead to the folipwi
alternative process definition and thus a change of the mgjppin Figure 3 (denoted
by o/ instead ofx in Definition 9):

Definition 9 (Complete activator process)A complete activator procegsa-process)
of NI is anao-netAON = (BW B, E, R, Act, 1) satisfying:

1. I(B) C Pandl(E) C T.

2. The conditions i3 = {b | 3e € E : (b,e) € Act} are labelled by the special
symbol.

3. mo = [(MINson N B).

4. Foralle € E, *i(e) =1(®en B) andi(e)® =I(e®* N B).

5 Forall b € B, there are unique, h € E such that®b +b* = {g}, (b,h) € Act
and additionallyl(g) — I(R) or ®I(R)Ni(g)* N ~z#DBforaz e T.

6. Forall e, f € E, if f —ecthen there is exactly onec B such thatf —e e through
C.

7! Foralle € EandS € WSL(AON), if *eU {b € B | (b,e) € Act} C S then
(SN B) < ~le).

The set of ca-processesMT is denoted by’ (NT). For AON € o/(NT) the generated
so-structures(AON) is called a run (associated tAON).

Note that the requirements 1.,3.,4. of Definition 6 are preskin Definition 9
and thus also ca-processes constitute a conservativeadjigaton of common p/t-net
processes. Omitting the-conditions from a ca-processON leads to the so called
underlying proces®nd(AON) of AON, which is a process otind(NT). We will
show now as the main result of this paper thatdigrocess definition actually fulfills
the aim of completeness. Due to lack of space, we only giveklof the proof (which
has three pages). The complete proof can be found in theitatheport [10].

Theorem 1. For every enabled LSO = (F, <, ,[) of a pti-netNI there exists a
ca-processAON € o/ (NT) whereasS is an extension of the run(AON).

Proof (Sketch)The LPOlpog = (F, <,1) underlyingS is enabled w.r.tUnd(NT).
Thus there exists a proceBS\ON = (B, E, R’,1’) of Und(NT) fulfilling that Ipog
sequentializes the rum(UAON). The basic idea is now to construct an-net AON
from UAON by adding allx-conditions toUAON which can be added according to
property 5. while not producing causal dependencies eointtingS. Then thisao-net
AON = (BWB, E, R, Act,!) is the sought ca-process. Itis clear tA&N satisfies 1. -
4.,5and 6.. Thus, it only remains to show theDN meets condition 7." of Definition

9, i.e. that givere € E andS € WSL(AON) with *cU{b € B | (b,e) € Act} C S

it holds that!(S N B) < ~I(e). For this, we fix a weak configuratiafi of AON with

S = MAR(C) and show that(e) is executable in the pti-net after the occurrence of
the transitions corresponding to events(in To this end, we define a prefiX,,. of

e in S containing as many events fro@i as possible. Using that is enabled, we
can deduce thd{e) is executable in the pti-net after the occurrence of thesttams
corresponding to events @ii,,..: By Lemma 1 there i$in € lin(S) such thaC,,. is a
prefix of e w.r.t. lin. BecauseS is enabled the total linear so-structdie = 7, ... 7,
represents an enabled synchronous step sequendd aiith C,,. = U;;ll 7; and

e € 1; (fori € {1...n}). This implies thak can occur afteC,,.. Finally C,,.. can

be transformed in several steps into the@etnd in each step it can be shown that the
transformation does not disalle). O

In the following we briefly explain that the other aims of tlesrsantical framework
are still fulfilled by the new process definition:
SoundnesdJsing Proposition 5.19 of [13] it is easy to see that everyistenabled, i.e.
if AON € o/(N1I), theng(e(k(AON))) C w(NI).
Consistency of runs and process@&socesses and runs generate the same step se-
quences, i.e. iIAON € o/(NI), thene(k(AON)) = A(AON) (that means the rules
for constructing causal relationships between events pioesses as shown in Figure
2 are correct). This follows since in proposition 5.19 of][#8s relation was shown for
arbitraryao-nets (note here that the construction rules of the involvegpings)\,
ande have not changed in contrast to [13], only the process diefinitonstituting the
starting point of this relation is changed).
Weak completenes8ny execution of the pti-netdX) given byw(NI) is generated
from a ca-process, i.e. for any executione £X there exists an ca-proced® N e

o (NI) with o € $(A(AON)) (w(NI) € Uponear(vr) ?(A(AON))). This also holds
for ca-processes, because this is the relation generafizzmmparison to a-processes
(the aim of completeness is a generalization of the weak teteress property).

Runs are reconstructible from step sequen&eh run is the intersection of all obser-
vations it generates, i.eo ¢ reconstructs a run. This relation holds because of the gen-
eralization of Szpilrajns theorem to so-structures déscriin the preliminaries (note
that in this context nothing is changed in contrast to [13]).

Construction of processes from step sequeritlksre is no obvious way to generalize
the constructive definition of from [13] because especially the new requirement 6. of
Definition 9 is problematic: Now it is no more mandatory butiopal to introducex -
conditions between certain transitions (the transitiomdodates can be identified with
5.) and one has to check whether 7. holds (7. holds by cangtm). There is the fol-
lowing constructive process definition that is based diyeart the axiomatic definition:
Given an enabled step sequencef NI a ca-processes can be generated as follows:

— Construct a usual p/t-net procesdbid(NT) (based on an occurrence net) starting
fromo.

— Introduce arbitrary. -labeled conditions in accordance with 5.” and 6.” of Defarit
9.

— Check 7. of Definition 9: if it is fulfilled the constructiorsifinished, else perform
the next step.

— Introduce furthert -labeled conditions in accordance with 5.” and 6. of Defarit
9, then go back to the previous step.

All processes constructible with this algorithm produce #et of ca-processes(o)
generated by. Moreover, the ca-processes generated from a step sequereghe
ca-processes havirg(provided with respective labels) as an execution. Thisrélgm
always terminates because there are only finite many pessitdbeled conditions in
accordance with 5.” and 6.’ of Definition 9. Introducialj such possible.-conditions
obviously leads to a ca-process, i.e. 7. is then fulfillecstep 3. More precisely, the
number of possiblet-conditions is at most quadratic in the number of events whic
means that the number of repetitions of the steps 3 and 4 afgleithm is polynomial.
Thus, only checking 7." in step 3 may be not efficient, sinadtexists an exponential
number of (weak) slices in the number of nodes. But curresgtarch results on a similar
topic summarized in [14] show that there exists an algorjploignomial in time solving
this problem: In [14] we present an algorithm (based on flasotly) that can be used to
calculate step 3 in polynomial time (of degi@én?)). Therefore, with this construction
the requirements interrelated with the mappirig the semantical framework of Figure
3 are also fulfilled.

5 Conclusion

In this paper we have developed a general semantical frarketlvat supports the
definition of process semantics and respective causal smsdor arbitrary Petri net
classes. The framework is based on the semantical framewmrk[13] additionally
requiring that process semantics should be complete step. semantics: Each causal

structure which is consistent to step semantics — such kstugetures we call enabled
— should be generated from a process net. Since for the pésnrof causal net behav-
ior of pti-nets under the a-priori semantics labeled soestires are applied, the notion
of enabled so-structures has been introduced. We were @lsteotv that the process
definition for pti-nets from [13] is not complete w.r.t. stepmantics and to identify a
structural generalization of this process definition whgkhomplete (while still satis-
fying all the other requirements of the framework of [13]).

Possible further applications of the results of this paperan the one hand the
usage of the semantical framework on further Petri net efaissorder to check existing
process semantics and to evolve new process semantics.donkext of the paper, this
is in particular interesting for existing inhibitor net santics [19, 6, 2,12, 13, 8]: While
most aims of [13] are checked for those process semantergth aim of completeness
is not (probably because this is the most complicated airayektheless a lot of these
process semantics seem to satisfy the aim of completenetsaéh for the process
semantics of elementary nets with inhibitor arcs under tpe@i semantics as well
as the a-posteriori semantics there are formal proofs (3f)the other hand the ca-
processes of this paper constitute a process definitiontfareps under the a-priori
semantics expressing minimal causalities and can thusdfel esg. for model checking
algorithms based on unfoldings.

References

1. J. Billington. Protocol specification using p-graphgehhique based on coloured petri nets.
In W. Reisig; G. Rozenberg [20], pages 293—-330.

2. N.Busi and G. M. Pinna. Process semantics for placeitiamsets with inhibitor and read
arcs.Fundam. Inform.40(2-3):165-197, 1999.

3. S. Donatelli and G. Franceschinis. Modelling and analg$idistributed software using
gspns. In W. Reisig; G. Rozenberg [20], pages 438—476.

4. U.Goltz and W. Reisig. The non-sequential behaviour bf pets.Information and Contral
57(2/3):125-147, 1983.

5. U. Goltz and W. Reisig. Processes of place/transitide-rie J. Diaz, editodCALP, volume

154 ofLecture Notes in Computer Scienpages 264—277. Springer, 1983.

R. Janicki and M. Koutny. Semantics of inhibitor ndtsf. Comput, 123(1):1-16, 1995.

7. K. JensenColoured Petri Nets. Basic Concepts, Analysis Methods aadtRal Use, vol-

ume 1-3 ofMonographs in Theoretical Computer Scien&pringer, 1992, 1994, 1997.

G. Juhas. Are these events independend? it depends!itbidnil, 2005.

9. G.Juhas, R. Lorenz, and S. Mauser. Synchronous + conturgequential = earlier than +
not later than. IrProceedings of ACSD 200pages 261-270, 2006.

10. G.Juhas, R. Lorenz, and S. Mauser. Complete processsiesof inhibitor nets. Technical
report, http://www.informatik.ku-eichstaett.de/mhtaiter/lorenz/techreports/complete.pdf,
2007.

11. A. Kiehn. On the interrelation between synchronized aod-synchronized behaviour of
petri nets.Elektronische Informationsverarbeitung und Kyberne?ik(1/2):3—-18, 1988.

12. H. C. M. Kleijn and M. Koutny. Process semantics of pisneith inhibitor arcs. In M.
Nielsen; D. Simpson, editofCATPN volume 1825 ot ecture Notes in Computer Science
pages 261-281. Springer, 2000.

13. H. C. M. Kleijn and M. Koutny. Process semantics of gehiat@bitor nets. Inf. Comput,
190(1):18-69, 2004.

o

o

14.

15.
16.

17.

18.

19.

20.

R. Lorenz, R. Bergenthum, and S. Mauser. Testing theugxdaitity of scenarios in general
inhibitor nets. InProceedings ACSD 2002007.

J. PetersorPetri Net Theory and the Modeling of Systemsentice-Hall, 1981.

E. Szpilrajn. Sur I'extension de I'ordre partidkundamenta Mathematica&6:386—389,
1930.

W. Vogler.Modular Construction and Partial Order Semantics of Peteitdl volume 625 of
Lecture Notes in Computer Sciencpringer, 1992.

W. Vogler. Partial words versus processes: a short cosgpa In G. Rozenberg, editor,
Advances in Petri Nets: The DEMON Projegblume 609 ofLecture Notes in Computer
Sciencepages 292-303. Springer, 1992.

W. Vogler. Partial order semantics and read arcs. IrivaPa and P. Ruzicka, editofdFCS
volume 1295 ol ecture Notes in Computer Sciengages 508-517. Springer, 1997.

W. Reisig; G. Rozenberg, editdrectures on Petri Nets II: Applications, Advances in Petri
Nets, the volumes are based on the Advanced Course on Petyiet in Dagstuhl, Septem-
ber 1996 volume 1492 ot.ecture Notes in Computer Scien&pringer, 1998.

