
Complete Process Semantics for Inhibitor Nets –
Technical Report

Gabriel Juhás2, Robert Lorenz1, and Sebastian Mauser1

1Department of Applied Computer Science,
Catholic University of Eichstätt-Ingolstadt,

{robert.lorenz, sebastian.mauser}@ku-eichstaett.de

2Faculty of Electrical Engineering and Information Technology
Slovak University of Technology, Bratislava, Slovakia

e-mail:gabriel.juhas@stuba.sk

Abstract. In this paper we complete the semantical framework proposedin [12]
for process and causality semantics of Petri nets by an additional aim and develop
process and causality semantics of place/transition Petrinets with weighted in-
hibitor arcs (pti-nets) satisfying the semantical framework including this aim.
The aim was firstly mentioned in [8] and states that causalitysemantics deduced
from process nets should becompletew.r.t. step semantics in the sense thateach
causality structure which is consistent with the step semantics corresponds to
some process net. We formulate this aim in terms ofenabledcausality structures.
While it is well known that process semantics of place/transition Petri nets (p/t-
nets) satisfy the additional aim, we show that the most general process semantics
of pti-nets proposed so far [12] does not and develop our process semantics as an
appropriate generalization.

1 Introduction

The study of concurrency as a phenomenon of system behavior attracted much attention
in recent years. There is an increasing number of distributed systems, multiprocessor
systems and communication networks, which are concurrent in their nature. An impor-
tant research field is the definition of non-sequential semantics of concurrent system
models to describe concurrency among events in system executions, where events are
considered concurrent if they can occur at the same time and in arbitrary order. Such
non-sequential semantics is usually deduced from the so called step semantics of a con-
current system model.

For the definition of step semantics it is generally stated which events can occur in
a certain state of the systemat the same time(synchronously) and how the system state
is changed by their occurrence. Such events form astep (of events). Given an initial
state, from this information all sequences of steps which can occur from the initial
marking can easily be computed. The set of all possible suchstep sequencesdefines the
step semantics of a concurrent system model. A step sequencecan be interpreted as a
possibleobservationof the systems behavior, where the event occurrences in one step

are observed at the same time and the event occurrences in different steps are observed
in the order given by the step sequence.

Non-sequential semantics are based on causal structures – we will also call them
scenarios in the following – which allow to specify arbitrary concurrency relations
among events. Non-sequential semantics for this paper is a set of scenarios. A sce-
nario allows (generates) several different observations,since the occurrence of events
which are concurrent in the scenario can be observed synchronously or also in arbitrary
order. Therefore, a given scenario only represents behavior of the system if it is con-
sistent with the step semantics in the sense that all of its generated observations belong
to the step semantics of the system. Non-sequential semantics which consists only of
scenarios satisfying this property we callsound w.r.t. step semantics. On the other hand,
all scenarios which are consistent with the step semantics represent behavior of the sys-
tem. Non-sequential semantics which containsall such scenarios we callcomplete w.r.t.
the step semantics. In other words, a complete non-sequential semantics includes each
causal structure satisfying that all observations generated by the causal structure are
possible observations of the system. Note here that if we addcausality to a causal struc-
ture which is consistent with the step semantics the resulting causal structure is again
consistent with the step semantics (since it generates lessobservations). Thus, a com-
plete non-sequential semantics can be given by such causal structures consistent with
the step semantics satisfying that removing causality fromthe causal structure results
in a causal structurenot consistent with the step semantics. Such causal structuresex-
pressminimalcausal dependencies among events. Altogether, complete non-sequential
semantics represent minimal causalities.

Therefore, an important aim of each semantical framework for the definition of
a non-sequential semantics of particular formalisms for concurrent systems is that a
non-sequential semantics is definedsound and complete w.r.t. the step semanticsof the
formalism. In this paper we consider this aim for Petri nets.These are one of the most
prominent formalisms for understanding the concurrency phenomenon on the theoreti-
cal as well as the conceptual level and for modeling of real concurrent systems in many
application areas [7]. The most important and well-known concept of non-sequential
semantics of Petri nets are process semantics based on occurrence nets [4, 5]. From the
very beginning of Petri net theory processes were based on partial orders relating events
labeled by transitions (an event represents the occurrenceof a transition): Any process
directly defines a respective partial order among events, called the associatedrun, in
which unordered events are considered to be concurrent. Since adding causality to a
run still leads to possible system behavior, a non-sequential semantics of a Petri net can
also be given as the set of sequentializations of runs (a sequentialization adds causality)
of the net. This set is also called causal semantics of the net, since it describes its causal
behavior. Note that in most cases partial orders are suitable to describe such behavior
but sometimes generalizations of partial orders are neededas appropriate causal struc-
tures. In the case of inhibitor nets under the so-called a-priori semantics [6], so called
stratified order structures (so-structures) represent thecausal semantics.

Since the basic developments of Petri nets, more and more differentPetri net classes
for various applications have been proposed. It turned out to be not easy to define pro-
cess semantics and related causality semantics in the form of runs for such net classes.

Therefore, in [12] (in the context of defining respective semantics for inhibitor nets)
a semantical framework aiming at a systematic presentationof process and causality
semantics of different Petri net models was developed (see Figure 3 in Section 3): Any
process semantics should fulfill the reasonable aims statedby the framework. These
aims are reduced to several properties that have to be checked in a particular practical
setting. The most important of these aims is the soundness ofprocess semantics and
causality semantics w.r.t. step semantics as described above. For Petri nets, soundness
means that each observation generated by a process or a run isa possible step occurrence
sequence of the Petri net. But this general framework – as well as many other particular
process definitions for special Petri net classes – does not regard the described aim of
completeness. In the Petri net context, process and causality semantics are complete
w.r.t. step semantics if each causality structure consistent with the step semantics adds
causality to or is equal to some run of the Petri net. Instead another aim of the frame-
work from [12] requires a kind of weak completeness, saying that each step occurrence
sequence should be generated by some process.

For place/transition nets (p/t-nets) a labeled partial order (LPO) which is consistent
with the step semantics is calledenabled[16, 17, 8]. It was shown in [10] that an LPO
is enabled if and only if it is a sequentialization of a run corresponding to a process (see
also [16, 17, 8]). Thus, process and causality semantics of p/t-nets are sound and com-
plete w.r.t. step semantics. In particular, from the completeness we deduce that enabled
LPOs with minimal causal dependencies between events (thusmaximal concurrency)
– so calledminimal enabled LPOs– are generated by processes.1 This is an essen-
tial property of p/t-net processes and justifies their success as non-sequential semantics
describing system behavior.

Therefore, the aim of completeness should also hold for process semantics of other
Petri net classes. To this end, we included it in the semantical framework of [12]. We
will discuss the aim of completeness for process definitionsof inhibitor nets. As stated
in [14], ”Petri nets with inhibitor arcs are intuitively themost direct approach to increas-
ing the modeling power of Petri nets”. Moreover inhibitor nets have been found appro-
priate in various application areas [1, 3]. Accordingly, for these net classes various au-
thors proposed process definitions regarding different interpretations of the occurrence
rule of inhibitor nets. In this paper we will focus on the mostgeneral class of pti-nets
and its process definition from [12].2 We show that the general a-priori process defini-
tion of [12] does not fulfill the aim of completeness and propose appropriate changes of
the process semantics. Thus we develop an alternative process definition which fulfills
the complete semantical framework of Figure 3 including theaim of completeness.

As mentioned in the context of the a-priori semantics, LPOs are not expressive
enough to describe the causal behavior of a pti-net. Instead, so-structures are used on
the causal level. Thus the aim of completeness can be formulated for this net class in the
following way: For any enabled so-structure there is a process with associated run in
the form of an so-structure such that the enabled so-structure sequentializes the run. As

1 In case of p/t-nets and their processes (runs), not each enabled LPO is a run and there are also
non-minimal runs, but each minimal enabled LPO is a minimal run.

2 We will briefly consider alternative process definitions forinhibitor nets in the conclusion.

in the case of LPOs, an so-structure is enabled if it is consistent with the step semantics
of pti-nets in the above described sense.

The paper is structured as follows: First the basic notions of pti-nets, processes of
pti-nets, so-structures (see [12]) and enabled so-structures are introduced (section 2).
Then in section 3 the semantical framework of [12] will be discussed in the context of
introducing a new requirement – the aim of completeness. Subsequently in the main
part of the paper (section 4) we will show why the a-priori process semantics for pti-
nets in [12] does not fulfill the aim of completeness. Based onthese considerations
we propose an alternative process semantics implementing the complete semantical
framework including the aim of completeness.

2 Preliminaries

In this section we recall the basic definitions ofso-structures, pti-nets (equipped with the
a-priori semantics)andprocess nets of pti-nets, and finally defineenabled so-structures.

Given a setX we will denote the set of all subsets ofX by 2X and the set of all
multi-sets overX by N

X . A set can always be viewed as a multi-setm with m ≤ 1 and
correspondingly a multi-setm ≤ 1 can always be viewed as a set. We further denote
the identity relation overX by idX , the reflexive, transitive closure of a binary relation
R overX byR∗, the transitive closure ofR byR+ and the composition of two binary
relationsR,R′ overX byR ◦R′.

Inhibitor nets are an extension of classical Petri nets enhanced with inhibitor arcs.
In their simplest version inhibitor arcs test whether a place is empty in the current mark-
ing (zero-testing) as an enabling condition for transitions. In the most general version
of pti-nets, inhibitor arcs test if a place containsat mosta certain number of tokens
given by weights of the inhibitor arcs (instead of zero-testing). In pictures inhibitor arcs
are depicted by arcs with circles as arrowheads. Figure 1 shows a pti-net, where the
transitionst andv test a place to be empty and transitionw tests a place to hold at most
one token. As explained in [6, 11, 12], ”earlier than” causality expressed by LPOs is not
enough to describe causal semantics of pti-nets w.r.t. the a-priori semantics. In Figure 1
this phenomenon is depicted: In the a-priori semantics the testing for absence of tokens
(through inhibitor arcs) precedes the execution of a transition. Thust cannot occur later
thanu, because after the occurrence ofu the place connected witht by an inhibitor
arc (with weight 0 representing zero-testing) is marked. Consequently the occurrence
of t is prohibited by this inhibitor arc. Thereforet andu cannot occur concurrently
or sequentially in orderu → t. But they still can occur synchronously or sequentially
in ordert → u, because of the occurrence rule ”testing before execution”(details on
the occurrence rule can be found later on in this section). This is exactly the behavior
described by ”t not later thanu”. After firing t andu we reach the marking in which
every non-bottom and non-top place of the netNI contains one token. With the same
arguments as above the transitionsv andw can occur in this marking synchronously
but not sequentially in any order. The relationship betweenv andw can consequently
be expressed by a symmetric ”not later than” relation between the respective events -
none may occur later than the other. The described causal behavior ofNI is illustrated
through the runκ(AON) on the right side of Figure 1. The solid arcs represent a (com-

mon) ”earlier than” relation. Those events can only occur inthe expressed order but not
synchronously or inversely. Dashed arcs depict the ”not later than” relation explained
above. Partial orders can only model the ”earlier than” relation, but it is not possible to
describe relationships as in the example betweent andu as well as betweenv andw,
where synchronous occurrence is possible but concurrency is not existent.

t u

v w

2
1

t u

v w

t u

v w

NI AON κ(AON)

Fig. 1. A pti-netNI (inhibitor arcs have circles as arrowheads), an a-processAON of NI and
the associated runκ(AON).

Altogether there exist net classes including inhibitor nets where synchronous and
concurrent behavior has to be distinguished.3 In [6] causal semantics based on so-
structures (like the runκ(AON)) consisting of a combination of an ”earlier than” and a
”not later than” relation between events were proposed to cover such cases.

Before giving the definition ofstratified order structures(so-structures), we recall
the notion of adirected graph. This is a pair(V,→), whereV is a finiteset of nodesand
→⊆ V ×V is a binary relation over V called theset of arcs. Given a binary relation→,
we writea→ b to denote(a, b) ∈ →. Two nodesa, b ∈ V are calledindependentw.r.t.
→ if a 6→ b andb 6→ a. We denote the set of all pairs of nodes independent w.r.t.→
by co→ ⊆ V × V . A (strict) partial order is a directed graphpo = (V,<), where<
is an irreflexive and transitive binary relation onV . If co< = idV then(V,<) is called
total. Given two partial orderspo 1 = (V,<1) and po 2 = (V,<2), we say thatpo 2 is
a sequentialization(or extension) of po 1 if <1⊆<2.

So-structures are, loosely speaking, combinations of two binary relations on a set
of events where one is a partial order representing an ”earlier than” relation and the
other represents a ”not later than” relation. Thus, so-structures describe finer causalities
than partial orders. Formally, so-structures are relational structures satisfying certain
properties. Arelational structure(rel-structure) is a tripleS = (V,≺,⊏), whereV is
a set (ofevents), and≺ ⊆ V × V and⊏ ⊆ V × V are binary relations onV . A rel-
structureS′ = (V,≺′,⊏′) is said to be anextension(or sequentialization) of another
rel-structureS = (V,≺,⊏), writtenS ⊆ S′, if ≺ ⊆ ≺′ and⊏ ⊆ ⊏′.

Definition 1 (Stratified order structure). A rel-structureS = (V,≺,⊏) is called
stratified order structure(so-structure) if the following conditions are satisfied for all

3 Further examples of such net classes are briefly mentioned inthe conclusion.

u, v, w ∈ V :
(C1)u 6⊏ u. (C3)u ⊏ v ⊏ w ∧ u 6= w =⇒ u ⊏ w.

(C2)u ≺ v =⇒ u ⊏ v. (C4)u ⊏ v ≺ w ∨ u ≺ v ⊏ w =⇒ u ≺ w.

In figures,≺ is graphically expressed by solid arcs and⊏ by dashed arcs. According
to (C2) a dashed arc is omitted if there is already a solid arc.Moreover, we omit arcs
which can be deduced by (C3) and (C4). It is shown in [6] that(V,≺) is a partial order
(thus a partial order can always be interpreted as an so-structure with⊏ = ≺). There-
fore, so-structures are a generalization of partial orders. They turned out to be adequate
to model the causal relations between events of complex systems regarding sequential,
concurrent and synchronous behavior. In this context≺ represents the ordinary ”earlier
than” relation (as in partial order based systems) while⊏ models a ”not later than”
relation (recall the example of Figure 1).

Similar to the notion of the transitive closure of a binary relation the♦-closureS♦

of a rel-structureS = (V,≺,⊏) is defined byS♦ = (V,≺S♦ ,⊏S♦) = (V, (≺ ∪ ⊏)∗ ◦
≺◦(≺∪⊏)∗, (≺∪⊏)∗\idV). A rel-structureS is called♦-acyclicif ≺S♦ is irreflexive.
The♦-closureS♦ of a rel-structureS is an so-structure if and only ifS is ♦-acyclic
(for this and further results on the♦-closure see [6]).

For our purposes we will only considerlabeled so-structures(LSOs). Nodes of an
LSO represent transition occurrences of a Petri net (constituted by node labels as in
Figure 1). Formally LSOs are so-structuresS = (V,≺,⊏) together with aset of labels
T and alabeling functionl : V → T . A labeling functionl is lifted to a subsetY of V
in the following way:l(Y) is the multi-set overT given byl(Y)(t) = |l−1(t) ∩ Y | for
everyt ∈ T . We use the notations defined for so-structures also for LSOs.

We introduce an important subclass of so-structures similar to the subclass of total
orders in the case of partial orders.

Definition 2 (Total linear so-structure). An so-structureS = (V,≺,⊏) is calledtotal
linear if co≺ = (⊏\≺) ∪ idV . The set of all total linear extensions (orlinearizations)
of an so-structureS′ is denoted bylin(S′).

Total linear so-structures are maximally sequentialized in the sense that no fur-
ther ≺- or ⊏- relations can be added maintaining the requirements of so-structures
according to Definition 1. Therefore the linearizationslin(S′) of an so-structureS′

are its maximal extensions. Note that a total linear so-structurelin = (V,≺,⊏) rep-
resents a sequence of (synchronous) stepsτ1 . . . τn (we also writelin = τ1 . . . τn). A
(synchronous) step is a set of cyclic⊏-ordered events (forming a so called⊏-clique
– such events can only occur synchronously as explained in the context of Figure 1)
and the sequential ordering is caused by≺-relations between these steps. That means
τ1 . . . τn and (V,≺,⊏) are related throughV =

⋃n

i=1 τi,≺ =
⋃

i<j τi × τj and
⊏ = ((

⋃n

i=1 τi × τi) \ idV)∪≺. For example, the linearizations of the runκ(AON) in
Figure 1 are the sequences of (synchronous) stepstu{v, w} and{t, u}{v, w}. By ab-
stracting from the nodes of a total linear LSOlin = (V,≺,⊏, l) representingτ1 . . . τn,
every step (set) of eventsτi can be interpreted as a step (multi-set)l(τi) of transi-
tions using the labeling function. This is a general principle. That means we will in-
terpret such a (synchronous) step sequenceτ1 . . . τ of events based on a total linear
LSO lin = (V,≺,⊏, l) as a sequenceσlin = l(τ1) . . . l(τn) of (synchronous) transition

steps in a Petri net. Thus, we often do not distinguish total linear LSOs and respective
sequences of transition steps in a Petri net. Lastly we need the notion of prefixes of
so-structures. These are defined by subsets of nodes which are downward closed w.r.t.
the⊏-relation:

Definition 3 (Prefix). LetS = (V,≺,⊏) be an so-structure and letV ′ ⊆ V be a set
of events such thatu′ ∈ V ′, u ⊏ u′ =⇒ u ∈ V ′. ThenV ′ is calledprefix w.r.t. S. A
prefixV ′ of u ∈ V \ V ′ is a prefix w.r.t.S satisfying(v ≺ u =⇒ v ∈ V ′).

The prefixes w.r.t.κ(AON) in Figure 1 are the event sets{t}, {t, u} and{t, u, v, e}.
The only prefix ofw is {t, u}, sincev andw may not occur in a prefix ofw (w ⊏ v)
andu has to occur in a prefix ofw (u ≺ w). We have the following relation between
prefixes and linearizations of so-structures:

Lemma 1. Let V ′ be a prefix (ofu ∈ V) w.r.t. an so-structureS = (V,≺,⊏), then
there existslin ∈ lin(S) such thatV ′ is a prefix (ofu) w.r.t. lin.

Proof. lin = τ1 . . . τn can be constructed as follows:τ1 = {v ∈ V ′ | ∀v′ ∈ V ′ :
v′ 6≺ v}, τ2 = {v ∈ V ′ \ τ1 | ∀v′ ∈ V ′ \ τ1 : v′ 6≺ v} and so on, i.e. we define
τi ⊆ V ′ as the set of nodes{v ∈ V ′ \ (

⋃i−1
j=1 τj) | ∀v′ ∈ V ′ \ (

⋃i−1
j=1 τj) : v′ 6≺ v}

which are minimal w.r.t. the restriction of≺ onto the node setV ′\(
⋃i−1

j=1 τj), as long as

V ′\(
⋃i−1

j=1 τj) 6= ∅. Then continue with the same procedure onV \V ′ = V \(
⋃i

j=1 τj),

i.e. τi+1 = {v ∈ V \ (
⋃i

j=1 τj) | ∀v′ ∈ V \ (
⋃i

j=1 τj) : v′ 6≺ v} and so on. By
constructionV ′ is a prefix (ofu) w.r.t. lin. A straightforward computation also yields
lin ∈ lin(S). �

A prefix V ′ w.r.t. a total linear so-structurelin = τ1 . . . τn always represents a
primary part of the respective (synchronous) step sequence, i.e.V ′ =

⋃
j≤i τj for some

i ∈ {0, . . . , n}. If V ′ is a prefix ofu, thenu ∈ τi+1.
Next we present the net class of pti-nets (p/t-nets with weighted inhibitor arcs). As

usual, ap/t-netis a tripleN = (P, T,W), whereP is a finite set of places,T is a finite
set of transitions andW : (P × T)∪ (T ×P) → N is the weight function representing
the flow relation. The pre- and post-multi-set of a transition t ∈ T are the multi-sets of
places given by•t(p) = W (p, t) andt• (p) = W (t, p) for all p ∈ P . This notation can
be extended toU ∈ N

T by •U(p) =
∑

t∈U U(t) •̇t(p) andU• (p) =
∑

t∈U U(t)ṫ• (p)
for all p ∈ P . Analogously we can define pre- and post-multi-sets of multi-sets of places
as multi-sets of transitions. Eachm ∈ N

P is called amarkingof N and eachU ∈ N
T

is called a step ofN . U is enabled to occurin m if and only ifm ≥ •U . In this case,
its occurrence leads to the markingm′ = m− •U + U• .

Definition 4 (Pti-net). A markedpti-netis a quadrupleNI = (P, T,W, I,m0), where
Und(NI) = (P, T,W) is a p/t-net (theunderlying netof NI),m0 theinitial markingof
NI andI : P × T → N ∪ {∞} is theinhibitor (weight) function(we assume∞ > n

for everyn ∈ N). For a transitiont the negative context−t ∈ (N ∪ {∞})P is given
by −t(p) = I(p, t) for all p ∈ P . For a step of transitionsU , −U ∈ (N ∪ {∞})P is
given by−U(p) = min({∞}∪{−t(p) | t ∈ U}). A placep with −t(p) 6= ∞ is called
inhibitor placeof t.

A step of transitionsU is (synchronously) enabled to occurin a markingm if and
only if it is enabled to occur in the underlying p/t-netUnd(NI) and in additionm ≤
−U . The occurrence ofU leads to the markingm′ = m − •U + U• . This is denoted

by m
U
−→ m′. A finite sequence of steps of transitionsσ = U1 . . . Un, n ∈ N, is

called astep (occurrence) sequence enabled in a markingm and leading tomn, denoted

bym
σ

−→ mn, if there exists a sequence of markingsm1, . . . ,mn such thatm
U1−→

m1
U2−→ . . .

Un−→ mn. ByEX (NI) we denote the set of all step sequences of a marked
pti-netNI.

Note thatI(p, t) = k ∈ N implies thatt can only occur ifp does not contain
more thank tokens (as explained in the context of the inhibitor arc connected withw
in Figure 1);k = 0 coincides with zero-testing. AccordinglyI(p, t) = ∞ means that
the occurrence oft is not restricted through the presence of tokens inp. Thus a p/t-net
can always be interpreted as a pti-net withI ≡ ∞. In graphic illustrations, inhibitor
arcs are drawn with circles as arrowheads and annotated withtheir weights (see Figure
1). Inhibitor arcs with weight∞ are completely omitted and the inhibitor weight0
is not shown in diagrams. The definition of enabledness in Definition 4 reflects the
considerations about the a-priori testing explicated above: the inhibitor constraints are
obeyed before the step of transitions is executed. For an example, see Figure 1 and the
explanations at the beginning of this section.

Now we introduce the process semantics for pti-nets as presented in [12]. The prob-
lem is that the absence of tokens in a place – this is tested by inhibitor arcs – cannot
be directly represented in an occurrence net. This is solvedby introducing local extra
conditions and read arcs – also called activator arcs – connected to these conditions.
These extra conditions are introduced ”on demand” to directly represent dependencies
of events caused by the presence of an inhibitor arc in the net. The conditions are artifi-
cial conditions without a reference to inhibitor weights orplaces of the net. They only
focus on the dependencies that result from inhibitor tests.Thus, activator arcs repre-
sent local information regarding the lack of tokens in a place. The process definition of
[12] is based on the usual notion of occurrence nets extendedby activator arcs. These
are (labeled) acyclic nets with non-branching places (conditions) (since conflicts be-
tween transitions are resolved). By abstracting from the conditions one obtains an LSO
representing the causal relationships between the events.In the following definitionB
represents the finite set ofconditions,E the finite set ofevents,R the flow relation and
Act the set of activator arcs of the occurrence net.

Definition 5 (Activator occurrence net). A labeled activator occurrence net(ao-net)
is a five-tupleAON = (B,E,R,Act, l) satisfying:

– B andE are finite disjoint sets,
– R ⊆ (B × E) ∪ (E ×B) andAct ⊆ B × E,
– | •b|, |b• | ≤ 1 for everyb ∈ B,
– the relational structureS(AON) = (E,≺loc,⊏loc, l|E) = (E, (R◦R)|E×E ∪(R◦
Act), (Act−1 ◦R) \ idE , l|E) is♦-acyclic,

– l is a labeling forB ∪ E.

The LSO generated byAON is κ(AON) = (E,≺AON,⊏AON, l|E) = S(AON)♦.

The relations≺loc and⊏loc represent the local information about causal relation-
ships between events. Figure 2 shows their construction rule.κ(AON) captures all (not
only local) causal relations between the events (see also Figure 1). Note that Definition
5 is a conservative extension of common occurrence nets by read arcs.

Fig. 2.Generation of the orders≺loc and⊏loc in ao-nets.

The initial markingMINAON of AON consists of all conditions without incom-
ing flow arcs (the minimal conditions w.r.t.R). The final markingMAXAON of AON
consists of all conditions without outgoing flow arcs (the maximal conditions w.r.t.R).
There are two different notions of configurations and slicesfor ao-nets. A set of events
D ⊆ E is astrong configurationof AON, if e ∈ D andf ≺+

loc e impliesf ∈ D.D is
called aweak configurationof AON, if e ∈ D andf(≺loc ∪⊏loc)

+e impliesf ∈ D. A
strong sliceof AON is a maximal (w.r.t. set inclusion) set of conditionsS ⊆ B which
are incomparable w.r.t. the relationR ◦ ≺∗

loc ◦R, denoted byS ∈ SSL(AON). A weak
slice of AON is a maximal (w.r.t. set inclusion) set of conditionsS ⊆ B which are
incomparable w.r.t. the relationR ◦ (≺loc ∪ ⊏loc)

∗ ◦R, denoted byS ∈ WSL(AON).
In the example occurrence net from Figure 1|WSL| = 4 and|SSL| = 12.

Every weak configuration is also a strong configuration and every weak slice is also
a strong slice. In [12] it is shown that the set of strong slices of AON equals the set of
all sets of conditions which are generated by firing the events of a strong configuration.
An analogous result holds for weak slices and weak configurations.SSL(AON) equals
the set of all sets of conditions reachable from the initial markingMINAON in AON
andWSL(AON) equals the set of all sets of conditions from which the final marking
MAXAON is reachable inAON (using the standard a-priori occurrence rule of elemen-
tary nets with read arcs [12]). ByMAR(C) we denote the marking resulting from the
initial marking of a net by firing the multi-set of transitions corresponding to a (weak
or strong) configurationC.

Now we are prepared to define processes of pti-nets as in [12].The mentioned arti-
ficial conditions are labeled by the special symbolf. They are introduced in situations,
when a transitiont ∈ T tests a place in the pre- or post-multi-set of another transition
w ∈ T for absence of tokens, i.e. whenI(p, t) 6= ∞ and •w(p) + w• (p) 6= 0 for
somep ∈ P . Such situations are abbreviated byw ⊸ t. If w ⊸ t holds, then any
two occurrencesf of w ande of t are adjacent to a commonf-condition representing
a causal dependency off ande. That means there exists a conditionb ∈ B̃ such that
(b, e) ∈ Act and •f(b) + f• (b) 6= 0 (remember that•f, f• ∈ BN are multi-sets over
B) – abbreviated byf ⊸• e (see requirement 6. in Definition 6). Thus the axiomatic
process definition in [12] is as follows:

Definition 6 (Activator process).An activator process(a-process) ofNI is anao-net
AON = (B ⊎ B̃, E,R,Act, l) satisfying:

1. l(B) ⊆ P andl(E) ⊆ T .
2. The conditions iñB = {b | ∃e ∈ E : (b, e) ∈ Act} are labelled by the special

symbolf.
3. m0 = l(MINAON ∩B).
4. For all e ∈ E, •l(e) = l(•e ∩B) andl(e)• = l(e• ∩B).
5. For all b ∈ B̃, there are uniqueg, h ∈ E such that•b + b• = {g}, (b, h) ∈ Act

andl(g) ⊸ l(h).
6. For all e, f ∈ E, if l(f) ⊸ l(e) then there is exactly onec ∈ B̃ such thatf ⊸• e

throughc.
7. For all e ∈ E andS ∈ SSL(AON), if •e ∪ {b ∈ B̃ | (b, e) ∈ Act} ⊆ S then
l(S ∩B) ≤ −l(e).

The set of a-processes ofNI (given by this axiomatic definition) is denoted byα(NI).
For AON ∈ α(NI) the generated so-structureκ(AON) is called a run (associated to
AON).

The occurrence netAON in Figure 1 is indeed an a-process: Allf-labeled condi-
tions satisfy 5. Allf-labeled conditions which are necessary according to 6. aredrawn.
Condition 7. must be simply verified for the strong slices produced by strong configura-
tions, e.g.MAR(∅), MAR({t}), MAR({u}), MAR({u, t}) and so on. Thus,κ(AON)
is a run.

The requirements 1., 3., 4. in Definition 6 represent common features of processes
well-known from p/t-nets. They ensure that a-processes constitute a conservative gen-
eralization of common p/t-net processes. That means, the set of processes ofUnd(NI)
coincides with the set of processes resulting fromα(NI) by omitting thef-labeled
conditions (omitting thef-conditions from an a-processAON leads to the so called un-
derlying processUAON of AON). If NI has no inhibitor arcs (thusNI = Und(NI))
a-processes coincide with common processes. Thus, Definition 6 can also be used to de-
fine processes of p/t-nets. The properties 2. and 5. togetherwith the rule 6. – describing
whenf-conditions have to be inserted – constitute the structure of the f-conditions.
The requirement 7. expresses that in the strong slices ofAON the inhibitor constraints
of the pti-net have to be properly reflected. That means, for events enabled in a certain
slice ofAON the respective transitions are also enabled in the respective marking in the
pti-netNI.

We finally formally define, when we consider an LSOS to be consistent with the
step semanticsEX of a given pti-net (Definition 4). Such LSOs we callenabled(w.r.t.
the given pti-net). Intuitively it is clear what enabledness means: The transitions associ-
ated to the events of an LSO can be executed in the net regarding all given concurrency
and dependency relations. For the formal definition the concurrency and dependency re-
lations described byS are reduced to the set of step sequences sequentializingS (given
by lin(S)). Such step sequences can be considered as observations ofS, where transi-
tion occurrences within a step are observed at the same time (synchronously), and step
occurrences are observed in the order given by the step sequence. If each such obser-
vation ofS is an enabled step occurrence sequences of the pti-net,S is consistent with
the step semantics.

Definition 7 (Enabled LSO).An LSOS = (V,≺,⊏, l) is enabled w.r.t. a marked pti-
netNI = (P, T,W, I,m0) if and only if everylin ∈ lin(S) represents an enabled
(synchronous) step sequenceσlin in EX (NI) (of NI). ELCS(NI) is the set of all
so-structures enabled w.r.t. a given marked pti-netNI.

With this definition one can easily check that the runκ(AON) in Figure 1 is enabled
w.r.t.NI: The two linearizations ofκ(AON) represent the sequences of synchronous
stepstu{v, w} and{t, u}{v, w} which are both executable inNI.

Definition 7 is consistent with and a proper generalization of the notion of enabled
LPOs in the context of p/t-nets: An LPOlpo = (V,≺, l) with l : V → T is enabled
w.r.t. a marked p/t-net(P, T,W,m0) if each step sequence which extendslpo is a step
occurrence sequence enabled inm0. Since in LPOs concurrent and synchronous tran-
sition occurrences are not distinguished, here a step is considered as a set of events
labeled by transitions (transition occurrences) which areconcurrent.

Beside the consistency of Definition 7 with the definition of enabled LPOs, there
are two general semantical arguments justifying this definition: First the set of to-
tal linear LSOslin(S), which are tested for enabledness in the Petri net, represents
S. This is shown in [6] by the following generalization of Szpilrajns theorem [15] to
so-structures:S = (V,

⋂
(V,≺,⊏)∈lin(S) ≺,

⋂
(V,≺,⊏)∈lin(S) ⊏). Second the setlin(S)

can express arbitrary concurrency relations between transition occurrences of a pti-net,
since concurrency equals the possibility of sequential occurrence in any order and syn-
chronous occurrence. Thus, considering more generally sequences of concurrent steps
of synchronous steps instead of simply sequences of synchronous steps does not lead
to a higher expressivity of concurrency. These two arguments justify the choice of syn-
chronous step sequences as the operational semantics (of executions) of pti-nets. Thus
the definition of enabled LSOs based on synchronous step sequences and total linear
LSOs constitutes the adequate causal semantics.

3 The Semantical Framework

In [12] a general framework for dealing with process semantics of Petri nets was pro-
posed (see Figure 3, left part). It aims at a support for a systematic development of
process and causality semantics for various Petri net classes using a common scheme.

In Figure 3 the abbreviations mean the following.PN represents a Petri net model
together with an operational occurrence rule.EX are executions such as step sequences
in accordance to the occurrence rule employed byPN .LAN represents the process se-
mantics given by labeled acyclic nets such as occurrence nets.LEX are labeled execu-
tions such as step sequences of nets inLAN . Finally,LCS are labeled causal structures
describing net behavior through causality relations between events. The arrows indicate
functions that define and relate the different semantical views. They represent the con-
sistency requirements for process semantics according to this framework.ω yields the
set of executions (step sequences) providing the operational semantics (Definition 4
for pti-nets).α defines the axiomatic process definition (Definition 6).κ associates so
called runs to the process definition (Definition 6);κ(LAN) ⊆ LCS defines the set
of runs of a net.λ represents the operational semantics of the process definition given

by labeled step sequences (defined through a slight modification of the step occurrence
rule of elementary nets with read arcs under the a-priori semantics [12]). Throughφ a
labeled execution can be interpreted as an ordinary execution (defined as trivial mod-
ification omitting labels).ǫ and ι relate a labeled causal structure with its generated
labeled executions (ǫ respectivelyι are given as linearizations respectively intersections
in the case of LSOs). Finally,π represents the operational process definition starting
from executions.

PN LAN

LCS

LEXEX

α

ω π

φ

κ

λ

ε

ι

PN LAN

LCS

LEXEX

α

ω π

φ

κ

λ

ε

ι

ELCS

δ
ψ

Fig. 3. Left: The semantical framework of [12]. Right: The left semantical framework extended
by the completeness-requirement that any enabled causal structure has to be a sequentialization
of a run; this is depicted throughELCS and the adjacent arcs labeled byδ andψ.

This framework defines reasonable requirements for processsemantics. It provides
a schematic approach to ensure that process and causality semantics developed for a
special Petri net class are consistently defined. In [12] theframework is condensed to
five properties that have to be checked in each particular setting. Two of these properties
state that all mappings in Figure 3 are total and all mappingsreturning sets do not return
the empty set.Consistencyis formulated there as the following separated properties:
Soundness: The process definitionLAN should besoundw.r.t. the step semanticsEX
in the sense that every run should be consistent with the stepsemantics.
Weak completeness: LAN should beweak completew.r.t. EX in the sense thatEX
should be reproducible fromLAN .
Construction of processes from step sequences: A process inLAN should be con-
structible from each step sequence inEX generated by the process (byπ).
Consistency of runs and processes(calledFitting in [12])): Processes and correspond-
ing runs should generate the same step sequences.
Runs are reconstructible from step sequences(called Representationin [12])): Runs
fromLCS should be reconstructible from step sequences inEX by ι ◦ ǫ.

But an important feature of process semantics relating runsand step semantics is not
present in this framework. On the one hand,φ◦ǫ ensures that each run is consistent with
the step semantics (soundness). On the other hand, there is no requirement guarantee-
ing the converse, that each causal structure which is consistent with the step semantics
is generated by a run through adding causality to it (completeness). For p/t-nets this is
fulfilled (as mentioned in the Introduction), since every enabled LPO is a sequentializa-

tion of a run [10]. Together with the reverse statement that runs are enabled (soundness),
completeness guarantees that there are runs and processes which express all valid causal
behavior of the net regarding as much concurrency as possible. That means, the minimal
causal dependencies in a net are reflected in the process semantics. To represent such
an aim of completeness, we add new relations to the semantical framework (Figure 3,
right part) by the introduction of enabled causal structures ELCS. The arc labeled by
δ represents the definition of enabled labeled causal structuresELCS from the opera-
tional semanticsEX . The arc labeled withψ relates enabled labeled causal structures
(ELCS) and runs (κ(LAN) ⊆ LCS) in the above sense by assigning a run with less
causality to each enabled labeled causal structure (for which such a run exists). For-
mally, a labeled causal structure is said to haveless causalitythen a second one, if each
labeled execution inEX generated by the second one is also generated by the first one
(where the labeled executions generated by a labeled causalstructure are given byǫ).
Thus, throughψ ◦ δ we add an additional property to the process framework that we
call the aim of completeness.

Definition 8 (Aim of completeness).The mappingδ assigns a set of step sequences
EX onto the set of causal structuresELCS enabled w.r.t.EX . The mappingψ assigns
a runLCS with less causality to each enabled causal structure inELCS for which such
a run exists.

Theaim of completenessstates that the mappingψ is total, i.e. that each enabled
causal structure adds causality to some run.

The absence of the aim of completeness in the framework of [12] leads to process
definitions that do not have to represent minimal causal behavior. According to [12]
a process definition that equals the operational step semantics (processes are step se-
quences) is a valid process semantics. But the set of step sequences is not a reasonable
process semantics and process definitions not producing theminimal causalities are not
really useful. The aim of completeness in our framework solves this problem. It implies
that minimal enabled labeled causal structures coincide with (minimal) runs: On the
one hand a minimal enabled labeled causal structure has to bea sequentializations of
a run, on the other hand runs have to be enabled – so runs cannothave less causalities
than minimal enabled labeled causal structures.

4 Process Semantics of Pti-nets

The definition of a-processes from section 2 meets all requirements of the left semanti-
cal framework in Figure 3 as shown in [12]. In the setting of pti-nets the additional aim
of completeness states that each enabled so-structure extends some run of the pti-net.
We show in this section that a-processes do not fulfill the aimof completeness. More-
over, we develop an alternative process definition preserving all the other requirements
of the semantical framework, such that the aim of completeness is fulfilled.

The basic intuition behind the fact that the a-processes from Definition 6 do not
generate minimal causalities is as follows: The definition uses constraints introduced
through artificialf-labeled conditions. They do not have counterparts on the pti-net
level, but rather represent dynamic causal relationships between events. Therefore, it

is possible that the definition of thef-conditions does not reflect the causalities in the
original pti-net such that too many constraints are introduced in the runs generated by
a-processes. In this section we will step by step illustratevia examples why the aim of
completeness does not hold for a-processes and adapt their definition such that this aim
is finally fulfilled (all the other requirements will be preserved).

tu

z

u

t

z

1

t
1

u

z

NI1

AON1.1 κ(AON1.1)

u

t

z

t
1

u

z

AON1.2 κ(AON1.2)

Fig. 4. A pti-net NI1, an a-processAON1.1 of NI1 and the associated runκ(AON1.1) to-
gether with anao-net AON1.2 that is a candidate to be a process ofNI1, and the associated
runκ(AON1.2). This example from [12] shows that a-processes (mandatory)introduce unneces-
sary causalities.

In the following we give two examples of LSOs enabled w.r.t. amarked pti-net,
which do not extend a run of the considered net. Each of these examples leads to a spe-
cific modification of Definition 6. We assume that events in these examples are labeled
by the identity mapping, i.e.u, t andz are events representing the occurrence of the
transitionsl(u) = u, l(t) = t andl(z) = z. The place connected toz by an inhibitor
arc in each example we denote byp.

The first example gave the authors of [12] themselves. The a-processAON1.1 in
Figure 4 shows that the technique of introducingf-labeled conditions according to Def-
inition 6 in general generates too many constraints in the associated runκ(AON1.1):
”One may easily verify that we can safely delete one of the activator arcs (but not both),
which leads to another a-process generating weaker constraints thanAON1.1”. Indeed,
deleting for example thef-condition betweent andz the resultingao-netAON1.2 is
a reasonable process. The otherf-condition ordersu andz in sequenceu → z andt
can occur concurrently to this sequence. On the other hand, omitting thef-condition
betweent andz contradicts 6. of Definition 6 because there holdst ⊸ z. That means
AON1.2 is not an a-process (in particular the quoted statement is not exactly true). Thus,
the LSOκ(AON1.2) is enabled but does not sequentialize a run (since it can onlybe
generated by anao-net without af-condition adjacent tot andz). An analogous ob-
servations holds symmetrically when deleting thef-condition betweenu andz instead
betweent andz. Consequently, the first modification of Definition 6 is to replace re-
quirement 6. by requirement 6.’. According to 6.’, the unique conditionc ∈ B̃ is only
possible instead of required. Then the problem discussed above is solved and theao-net
AON1.2 is actually a process.

6.’ For all e, f ∈ E, if f ⊸• e then there is exactly onec ∈ B̃ such thatf ⊸• e through
c.

u

t

z

tu

z

1

t
1

u

z

NI2
AON2 κ(AON2).

Fig. 5. A pti-net NI2, an ao-net AON2 that is a candidate to be a process ofNI2, and the
associated runκ(AON2). The ao-net models executable causalities that cannot be generated
with a-processes.

The netNI2 of Figure 5 shows that the aim of completeness is still not fulfilled: If
u andt occur causally ordered in sequenceu→ t thenz can fire concurrently to this se-
quence because the placep never contains more than one token. It is even possible to fire
z concurrently to the synchronous step{u, t}. Consequentlyκ(AON2), requiring solely
thatu occurs ”not later than”t, is enabled (check Definition 7). The only possibility to
introduce such a causal dependency betweenu andt on the process level is through a
f-condition betweenu andt. This is illustrated by the ao-netAON2 (compare Figure
2). But according to 5. of Definition 6,AON2 is not an a-process, sincel(u) 6⊸ l(t).
Thus, a run which is extended byκ(AON2) has no ordering betweenu, t andz. This is
not possible because such a run is not enabled (the step sequencet→ z → u cannot be
fired). That meansκ(AON2) does not sequentialize a run. Altogether, in 5. an impor-
tant possibility of generating causal dependencies from inhibitor arcs viaf-conditions
is not present. Allowingf-conditions as inAON2 solves this problem leading to a
process havingκ(AON2) as its associated run. Thisf-condition represents the causal
dependency ofu andt caused by the inhibitor arc(p, z). It reflects the inhibitor testing
of z and not ofu or t. A generalization of 5. allowingf-conditions also in situations
as in this example is a next necessary step towards the aim of completeness. Loosely
speaking, we will allow to insertf-conditions additionally in the following situation:
If a transition, testing some place via an inhibitor arc, occurs concurrently to transi-
tions consuming and producing tokens in this place, these transition occurrences must
eventually be ordered via af-condition. Thisf-conditions is intended to ensure that
tokens are consumed not later than produced in order to restrict the maximal number
of tokens in this place according to the inhibitor weight. Tothis end, we replaces 5. by
the weaker requirement 5.’. It introduces a more general structural construction rule of
f-conditions using this intuition as follows:

5.’ For all b ∈ B̃, there are uniqueg, h ∈ E such that•b + b• = {g}, (b, h) ∈ Act

and additionallyl(g) ⊸ l(h) or •l(h) ∩ l(g)• ∩ −z 6= ∅ for a z ∈ T .

But the modifications proposed so far still do not ensure thatAON2 is a process,
sinceAON2 does not fulfill 7. of Definition 6: The conditions resulting from only firing

t in the initial marking establish a strong sliceS andz fulfills •z ∪ {b ∈ B̃ | (b, z) ∈
Act} ⊆ S. That means that using the standard occurrence rule of elementary nets with
read arcs under the a-priori semantics [12]S constitutes a reachable marking in the
process net andz is enabled in this marking in the process net. But obviously in the pti-
netz is not enabled in the marking resulting from firingt. This problem can be resolved
as follows: InAON2 the eventt can fire in the initial marking, although thef-condition
generates the ordering ”u not later thant”. Thus, firingt in the initial marking disables
u. This means that we could have omittedu from AON2 which leads to a different
ao-net. Consequently, it is a proper assumption thatao-nets should model only such
behavior in which every event of theao-net actually occurs. Under this assumption,
firing t in the initial marking is not a valid behavior of theao-net and therefore the
problematic markingS is not a marking of interest. The markings of interest are the
markings reachable from the minimal conditions (MINAON2

) in theao-net from which
we can reach the maximal conditions (MAXAON2

). That means, all events of theao-net
not fired yet can still be executed starting in the respectivemarking. These markings are
represented by the weak slices of theao-net. Therefore, we replace 7. by 7.’, whereSSL
(strong slices) are replaced byWSL (weak slices) reflecting the above assumption:

7.’ For all e ∈ E andS ∈ WSL(AON), if •e ∪ {b ∈ B̃ | (b, e) ∈ Act} ⊆ S then
l(S ∩B) ≤ −l(e).

This is a generalization of Definition 6 sinceWSL ⊆ SSL. From the intuitive point
of view the two alternative formulations 7. and 7.’ focus on different aspects: While the
consideration ofSSL completely reflects the occurrence rule of elementary nets with
read arcs, the consideration ofWSL additionally postulates that no event of theao-net
may completely be disabled. This second assumption is also used in [12] for defining
the executionsLEX through the mappingλ in the semantical framework of Figure
3: λ represents all step sequences of an a-process inLAN in which every event of
the process occurs. In this sense the change of the occurrence rule ofao-nets explained
above is an adaption to the idea of mandatory regarding all events used in the operational
semantics ofao-nets anyway. Therefore, this slightly altered occurrencerule ofao-nets
(that we will use) is completely consistent to the executions of ao-nets and thus even
fits better into the semantical framework.

Replacing 5., 6. and 7. by 5.’, 6.’ and 7.’ in Definition 6 as described here ensures
that theao-netAON2 is a process. So the above considerations lead to the following
alternative process definition and thus a change of the mappingα in Figure 3 (denoted
byα′ instead ofα in Definition 9):

Definition 9 (Complete activator process).A complete activator process(ca-process)
ofNI is anao-netAON = (B ⊎ B̃, E,R,Act, l) satisfying:

1. l(B) ⊆ P andl(E) ⊆ T .
2. The conditions iñB = {b | ∃e ∈ E : (b, e) ∈ Act} are labelled by the special

symbolf.
3. m0 = l(MINAON ∩B).
4. For all e ∈ E, •l(e) = l(•e ∩B) andl(e)• = l(e• ∩B).

5.’ For all b ∈ B̃, there are uniqueg, h ∈ E such that•b + b• = {g}, (b, h) ∈ Act

and additionallyl(g) ⊸ l(h) or •l(h) ∩ l(g)• ∩ −z 6= ∅ for a z ∈ T .
6.’ For all e, f ∈ E, if f ⊸• e then there is exactly onec ∈ B̃ such thatf ⊸• e through

c.
7.’ For all e ∈ E andS ∈ WSL(AON), if •e ∪ {b ∈ B̃ | (b, e) ∈ Act} ⊆ S then

l(S ∩B) ≤ −l(e).

The set of ca-processes ofNI is denoted byα′(NI). For AON ∈ α′(NI) the generated
so-structureκ(AON) is called a run (associated toAON).

Note that the requirements 1.,3.,4. of Definition 6 are preserved in Definition 9
and thus also ca-processes constitute a conservative generalization of common p/t-net
processes. Omitting thef-conditions from a ca-processAON leads to the so called
underlying processUnd(AON) of AON, which is a process ofUnd(NI). We will
show now as the main result of this paper that theca-process definition actually fulfills
the aim of completeness.

Theorem 1. For every enabled LSOS = (E,≺,⊏, l) of a pti-netNI there exists a
ca-processAON ∈ α′(NI) whereasS is an extension of the runκ(AON).

Proof. Since the inhibitor relationI of NI restricts the behaviour of the underlying
p/t-netUnd(NI) it a fortiori holds thatS is enabled w.r.t.Und(NI). Note here that in
a p/t-net transitions that can be executed as one step can also be executed in arbitrary
order. Furthermore every⊏\≺-relation between two events in the so-structureS allows
the occurrence of these events in one step. Therefore the enabledness w.r.t. the p/t-net
Und(NI) is preserved omitting the⊏-relation. That means the LPOlpoS = (E,≺, l)
underlyingS is enabled w.r.t.Und(NI), whereas one can regard the usual enabledness
notion for LPOs here.

Now we can use the LPO-analogon to this theorem [10]: SincelpoS is enabled
w.r.t. Und(NI) there exists a processUAON = (B,E,R′, l′) of Und(NI) fulfilling
that lpoS sequentializes the runκ(UAON) (for the definition ofUAON andκ we can
regard Definition 6 as well as the usual process definition forp/t-nets as in [10] because
they coincide for p/t-nets). Note thatUAON is not unique here, but this causes no
troubles.

The basic idea is now to construct anao-netAON from UAON by adding allf-
conditions toUAON which can be added according to property 5.’ and 6.’ and do
not produce causal dependencies contradictingS. We claim that thisao-netAON =
(B ⊎ B̃, E,R,Act, l) is already the searched ca-process.

Formally, first for each pair of eventsf, e ∈ E with f ≺ e insert af-condition into
UAON generating this causality according to Figure 2 if this is allowed according to
5.’ and 6.’ in Definition 9. Analogously, for each pair of events f, e ∈ E with f ⊏ e

insert af-condition toUAON generating this causality according to Figure 2 if this is
allowed according to 5.’ and 6.’ in Definition 9. By this construction it is clear that

– AON is anao-net: We have to verify thatS(AON) is ♦-acyclic, which is obvious
sinceS is an so-structure and consequently≺S(AON)♦ ⊆ ≺ is irreflexive.

– S extendsκ(AON).

– AON fulfills the conditions 1. - 4., 5.’ and 6.’ of Definition 9.

Thus it only remains to show thatAON meets condition 7.’ of Definition 9: Given
e ∈ E andS ∈ WSL(AON) with •e ∪ {b ∈ B̃ | (b, e) ∈ Act} ⊆ S we have to show
l(S ∩ B) ≤ −l(e). According to [12] (see section 2) there existsC ∈ WCNF(AON)
with S = MAR(C). Therefore, if we show thatl(e) is executable (w.r.t. the inhibitor
relation) in the pti-net after the occurrence of the transitions corresponding to events in
C the theorem is proven. To this end, we define sets of eventsCpre,C1,C2 andC3 and
show:

– C = ((Cpre \ C1) \ C2) ∪C3.
– l(e) is executable in the pti-net after the occurrence of the transitions corresponding

to events inCpre, i.e. l(MAR(Cpre) ∩B) ≤ −l(e).
– Each of the above modifications ofCpre byC1,C2 andC3 preserves the executabil-

ity of l(e), i.e.
1. l(MAR(Cpre \ C1) ∩B) ≤ −l(e),
2. l(MAR((Cpre \ C1) \ C2) ∩B) ≤ −l(e),
3. l(MAR(((Cpre \ C1) \ C2) ∪ C3) ∩B) ≤ −l(e).

We defineCpre as a prefix ofe in S containing as many events inC as possible:
Crest = {c ∈ C | e ⊏ c} (these events cannot belong to a prefix ofe in S), C0 =
C \Crest (these events will belong toCpre) andCpre = C0 ∪ {c′ ∈ E | ∃c ∈ C0, c

′ ⊏

c} ∪ {e′ ∈ E | e′ ≺ e}. By Lemma 1 there islin ∈ lin(S) such thatCpre is a prefix
of e w.r.t. lin. BecauseS is enabled the total linear so-structurelin = (τ1 . . . τn, l)

represents an executable synchronous step sequence ofNI with Cpre =
⋃i−1

j=1 τj and
e ∈ τi (for i ∈ {1 . . . n}). This implies thate can occur afterCpre, i.e. l(MAR(Cpre)∩
B) ≤ −l(e).

There are the following events inCpre \ C: c ∈ C1 = {c ∈ Cpre \ C0 | c 6≺ e}
andc ∈ C2 = {c ∈ Cpre \ C0 | c ≺ e}. The setC3 = Crest equals the set of events
C \ Cpre, consequentlyC = ((Cpre \ C1) \ C2) ∪ C3. First we consider the most
complicated case:

1. l(MAR(Cpre \ C1) ∩B) ≤ −l(e):
Recalling the definition ofCpre an eventc ∈ C1 is obviously neither in the first set
nor in the third set of the respective union. Thus it has to be in the second one meaning
that there existsc′ ∈ C0 with c ⊏ c′ (andc′ 6≺ e because of (C4)). We first show
that if we omit all such eventsc′ additionally toC1 from Cpre we get again a prefix
of e in S: DefiningCcancel = C1 ∪ {c′ ∈ C0 | ∃c ∈ C1, c ⊏ c′}, we show first that
Cpre \ Ccancel is a prefix ofS, i.e. forc′ ∈ E, c ∈ Cpre \ Ccancel, c

′ ⊏ c there holds
c′ ∈ Cpre \ Ccancel. SinceCpre is a prefix we know thatc′ ∈ Cpre. Assume now that
c′ ∈ Ccancel, then according to the definition ofCcancel there are two possibilities:

(i) c′ ∈ C1: In this case eitherc ∈ C0 which implies thatc ∈ Ccancel or c ∈ Cpre \C0

which also implies thatc ∈ Ccancel sincec 6≺ e contradicting the choice ofc..
(ii) c′ ∈ C0 such that∃c′′ ∈ C1 : c′′ ⊏ c′: In this casec′′ ⊏ c′ ⊏ c, i.e. c′′ ⊏ c or

c′′ = c (by (C3)). This leads to the same contradiction as in (i).

This givesc′ 6∈ Ccancel and thusCpre \ Ccancel is a prefix ofS. FurthermoreCpre \
Ccancel is even a prefix ofe because it includes{e′ ∈ E | e′ ≺ e}. Consequently
without loss of generality we can assume the linearizationlin = (τ1 . . . τn, l) in such
a way thatCpre \ Ccancel =

⋃k

j=1 τj for somek < i and l(e) is enabled after the
occurrence of the firstk steps of the step sequence inNI corresponding tolin (as
well as after the occurrence of the firsti−1 steps as explained above). As forCpre, this
implies thate can occur afterCpre\Ccancel, i.e.l(MAR(Cpre\Ccancel)∩B) ≤ −l(e).

Now we check whether the inhibitor constraints ofl(e) are respected in the mark-
ing resulting from the execution of the eventsCpre \ C1. Assume the opposite: Let
p ∈ P with l(MAR(Cpre \ C1))(p) >

−l(e)(p). We know thatl(MAR(Cpre))(p) ≤
−l(e)(p) and l(MAR(Cpre \ Ccancel))(p) ≤ −l(e)(p). There have to be transitions
l(c) corresponding to eventsc ∈ C1 that consume tokens fromp sincel(MAR(Cpre \
C1))(p) >

−l(e) > l(MAR(Cpre))(p)). Similarly there have to be transitionsl(c) of
eventsc ∈ Ccancel \ C1 that produce tokens inp sincel(MAR(Cpre \ Ccancel))(p) 6
−l(e) < l(MAR(Cpre \ C1))(p). Thus the setsCp

1 = {c ∈ C1 | W (l(c), p) <

W (p, l(c))} andCp
c = {c ∈ Ccancel \ C1 | W (l(c), p) > W (p, l(c))} are not empty.

Now we distinguish two cases:

(i) ∃c′ ∈ C
p
1 , ∃c ∈ Cp

c : c′ ⊏ c: In this case, by construction there exist af-condition
in AON with a read arc toc′ and a flow arc toc because thisf-condition matches
the requirements of 5.’ in Definition 9 and reflects thec′ ⊏ c relation. Sincec ∈
Ccancel\C1 ⊆ C0 ⊆ C andc′ 6∈ C (c ∈ C1 andC1∩C = ∅), this is a contradiction
to the definition of weak configurations.

(ii) ∀c′ ∈ C
p
1 , ∀c ∈ Cp

c : c′ 6⊏ c: In this case we claim thatX = (Cpre\Ccancel)∪Cp
c ∪

{c′ ∈ Ccancel | ∃c ∈ Cp
c , c

′ ⊏ c} is a prefix ofe w.r.t. S with l(MAR(X))(p) >
−l(e)(p) – what is a contradiction to the enabledness ofS.
Clearly {e′ ∈ E | e′ ≺ e} ⊆ X becauseCpre \ Ccancel ⊆ X . Moreover,X is
⊏-downward closed since events which are in⊏-relation toCp

c and which are not
in Ccancel (those inCcancel are added) are inCpre (and thus also inX). ThusX
is a prefix ofe in S. SinceX ∩ C

p
1 = ∅ we finally computel(MAR(X))(p) ≥

l(MAR((X \ C1) ∪ (Ccancel \ C1)))(p) = l(MAR(Cpre \ C1))(p) >
−l(e)(p).

Here, the first≥-relation in this inequivalence follows sinceX does not contain any
events ofCp

1 and therefore by erasingC1 fromX no events consuming tokens inp
are erased; similarly sinceX already contains allCp

c -events by addingCcancel \C1

no events producing tokens inp are added.

Altogether the assumption has lead to a contradiction and thus it holdsl(MAR(Cpre \
C1)) ≤ −l(e).

2. l(MAR((Cpre \ C1) \ C2) ∩B) ≤ −l(e):
Let c ∈ C2. Sincec 6∈ C there cannot exist af-condition with a read arc toe and an
ingoing flow arc fromc (otherwise thisf-condition is in the weak sliceS according
to the preliminaries of 7.’ of Definition 9 and thereforec is in the weak configuration
C). This impliesl(c) 6⊸ l(e) (otherwise af-condition as described above is con-
structed). Consequently, the transitionsl(c), c ∈ C2 do not produce or consume tokens
in places with−l(e) < ∞ and consequently can be omitted from the inequivalence

l(MAR(Cpre\C1)) ≤ −l(e) preserving the≤-relation:l(MAR((Cpre \C1)\C2)) ≤
−l(e).

3. l(MAR(((Cpre \ C1) \ C2) ∪ C3) ∩B) ≤ −l(e):
Let c ∈ C3 = Crest. Thene ⊏ c but sincec ∈ C ande 6∈ C there is nof-condition
having a read arc toe and a flow arc toc. Thus l(c) 6⊸ l(e), otherwise such af-
condition exists according to the construction ofAON. Consequently as in the case of
C2, C3 has no relevance for the marking of places with−l(e) < ∞ and can therefore
be added in the inequivalence as follows:l(MAR(((Cpre\C1)\C2)∪C3)) ≤

−l(e).�

In the following we briefly explain that the other aims of the semantical framework
are still fulfilled by the new process definition:
Soundness: Using Proposition 5.19 of [12] it is easy to see that every run is enabled, i.e.
if AON ∈ α′(NI), thenφ(ǫ(κ(AON))) ⊆ ω(NI).
Consistency of runs and processes: Processes and runs generate the same step se-
quences, i.e. ifAON ∈ α′(NI), thenǫ(κ(AON)) = λ(AON) (that means the rules
for constructing causal relationships between events fromprocesses as shown in Figure
2 are correct). This follows since in proposition 5.19 of [12] this relation was shown for
arbitraryao-nets (note here that the construction rules of the involvedmappingsλ, κ
andǫ have not changed in contrast to [12], only the process definition constituting the
starting point of this relation is changed).
Weak completeness: Any execution of the pti-net (EX) given byω(NI) is generated
from a ca-process, i.e. for any executionσ ∈ EX there exists an ca-processAON ∈
α′(NI) with σ ∈ φ(λ(AON)) (ω(NI) ⊆

⋃
AON∈α′(NI) φ(λ(AON))). This also holds

for ca-processes, because this is the relation generalizedin comparison to a-processes
(the aim of completeness is a generalization of the weak completeness property).
Runs are reconstructible from step sequences: Each run is the intersection of all obser-
vations it generates, i.e.ι ◦ ǫ reconstructs a run. This relation holds because of the gen-
eralization of Szpilrajns theorem to so-structures described in the preliminaries (note
that in this context nothing is changed in contrast to [12]).
Construction of processes from step sequences: There is no obvious way to generalize
the constructive definition ofπ from [12] because especially the new requirement 6.’ of
Definition 9 is problematic: Now it is no more mandatory but optional to introducef-
conditions between certain transitions (the transition candidates can be identified with
5.’) and one has to check whether 7.’ holds (7. holds by construction). There is the fol-
lowing constructive process definition that is based directly on the axiomatic definition:
Given an enabled step sequenceσ of NI a ca-processes can be generated as follows:

– Construct a usual p/t-net process ofUnd(NI) (based on an occurrence net) starting
from σ.

– Introduce arbitraryf-labeled conditions in accordance with 5.’ and 6.’ of Definition
9.

– Check 7.’ of Definition 9: if it is fulfilled the construction is finished, else perform
the next step.

– Introduce furtherf-labeled conditions in accordance with 5.’ and 6.’ of Definition
9, then go back to the previous step.

All processes constructible with this algorithm produce the set of ca-processesπ′(σ)
generated byσ. Moreover, the ca-processes generated from a step sequenceσ are the
ca-processes havingσ (provided with respective labels) as an execution. This algorithm
always terminates because there are only finite many possible f-labeled conditions in
accordance with 5.’ and 6.’ of Definition 9. Introducingall such possiblef-conditions
obviously leads to a ca-process, i.e. 7.’ is then fulfilled instep 3. More precisely, the
number of possiblef-conditions is at most quadratic in the number of events which
means that the number of repetitions of the steps 3 and 4 of thealgorithm is polynomial.
Thus, only checking 7.’ in step 3 may be not efficient, since there exists an exponential
number of (weak) slices in the number of nodes. But current research results on a similar
topic summarized in [13] show that there exists an algorithmpolynomial in time solving
this problem: In [13] we present an algorithm (based on flow theory) that can be used to
calculate step 3 in polynomial time (of degreeO(n3)). Therefore, with this construction
the requirements interrelated with the mappingπ in the semantical framework of Figure
3 are also fulfilled.

5 Conclusion

In this paper we have developed a general semantical framework that supports the
definition of process semantics and respective causal semantics for arbitrary Petri net
classes. The framework is based on the semantical frameworkfrom [12] additionally
requiring that process semantics should be complete w.r.t.step semantics: Each causal
structure which is consistent to step semantics – such causal structures we call enabled
– should be generated from a process net. Since for the description of causal net behav-
ior of pti-nets under the a-priori semantics labeled so-structures are applied, the notion
of enabled so-structures has been introduced. We were able to show that the process
definition for pti-nets from [12] is not complete w.r.t. stepsemantics and to identify a
structural generalization of this process definition whichis complete (while still satis-
fying all the other requirements of the framework of [12]).

Possible further applications of the results of this paper are on the one hand the
usage of the semantical framework on further Petri net classes in order to check existing
process semantics and to evolve new process semantics. In the context of the paper, this
is in particular interesting for existing inhibitor net semantics [18, 6, 2, 11, 12, 8]: While
most aims of [12] are checked for those process semantics, the new aim of completeness
is not (probably because this is the most complicated aim). Nevertheless a lot of these
process semantics seem to satisfy the aim of completeness (at least for the process
semantics of elementary nets with inhibitor arcs under the a-priori semantics as well
as the a-posteriori semantics there are formal proofs [9]).On the other hand the ca-
processes of this paper constitute a process definition for pti-nets under the a-priori
semantics expressing minimal causalities and can thus be useful e.g. for model checking
algorithms based on unfoldings.

References

1. J. Billington. Protocol specification using p-graphs, a technique based on coloured petri nets.
In W. Reisig; G. Rozenberg [19], pages 293–330.

2. N. Busi and G. M. Pinna. Process semantics for place/transition nets with inhibitor and read
arcs.Fundam. Inform., 40(2-3):165–197, 1999.

3. S. Donatelli and G. Franceschinis. Modelling and analysis of distributed software using
gspns. In W. Reisig; G. Rozenberg [19], pages 438–476.

4. U. Goltz and W. Reisig. The non-sequential behaviour of petri nets.Information and Control,
57(2/3):125–147, 1983.

5. U. Goltz and W. Reisig. Processes of place/transition-nets. In J. Dı́az, editor,ICALP, volume
154 ofLecture Notes in Computer Science, pages 264–277. Springer, 1983.

6. R. Janicki and M. Koutny. Semantics of inhibitor nets.Inf. Comput., 123(1):1–16, 1995.
7. K. Jensen.Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use., vol-

ume 1-3 ofMonographs in Theoretical Computer Science. Springer, 1992, 1994, 1997.
8. G. Juhas. Are these events independend? it depends! Habilitation, 2005.
9. G. Juhas, R. Lorenz, and S. Mauser. Synchronous + concurrent + sequential = earlier than +

not later than. InProceedings of ACSD 2006, pages 261–270, 2006.
10. A. Kiehn. On the interrelation between synchronized andnon-synchronized behaviour of

petri nets.Elektronische Informationsverarbeitung und Kybernetik, 24(1/2):3–18, 1988.
11. H. C. M. Kleijn and M. Koutny. Process semantics of p/t-nets with inhibitor arcs. In M.

Nielsen; D. Simpson, editor,ICATPN, volume 1825 ofLecture Notes in Computer Science,
pages 261–281. Springer, 2000.

12. H. C. M. Kleijn and M. Koutny. Process semantics of general inhibitor nets. Inf. Comput.,
190(1):18–69, 2004.

13. R. Lorenz, R. Bergenthum, and S. Mauser. Testing the executability of scenarios in general
inhibitor nets. InProceedings ACSD 2007, 2007.

14. J. Peterson.Petri Net Theory and the Modeling of Systems. Prentice-Hall, 1981.
15. E. Szpilrajn. Sur l’extension de l’ordre partiel.Fundamenta Mathematicae, 16:386–389,

1930.
16. W. Vogler.Modular Construction and Partial Order Semantics of Petri Nets., volume 625 of

Lecture Notes in Computer Science. Springer, 1992.
17. W. Vogler. Partial words versus processes: a short comparison. In G. Rozenberg, editor,

Advances in Petri Nets: The DEMON Project, volume 609 ofLecture Notes in Computer
Science, pages 292–303. Springer, 1992.

18. W. Vogler. Partial order semantics and read arcs. In I. Prı́vara and P. Ruzicka, editors,MFCS,
volume 1295 ofLecture Notes in Computer Science, pages 508–517. Springer, 1997.

19. W. Reisig; G. Rozenberg, editor.Lectures on Petri Nets II: Applications, Advances in Petri
Nets, the volumes are based on the Advanced Course on Petri Nets, held in Dagstuhl, Septem-
ber 1996, volume 1492 ofLecture Notes in Computer Science. Springer, 1998.

