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Abstract. In this paper we develop a theory for the region-based sgisthe
system models given as place/transition-nets with weggbibitor arcs (pti-
nets) from sets of scenarios describing the non-sequésglaviour. Scenarios
are modelled through labelled stratified order structur&0s) considering "ear-
lier than” and "not later than” relations between event8]6n such a way that
concurrency is truly represented.

The presented approach generalizes the theory of regiodewedoped in [10] for
the synthesis of place/transition-nets from sets of |ladeflartial orders (LPOs)
(which only model an "earlier than” relation between evignt$ereupon con-
crete synthesis algorithms can be developed.

1 Introduction

Synthesis of Petri nets from behavioural descriptions le&n & successful line of re-
search since the 1990ies. There is a rich body of nontrive@dtetical results and there
are important applications in industry, in particular indhaare design [3], in control of
manufacturing systems [15] and recently also in workflowigleglL3, 14].

The synthesis problem is the problem to construct, for arghehavioural speci-
fication, a Petri net of a considered Petri net class suchttieabehaviour of this net
coincides with the specified behaviour (if such a net exigthgre exist theories for
the synthesis of place/transition-nets (p/t-nets) frommavéural models describing se-
quential semantics [1], step semantics [1] and partial osdenantics [10]. There are
also sequential, respectively step semantics, basedags for the synthesis of ele-
mentary nets [4, 5] and extensions to elementary nets wiiibitor arcs [2,11, 12].

In this paper we generalize the synthesis theory for paotidér semantics from
[10] to p/t-nets with weighted inhibitor arcs (pti-nets).[lLO] the behavioural specifi-
cation is given by a set of labelled partial orders (LPOs) e eadled partial language —
interpreted as a scenario-based description of the names¢igl behaviour of p/t-nets.
The aim in [10] is the characterization and synthesis of aeftwhose behaviour co-
incides with a given partial language. That means, the LPfQkeopartial language
should exactly be the partially ordered executions of tlaeceed p/t-net. Note hereby
that partial languages regard the most general concurretatjonships between events
(in contrast to sequential semantics considering no coeoay relations and step se-
mantics considering only restricted transitive concuryarlations).



The synthesis of the p/t-netis based on the notion of regidmesp/t-net synthesized
from a partial language inherits its transitions from therevabels of the LPOs which
in turn describe the respective occurring actions. Thrqulgbes causal dependencies
between transitions are added restricting the set of exeutThe idea is to add all
places which do not restrict the set of executions too mudhénsense that they do
not prohibit the executability of any LPO specified in thetjgtanguage. These places
are called feasible (w.r.t. the given partial language)diAd all feasible places yields
a p/t-net — the so called saturated feasible p/t-net — whishalminimal set of partially
ordered executions including the specified partial languagong all p/t-nets). Con-
sequently the saturated feasible p/t-net solves the ssistpeoblem or there exits no
solution of the problem. The general approach of a theoryegions is to determine
feasible places by so called regions of the behavioural infode the main result in
[10] we proposed a notion of regions for partial languagesstrowed that the set of
regions exactly defines the set of feasible places. In thpepae lift this approach to
the level of pti-nets. That means we generalize the notisagibns to a scenario-based
behavioural model of pti-nets and show that these regiocastixdefine feasible places.

In the following we introduce the scenario-based behaalbuodel of pti-nets con-
sidered in this paper. We will examine the so called a-psemantics of pti-nets [8]
in which synchronicity of events is explicitly regardédhus, as the model of non-
sequential behaviour we consider a generalization of LPEs ealled labelled strati-
fied order structures (labelled so-structures or LSOs)|[6T®at means, given a pti-net,
scenarios are specified by LSOs with transition names ag &lggls, and a specified
scenario may be or may not be an execution of the net.

In an LPO ordered events are interpreted as causally depeimdéhe sense of
an "earlier than” relation. Unordered events are consifle® causally independent
respectively concurrent. That means two events are cosliif they can occur in
arbitrary order as well as synchronously. Thus, synchigné@annot be distinguished
from concurrency in the case of LPOs. A situation (1.) in viatiwo events, andb can
only occur synchronously or (2.) can occur synchronoustyiarthe order — b, but
not in the ordeh — a, cannot be modelled with LPOs (obviously in both situations
(1.) and (2.) the events are not concurrent, but synchrooceisrence is possible). For
these situations LSOs include a "not later than” relatiotween eventsu "not later
than”b exactly describes (2.) and a symmetric "not later thanti@abetween events
(a "not later than”s andb "not later than”a) models (1.). Thus, an LSO is based on an
LPO (the "earlier than” relation is depicted with solid amsllustrations), to which a
"not later than” relation (dashed arcs) between eventsnsistently added.

In [6] it was explained in detail that the "earlier than” rédan of LPOs is not enough
to describe executions of some Petri net classes such a#antriets under the a-priori
semantics and that LSOs form the adequate behavioural rfardbkese net classes. In
Figure 1 this phenomenon is illustrated: A pti-net and fo8Qs describing executions

! For sequential or step semantics this theory lead to poljaisynthesis algorithms [1].

2 There are also alternative semantics of inhibitor nets.aFpesteriori semantics (which is less
general than the a-priori semantics from a causal pointefis discussed in the conclusion.

% Note that just like LPOs in the case of p/t-nets, LSOs can frarthitrary dependency relations
between transition occurrences of pti-nets, i.e. conaagrean be truly represented.



Fig. 1. A pti-net together with some executions.

of the net are depicted. The pti-net has the only inhibitoiarc) with inhibitor weight
two. This arc restricts the behaviour of the net in such a \waythe transitiom is only
enabled if additionally to the usual enabledness conditafp/t-nets the place con-
tains at most two tokens. That means, through weightediiohidrcs it is tested if the
number of tokens in a place does not exceed the inhibitorhéég an enabledness con-
dition). In the a-priori semantics the respective testingcpdes the actual occurrence
of the transition. That means the first LSO (from left) canriieripreted as an execution
of the pti-net in the following sense: In the initial markingnd two instances of are
concurrently enabled (accordingly there exist no arcs ftiodea causal dependency
between the respective nodes), because the double ocoeiwén produces (at most)
two tokens inp. Therefore the occurrence ofis not prohibited (because the inhibitor
arc (p, ¢) has the weight two). Moreover, after any occurrence tfie transitionb is
once enabled leading to the two solid "earlier than” arca/ben eacla, andb. The two
events labelled by are concurrent. It is now important that after the doubleio@nce
of a and one occurrence éfthe placep contains three tokens. Therebys disabled
by the inhibitor arqp, ¢), i.e.b ande cannot occur in the ordér— ¢ (and thereforé
andc are also not concurrent). However, the two transitions @uosynchronously,
because in this situation the testing procedure (througmttibitor arc(p, ¢)) precedes
the occurrence procedure according to the a-priori rulesTh precedes the enhance-
ment of the number of tokens jmfrom two to three tokens through Furthermore,
the occurrence in order — b is obviously possible. Altogether, this behaviour of the
b-labelled events andcan be described as followscannot occur later thalor ab-
breviated: "not later than”b leading to dashed arcs betweeandb in each case. Thus,
an execution of a pti-net is an LSO, whose events are labeliddtransition names,
such that all transitions can occur in the given ordering@ntturrency relations.

Technically executions will be defined as enabled LSOs. Vépgse a definition
of enabledness for LSOs generalizing consistently theonaif enabled LPOs. Then
every pti-net has assigned a set of executions (enabled)L3sse describe the com-
plete non-sequential behaviour of the pti-net, i.e. allsfials causality and concurrency
relationships between transition occurrences. Analdgaashe notion of a partial lan-
guage as a set of (non-isomorphic) LPOs we denote a set ofigpamorphic) LSOs
as a stratified language. Therefore, the non-sequentiavimir of a pti-net repre-
sented through the set of all executions of the net is afs@é@tanguage. The respective
(scenario-based) synthesis problem can be formulatedlag$o

Given: A stratified languagé& over a finite set of labels.
Searched: A pti-net whose set of executions coincides with the givenglaage’, if
such a net exists.



As mentioned, for the less general problem with a partiajlege as the given be-
havioural model and a p/t-net as the searched system madptadblem was solved in
[10] applying the so called theory of regions. A region of atiphlanguage defines a
place by determining the initial marking of that place anelweights on each flow arc
leading to and coming from a transition. A region of a stratiflanguage additionally
has to determine the weights of each inhibitor arc leading t@nsition. It turns out
that the notion of regions of stratified languages can bedasehe notion of regions
of partial languages. More precisely, omitting the "noefathan” relation of all LSOs
of a stratified language yields a set of LPOs forming the ghldinguage underlying
the given stratified language. To define regions of stratlieguages we start with re-
gions of the underlying partial language ignoring inhibics and complement these
by "possible inhibitor arcs” as they are called in [2]. Inglaispect the approach is sim-
ilar asin [2, 11, 12] (where the authors started with cladsiegions of (step) transition
systems and complemented these by "possible inhibitof)aReughly speaking, we
add a "possible inhibitor arc” if in each possible internadimarking state when exe-
cuting a specified LSO subsequent events are not prohibjtédidinhibitor arc. The
identification of such inhibitor arcs is more complicatedritfor elementary nets and
(step) transition systems (considered in [2,11, 12]). @nathe hand we have to regard
weighted inhibitor arcs. On the other hand the marking statical for the inhibitor
tests are not directly modelled in LSOs (in contrast to titeorssystems). Having solved
this problem, as the main theorem of this paper we show tleatetions of a stratified
language exactly define all feasible pti-net places (his. stratified language). Thus,
the regions of a stratified language define the saturateibfegnti-net. This net has a
minimal set of executions including the given stratifiedgaage (among all pti-nets)
and therefore solves the synthesis problem or is the besbxpmation if no solution
exists. This solves the synthesis problem satisfactory fiwe theoretical point of view
(for the considered setting). Practical algorithmic cdesations are a topic of further
research (see also the conclusion for a brief discussion).

The paper is structured as follows: First the basic notidrngtienets and enabled
LSOs are introduced (section 2). Then in section 3 the géfemdamentals of the
region based synthesis are developed and in section 4 thig/ thiferegions is concretely
evolved for the formulated synthesis problem.

2 Pti-nets

In this section we recall the basic definitiongudfnetsand introducenabled stratified
order structuresasexecution®f pti-nets (leading to a formal model of scenario-based
non-sequential semantics of pti-nets).

By N we denote the non-negative integers andNoy the non-negative integers
excluding0. We additionally denote an infinite integer, i.en < w for n € N. Given
a finite setA, the identity relation oM is denoted byid, and the set of all multi-sets
over A is denoted byN* (for m € N4 we writea € m if m(a) > 0).

A netis atriple(P, T, F'), whereP is a set ofplaces T is a finite set otransitions
satisfyingP NT =0, andF C (PUT) x (T'U P) is aflow relation Let (P, T, F') be
anetandt € PUT be an element. Theresetex is the sef{y € PUT | (y,z) € F},



and thepost-setre is the se{y € PUT | (z,y) € F'}. GivenasetX C PUT, this
notation is extended byX = J .y ez andXe = |,y e.

A placef/transition nefshortlyp/t-ne) is a quadrupléP, T, F, W), where(P, T, F’)
is anetandV : F — NT is aweight functionWe extend the weight functio’ to
pairs of net elementse, y) € (P x T) U (T x P) with (z,y) ¢ F by W(z,y) = 0.

Definition 1 (Pti-net). A pti-netN is a five-tuple(P, T, F, W, I), where(P, T, F, W)
isap/t-netand : P x T — NU {w} is theweighted inhibitor relationlf I(p, t) # w,
then(p,t) € P x T'is called(weighted) inhibitor ar@andp is aninhibitor place oft.

A markingof a pti-netN = (P, T, F,W, 1) is a functionm : P — N (a multi-set
over P) assigning a number of tokens to each place. A transitan only be executed
if (in addition to the well-known p/t-net occurrence rulgchp € P contains at most
I(p,t) tokens. In particular, if (p, t) = 0 thenp must be emptyl (p, t) = w means that
t can never be prevented from occurring by the presence ohsoikep. In diagrams,
inhibitor arcs have small circles as arrowheads. Just awvalarcs, inhibitor arcs are
annotated with their weights. Now however, the weiglig not shown. Amarked pti-
netis a pair(V,mg), whereN is a pti-net andn, is a marking of N calledinitial
marking Figure 1 shows a marked pti-net.

According to the a-priori semantics of pti-nets, the intabtest for enabledness of
a transition precedes the consumption and production en®kn places. A multi-set
(a step) of transitions is (synchronously) enabled in a marK in this marking each
transition in the step obeys the inhibitor constraints beetbe step is executed.

Definition 2 (Occurrence rule, a-priori semantics).Let N = (P, T, F,W,I) be a
pti-net A multi-set of transitions (a step is (synchronously) enabled to occur in a
markingm (w.r.t. the a-priori semantics) m(p) > > .. 7(t)W(p,t) andm(p) <
I(p,t) for each transitiort € 7 (for every place € P).

Theoccurrenceof a step (of transitionsy leads to the new marking’ defined by
m/(p) =m(p) =3, T(t)(W(p,t) =W (t,p)) (for everyp € P). We writemn —— m’
to denote that is enabled to occur im and that its occurrence leadsnd. A finite
sequence of steps = 71 ...7,, n € Nis called astep occurrence sequence enabled
in a markingm and leading tom,,, denoted byn = m,,, if there exists a sequence
of markingsmy, ..., m, such thatn — m; —» ... = m,. A step occurrence
sequence can be understood as a possible siglervatiorof the behaviour of a pti-
net, where the occurrences of transitions in one step amredx$at the same timer
synchronouslyWe use the notions for (marked) pti-nets also for (markédhets (a
p/t-net can be understood as a pti-net with an inhibitotti@lavhich equal).

We now introducestratified order structuregso-structuresto model executions of
pti-nets as sketched in the introduction. We start with sbamc notions preparative to
the definition of so-structures. directed graphs a pair(V, —), whereV is a finiteset
of nodesand—C V' x V is a binary relation over V called theet of arcs As usual,
given a binary relation-, we writea — bto denotda, b) €—. Two nodes:, b € V are
calledindependentv.r.t. the binary relation- if a 4 b andb 4 a. We denote the set of
all pairs of nodes independent w.kt. by co . C V x V. A partial orderis a directed
graphpo = (V, <), where< is an irreflexive and transitive binary relation ®h If



co« = idy then(V, <) is calledtotal. Given two partial ordergpo, = (V, <) and
poy, = (V, <2), we say thapo, is asequentializatioifor extensiohof po, if <;C<s.
So-structures are, loosely speaking, combinations of tmari relations on a set of
nodes (interpreted a&vent$, where one is a partial order representing an "earlier'than
relation and the other represents a "not later than” refafithus so-structures describe
finer causalities than partial orders. Formally, so-stries arerelational-structures
(rel-structure$ satisfying certain properties. A rel-structure is a &isl = (V, <, C),
whereV is a finite set (okvent}, and< C V x V andC C V x V are binary relations
onV. Arel-structureS’ = (V, </, ') is said to be aextensior(or sequentialization
of another rel-structur§ = (V, <, ), writtenS C &', if <C<"andCCr’.

Definition 3 (Stratified order structure [6]). A rel-structureS = (V, <, C) is called
stratified order structuréso-structure) if the following conditions are satisfied &l
u,v,w € V:

(Chu iZ u. (CHuCrvCwAu#w=— ul w.
(CQu<v=uCv. (CHuCv<wVu<vCw= u-<w.

In figures=< is graphically expressed by solid arcs andy dashed arcs. According
to (C2) a dashed arc is omitted if there is already a solidMoreover, we omit arcs
which can be deduced by (C3) and (C4). It is shown in [6] tiat<) is a partial
order. Therefore so-structures are a generalization dfaparders which turned out
to be adequate to model the causal relations between evieptsreets under the a-
priori semantics. In this context represents the ordinary "earlier than” relation (as for
p/t-nets) while_ models a "not later than” relation (see Figure 1 for an exanpl

For our purposes we have to consitidrelled so-structured SO3 where the nodes
of an so-structure represent transition occurrences of-aept(nodes are labelled by
transition names as in Figure 1). Formally these are satstresS = (V, <,C) to-
gether with aset of labelsI” and alabelling function/ : V' — T'. The labelling function
1 is lifted to a subseY” of V' in the following way:/(Y") is the multi-set ovefl” given
by [(Y)(t) = |I=1(t) N Y| for everyt € T. We will use the notations for so-structures
also for LSOs as well as for LPOs (since an LPO can be undetste@n LSO with
<=C). We will consider LSOs only up to isomorphism. Two LSQ$ <,,!) and
(V',<',’,l’) are calledsomorphig if there is a bijective mapping : V' — V’ such
thatl(v) =1'(¢(v)) forv e Vv < w < ¢(v) <" (w) andv C w < (v) T’ Y(w)
for v, w € V. By [S] we will denote the set of all LSOs isomorphicfo The LSOS is
said torepresenthe isomorphism clagss].

As explained, for the modelling of system behaviour the telations of an LSO
are interpreted as "earlier than” resp. "not later thanatieh between transition occur-
rences. If two transition occurrences are in "not later thahation, that means they
can be observed (are allowed to be executed) synchronausfgaentially in one spe-
cific order. If two transitions are neither in "earlier tharglation nor in "not later than”
relation, they are concurrent and can be observed (are edld be executed) syn-
chronously or sequentially in any order. In this sense on@ L&@lows” many observa-
tions (step sequences). If all these observations are@thatdp occurrence sequences,
this LSO is callecenabled Formally the observations "allowed” by an LSO are defined
through so called total linear extensions of the LSO:



Definition 4 (Total linear so-structures).LetS = (V, <, C) be an so-structure, then
S is calledtotal linearif co » = (C \ <) Uidy. The set of altotal linear extensions
(or linearization$ of an so-structures is denoted byin(S).

Total linear so-structures are maximally sequentializethe sense that no further
<-or C-relations can be added maintaining the requirements efrs@tures according
to Definition 3 (adding a<- or - relation leads to causal relations of the fourm v <
u). Therefore the linearizatiorisn(S) of an so-structuré are its maximal extensions.

With this definition the set of step sequences (observatiamtiswed” by an LSO
is defined as the set of step sequences extending the LSOr{¢aats emerging from
adding causality to the LSO). A step sequence can be easdhpieted as a total linear
LSO: Each step corresponds to a set of events labelled bsititars (transition occur-
rences) which are in "not later than” relation with each otfepresenting synchronous
transition occurrences. Transition occurrences in diffesteps are ordered in appro-
priate "earlier than” relation. Formally, for a sequencérahsition steps = 71 ... 7,
define the total linear LS&, = (V,<,C,!) underlyingo by: V = [J:", V; and
L2V = Twith [(V;)(t) = 7i(t), <= U,; Vi x Vj andC= (U, Vi x Vi)u <) \idy.
(S, is total linear becauseo 5 = |J!_, V; x V;). Altogether a step sequeneeis
"allowed” by an LSOS if S, € lin(S). For example the step sequences respectively
observations "allowed” by the third LSO in Figure 1 can bereleterized as follows:
To each of the step sequencesbd, (¢ + a)bb, acbb anda(b + ¢)b ana has to be added
either to one of the steps or representing a one-elemenbrteped in any position of
the sequence. Any such possibility has to be regarded lg&ali29 different "allowed”
step sequences, e.qg. includiagab, (¢ + 2a)bb, 2acbb or a(b + ¢)(a + b).

Note that for each total linear LS® = (V, <, C, ) there is a step sequeneeuch
thatS andS, are isomorphic. That means total linear LSOs can be intergas step
sequences and the "allowed” observations of an LSS@this sense are exactly the step
sequences given byn(S).

Now we define enabled LSOs w.r.t. a marked pti-net as LSOs avialowed”
observations are also "allowed” in the marked pti-net. Mechnically this means that
any step sequence extending the LSO is enabled in the matikeetpSuch an enabled
LSO is called an execution of the marked pti-net.

Definition 5 (Enabled LSO).Let(N,mq), N = (P, T, F,W, I), be a marked pti-net.
An LSOS = (V,<,C,l)withl : V — T is calledenabled (to occur) w.r.{tN,my)

(in the a-priori semanticsj the following statement holds: Each finite step sequence
oc=r11...T7, With S, € lin(S) is an enabled step occurrence sequencg\afm).

In other words an LSO is enabled if and only if it is consistgith the step seman-
tics. This reflects the general idea for the modelling of sBegquential system behaviour
that scenarios which are consistent with the non-sequeatairrence rule represent
executiond. The presented definition is a proper generalization of thienof enabled
LPOs: An LPOlpo = (V,<,l) with [ : V — T is enabled to occur in a marking:

* Another possibility for the definition of enabled LSOs is tmsider sequences of concurrent
steps of synchronous steps instead of sequences of syocisrsteps. But both notions are
equivalent, as discussed in [7].



of a marked p/t-netP, T, F, W, my) if each step sequence which extends (sequential-
izes)lpo is a step occurrence sequence enabledn Since in LPOs concurrent and
synchronous transition occurrences are not distinguidter@ a step is considered as a
set of events labelled by transitions (transition occureshwhich are concurrent.

Now it is possible to formally check that the LSOs from Figlir@re indeed enabled
LSOs w.r.t. the shown pti-net. For example in the case offilid L SO one would have
to verify that the 29 step sequences "allowed” by this LS@gthare characterized
above) are enabled step sequences of the marked pti-net.

Having defined single executions of marked pti-nets the \ieheal model in our
setting is defined as follows:

Definition 6 (Stratified language).Let T be a finite set. A subsét C {[S] | Sis an
LSO with set of label§'} is calledstratified language oveF (in the special case of
LPOs it is calledpartial language Thestratified language of executiodig N, m) of

a marked pti-netV, my) is defined as the stratified language consisting of all (isemo
phism classes of) executions(af, my).

In the following we only consider stratified languages owts &’ such that every
t € T occurs as a label of some node of the stratified languagedutigxplicitly men-
tioning this). Moreover, since we regard LSOs only up to isgphism, we assume for
the rest of the paper that a stratified langudgaver a finite set of labels is given by a
setL of LSOs representing in the sense thdiS] € £ < 38’ € L : [S] = [§].
Note that the stratified language of executions of a markiedgtt{ N, m,) is sequen-
tialization closed That means given an executiéSne L(N,mg) of (N,mg), any se-
quentialization ofS is also an execution dfV, my). This is a simple observation using
Definition 5, since sequentializations have a smaller sdinefrizations. Moreover,
as in the LPO-case, the stratified language of executiori$ofn,) is prefix closed
where prefixes of so-structures are defined as subsets of mddeh are downward
closed w.r.t. the_-relation:

Definition 7 (Prefix). LetS = (V, <, ) be an so-structure and 18" C V' be such
thate' e V', uC v/ = uw € V'.ThenS' = (V', < |v/xv/, C |y xv) is calledprefix
of S. We say that the prefi&’ is defined byl’. If additionally (v < v = u € V) for
somev € V' \ V’, thenS’ is calledprefix of v (w.r.t.S).

3 The Synthesis Problem

The behaviour of a pti-net is described by its stratified leage of executions. There-
fore, for a stratified languagk the question whether it represents the non-sequential
behaviour of a marked pti-net can be formulated. The ansavtiri$ question together
with a concrete characterization of such a net in the p@sdase are the central issues
of this paper. Technically this synthesis problem can bealfagfollows:

Given: A stratified languagé over a finite set of labels.
Searched: A marked pti-ne{ N, mg) with L(N,mg) = L if such (N, mg) exists.



In the following we outline the synthesis principles of tleecalled theory of re-
gions. The concrete regions-based synthesis approadmefayhthesis problem of pti-
nets from stratified languages is developed in the nextaecti

The transition sef” of the searched marked pti-neV, m) is obviously given
through the finite set of labels of the stratified langudgéequally labelled nodes
of LSOs in L represent occurrences of the same transition). Consgléhnia pti-net
N = (0,T,0,0,0) with this transition set and an empty set of places, obvioasly
LSO in L is an execution of N, (). This is clear because iV there are no causal
dependencies between the transitions. Therefore, eve® Wwith labels inT is en-
abled. On the other hand, there are also a lot of executio& gf) not specified in
L,i.e.L(N,0) 2 L. Since we are interested in( NV, mo) = L, we have to restrict the
behaviour of(N,mg) by introducing causal dependencies between transitionrecc
rences. Such dependencies between transitions can (@igpbzed by adding places
to (N, mo). Any place (with an initial marking) prohibits a certain s#tLSOs from
being enabled. The central idea is to add all placédtan, ) that do not prohibit LSOs
specified inL from being enabled. These places are caléasible placesnd lead to
the so calledsaturated feasible pti-nétV, mg). For this net of coursé (N, my) still
includesL, i.e. the specified LSOs if are enabled w.r.{.NV, mg) constructed in this
way, while it is still not clear ifL.(N, mg) = L. But now the marked pti-nétV, m,) has
minimal (w.r.t. set inclusion) non-sequential behavidyN, mg) including L, since all
places not prohibitind. are regarded. That means taf, m,) is the appropriate can-
didate for the solution of the synthesis problemAf, m() does not solve the problem
there exists no net solving the problem. This is ensured Imgtcoction because any
other net solving the synthesis problem in this case wouidradict the minimality
property of(N, mg) (since it would have a smaller set of executions includifg

The construction of the saturated feasible pti-net inv@the introduction of places.
Any place consists of an initial marking, a flow and an intobitelation to each transi-
tion and a flow relation from each transition. Consequently glacep can be defined
by the value of its initial markingn,(p) together with the flow and inhibitor weights
W(p,t), W(t,p) andI(p,t) for any transitiont € T as depicted on the left of Figure 2
(a flow weight of0 respectively an inhibitor weight e means that no such arc exists,
compare section 2). Any plagerestricts the behaviour of a marked pti-net by prohibit-
ing a certain set of LSOs from being enabled. This set of LS©kipited byp does
only depend on this plage That means it does not matter if we consider the one-place
net havingp as its only place or a marked pti-net with a lot of places idig p. More
precisely, an LSO is enabled w.r.t. a marked pti{®€tm,), N = (P, T, F,W,I), if
and only if it is enabled w.r.t. every respective one-plagg(for everyp € P). Regard-
ing a given stratified language the behavioural restriction of such a plageean be
feasibleor non-feasiblei.e. too restrictive, in the following sensé&'(W, I andm, are
determined by the definition gf— an example of a feasible and a non-feasible place is
illustrated in Figure 2):

— Non-feasible placeg w.r.t. L.: There exists an LS& € L, which is not enabled
w.r.t. the one-place pti-n€tV, mg), N = ({p}, T, F,W,I),i.e. L Z L(N,my).

— Feasible placep w.r.t. L: Every LSOS € L is enabled w.r.t. the one-place pti-net
(N,mg), N = ({p},T,F,W,I),i.e.L C L(N,myg).



(i) possible place (ii) feasible place (iii) not feasible place

Fig. 2. (i) The general structure of a plac@) A feasible place w.r.t. the stratified language from
Figure 1 (it coincides with the plagein Figure 1).(iii) A non-feasible place w.r.t. the stratified
language from Figure 1. The inhibitor arc to the transitiofin contrast to (ii) with inhibitor
weight 1 instead of 2) is causally too restrictive. To vetifys recall the considerations in the
context of Figure 1 in the Introduction.

Every net solving (positively) the synthesis problem neaety does not contain a
non-feasible place. Therefore the crucial idea is to cardfte marked pti-n&tV, my),
N = (P,T,F,W,I), containing exactly all feasible places w.llt. Considering the
above explanations this so callsaturated feasible pti-néfV, m,) guarantees that any
LSO S € Lis enabled w.r.t{N, mg) (called property (A) of the saturated feasible pti-
net in the following). Moreover, the saturated feasiblengtt (IV, mq) can have more
executions than specified by, but there is no marked pti-net with a smaller set of
executions including. (called property (B) of the saturated feasible pti-net ia fibl-
lowing). This is true because any other (&Y, m(,) whose set of executiodg N’, my))
includesL mandatory has less places th@w, m,) since it may only contain feasible
places (it holdd.(N', m{) 2 L(N,mg) if (N, my) has less places thadiV, my)).

Definition 8 (Saturated feasible pti-net).Let L be a stratified language over the set
of labelsT, then the marked pti-nétV, mg), N = (P, T, F, W, I), such thatP is the
set of all places feasible w.r.L is calledsaturated feasible pti-net (w.rf).

The saturated feasible pti-n@¥, mq) w.r.t. L in general has infinitely many (fea-
sible) places. It fulfills (A)L C L(N,mg) and (B)L(N,mg) C L(N’,my) for each
marked pti-net{ N’,m(), N' = (P, T, F',W', I'), fulfiling L C L(N',my) (thus
fulfilling (A)). For the solution of the synthesis problemistenough to consider only
the saturated feasible pti-net, because either this ne¢sdhe synthesis problem or
there is no solution for the problem:

Theorem 1. Let L be a stratified language andV, mq), N = (P, T, F, W, I), be the
saturated feasible pti-net w.r.L, then L(N,mo) # L impliesL(N',m{) # L for
every marked pti-netN’, my), N' = (P, T, F', W', I").

Property (B) even tells us more than this theorem: In the d&9é,m,) # L,
L(N,my) is the best upper approximation fo That means the saturated feasible pti-
net is the best approximation to a system model with non-estipl behaviour given
by L among all marked pti-nets allowing the behaviour specified b

Altogether, in order to solve the synthesis problem in otitirsgg we want to cal-
culate the saturated feasible pti-net. Therefore we aszasted in a characterization
of feasible places based dnthat leads to an effective calculation method for feasible



places. In the p/t-net case such a characterization wasogegefor behavioural mod-
els w.r.t. sequential semantics and step semantics [1]thémotion ofregionsof the
behavioural model. These approaches were generalize@find partial languages. In
the latter case it was shown that every region of a partiajuageL defines a place
such that

(1) Each place defined by a regionbis feasible w.r.t.L.
(2) Each place feasible w.rk can be defined by a region éf

In [10] we used a slightly different terminology as in thispea In particular, we
did not use the notion of feasible places there but theirasttarization by the so called
token flow propertyTo prove the mentioned results we assumed that the €t POs
representing the given partial language satisfies cergginnical requirements. More
precisely, L was assumed to be prefix and sequentialization closed, sinde par-
tial languages are the only candidates as models of the equrestial behaviour of a
marked p/t-net. Moreover, we required that LPOs which aieinflict (describe alter-
native executions) have disjoint node sets (for the exaatdbdefinitions we refer to
[10]). We showed that such representations always existeSour approach is based
on the results in [10], we require analogous technical pitogsefor the representation
L of the specified stratified language. As in the p/t-net cagerib restriction for the
synthesis problem to consider only such representatiopgedik and sequentialization
closed stratified languages.

In examples we will always give such by aset of minimal LSOsf L (minimal
LSOs of L are not an extension of some other LSQLip such that each LSO ih is an
extension of some prefix of one of these minimal LSOs. Thusyesat of LSOs which
are not extensions of each other can be interpreted as aegpadion of a stratified lan-
guage by minimal LSOs. For example the four LSOs in Figureptasent the stratified
language that exactly coincides with the stratified languafgexecutions given by the
non-sequential behaviour of the pti-net on the left of Feglr

The main aim of this paper is the generalization of the red&fmition to our setting
such that (1) and (2) hold for stratified languade®.r.t. pti-nets. With such a notion
of regions based on stratified languages, the saturateibf=ps-net w.r.t. a stratified
languagel is directly defined by the set of all regions: Every region/oflefines a
place of the saturated feasible pti-net. This is the basisffective solution algorithms
for the synthesis problem considered in this paper: In tise o&[1] as well as [10] (for
the approach of [10] we developed a respective algorithrfifide partial languages in
the recent paper [9]) algorithms for the calculation of &niepresentations of the set
of regions were deduced. In the conclusion we argue why shidso possible in our
setting. A detailed elaboration of this topic will be theuisf further publications.

4 Regions of Stratified Languages (w.r.t. Pti-nets)

In this section we extend the notion of regions known foripaldnguages and p/t-nets
to the setting of pti-nets. In [10] it is shown that the regai a partial language in the
context of p/t-nets exactly correspond to the feasiblegdar.r.t. the partial language.
Our aim is to show the same for stratified languages and pdi-ne



Fix a marked pti-net N, mg), N = (P, T, F,W,I), and an LSCS = (V,<,,)
with [ : V' — T. Assume thasS is enabled to occur w.r.{N, mg). Since the inhibitor
relation] of (N, myg) restricts the behaviour of the underlying p/t-QBt T, F, W, my),

S is then also enabled w.r.t. the p/t-i@t’, mg) = (P, T, F, W, mq) underlyingN. In

a p/t-net, transitions which can be executed synchronaasiyalso be executed concur-
rently. Therefore, also the LPRog = (V, <, 1) (omitting the "not later than” relation)
underlyingS is enabled w.r.t. the p/t-nétN’, m,). Altogether, for a set of enabled
LSOs w.r.t.(IN, mg), the LPOs underlying these LSOs are enabled w.r.t. the lyidgr
p/t-net(N’, my). Considering a one place-n@¥, m) as in the definition of feasible
places, it becomes clear that we have the following necgssardition for a feasible
placep w.r.t. a stratified languagg: The placey’ underlyingp defined by omitting the
inhibitor relation fromp is feasible w.r.t. the underlying partial language coirsisof
the LPOs underlying the LSOs from

Lemma 1. Let L be a stratified language with transition labélsand letZ’ = {(V, <
0 | (V,=,C,l) € L} bethe partial language underlying. Then for any place
feasible w.r.t.L (in the pti-net context) the plage underlyingp, defined byV (p',t) =
W{(p,t), W(t,p') = W(t,p),I(p,t) = w for everyt € T andmg(p’) = mq(p), is
feasible w.r.t.L’ (in the pti-net as well as the p/t-net context).

That means, any plagefeasible w.r.t.L can be constructed from a plagewhich is
feasible w.r.t. the underlying partial languafyeand has inhibitor weight&(p’, t) = w
(for every transitiont € T') by adding appropriate (respectively feasible) inhibitor
weights(p,t). In particular, every place feasible w.r.t.L fulfilling I(p,t) = w for
every transitiont € T is feasible w.r.t.L’. On the other hand also the reverse holds:
Every placep’ feasible w.r.t.L’ is feasible w.r.t.L because the enabledness of the un-
derlying LPOs fromZ’ w.r.t. the one place net defined pyimplies the enabledness of
the original LSOs fromL w.r.t. this net (since they have more causal ordering). Con-
sequently, the sets of feasible plagewith I(p,t) = w for everyt € T coincide for
L and[l'. SinceL’ is a partial language and the restrictibp, t) = w corresponds to
p/t-net places, we can characterize these places usinyebeytof regions for partial
languages and p/t-nets from [10]: The p/t-net places féasil.t. the partial language
L’ are exactly the places defined by regions.éf Thus, we can characterize the set
of all feasible placep w.r.t. L fulfilling I(p,t) = w for everyt € T with the regions
theory of [10]. Moreover, from Lemma 1 we know that any furthkace feasible w.r.t.

L having inhibitor weights not equal to coincides with one of these feasible plages
(fulfilling I(p,t) = w for everyt € T') except of the inhibitor weights.

As a consequence, the regions definition in our setting isdaa the regions def-
inition for partial languages and p/t-nets. More precisely start with p/t-net regions
of the underlying partial languag€. This leads to the set of feasible plagetulfill-
ing I(p,t) = w for everyt € T as described above. Then we examine for each such
p which other inhibitor weight combinationgp, t) (preserving the flow relation and
the initial marking) also lead to feasible places. For theswse that incrementing an
inhibitor weight alleviates the behavioural restrictiditioe respective inhibitor arc. In
particular the set of enabled step sequences and the set@ft®ns increases. Conse-
guently incrementing the inhibitor weight of a feasibleqaabviously leads again to a



feasible place (since the resulting places are causabyréstrictive). That means, con-
sidering a feasible plageas above wit (p, t) = w for everyt € T', there is a minimal
valuel,,.,(p,t) € NU{w} for the inhibitor weight to every single transitioisuch that
the following holdsy is still feasible if we changé(p, t) so thatl(p,t) > L, (p,t)
and no more feasible if we chandép,t) so that/(p,t) < Inin(p,t) (preserving
I(p,t') = w for everyt’ € T\ {t}). Now it is important that we can combine these
different minimal valued,,...,(p, t) (for differentt € T') to one global lower bound in
the following sense: Preserving the flow relations and titelmarking,p is feasible

if I(p,t) > Lnin(p,t) for everyt € T andp is non-feasible iff (p, t) < Inin(p,t) for
onet € T. This combination to one global bound is possible becaugena fixed flow
relation, the inhibitor arcs have no causal interrelatietwkeen each other. That means
it is possible to check the enabledness of an LSO by teste@tlabledness w.r.t. the
inhibitor arcs one by one. Altogether, the set of feasibbres w.r.t. a stratified lan-
guageL can be defined by the set of p/t-net places (placeih I(p,t) = w for every

t € T) feasible w.r.t.L. together with a global lower bound for the inhibitor weigbfs
each such p/t-net place. Since the feasible p/t-net placas be characterized by the
regions definition for partial languages and p/t-nets, wst fiecall the regions defini-
tion of [10]. Based on this regions definition we then idgntife lower inhibitor weight
boundsl,.;,, (p, t) for the respective placgswhich then leads to the set of all feasible
places w.r.tL. This generalizes the definition of regions from [10].

The idea of defining regions for partial languages in [10]asdd on the notion of
token flow functiondf two eventsv andv’ are ordered in an LPQo = (V, <,1) —
that means < o' — this specifies that the corresponding transititie$ andi(v") are
causally dependent in the sense of an "earlier than” relatioa p/t-net such a causal
dependency arises exactly if the occurrence of the tranditv) produces tokens in
a place, which are consumed by the occurrence of the othesitian /(v"). Such a
place will be defined by a token flow functian Assign to every edgév, v’) of Ipo
a natural numbes (v, v’) representinghe number of tokens which are produced by
the occurrence of(v) and consumed by the occurrencel(f’) in the place to be
defined Thus, a token flow functiom describes the flow weights of a respective place.
Additionally the initial and final marking of the place hawele regarded. Therefore,
we extend an LPQpo by aninitial and final eventrepresenting transitions producing
the initial marking of the place to be defined and consumimgfitmal marking of the
place to be defined (after the occurrencépef). This leads to the-extensioripo® =
(V*, <*,1*) of lpo defined by * = (VU{vg, Umax })s V0, Vmax ¢ V, <*==< U({vo } X
V) UV x {max}) U {(v0, vmax) } I (v0), I* (Vmax) & 1(V), I*(v0) # I*(vmax) and
I*lyv = 1 (v is theinitial event oflpo andvy,.x the final event oflpo). By defining
the token flow function on the edgeslph™ (instead oflpo) also the initial and final
marking can be specified.

The natural numbers assigned to the arclpof by « represent the consumed and
produced tokens of the involved transitions in the respegilace (whereas the tokens
produced by the initial event are interpreted as the initiatking and the tokens con-
sumed by the final event as the final marking). Since the coadwand produced tokens
of a transition in a fixed place is given by the flow weighits we can define the flow
weights of the place by. Clearly, a necessary condition for the definitionlof is



that equally (with the same transition) labelled eventahproduce and consume the
same overall number of tokens w.nt. The number of tokens produced by an event
of an LPOIlpo* = (V*, <*,1*) is called theouttoken flow of) (w.r.t. Ipo and ) de-
fined byOuty,o (v, z) = >, .., z(v,v’). The outtoken flowDutyp, (vo, ), which by
construction represents the initial marking of the plackdalefined by, is called the
initial token flow oflpo (w.r.t. ). The number of tokens consumed by an eveat an
LPOIpo* = (V*,<*,1*) is called theintoken flow ofv (w.r.t. Ipo and x) defined by
Inlpo(’U, z) = Zv’<*v z(v',v).

For the definition of the token flow function we not only haverégard one LPO,
but a partial languagg’ overT'. Thus we have to consider token flow functions on a set
of LPOs. The central property that equally labelled evelntaitd produce and consume
the same number of tokens has to be extended spanning all @R®s given partial
language in this situation. Furthermore, since the initiarking has to be unique, the
number of tokens produced by the initial event has to comtod all regarded LPOs.

Formally we consider a-extensionlpo® = (V*, <*,i*) of eachlpo € L’ such
that (i) for each two LPOS]V, <,1),(V',<’,l) € L' I*(vo) = (I')*(vo) and (ii)
I*(max) 7# (I")*(vmax) (& T) for each two distinctV, <, 1), (V’,<’,1’) € L'. Then
the set(L')* = {lpo* | Ipo € L'} is called+-extension ofl.’. We denoteF . =
U <+ imyen- <" as the set of edges of altextensions of LPOs i A token
flow functionz of L' is a function assigning natural numbers to every edggin,-,
such that the tokens produced and consumed by equallyddbmtents coincide.

Definition 9 (Token flow function of a partial language).Let I’ be a partial lan-
guage, then a function : E;). — Nis calledtoken flow functionof L, if for all
Ipo = (V,<,1),Ipo’ = (V/,<’,1') € (L") and for allv € V*,v' € V'* there holds:
l(v) =1U") = (Inipo(v, ) = Injpe (v, ) A Outipe(v, ) = Outyye (v/, 2)).

Since we required that the initial events of all LPOg ii1)* have the same label,
Definition 9 especially implies that the initial token flowfatl LPOs in L’ are equal. As
explained, the coincidence of the intoken and outtoken ftesectively the consumed
and produced tokens) w.rt. of equally labelled events allows to define tberre-
sponding place,. to = (in the net with transitions given by the node labElsf L) by
W(l(v), ps) = Outipo(v, ), W(ps,l(v)) = Inipe(v, ) @andmg(ps) = Outipe(vo, )
for everylpo € L’ and every node of Ilpo. That means the flow weights of. are
given by the intoken and outtoken flow of the LPO-events awrdirtitial marking by
the initial token flow of the LPOs. In [10] the regions of a palrtanguagel’ are ex-
actly the token flow functions of’ as defined here. The respective feasible places are
the corresponding places.

We are now interested in token flow functions of the partiagiaagel.’ underlying
the given stratified language Thereto we formally define token flow function of a
stratified languages a token flow function of its underlying partial language:

Definition 10 (Token flow function of stratified languages)Let L. be a stratified lan-
guage. Then #oken flow functiorof L is a token flow function of the partial language
L'={(V,<,))| (V,<,C,Il) € L} underlyingL.

In illustrations we annotate eackrarc of an LSO inL with the value assigned to
the respective arc i’ by a token flow function: (the value0 is not shown). The



non-zero values of assigned to edges starting fram respectively ending im,,,q.
are depicted with small arrows without an initial node respely without a final node.
We only consider minimal LSOs df because the values of a token flow function on
the edges of an LSO already constitute the values on edgesfofgs and extensions
(as in the LPO-case). Figure 3 sketches an example tokendiostion of the stratified
language from Figure 1 and the respective correspondirag pléwith I(p,¢) = w for

all t € T). The intoken and outtoken flow of equally labelled nodesicidie (e.g. all
b-labelled nodes have intoken flowand outtoken flow2 and the initial token flow of
all underlying LPOs i9).

Fig. 3. A token flow function of the stratified language from Figure ridghe corresponding
(feasible) place (with inhibitor weights).

According to the above explanations, the plgeesrresponding to token flow func-
tions z of a stratified languagé now exactly define all feasible places w.ft.with
inhibitor weightsw. In particular, the place in Figure 3 is feasible w.r.t. the given
stratified language. Now it remains to identify the lower bds!/,,.;,, (p,t) (t € T') for
each of these feasible plageésuch thatl (p,t) > L. (p, t) for everyt € T still leads
to a feasible place but I(p,t) < I.n(p,t) for somet € T leads to a non-feasible
placep). These minimal possible inhibitor weights,;,, (p, t) have to be detected with
the token flow functiorn of L. The strategy is as follows: Considering a nedef an
LSO S = (V,<,,1) € L we calculate the minimal inhibitor weigfith(z,v) from
p to I(v) (wherep corresponds ta:), such that the occurrence of the transitign)
according to the causal dependencies givemforS is possible. That means, the event
v in the context of the scenario given Bymust not be prohibited by an inhibitor arc
from p to [(v) in the net ifI(p,I(v)) > Inh(z,v), but it is prohibited by such an arc
if I(p,l(v)) < Inh(x,v). Choosing the inhibitor weighf(p,i(v)) too small leads to
an intermediate marking state of the scendim which a too large number of tokens
in p prohibits the occurrence of Consequently, in order to determine the minimal in-
hibitor weightInh(z, v) not prohibitingv — calledinhibitor valueof v (w.r.t. z) in the
following — it is necessary to calculate the numbers of tekierp for all intermediate
states in whichy can occur according t8. Such states are exactly defined by prefixes
of v. The maximum of all these possible numbers of tokensimsuch a prefix-state
then defines the inhibitor valdeah(z, v) of v, because according to the scenafithe
transition/(v) should be enabled in each of these token allocatiops Biie number of
tokens inp in one such prefix-state can be calculated by the token floatitumz. The
respective number of tokens is given by the number of tokepsifter the execution of
the prefix in the corresponding one-place net, calleditta marking of the prefix w.r.t.



x. By construction, the values afon <*-edges between events of the prefix correspond
to tokens which are produced and consumepl lxy events in this prefix. On the other
hand, the values af on <*-edges from events of the prefix to events subsequent to the
prefix correspond to tokens which are produced by eventseiptafix and remain in

p after the execution of the prefix. Consequently, the finalkingrof a prefix can be
determined by adding the valuesobn <*-edges leaving the prefix.

Definition 11 (Final marking of prefixes). Let L be a stratified language andbe a
token flow function of.. LetS’ = (V’, </, ’, ') be a prefix ofS = (V,<,,l) € L
andug be the initial event ofpos = (V*, <*,1*). Thefinal marking ofS’ (w.r.t. z) is
denoted and defined by.s/ (v) = 3-, v yavr sy T(Us0) + 30,0y 2(v0,v).

The final marking of a prefix w.r.tz can equivalently be calculated by firing the
transitions corresponding to the prefix in the one-placewitét the placep defined by
x (i.e. it is independent from the concrete token flow disttitru 2 and only depen-
dent onp): ms/ () = X v, vgvr, u<o T V) + 2 gy 2(V0,0) = 30 vy
Doz x(vyw) =3 vy 2(w,v)) = Out(ve, ) = >, oy (In(v, ) — Out (v, x)) =
mo(p) = D ,ev (W(p, U(v)) = W(l(v),p)) (the first equation follows since the values
on edges withifi’’ cancel each other out).

Summarizing, the calculation &fih(z, v) is achieved by identifying all prefixes of
v and calculating the final marking w.ri. for each such prefix. The maximum over
all these numbers givdah(z, v); the inhibitor valueinh(z, v) specifies how small the
inhibitor weightZ(p, I(v)) may minimally be without prohibiting the event

Definition 12 (Inhibitor value). Let L be a stratified language; be a token flow func-
tion of L andv be an event of an LSO € L. Theinhibitor valuelnh(z, v) of v w.r.t. «
is defined bynh(z,v) = max{ms/(x) | S’ is prefix ofv w.r.t. S}.

Figure 4 shows the token flow function from Figure 3 supplete@mwith the in-
hibitor values of all nodes (depicted in circles attachedh®s nodes). For example,
consider the=-labelled node of the first LSO (from left). This node has fpugfixes:
the empty prefix with final marking, two prefixes consisting of onelabelled node
each with final marking and a prefix with botlu-labelled nodes and final markir2g

Fig. 4. The token flow function from Figure 3 supplemented with thkibitor values of all
LSO nodes and the feasible place corresponding to the riaspeegion with minimal inhibitor
weights.

Having determinednh(x, v) for all nodesv of all LSOs in L one can specify the
minimal inhibitor weight/ (p, t) fromp to some transitionsuch that ne-labelled event



is prohibited by the supremum of dlih(z, v) for eventsv labelled byt. This leads to
I..n(p, t) because the fact that no suchabelled event is prohibited by the inhibitor
weightI(p, t) exactly describes that the plaees still feasible with this inhibitor weight
I(p,t) (instead otv): I,yin(p, t) = sup({Inh(z,v) | v € Vi,l(v) =t} U{0}), where
Ve = U < cper V is the setof all nodes of. That means we calculate the inhibitor
values of all nodes (over all LSOs df) w.r.t. a given token flow function: using
the method described above. The suprema of all inhibitaresabf equally labelled
nodes lead to the minimal inhibitor weights defining a felesfidace w.r.t.L. which
corresponds ta:. These minimal inhibitor weight8(p,t) = L., (p,t) represent the
strongest behavioural restriction through inhibitor af@msthe placep defined byx
guaranteeing the feasible-property. Thiagions of stratified languages.r.t. pti-nets
are defined by token flow functions(defining p/t-net places) attached with inhibitor
weight mappingd : T — N U {w} determining an inhibitor weight to every transition
t € T 'which exceed$,,;, (p, t):

Definition 13 (Region).A regionof a stratified languagé. with labelsT" w.r.t. pti-nets
is atupler = (x,I) wherez is a token flow function df andI : 7' — NU{w} is a map-
ping assigning inhibitor weights to all transitions sayisfg I(t) > sup({Inh(z,v) |
v eV, l(v)=t}Uu{0}).

Theplacep, (in a net with transition sef’) corresponding to a region= (z, I) of
L is defined by the flow weights and the initial marking of theg}a. corresponding to
the token flow functiom (i.e. W (i(v), pr) = Outipo(v, z), W (py, {(v)) = Inipo(v, z)
andmg(p,) = Outipe(vo, z) for LPOslpo underlying LSOs irL) and the inhibitor
weightsI (p,.,t) = I(t) fort € T.

The token flow function: in Figure 4 together with the mappidgyiven byI(a) =
3,I(b) = 3,I(c) = 2 defines a regiom = (z,I). In fact this is the respective region
with minimal inhibitor weights, i.er’ = (x,1’) is also a region i’ > I but no region
if I’ # 1. On the right the feasible plagecorresponding te is depicted.

The main theorem of this paper showing the consistency ddltloge regions defini-
tion now states (1) and (2) (compare Section 3) in this gettis proof essentially uses
the definition of the enabledness of an LSO via the enabledofeits linearizations.
According to the following lemma the enabledness of an eaéiet some prefix of an
LSO can be examined on the set of its linearizations.

Lemma 2. LetS = (V, <, C) be an so-structurdy” C V andv € V. ThenV’ defines
a prefix ofv w.r.t. S if and only if there is a linearizatios’ € lin(S) such thatV’
defines a prefix of w.r.t. §’.

Proof. Theif-statement clearly follows fror§’ © S.

For theonly if-statement we construct a sequence of eventigets V,, with V' =
Viu...UV, definingS’ through<s'= U;_; Vi x V; andCs= ((U; Vi x V))U <&
)\ idy as follows:V; = {v € V! | W' € V' : v L v}, Vo = {ve V' \W |
Yo' e V'\Vp v £ v} and so on, i.e. we defing; C V' as the set of nodes
{v eV\ (U;;ll Vi) | Yo' e VI (U;;ll V;) + v* 4 v} which are minimal w.r.t.
the restriction of< onto the node sét” \ (U;;ll V;), aslong ad’" \ (U;;ll V;) # 0.



Then continue with the same procedurelon V' = V' \ (U;:1 Vi),ieVigr ={ve
VA (Ui V) | W' € V\ (U, V) : v/ 4 v} and so on. By constructiohi” is a

=1 "J
prefix (é)fv) w.r.t. §’. A straightforward computation also yield$ € lin(S).
Theorem 2. Given a stratified languagé with set of labelsl™: (1) Every place cor-
responding to a region of is feasible w.r.t.. and(2) every feasible place w.r.i. is
corresponding to a region df.

Proof. (1): Let p be corresponding to a region= (z,I) of L. We have to show that
S € L is enabled w.r.t. the one-place ¥, m,) havingp as its only place. Since

is a token flow function (called region in [10]) of the partiahguagel.’ underlyingL
the main result of [10] tells us that the LA@os € L’ underlyingS is enabled w.r.t.
the placep, corresponding ta:. Consequently als6 (sincelin(S) C lin(lpog))) is
enabled w.r.tp,.. In order to show thaf is enabled w.r.tp (differing from p,. only in
the inhibitor weights), we consider a sequence of transiéiepss = 7, ... ,, whose
underlying LSQOS, is a linearization ofS. We have to show that is an enabled step
occurrence sequence @V, mg). For this, we show inductively that i, = 71 ... 7%

is an enabled step occurrence sequence, thenis a transition step enabled in the
markingm reached after the execution ef, for 0 < k& < n — 1. The above con-
siderations § enabled w.r.tp,) already imply the first condition of Definition 2 that
m(p) = Yier,., Te+1 ()W (p, t). It remains to verify the condition of Definition 2
thatm(p) < I(p,t) for each transition € 7,1. If Sp, = (Vi, <k, Ck, lx) is the LSO
underlyingoy, andS, 2 S is the LSO underlyingr, thenS,,, is a prefix of an event
v e Vwithi(v) = tw.rt.S,. By Lemma 2V} also defines a prefi&;, of v w.r.t. S. Itis
enough to show that(p) = ms, (z), sincems, (x) < Inh(z,v) < I(l(v)) = I(p,t)
(Definitions 12 and 13)m(p) = mo(p) — Sy Y, ()W (p,1) = W (t,p)) =
mo(p) = D yey, (W(p,1(v)) = W(l(v),p)) = ms, () (compare the remarks to Defi-
nition 11).

(2): Letp be feasible w.r.tL. Then, by Lemma 1 the plagéunderlyingp is feasible
w.r.t. the partial languagg’ underlyingL. The main result of [10] now states that there
is a token flow function: of I’ (called region in [10]) generating. We show now that
r = (x,I(p,-)) is a region ofL (according to Definition 13). The first part thatis
a token flow function ofL is clear sincer is a token flow function ofL’. It remains
to showI(p,t) > sup({Inh(z,v) | v € Vi,l(v) = t} U {0}). For this letv € V
forS = (V,<,C,l) € L with i(v) = t andS’ be a prefix ofv defined byV’. We
have to show thatns/ (z) < I(p,t) (compare Definition 12). By Lemma 2 there is a
linearizationS;;,, of S such thal’” also defines a prefi&/,, of v w.r.t. S;;,,. SinceS is
enabled w.r.t. the one-place ne¥, m,) havingp as its only place, there is an enabled
step occurrence sequenge= 7 ..., of (N, mg) whose underlying LS®, equals
Siin. Since prefixes are downward-closed, a prefix’ = 7...7, (m < n) of o
with [(v) = t € 7,11 must exist which corresponds &),,,. In other words, the LSO
S, underlyinge’ equalsSj,,,. It is enough to show now that(p) = ms:(z) for the
markingm reached after the execution@fin (N, mg), sincem(p) < I(p, t) for each
transitiont € 7,,,+1. The necessary computation is as in (1).

Thus the set of all feasible places and therefore a solutiotih& synthesis problem
can be derived from the set of regions.



5 Conclusion

In this paper we introduced the notion of regions for a (dagsnfinite) set of LSOs
— called stratified language — describing the behaviour di-agi. Given a stratified
languagel, using such regions allows to define the saturated feasibtep(NV, m)
w.r.t. L. The set of execution&(N,mg) of (N, mg) includesL and is as small as
possible with this propertyThus, the contribution of this paper is to solve the synthesi
problem satisfactory from the theoretical point of viewr(fbe considered setting).
Practical algorithmic considerations are a topic of furtiesearch (see also below).

The presented approach carries over to the a-posterioars@s of pti-nets, whose
non-sequential scenario-based behaviour is given by LP@sy partial languages.
To define regions for partial languages w.r.t. pti-nets, oae analogously start with
regions of the partial language from [10] not specifyingilitor arcs and then assign
inhibitor values to each node. Now, these inhibitor valuesdetermined as maxima
over all final markings of classical prefixes of nodes of an |.R@ere one has to use
a slightly different definition of final markings. It is moreer possible to adapt the
presented definition of regions to other less general itdnilviet classes, such as p/t-
nets with unweighted inhibitor arcs and elementary netk whibitor arcs. Thereby
in the case of elementary nets one additionally has to retyjatda place defined by
a region must not carry more than one token in each interneediate of an LSO.
This can be ensured by only allowing final markings of prefikes (that means by an
analogous mechanism as used for the definition of inhibitos)aFor step transition
systems and stratified languages which produce the samedga®f step sequences,
it would be interesting to compare our (adapted) definitibnegions for elementary
nets with inhibitor arcs and the definition of regions froni [12]. The relation is not
obvious since several different step transition systemsaeéine the same language of
step sequences. In general the ideas presented in thisghaped also be useful for the
consideration of the synthesis problem of other so-stredbased net classes (such as
nets with read arcs, priorities, reset arcs, etc.) as weleaslasses conceptually similar
to inhibitor nets (e.g. elementary nets and nets with caieati

One of course is interested in practical algorithmic solusiof the synthesis prob-
lem. Basically the regions approach has the problem tha¢ ikean infinite number of
feasible places respectively regions of a stratified laggu@®ur recent publication [9]
tackles this problem for finite partial languages and ptsniee. a special case of the
setting in [10]. Thereto the definition of token flow functientranslated into a finite
integer system of homogenous inequatidnsk > 0: The finite vectox represents the
token flow function and the inequations reflect the condgionDefinition 9 and en-
sure positive token flows(> 0). It is shown that one can calculate a finite set of basis
solutions of this system which defines a set of places spgratiifeasible place$That

® Note that such a region based approach is not appropriateda fpti-net( N, mo) such that
L(N,mo) C LandL(N,mo) is as large as possible.

6 An alternative approach is to compute finite many regionsctviiseparate” specified be-
haviour from not specified behaviour. It is possible to dedaggpropriate separation properties
from the mentioned algorithm. Such an approach leads toferelift finite representation of
the saturated feasible net.



means the net consisting only of these finite, algorithryja#terminable set of places
has the same set of executions as the saturated feasibleuntstermore an algorithm
testing if this net has the behaviour specified by the finirtigddanguage is shown. In
the setting of this paper a similar approach for the effecsiynthesis of pti-nets from
finite stratified languages is possible, i.e. it is possibledlculate finitely many basis
regions spanning the set of all regions (using an adequeatgiation system). The for-
mal evolution and proofs for this approach including comjileissues are one of our
recent research projects in this topic.

But this approach still leaves the problem that it does natof@r infinite stratified
languages. For algorithmic purposes an infinite stratifegjliage first has to be finitely
represented. This problem is strongly connected to thdaimpioblem in the case of
p/t-nets and partial languages which is one of our centrakatiresearch fields.
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