
Theory of Regions for the Synthesis of Inhibitor Nets
from Scenarios

Robert Lorenz, Sebastian Mauser, and Robin Bergenthum

Department of Applied Computer Science,
Catholic University of Eichstätt-Ingolstadt,

firstname.lastname@ku-eichstaett.de

Abstract. In this paper we develop a theory for the region-based synthesis of
system models given as place/transition-nets with weighted inhibitor arcs (pti-
nets) from sets of scenarios describing the non-sequentialbehaviour. Scenarios
are modelled through labelled stratified order structures (LSOs) considering ”ear-
lier than” and ”not later than” relations between events [6,8] in such a way that
concurrency is truly represented.
The presented approach generalizes the theory of regions wedeveloped in [10] for
the synthesis of place/transition-nets from sets of labelled partial orders (LPOs)
(which only model an ”earlier than” relation between events). Thereupon con-
crete synthesis algorithms can be developed.

1 Introduction

Synthesis of Petri nets from behavioural descriptions has been a successful line of re-
search since the 1990ies. There is a rich body of nontrivial theoretical results and there
are important applications in industry, in particular in hardware design [3], in control of
manufacturing systems [15] and recently also in workflow design [13, 14].

The synthesis problem is the problem to construct, for a given behavioural speci-
fication, a Petri net of a considered Petri net class such thatthe behaviour of this net
coincides with the specified behaviour (if such a net exists). There exist theories for
the synthesis of place/transition-nets (p/t-nets) from behavioural models describing se-
quential semantics [1], step semantics [1] and partial order semantics [10]. There are
also sequential, respectively step semantics, based approaches for the synthesis of ele-
mentary nets [4, 5] and extensions to elementary nets with inhibitor arcs [2, 11, 12].

In this paper we generalize the synthesis theory for partialorder semantics from
[10] to p/t-nets with weighted inhibitor arcs (pti-nets). In [10] the behavioural specifi-
cation is given by a set of labelled partial orders (LPOs) – a so called partial language –
interpreted as a scenario-based description of the non-sequential behaviour of p/t-nets.
The aim in [10] is the characterization and synthesis of a p/t-net whose behaviour co-
incides with a given partial language. That means, the LPOs of the partial language
should exactly be the partially ordered executions of the searched p/t-net. Note hereby
that partial languages regard the most general concurrencyrelationships between events
(in contrast to sequential semantics considering no concurrency relations and step se-
mantics considering only restricted transitive concurrency relations).

The synthesis of the p/t-net is based on the notion of regions: The p/t-net synthesized
from a partial language inherits its transitions from the event labels of the LPOs which
in turn describe the respective occurring actions. Throughplaces causal dependencies
between transitions are added restricting the set of executions. The idea is to add all
places which do not restrict the set of executions too much inthe sense that they do
not prohibit the executability of any LPO specified in the partial language. These places
are called feasible (w.r.t. the given partial language). Adding all feasible places yields
a p/t-net – the so called saturated feasible p/t-net – which has a minimal set of partially
ordered executions including the specified partial language (among all p/t-nets). Con-
sequently the saturated feasible p/t-net solves the synthesis problem or there exits no
solution of the problem. The general approach of a theory of regions is to determine
feasible places by so called regions of the behavioural model.1 As the main result in
[10] we proposed a notion of regions for partial languages and showed that the set of
regions exactly defines the set of feasible places. In this paper we lift this approach to
the level of pti-nets. That means we generalize the notion ofregions to a scenario-based
behavioural model of pti-nets and show that these regions exactly define feasible places.

In the following we introduce the scenario-based behavioural model of pti-nets con-
sidered in this paper. We will examine the so called a-priorisemantics of pti-nets [8]
in which synchronicity of events is explicitly regarded.2 Thus, as the model of non-
sequential behaviour we consider a generalization of LPOs –so called labelled strati-
fied order structures (labelled so-structures or LSOs) [6, 8].3 That means, given a pti-net,
scenarios are specified by LSOs with transition names as event labels, and a specified
scenario may be or may not be an execution of the net.

In an LPO ordered events are interpreted as causally dependent in the sense of
an ”earlier than” relation. Unordered events are considered as causally independent
respectively concurrent. That means two events are concurrent, if they can occur in
arbitrary order as well as synchronously. Thus, synchronicity cannot be distinguished
from concurrency in the case of LPOs. A situation (1.) in which two eventsa andb can
only occur synchronously or (2.) can occur synchronously and in the ordera → b, but
not in the orderb → a, cannot be modelled with LPOs (obviously in both situations
(1.) and (2.) the events are not concurrent, but synchronousoccurrence is possible). For
these situations LSOs include a ”not later than” relation between events:a ”not later
than” b exactly describes (2.) and a symmetric ”not later than” relation between events
(a ”not later than”b andb ”not later than”a) models (1.). Thus, an LSO is based on an
LPO (the ”earlier than” relation is depicted with solid arcsin illustrations), to which a
”not later than” relation (dashed arcs) between events is consistently added.

In [6] it was explained in detail that the ”earlier than” relation of LPOs is not enough
to describe executions of some Petri net classes such as inhibitor nets under the a-priori
semantics and that LSOs form the adequate behavioural modelfor these net classes. In
Figure 1 this phenomenon is illustrated: A pti-net and four LSOs describing executions

1 For sequential or step semantics this theory lead to polynomial synthesis algorithms [1].
2 There are also alternative semantics of inhibitor nets. Thea-posteriori semantics (which is less

general than the a-priori semantics from a causal point of view) is discussed in the conclusion.
3 Note that just like LPOs in the case of p/t-nets, LSOs can model arbitrary dependency relations

between transition occurrences of pti-nets, i.e. concurrency can be truly represented.

aa

b

c2
2 b

c a

b

a

b

c a

b

a

b

b

c a a

b

b

c a

p

Fig. 1.A pti-net together with some executions.

of the net are depicted. The pti-net has the only inhibitor arc (p, c) with inhibitor weight
two. This arc restricts the behaviour of the net in such a way that the transitionc is only
enabled if additionally to the usual enabledness conditions of p/t-nets the placep con-
tains at most two tokens. That means, through weighted inhibitor arcs it is tested if the
number of tokens in a place does not exceed the inhibitor weight (as an enabledness con-
dition). In the a-priori semantics the respective testing precedes the actual occurrence
of the transition. That means the first LSO (from left) can be interpreted as an execution
of the pti-net in the following sense: In the initial markingc and two instances ofa are
concurrently enabled (accordingly there exist no arcs modelling a causal dependency
between the respective nodes), because the double occurrence ofa produces (at most)
two tokens inp. Therefore the occurrence ofc is not prohibited (because the inhibitor
arc (p, c) has the weight two). Moreover, after any occurrence ofa the transitionb is
once enabled leading to the two solid ”earlier than” arcs between eacha andb. The two
events labelled byb are concurrent. It is now important that after the double occurrence
of a and one occurrence ofb the placep contains three tokens. Therebyc is disabled
by the inhibitor arc(p, c), i.e.b andc cannot occur in the orderb → c (and thereforeb
andc are also not concurrent). However, the two transitions can occur synchronously,
because in this situation the testing procedure (through the inhibitor arc(p, c)) precedes
the occurrence procedure according to the a-priori rule. Thus, it precedes the enhance-
ment of the number of tokens inp from two to three tokens throughb. Furthermore,
the occurrence in orderc → b is obviously possible. Altogether, this behaviour of the
b-labelled events andc can be described as follows:c cannot occur later thanb or ab-
breviatedc ”not later than”b leading to dashed arcs betweenc andb in each case. Thus,
an execution of a pti-net is an LSO, whose events are labelledwith transition names,
such that all transitions can occur in the given ordering andconcurrency relations.

Technically executions will be defined as enabled LSOs. We propose a definition
of enabledness for LSOs generalizing consistently the notion of enabled LPOs. Then
every pti-net has assigned a set of executions (enabled LSOs). These describe the com-
plete non-sequential behaviour of the pti-net, i.e. all possible causality and concurrency
relationships between transition occurrences. Analogously to the notion of a partial lan-
guage as a set of (non-isomorphic) LPOs we denote a set of (non-isomorphic) LSOs
as a stratified language. Therefore, the non-sequential behaviour of a pti-net repre-
sented through the set of all executions of the net is a stratified language. The respective
(scenario-based) synthesis problem can be formulated as follows:

Given: A stratified languageL over a finite set of labels.
Searched: A pti-net whose set of executions coincides with the given languageL, if

such a net exists.

As mentioned, for the less general problem with a partial language as the given be-
havioural model and a p/t-net as the searched system model the problem was solved in
[10] applying the so called theory of regions. A region of a partial language defines a
place by determining the initial marking of that place and the weights on each flow arc
leading to and coming from a transition. A region of a stratified language additionally
has to determine the weights of each inhibitor arc leading toa transition. It turns out
that the notion of regions of stratified languages can be based on the notion of regions
of partial languages. More precisely, omitting the ”not later than” relation of all LSOs
of a stratified language yields a set of LPOs forming the partial language underlying
the given stratified language. To define regions of stratifiedlanguages we start with re-
gions of the underlying partial language ignoring inhibitor arcs and complement these
by ”possible inhibitor arcs” as they are called in [2]. In this aspect the approach is sim-
ilar as in [2, 11, 12] (where the authors started with classical regions of (step) transition
systems and complemented these by ”possible inhibitor arcs”). Roughly speaking, we
add a ”possible inhibitor arc” if in each possible intermediate marking state when exe-
cuting a specified LSO subsequent events are not prohibited by this inhibitor arc. The
identification of such inhibitor arcs is more complicated than for elementary nets and
(step) transition systems (considered in [2, 11, 12]). On the one hand we have to regard
weighted inhibitor arcs. On the other hand the marking states critical for the inhibitor
tests are not directly modelled in LSOs (in contrast to transition systems). Having solved
this problem, as the main theorem of this paper we show that the regions of a stratified
language exactly define all feasible pti-net places (w.r.t.this stratified language). Thus,
the regions of a stratified language define the saturated feasible pti-net. This net has a
minimal set of executions including the given stratified language (among all pti-nets)
and therefore solves the synthesis problem or is the best approximation if no solution
exists. This solves the synthesis problem satisfactory from the theoretical point of view
(for the considered setting). Practical algorithmic considerations are a topic of further
research (see also the conclusion for a brief discussion).

The paper is structured as follows: First the basic notions of pti-nets and enabled
LSOs are introduced (section 2). Then in section 3 the general fundamentals of the
region based synthesis are developed and in section 4 the theory of regions is concretely
evolved for the formulated synthesis problem.

2 Pti-nets

In this section we recall the basic definitions ofpti-netsand introduceenabled stratified
order structuresasexecutionsof pti-nets (leading to a formal model of scenario-based
non-sequential semantics of pti-nets).

By N we denote the non-negative integers and byN+ the non-negative integers
excluding0. We additionally denoteω an infinite integer, i.e.n < ω for n ∈ N. Given
a finite setA, the identity relation onA is denoted byidA and the set of all multi-sets
overA is denoted byNA (form ∈ NA we writea ∈ m if m(a) > 0).

A netis a triple(P, T, F), whereP is a set ofplaces, T is a finite set oftransitions,
satisfyingP ∩ T = ∅, andF ⊆ (P ∪ T)× (T ∪ P) is aflow relation. Let (P, T, F) be
a net andx ∈ P ∪ T be an element. Thepreset•x is the set{y ∈ P ∪ T | (y, x) ∈ F},

and thepost-setx• is the set{y ∈ P ∪ T | (x, y) ∈ F}. Given a setX ⊆ P ∪ T , this
notation is extended by•X =

⋃
x∈X •x andX• =

⋃
x∈X x•.

A place/transition net(shortlyp/t-net) is a quadruple(P, T, F,W), where(P, T, F)
is a net andW : F → N+ is aweight function. We extend the weight functionW to
pairs of net elements(x, y) ∈ (P × T) ∪ (T × P) with (x, y) 6∈ F byW (x, y) = 0.

Definition 1 (Pti-net). A pti-netN is a five-tuple(P, T, F,W, I), where(P, T, F,W)
is a p/t-net andI : P × T → N∪ {ω} is theweighted inhibitor relation. If I(p, t) 6= ω,
then(p, t) ∈ P × T is called(weighted) inhibitor arcandp is an inhibitor place oft.

A markingof a pti-netN = (P, T, F,W, I) is a functionm : P → N (a multi-set
overP) assigning a number of tokens to each place. A transitiont can only be executed
if (in addition to the well-known p/t-net occurrence rule) eachp ∈ P contains at most
I(p, t) tokens. In particular, ifI(p, t) = 0 thenpmust be empty.I(p, t) = ω means that
t can never be prevented from occurring by the presence of tokens in p. In diagrams,
inhibitor arcs have small circles as arrowheads. Just as normal arcs, inhibitor arcs are
annotated with their weights. Now however, the weight0 is not shown. Amarked pti-
net is a pair(N,m0), whereN is a pti-net andm0 is a marking ofN called initial
marking. Figure 1 shows a marked pti-net.

According to the a-priori semantics of pti-nets, the inhibitor test for enabledness of
a transition precedes the consumption and production of tokens in places. A multi-set
(a step) of transitions is (synchronously) enabled in a marking if in this marking each
transition in the step obeys the inhibitor constraints before the step is executed.

Definition 2 (Occurrence rule, a-priori semantics).Let N = (P, T, F,W, I) be a
pti-net. A multi-set of transitionsτ (a step) is (synchronously) enabled to occur in a
markingm (w.r.t. the a-priori semantics)if m(p) ≥

∑
t∈τ τ(t)W (p, t) andm(p) ≤

I(p, t) for each transitiont ∈ τ (for every placep ∈ P).

Theoccurrenceof a step (of transitions)τ leads to the new markingm′ defined by
m′(p) = m(p)−

∑
t∈τ τ(t)(W (p, t)−W (t, p)) (for everyp ∈ P). We writem

τ
−→ m′

to denote thatτ is enabled to occur inm and that its occurrence leads tom′. A finite
sequence of stepsσ = τ1 . . . τn, n ∈ N is called astep occurrence sequence enabled
in a markingm and leading tomn, denoted bym

σ
−→ mn, if there exists a sequence

of markingsm1, . . . ,mn such thatm
τ1−→ m1

τ2−→ . . .
τn−→ mn. A step occurrence

sequence can be understood as a possible singleobservationof the behaviour of a pti-
net, where the occurrences of transitions in one step are observedat the same timeor
synchronously. We use the notions for (marked) pti-nets also for (marked) p/t-nets (a
p/t-net can be understood as a pti-net with an inhibitor relation which equalsω).

We now introducestratified order structures(so-structures) to model executions of
pti-nets as sketched in the introduction. We start with somebasic notions preparative to
the definition of so-structures. Adirected graphis a pair(V,→), whereV is a finiteset
of nodesand→⊆ V × V is a binary relation over V called theset of arcs. As usual,
given a binary relation→, we writea→ b to denote(a, b) ∈→. Two nodesa, b ∈ V are
calledindependentw.r.t. the binary relation→ if a 6→ b andb 6→ a. We denote the set of
all pairs of nodes independent w.r.t.→ by co→ ⊆ V × V . A partial order is a directed
graphpo = (V,<), where< is an irreflexive and transitive binary relation onV . If

co < = idV then(V,<) is calledtotal. Given two partial orderspo1 = (V,<1) and
po2 = (V,<2), we say thatpo2 is asequentialization(or extension) of po1 if <1⊆<2.

So-structures are, loosely speaking, combinations of two binary relations on a set of
nodes (interpreted asevents), where one is a partial order representing an ”earlier than”
relation and the other represents a ”not later than” relation. Thus so-structures describe
finer causalities than partial orders. Formally, so-structures arerelational-structures
(rel-structures) satisfying certain properties. A rel-structure is a tripleS = (V,≺,⊏),
whereV is a finite set (ofevents), and≺⊆ V ×V and⊏⊆ V ×V are binary relations
onV . A rel-structureS′ = (V,≺′,⊏′) is said to be anextension(or sequentialization)
of another rel-structureS = (V,≺,⊏), writtenS ⊆ S′, if ≺⊆≺′ and⊏⊆⊏′.

Definition 3 (Stratified order structure [6]). A rel-structureS = (V,≺,⊏) is called
stratified order structure(so-structure) if the following conditions are satisfied for all
u, v, w ∈ V :
(C1)u 6⊏ u. (C3)u ⊏ v ⊏ w ∧ u 6= w =⇒ u ⊏ w.
(C2)u ≺ v =⇒ u ⊏ v. (C4)u ⊏ v ≺ w ∨ u ≺ v ⊏ w =⇒ u ≺ w.

In figures≺ is graphically expressed by solid arcs and⊏ by dashed arcs. According
to (C2) a dashed arc is omitted if there is already a solid arc.Moreover, we omit arcs
which can be deduced by (C3) and (C4). It is shown in [6] that(V,≺) is a partial
order. Therefore so-structures are a generalization of partial orders which turned out
to be adequate to model the causal relations between events of pti-nets under the a-
priori semantics. In this context≺ represents the ordinary ”earlier than” relation (as for
p/t-nets) while⊏ models a ”not later than” relation (see Figure 1 for an example).

For our purposes we have to considerlabelled so-structures(LSOs) where the nodes
of an so-structure represent transition occurrences of a pti-net (nodes are labelled by
transition names as in Figure 1). Formally these are so-structuresS = (V,≺,⊏) to-
gether with aset of labelsT and alabelling functionl : V → T . The labelling function
l is lifted to a subsetY of V in the following way:l(Y) is the multi-set overT given
by l(Y)(t) = |l−1(t) ∩ Y | for everyt ∈ T . We will use the notations for so-structures
also for LSOs as well as for LPOs (since an LPO can be understood as an LSO with
≺=⊏). We will consider LSOs only up to isomorphism. Two LSOs(V,≺,⊏, l) and
(V ′,≺′,⊏′, l′) are calledisomorphic, if there is a bijective mappingψ : V → V ′ such
thatl(v) = l′(ψ(v)) for v ∈ V , v ≺ w ⇔ ψ(v) ≺′ ψ(w) andv ⊏ w ⇔ ψ(v) ⊏′ ψ(w)
for v, w ∈ V . By [S] we will denote the set of all LSOs isomorphic toS. The LSOS is
said torepresentthe isomorphism class[S].

As explained, for the modelling of system behaviour the two relations of an LSO
are interpreted as ”earlier than” resp. ”not later than” relation between transition occur-
rences. If two transition occurrences are in ”not later than” relation, that means they
can be observed (are allowed to be executed) synchronously or sequentially in one spe-
cific order. If two transitions are neither in ”earlier than”relation nor in ”not later than”
relation, they are concurrent and can be observed (are allowed to be executed) syn-
chronously or sequentially in any order. In this sense one LSO ”allows” many observa-
tions (step sequences). If all these observations are enabled step occurrence sequences,
this LSO is calledenabled. Formally the observations ”allowed” by an LSO are defined
through so called total linear extensions of the LSO:

Definition 4 (Total linear so-structures).LetS = (V,≺,⊏) be an so-structure, then
S is calledtotal linearif co≺ = (⊏ \ ≺) ∪ idV . The set of alltotal linear extensions
(or linearizations) of an so-structureS is denoted bylin(S).

Total linear so-structures are maximally sequentialized in the sense that no further
≺- or⊏- relations can be added maintaining the requirements of so-structures according
to Definition 3 (adding a≺- or ⊏- relation leads to causal relations of the formu ⊏ v ≺
u). Therefore the linearizationslin(S) of an so-structureS are its maximal extensions.

With this definition the set of step sequences (observations) ”allowed” by an LSO
is defined as the set of step sequences extending the LSO (thatmeans emerging from
adding causality to the LSO). A step sequence can be easily interpreted as a total linear
LSO: Each step corresponds to a set of events labelled by transitions (transition occur-
rences) which are in ”not later than” relation with each other representing synchronous
transition occurrences. Transition occurrences in different steps are ordered in appro-
priate ”earlier than” relation. Formally, for a sequence oftransition stepsσ = τ1 . . . τn
define the total linear LSOSσ = (V,≺,⊏, l) underlyingσ by: V =

⋃n
i=1 Vi and

l : V → T with l(Vi)(t) = τi(t), ≺=
⋃

i<j Vi × Vj and⊏= ((
⋃

i Vi × Vi)∪ ≺) \ idV .
(Sσ is total linear becauseco≺ =

⋃n
i=1 Vi × Vi). Altogether a step sequenceσ is

”allowed” by an LSOS if Sσ ∈ lin(S). For example the step sequences respectively
observations ”allowed” by the third LSO in Figure 1 can be characterized as follows:
To each of the step sequencescabb, (c+ a)bb, acbb anda(b + c)b ana has to be added
either to one of the steps or representing a one-element stepordered in any position of
the sequence. Any such possibility has to be regarded leading to 29 different ”allowed”
step sequences, e.g. includingcabab, (c+ 2a)bb, 2acbb or a(b+ c)(a+ b).

Note that for each total linear LSOS = (V,≺,⊏, l) there is a step sequenceσ such
thatS andSσ are isomorphic. That means total linear LSOs can be interpreted as step
sequences and the ”allowed” observations of an LSOS in this sense are exactly the step
sequences given bylin(S).

Now we define enabled LSOs w.r.t. a marked pti-net as LSOs whose ”allowed”
observations are also ”allowed” in the marked pti-net. Moretechnically this means that
any step sequence extending the LSO is enabled in the marked pti-net. Such an enabled
LSO is called an execution of the marked pti-net.

Definition 5 (Enabled LSO).Let (N,m0),N = (P, T, F,W, I), be a marked pti-net.
An LSOS = (V,≺,⊏, l) with l : V → T is calledenabled (to occur) w.r.t.(N,m0)
(in the a-priori semantics)if the following statement holds: Each finite step sequence
σ = τ1 . . . τn with Sσ ∈ lin(S) is an enabled step occurrence sequence of(N,m0).

In other words an LSO is enabled if and only if it is consistentwith the step seman-
tics. This reflects the general idea for the modelling of non-sequential system behaviour
that scenarios which are consistent with the non-sequential occurrence rule represent
executions.4 The presented definition is a proper generalization of the notion of enabled
LPOs: An LPOlpo = (V,≺, l) with l : V → T is enabled to occur in a markingm

4 Another possibility for the definition of enabled LSOs is to consider sequences of concurrent
steps of synchronous steps instead of sequences of synchronous steps. But both notions are
equivalent, as discussed in [7].

of a marked p/t-net(P, T, F,W,m0) if each step sequence which extends (sequential-
izes)lpo is a step occurrence sequence enabled inm0. Since in LPOs concurrent and
synchronous transition occurrences are not distinguished, here a step is considered as a
set of events labelled by transitions (transition occurrences) which are concurrent.

Now it is possible to formally check that the LSOs from Figure1 are indeed enabled
LSOs w.r.t. the shown pti-net. For example in the case of the third LSO one would have
to verify that the 29 step sequences ”allowed” by this LSO (these are characterized
above) are enabled step sequences of the marked pti-net.

Having defined single executions of marked pti-nets the behavioural model in our
setting is defined as follows:

Definition 6 (Stratified language).LetT be a finite set. A subsetL ⊆ {[S] | S is an
LSO with set of labelsT } is calledstratified language overT (in the special case of
LPOs it is calledpartial language). Thestratified language of executionsL(N,m0) of
a marked pti-net(N,m0) is defined as the stratified language consisting of all (isomor-
phism classes of) executions of(N,m0).

In the following we only consider stratified languages over setsT such that every
t ∈ T occurs as a label of some node of the stratified language (without explicitly men-
tioning this). Moreover, since we regard LSOs only up to isomorphism, we assume for
the rest of the paper that a stratified languageL over a finite set of labels is given by a
setL of LSOs representingL in the sense that[S] ∈ L ⇐⇒ ∃S′ ∈ L : [S] = [S′].
Note that the stratified language of executions of a marked pti-net (N,m0) is sequen-
tialization closed. That means given an executionS ∈ L(N,m0) of (N,m0), any se-
quentialization ofS is also an execution of(N,m0). This is a simple observation using
Definition 5, since sequentializations have a smaller set oflinearizations. Moreover,
as in the LPO-case, the stratified language of executions of(N,m0) is prefix closed,
where prefixes of so-structures are defined as subsets of nodes which are downward
closed w.r.t. the⊏-relation:

Definition 7 (Prefix). Let S = (V,≺,⊏) be an so-structure and letV ′ ⊆ V be such
thatu′ ∈ V ′, u ⊏ u′ =⇒ u ∈ V ′. ThenS′ = (V ′,≺ |V ′×V ′ ,⊏ |V ′×V ′) is calledprefix
of S. We say that the prefixS′ is defined byV ′. If additionally(u ≺ v =⇒ u ∈ V ′) for
somev ∈ V \ V ′, thenS′ is calledprefix ofv (w.r.t.S).

3 The Synthesis Problem

The behaviour of a pti-net is described by its stratified language of executions. There-
fore, for a stratified languageL the question whether it represents the non-sequential
behaviour of a marked pti-net can be formulated. The answer to this question together
with a concrete characterization of such a net in the positive case are the central issues
of this paper. Technically this synthesis problem can be fixed as follows:

Given: A stratified languageL over a finite set of labels.
Searched: A marked pti-net(N,m0) with L(N,m0) = L if such(N,m0) exists.

In the following we outline the synthesis principles of the so called theory of re-
gions. The concrete regions-based synthesis approach for the synthesis problem of pti-
nets from stratified languages is developed in the next section.

The transition setT of the searched marked pti-net(N,m0) is obviously given
through the finite set of labels of the stratified languageL (equally labelled nodes
of LSOs inL represent occurrences of the same transition). Considering the pti-net
N = (∅, T, ∅, ∅, ∅) with this transition set and an empty set of places, obviously any
LSO in L is an execution of(N, ∅). This is clear because inN there are no causal
dependencies between the transitions. Therefore, every LSO with labels inT is en-
abled. On the other hand, there are also a lot of executions of(N, ∅) not specified in
L, i.e.L(N, ∅)) L. Since we are interested inL(N,m0) = L, we have to restrict the
behaviour of(N,m0) by introducing causal dependencies between transition occur-
rences. Such dependencies between transitions can (only) be realized by adding places
to (N,m0). Any place (with an initial marking) prohibits a certain setof LSOs from
being enabled. The central idea is to add all places to(N,m0) that do not prohibit LSOs
specified inL from being enabled. These places are calledfeasible placesand lead to
the so calledsaturated feasible pti-net(N,m0). For this net of courseL(N,m0) still
includesL, i.e. the specified LSOs inL are enabled w.r.t.(N,m0) constructed in this
way, while it is still not clear ifL(N,m0) = L. But now the marked pti-net(N,m0) has
minimal (w.r.t. set inclusion) non-sequential behaviourL(N,m0) includingL, since all
places not prohibitingL are regarded. That means that(N,m0) is the appropriate can-
didate for the solution of the synthesis problem. If(N,m0) does not solve the problem
there exists no net solving the problem. This is ensured by construction because any
other net solving the synthesis problem in this case would contradict the minimality
property of(N,m0) (since it would have a smaller set of executions includingL).

The construction of the saturated feasible pti-net involves the introduction of places.
Any place consists of an initial marking, a flow and an inhibitor relation to each transi-
tion and a flow relation from each transition. Consequently any placep can be defined
by the value of its initial markingm0(p) together with the flow and inhibitor weights
W (p, t),W (t, p) andI(p, t) for any transitiont ∈ T as depicted on the left of Figure 2
(a flow weight of0 respectively an inhibitor weight ofω means that no such arc exists,
compare section 2). Any placep restricts the behaviour of a marked pti-net by prohibit-
ing a certain set of LSOs from being enabled. This set of LSOs prohibited byp does
only depend on this placep. That means it does not matter if we consider the one-place
net havingp as its only place or a marked pti-net with a lot of places includingp. More
precisely, an LSO is enabled w.r.t. a marked pti-net(N,m0), N = (P, T, F,W, I), if
and only if it is enabled w.r.t. every respective one-place net (for everyp ∈ P). Regard-
ing a given stratified languageL the behavioural restriction of such a placep can be
feasibleor non-feasible, i.e. too restrictive, in the following sense (F ,W , I andm0 are
determined by the definition ofp – an example of a feasible and a non-feasible place is
illustrated in Figure 2):

– Non-feasible placesp w.r.t. L: There exists an LSOS ∈ L, which is not enabled
w.r.t. the one-place pti-net(N,m0),N = ({p}, T, F,W, I), i.e.L 6⊆ L(N,m0).

– Feasible placesp w.r.t.L: Every LSOS ∈ L is enabled w.r.t. the one-place pti-net
(N,m0),N = ({p}, T, F,W, I), i.e.L ⊆ L(N,m0).

a

b

c?

?
?

? ?

?

?

?

?

?

a

b

c2

2
ωωωω

ωωωω 0

0

0

1

1

0

a

b

c1

2

0

0

0

1

1

0

(i) possible place (ii) feasible place (iii) not feasible place

ωωωω

ωωωω

Fig. 2. (i) The general structure of a place.(ii) A feasible place w.r.t. the stratified language from
Figure 1 (it coincides with the placep in Figure 1).(iii) A non-feasible place w.r.t. the stratified
language from Figure 1. The inhibitor arc to the transitionc (in contrast to (ii) with inhibitor
weight 1 instead of 2) is causally too restrictive. To verifythis recall the considerations in the
context of Figure 1 in the Introduction.

Every net solving (positively) the synthesis problem necessarily does not contain a
non-feasible place. Therefore the crucial idea is to consider the marked pti-net(N,m0),
N = (P, T, F,W, I), containing exactly all feasible places w.r.t.L. Considering the
above explanations this so calledsaturated feasible pti-net(N,m0) guarantees that any
LSOS ∈ L is enabled w.r.t.(N,m0) (called property (A) of the saturated feasible pti-
net in the following). Moreover, the saturated feasible pti-net (N,m0) can have more
executions than specified byL, but there is no marked pti-net with a smaller set of
executions includingL (called property (B) of the saturated feasible pti-net in the fol-
lowing). This is true because any other net(N ′,m′

0) whose set of executionsL(N ′,m′
0)

includesL mandatory has less places than(N,m0) since it may only contain feasible
places (it holdsL(N ′,m′

0) ⊇ L(N,m0) if (N ′,m′
0) has less places than(N,m0)).

Definition 8 (Saturated feasible pti-net).LetL be a stratified language over the set
of labelsT , then the marked pti-net(N,m0), N = (P, T, F,W, I), such thatP is the
set of all places feasible w.r.t.L is calledsaturated feasible pti-net (w.r.t.L).

The saturated feasible pti-net(N,m0) w.r.t.L in general has infinitely many (fea-
sible) places. It fulfills (A)L ⊆ L(N,m0) and (B)L(N,m0) ⊆ L(N ′,m′

0) for each
marked pti-net(N ′,m′

0), N
′ = (P ′, T, F ′,W ′, I ′), fulfilling L ⊆ L(N ′,m′

0) (thus
fulfilling (A)). For the solution of the synthesis problem itis enough to consider only
the saturated feasible pti-net, because either this net solves the synthesis problem or
there is no solution for the problem:

Theorem 1. LetL be a stratified language and(N,m0), N = (P, T, F,W, I), be the
saturated feasible pti-net w.r.t.L, thenL(N,m0) 6= L impliesL(N ′,m′

0) 6= L for
every marked pti-net(N ′,m′

0),N
′ = (P ′, T, F ′,W ′, I ′).

Property (B) even tells us more than this theorem: In the caseL(N,m0) 6= L,
L(N,m0) is the best upper approximation toL. That means the saturated feasible pti-
net is the best approximation to a system model with non-sequential behaviour given
byL among all marked pti-nets allowing the behaviour specified by L.

Altogether, in order to solve the synthesis problem in our setting, we want to cal-
culate the saturated feasible pti-net. Therefore we are interested in a characterization
of feasible places based onL that leads to an effective calculation method for feasible

places. In the p/t-net case such a characterization was developed for behavioural mod-
els w.r.t. sequential semantics and step semantics [1] withthe notion ofregionsof the
behavioural model. These approaches were generalized in [10] to partial languages. In
the latter case it was shown that every region of a partial languageL defines a place
such that

(1) Each place defined by a region ofL is feasible w.r.t.L.
(2) Each place feasible w.r.t.L can be defined by a region ofL.

In [10] we used a slightly different terminology as in this paper. In particular, we
did not use the notion of feasible places there but their characterization by the so called
token flow property. To prove the mentioned results we assumed that the setL of LPOs
representing the given partial language satisfies certain technical requirements. More
precisely,L was assumed to be prefix and sequentialization closed, sincesuch par-
tial languages are the only candidates as models of the non-sequential behaviour of a
marked p/t-net. Moreover, we required that LPOs which are inconflict (describe alter-
native executions) have disjoint node sets (for the exact formal definitions we refer to
[10]). We showed that such representations always exist. Since our approach is based
on the results in [10], we require analogous technical properties for the representation
L of the specified stratified language. As in the p/t-net case itis no restriction for the
synthesis problem to consider only such representations ofprefix and sequentialization
closed stratified languages.

In examples we will always give suchL by a set of minimal LSOsof L (minimal
LSOs ofL are not an extension of some other LSO inL), such that each LSO inL is an
extension of some prefix of one of these minimal LSOs. Thus every set of LSOs which
are not extensions of each other can be interpreted as a representation of a stratified lan-
guage by minimal LSOs. For example the four LSOs in Figure 1 represent the stratified
language that exactly coincides with the stratified language of executions given by the
non-sequential behaviour of the pti-net on the left of Figure 1.

The main aim of this paper is the generalization of the regiondefinition to our setting
such that (1) and (2) hold for stratified languagesL w.r.t. pti-nets. With such a notion
of regions based on stratified languages, the saturated feasible pti-net w.r.t. a stratified
languageL is directly defined by the set of all regions: Every region ofL defines a
place of the saturated feasible pti-net. This is the basis for effective solution algorithms
for the synthesis problem considered in this paper: In the case of [1] as well as [10] (for
the approach of [10] we developed a respective algorithm forfinite partial languages in
the recent paper [9]) algorithms for the calculation of finite representations of the set
of regions were deduced. In the conclusion we argue why this is also possible in our
setting. A detailed elaboration of this topic will be the issue of further publications.

4 Regions of Stratified Languages (w.r.t. Pti-nets)

In this section we extend the notion of regions known for partial languages and p/t-nets
to the setting of pti-nets. In [10] it is shown that the regions of a partial language in the
context of p/t-nets exactly correspond to the feasible places w.r.t. the partial language.
Our aim is to show the same for stratified languages and pti-nets.

Fix a marked pti-net(N,m0), N = (P, T, F,W, I), and an LSOS = (V,≺,⊏, l)
with l : V → T . Assume thatS is enabled to occur w.r.t.(N,m0). Since the inhibitor
relationI of (N,m0) restricts the behaviour of the underlying p/t-net(P, T, F,W,m0),
S is then also enabled w.r.t. the p/t-net(N ′,m0) = (P, T, F,W,m0) underlyingN . In
a p/t-net, transitions which can be executed synchronouslycan also be executed concur-
rently. Therefore, also the LPOlpoS = (V,≺, l) (omitting the ”not later than” relation)
underlyingS is enabled w.r.t. the p/t-net(N ′,m0). Altogether, for a set of enabled
LSOs w.r.t.(N,m0), the LPOs underlying these LSOs are enabled w.r.t. the underlying
p/t-net(N ′,m0). Considering a one place-net(N,m0) as in the definition of feasible
places, it becomes clear that we have the following necessary condition for a feasible
placep w.r.t. a stratified languageL: The placep′ underlyingp defined by omitting the
inhibitor relation fromp is feasible w.r.t. the underlying partial language consisting of
the LPOs underlying the LSOs fromL.

Lemma 1. LetL be a stratified language with transition labelsT and letL′ = {(V,≺
, l) | (V,≺,⊏, l) ∈ L} be the partial language underlyingL. Then for any placep
feasible w.r.t.L (in the pti-net context) the placep′ underlyingp, defined byW (p′, t) =
W (p, t),W (t, p′) = W (t, p), I(p, t) = ω for everyt ∈ T andm0(p

′) = m0(p), is
feasible w.r.t.L′ (in the pti-net as well as the p/t-net context).

That means, any placep feasible w.r.t.L can be constructed from a placep′ which is
feasible w.r.t. the underlying partial languageL′ and has inhibitor weightsI(p′, t) = ω
(for every transitiont ∈ T) by adding appropriate (respectively feasible) inhibitor
weightsI(p, t). In particular, every placep feasible w.r.t.L fulfilling I(p, t) = ω for
every transitiont ∈ T is feasible w.r.t.L′. On the other hand also the reverse holds:
Every placep′ feasible w.r.t.L′ is feasible w.r.t.L because the enabledness of the un-
derlying LPOs fromL′ w.r.t. the one place net defined byp′ implies the enabledness of
the original LSOs fromL w.r.t. this net (since they have more causal ordering). Con-
sequently, the sets of feasible placesp with I(p, t) = ω for everyt ∈ T coincide for
L andL′. SinceL′ is a partial language and the restrictionI(p, t) = ω corresponds to
p/t-net places, we can characterize these places using the theory of regions for partial
languages and p/t-nets from [10]: The p/t-net places feasible w.r.t. the partial language
L′ are exactly the places defined by regions ofL′. Thus, we can characterize the set
of all feasible placesp w.r.t.L fulfilling I(p, t) = ω for everyt ∈ T with the regions
theory of [10]. Moreover, from Lemma 1 we know that any further place feasible w.r.t.
L having inhibitor weights not equal toω coincides with one of these feasible placesp
(fulfilling I(p, t) = ω for everyt ∈ T) except of the inhibitor weights.

As a consequence, the regions definition in our setting is based on the regions def-
inition for partial languages and p/t-nets. More precisely, we start with p/t-net regions
of the underlying partial languageL′. This leads to the set of feasible placesp fulfill-
ing I(p, t) = ω for everyt ∈ T as described above. Then we examine for each such
p which other inhibitor weight combinationsI(p, t) (preserving the flow relation and
the initial marking) also lead to feasible places. For this we use that incrementing an
inhibitor weight alleviates the behavioural restriction of the respective inhibitor arc. In
particular the set of enabled step sequences and the set of executions increases. Conse-
quently incrementing the inhibitor weight of a feasible place obviously leads again to a

feasible place (since the resulting places are causally less restrictive). That means, con-
sidering a feasible placep as above withI(p, t) = ω for everyt ∈ T , there is a minimal
valueImin(p, t) ∈ N∪{ω} for the inhibitor weight to every single transitiont such that
the following holds:p is still feasible if we changeI(p, t) so thatI(p, t) ≥ Imin(p, t)
and no more feasible if we changeI(p, t) so thatI(p, t) < Imin(p, t) (preserving
I(p, t′) = ω for everyt′ ∈ T \ {t}). Now it is important that we can combine these
different minimal valuesImin(p, t) (for differentt ∈ T) to one global lower bound in
the following sense: Preserving the flow relations and the initial marking,p is feasible
if I(p, t) ≥ Imin(p, t) for everyt ∈ T andp is non-feasible ifI(p, t) < Imin(p, t) for
onet ∈ T . This combination to one global bound is possible because, given a fixed flow
relation, the inhibitor arcs have no causal interrelation between each other. That means
it is possible to check the enabledness of an LSO by testing the enabledness w.r.t. the
inhibitor arcs one by one. Altogether, the set of feasible places w.r.t. a stratified lan-
guageL can be defined by the set of p/t-net places (placesp with I(p, t) = ω for every
t ∈ T) feasible w.r.t.L together with a global lower bound for the inhibitor weightsof
each such p/t-net place. Since the feasible p/t-net placesp can be characterized by the
regions definition for partial languages and p/t-nets, we first recall the regions defini-
tion of [10]. Based on this regions definition we then identify the lower inhibitor weight
boundsImin(p, t) for the respective placesp which then leads to the set of all feasible
places w.r.t.L. This generalizes the definition of regions from [10].

The idea of defining regions for partial languages in [10] is based on the notion of
token flow functions: If two eventsv andv′ are ordered in an LPOlpo = (V,<, l) –
that meansv < v′ – this specifies that the corresponding transitionsl(v) andl(v′) are
causally dependent in the sense of an ”earlier than” relation. In a p/t-net such a causal
dependency arises exactly if the occurrence of the transition l(v) produces tokens in
a place, which are consumed by the occurrence of the other transition l(v′). Such a
place will be defined by a token flow functionx: Assign to every edge(v, v′) of lpo
a natural numberx(v, v′) representingthe number of tokens which are produced by
the occurrence ofl(v) and consumed by the occurrence ofl(v′) in the place to be
defined. Thus, a token flow functionx describes the flow weights of a respective place.
Additionally the initial and final marking of the place have to be regarded. Therefore,
we extend an LPOlpo by aninitial and final event, representing transitions producing
the initial marking of the place to be defined and consuming the final marking of the
place to be defined (after the occurrence oflpo). This leads to the⋆-extensionlpo⋆ =
(V ⋆, <⋆, l⋆) of lpo defined byV ⋆ = (V ∪{v0, vmax}), v0, vmax /∈ V ,≺⋆=≺ ∪({v0}×
V) ∪ (V × {vmax}) ∪ {(v0, vmax)}, l⋆(v0), l⋆(vmax) /∈ l(V), l⋆(v0) 6= l⋆(vmax) and
l⋆|V = l (v0 is the initial event oflpo andvmax the final event oflpo). By defining
the token flow function on the edges oflpo⋆ (instead oflpo) also the initial and final
marking can be specified.

The natural numbers assigned to the arcs oflpo⋆ by x represent the consumed and
produced tokens of the involved transitions in the respective place (whereas the tokens
produced by the initial event are interpreted as the initialmarking and the tokens con-
sumed by the final event as the final marking). Since the consumed and produced tokens
of a transition in a fixed place is given by the flow weightsW, we can define the flow
weights of the place byx. Clearly, a necessary condition for the definition ofW is

that equally (with the same transition) labelled events should produce and consume the
same overall number of tokens w.r.t.x. The number of tokens produced by an eventv
of an LPOlpo⋆ = (V ⋆, <⋆, l⋆) is called theouttoken flow ofv (w.r.t. lpo andx) de-
fined byOutlpo(v, x) =

∑
v<⋆v′ x(v, v′). The outtoken flowOutlpo(v0, x), which by

construction represents the initial marking of the place tobe defined byx, is called the
initial token flow oflpo (w.r.t. x). The number of tokens consumed by an eventv of an
LPO lpo⋆ = (V ⋆, <⋆, l⋆) is called theintoken flow ofv (w.r.t. lpo andx) defined by
Inlpo(v, x) =

∑
v′<⋆v x(v

′, v).
For the definition of the token flow function we not only have toregard one LPO,

but a partial languageL′ overT . Thus we have to consider token flow functions on a set
of LPOs. The central property that equally labelled events should produce and consume
the same number of tokens has to be extended spanning all LPOsof the given partial
language in this situation. Furthermore, since the initialmarking has to be unique, the
number of tokens produced by the initial event has to coincide for all regarded LPOs.

Formally we consider a⋆-extensionlpo⋆ = (V ⋆, <⋆, l⋆) of eachlpo ∈ L′ such
that (i) for each two LPOs(V,<, l), (V ′, <′, l) ∈ L′ l⋆(v0) = (l′)⋆(v0) and (ii)
l⋆(vmax) 6= (l′)⋆(vmax) (6∈ T) for each two distinct(V,<, l), (V ′, <′, l′) ∈ L′. Then
the set(L′)⋆ = {lpo⋆ | lpo ∈ L′} is called⋆-extension ofL′. We denoteE(L′)⋆ =⋃

(V ⋆,<⋆,l⋆)∈(L′)⋆ <⋆ as the set of edges of all⋆-extensions of LPOs inL′. A token
flow functionx of L′ is a function assigning natural numbers to every edge inE(L′)⋆ ,
such that the tokens produced and consumed by equally labelled events coincide.

Definition 9 (Token flow function of a partial language).Let L′ be a partial lan-
guage, then a functionx : E(L′)⋆ → N is calledtoken flow functionof L′, if for all
lpo = (V,<, l), lpo′ = (V ′, <′, l′) ∈ (L′)⋆ and for all v ∈ V ⋆, v′ ∈ V ′⋆ there holds:
l(v) = l′(v′) =⇒ (Inlpo(v, x) = Inlpo′(v′, x) ∧ Outlpo(v, x) = Outlpo′(v′, x)).

Since we required that the initial events of all LPOs in(L′)⋆ have the same label,
Definition 9 especially implies that the initial token flows of all LPOs inL′ are equal. As
explained, the coincidence of the intoken and outtoken flow (respectively the consumed
and produced tokens) w.r.t.x of equally labelled events allows to define thecorre-
sponding placepx to x (in the net with transitions given by the node labelsT of L′) by
W (l(v), px) = Outlpo(v, x), W (px, l(v)) = Inlpo(v, x) andm0(px) = Outlpo(v0, x)
for every lpo ∈ L′ and every nodev of lpo. That means the flow weights ofpx are
given by the intoken and outtoken flow of the LPO-events and the initial marking by
the initial token flow of the LPOs. In [10] the regions of a partial languageL′ are ex-
actly the token flow functions ofL′ as defined here. The respective feasible places are
the corresponding places.

We are now interested in token flow functions of the partial languageL′ underlying
the given stratified languageL. Thereto we formally define atoken flow function of a
stratified languageas a token flow function of its underlying partial language:

Definition 10 (Token flow function of stratified languages).LetL be a stratified lan-
guage. Then atoken flow functionofL is a token flow function of the partial language
L′ = {(V,≺, l) | (V,≺,⊏, l) ∈ L} underlyingL.

In illustrations we annotate each≺-arc of an LSO inL with the value assigned to
the respective arc inL′ by a token flow functionx (the value0 is not shown). The

non-zero values ofx assigned to edges starting fromv0 respectively ending invmax

are depicted with small arrows without an initial node respectively without a final node.
We only consider minimal LSOs ofL because the values of a token flow function on
the edges of an LSO already constitute the values on edges of prefixes and extensions
(as in the LPO-case). Figure 3 sketches an example token flow function of the stratified
language from Figure 1 and the respective corresponding placep (with I(p, t) = ω for
all t ∈ T). The intoken and outtoken flow of equally labelled nodes coincide (e.g. all
b-labelled nodes have intoken flow1 and outtoken flow2 and the initial token flow of
all underlying LPOs is0).

a a

b

c

1 1

2b

c a

b

a

1 1

2 2

b

c a

b

1

a

b

1

b

c a

1

a

b

1

b

c a

p
1

1

22

2

1

1

2

Fig. 3. A token flow function of the stratified language from Figure 1 and the corresponding
(feasible) place (with inhibitor weightsω).

According to the above explanations, the placesp corresponding to token flow func-
tionsx of a stratified languageL now exactly define all feasible places w.r.t.L with
inhibitor weightsω. In particular, the placep in Figure 3 is feasible w.r.t. the given
stratified language. Now it remains to identify the lower boundsImin(p, t) (t ∈ T) for
each of these feasible placesp (such thatI(p, t) ≥ Imin(p, t) for everyt ∈ T still leads
to a feasible placep but I(p, t) < Imin(p, t) for somet ∈ T leads to a non-feasible
placep). These minimal possible inhibitor weightsImin(p, t) have to be detected with
the token flow functionx of L. The strategy is as follows: Considering a nodev of an
LSO S = (V,≺,⊏, l) ∈ L we calculate the minimal inhibitor weightInh(x, v) from
p to l(v) (wherep corresponds tox), such that the occurrence of the transitionl(v)
according to the causal dependencies given forv in S is possible. That means, the event
v in the context of the scenario given byS must not be prohibited by an inhibitor arc
from p to l(v) in the net ifI(p, l(v)) ≥ Inh(x, v), but it is prohibited by such an arc
if I(p, l(v)) < Inh(x, v). Choosing the inhibitor weightI(p, l(v)) too small leads to
an intermediate marking state of the scenarioS in which a too large number of tokens
in p prohibits the occurrence ofv. Consequently, in order to determine the minimal in-
hibitor weightInh(x, v) not prohibitingv – calledinhibitor valueof v (w.r.t. x) in the
following – it is necessary to calculate the numbers of tokens in p for all intermediate
states in whichv can occur according toS. Such states are exactly defined by prefixes
of v. The maximum of all these possible numbers of tokens inp in such a prefix-state
then defines the inhibitor valueInh(x, v) of v, because according to the scenarioS the
transitionl(v) should be enabled in each of these token allocations ofp. The number of
tokens inp in one such prefix-state can be calculated by the token flow functionx. The
respective number of tokens is given by the number of tokens in p after the execution of
the prefix in the corresponding one-place net, called thefinal marking of the prefix w.r.t.

x. By construction, the values ofx on≺⋆-edges between events of the prefix correspond
to tokens which are produced and consumed inp by events in this prefix. On the other
hand, the values ofx on≺⋆-edges from events of the prefix to events subsequent to the
prefix correspond to tokens which are produced by events in the prefix and remain in
p after the execution of the prefix. Consequently, the final marking of a prefix can be
determined by adding the values ofx on≺⋆-edges leaving the prefix.

Definition 11 (Final marking of prefixes). LetL be a stratified language andx be a
token flow function ofL. LetS′ = (V ′,≺′,⊏′, l′) be a prefix ofS = (V,≺,⊏, l) ∈ L
andv0 be the initial event oflpo⋆

S = (V ⋆,≺⋆, l⋆). Thefinal marking ofS′ (w.r.t. x) is
denoted and defined bymS′(x) =

∑
u∈V ′, v 6∈V ′, u≺v x(u, v) +

∑
v 6∈V ′ x(v0, v).

The final marking of a prefix w.r.t.x can equivalently be calculated by firing the
transitions corresponding to the prefix in the one-place netwith the placep defined by
x (i.e. it is independent from the concrete token flow distribution x and only depen-
dent onp): mS′(x) =

∑
u∈V ′, v 6∈V ′, u≺v x(u, v) +

∑
v 6∈V ′ x(v0, v) =

∑
v∈V ′∪{v0}

(
∑

v≺⋆w x(v, w)−
∑

w≺⋆v x(w, v)) = Out(v0, x)−
∑

v∈V ′(In(v, x)−Out(v, x)) =
m0(p) −

∑
v∈V ′(W (p, l(v)) −W (l(v), p)) (the first equation follows since the values

on edges withinV ′ cancel each other out).
Summarizing, the calculation ofInh(x, v) is achieved by identifying all prefixes of

v and calculating the final marking w.r.t.x for each such prefix. The maximum over
all these numbers givesInh(x, v); the inhibitor valueInh(x, v) specifies how small the
inhibitor weightI(p, l(v)) may minimally be without prohibiting the eventv.

Definition 12 (Inhibitor value). LetL be a stratified language,x be a token flow func-
tion ofL andv be an event of an LSOS ∈ L. Theinhibitor valueInh(x, v) of v w.r.t.x
is defined byInh(x, v) = max{mS′(x) | S′ is prefix ofv w.r.t.S}.

Figure 4 shows the token flow function from Figure 3 supplemented with the in-
hibitor values of all nodes (depicted in circles attached tothe nodes). For example,
consider thec-labelled node of the first LSO (from left). This node has fourprefixes:
the empty prefix with final marking0, two prefixes consisting of onea-labelled node
each with final marking1 and a prefix with botha-labelled nodes and final marking2.

a a

b

c

1 1

2b

c a

b

a

1 1

b

c a

b

1

a

b

1

b

c a

1

a

b

1

b

c a

p

22

33

22

33

22 22

33

22 22

33

11

22

33

22 11

22

33

22

3

3

2

2 2 1

1

22

2

1

1

2

33 33

Fig. 4. The token flow function from Figure 3 supplemented with the inhibitor values of all
LSO nodes and the feasible place corresponding to the respective region with minimal inhibitor
weights.

Having determinedInh(x, v) for all nodesv of all LSOs inL one can specify the
minimal inhibitor weightI(p, t) fromp to some transitiont such that not-labelled event

is prohibited by the supremum of allInh(x, v) for eventsv labelled byt. This leads to
Imin(p, t) because the fact that no sucht-labelled event is prohibited by the inhibitor
weightI(p, t) exactly describes that the placep is still feasible with this inhibitor weight
I(p, t) (instead ofω): Imin(p, t) = sup({Inh(x, v) | v ∈ VL, l(v) = t} ∪ {0}), where
VL =

⋃
(V,≺,⊏,l)∈L V is the set of all nodes ofL. That means we calculate the inhibitor

values of all nodes (over all LSOs ofL) w.r.t. a given token flow functionx using
the method described above. The suprema of all inhibitor values of equally labelled
nodes lead to the minimal inhibitor weights defining a feasible place w.r.t.L which
corresponds tox. These minimal inhibitor weightsI(p, t) = Imin(p, t) represent the
strongest behavioural restriction through inhibitor arcsfor the placep defined byx
guaranteeing the feasible-property. Thusregions of stratified languagesw.r.t. pti-nets
are defined by token flow functionsx (defining p/t-net places) attached with inhibitor
weight mappingsI : T → N ∪ {ω} determining an inhibitor weight to every transition
t ∈ T which exceedsImin(p, t):

Definition 13 (Region).A regionof a stratified languageL with labelsT w.r.t. pti-nets
is a tupler = (x, I) wherex is a token flow function ofL andI : T → N∪{ω} is a map-
ping assigning inhibitor weights to all transitions satisfying I(t) ≥ sup({Inh(x, v) |
v ∈ VL, l(v) = t} ∪ {0}).

Theplacepr (in a net with transition setT) corresponding to a regionr = (x, I) of
L is defined by the flow weights and the initial marking of the placepx corresponding to
the token flow functionx (i.e.W (l(v), pr) = Outlpo(v, x), W (pr, l(v)) = Inlpo(v, x)
andm0(pr) = Outlpo(v0, x) for LPOs lpo underlying LSOs inL) and the inhibitor
weightsI(pr, t) = I(t) for t ∈ T .

The token flow functionx in Figure 4 together with the mappingI given byI(a) =
3, I(b) = 3, I(c) = 2 defines a regionr = (x, I). In fact this is the respective region
with minimal inhibitor weights, i.e.r′ = (x, I′) is also a region ifI′ ≥ I but no region
if I

′ 6≥ I. On the right the feasible placep corresponding tor is depicted.
The main theorem of this paper showing the consistency of theabove regions defini-

tion now states (1) and (2) (compare Section 3) in this setting. Its proof essentially uses
the definition of the enabledness of an LSO via the enabledness of its linearizations.
According to the following lemma the enabledness of an eventafter some prefix of an
LSO can be examined on the set of its linearizations.

Lemma 2. LetS = (V,≺,⊏) be an so-structure,V ′ ⊆ V andv ∈ V . ThenV ′ defines
a prefix ofv w.r.t. S if and only if there is a linearizationS′ ∈ lin(S) such thatV ′

defines a prefix ofv w.r.t.S′.

Proof. The if -statement clearly follows fromS′ ⊇ S.
For theonly if -statement we construct a sequence of event-setsV1 . . . Vn with V =

V1 ∪ . . . ∪ Vn definingS′ through≺S′=
⋃

i<j Vi × Vj and⊏S′= ((
⋃

i Vi × Vi)∪ ≺S′

) \ idV as follows:V1 = {v ∈ V ′ | ∀v′ ∈ V ′ : v′ 6≺ v}, V2 = {v ∈ V ′ \ V1 |
∀v′ ∈ V ′ \ V1 : v′ 6≺ v} and so on, i.e. we defineVi ⊆ V ′ as the set of nodes
{v ∈ V ′ \ (

⋃i−1
j=1 Vj) | ∀v′ ∈ V ′ \ (

⋃i−1
j=1 Vj) : v′ 6≺ v} which are minimal w.r.t.

the restriction of≺ onto the node setV ′ \ (
⋃i−1

j=1 Vj), as long asV ′ \ (
⋃i−1

j=1 Vj) 6= ∅.

Then continue with the same procedure onV \ V ′ = V \ (
⋃i

j=1 Vj), i.e.Vi+1 = {v ∈

V \ (
⋃i

j=1 Vj) | ∀v′ ∈ V \ (
⋃i

j=1 Vj) : v′ 6≺ v} and so on. By constructionV ′ is a
prefix (ofv) w.r.t.S′. A straightforward computation also yieldsS′ ∈ lin(S).

Theorem 2. Given a stratified languageL with set of labelsT : (1) Every place cor-
responding to a region ofL is feasible w.r.t.L and (2) every feasible place w.r.t.L is
corresponding to a region ofL.

Proof. (1): Let p be corresponding to a regionr = (x, I) of L. We have to show that
S ∈ L is enabled w.r.t. the one-place net(N,m0) havingp as its only place. Sincex
is a token flow function (called region in [10]) of the partiallanguageL′ underlyingL
the main result of [10] tells us that the LPOlpoS ∈ L′ underlyingS is enabled w.r.t.
the placepx corresponding tox. Consequently alsoS (sincelin(S) ⊆ lin(lpoS))) is
enabled w.r.t.px. In order to show thatS is enabled w.r.t.p (differing from px only in
the inhibitor weights), we consider a sequence of transition stepsσ = τ1 . . . τn, whose
underlying LSOSσ is a linearization ofS. We have to show thatσ is an enabled step
occurrence sequence of(N,m0). For this, we show inductively that ifσk = τ1 . . . τk
is an enabled step occurrence sequence, thenτk+1 is a transition step enabled in the
markingm reached after the execution ofσk for 0 6 k 6 n − 1. The above con-
siderations (S enabled w.r.t.px) already imply the first condition of Definition 2 that
m(p) ≥

∑
t∈τk+1

τk+1(t)W (p, t). It remains to verify the condition of Definition 2
thatm(p) ≤ I(p, t) for each transitiont ∈ τk+1. If Sσk

= (Vk,≺k,⊏k, lk) is the LSO
underlyingσk andSσ ⊇ S is the LSO underlyingσ, thenSσk

is a prefix of an event
v ∈ V with l(v) = tw.r.t.Sσ. By Lemma 2,Vk also defines a prefixSk of v w.r.t.S. It is
enough to show thatm(p) = mSk

(x), sincemSk
(x) ≤ Inh(x, v) ≤ I(l(v)) = I(p, t)

(Definitions 12 and 13):m(p) = m0(p) −
∑k

i=1

∑
t∈τi

τ(t)(W (p, t) −W (t, p)) =
m0(p) −

∑
v∈Vk

(W (p, l(v)) −W (l(v), p)) = mSk
(x) (compare the remarks to Defi-

nition 11).
(2): Letp be feasible w.r.t.L. Then, by Lemma 1 the placep′ underlyingp is feasible

w.r.t. the partial languageL′ underlyingL. The main result of [10] now states that there
is a token flow functionx of L′ (called region in [10]) generatingp′. We show now that
r = (x, I(p, ·)) is a region ofL (according to Definition 13). The first part thatx is
a token flow function ofL is clear sincex is a token flow function ofL′. It remains
to showI(p, t) ≥ sup({Inh(x, v) | v ∈ VL, l(v) = t} ∪ {0}). For this letv ∈ V
for S = (V,≺,⊏, l) ∈ L with l(v) = t andS′ be a prefix ofv defined byV ′. We
have to show thatmS′(x) ≤ I(p, t) (compare Definition 12). By Lemma 2 there is a
linearizationSlin of S such thatV ′ also defines a prefixS′

lin of v w.r.t.Slin. SinceS is
enabled w.r.t. the one-place net(N,m0) havingp as its only place, there is an enabled
step occurrence sequenceσ = τ1 . . . τn of (N,m0) whose underlying LSOSσ equals
Slin. Since prefixes are downward⊏-closed, a prefixσ′ = τ1 . . . τm (m < n) of σ
with l(v) = t ∈ τm+1 must exist which corresponds toS′

lin. In other words, the LSO
Sσ′ underlyingσ′ equalsS′

lin. It is enough to show now thatm(p) = mS′(x) for the
markingm reached after the execution ofσ′ in (N,m0), sincem(p) ≤ I(p, t) for each
transitiont ∈ τm+1. The necessary computation is as in (1).

Thus the set of all feasible places and therefore a solution for the synthesis problem
can be derived from the set of regions.

5 Conclusion

In this paper we introduced the notion of regions for a (possibly infinite) set of LSOs
– called stratified language – describing the behaviour of a pti-net. Given a stratified
languageL, using such regions allows to define the saturated feasible pti-net (N,m0)
w.r.t. L. The set of executionsL(N,m0) of (N,m0) includesL and is as small as
possible with this property.5 Thus, the contribution of this paper is to solve the synthesis
problem satisfactory from the theoretical point of view (for the considered setting).
Practical algorithmic considerations are a topic of further research (see also below).

The presented approach carries over to the a-posteriori semantics of pti-nets, whose
non-sequential scenario-based behaviour is given by LPOs,i.e. by partial languages.
To define regions for partial languages w.r.t. pti-nets, onecan analogously start with
regions of the partial language from [10] not specifying inhibitor arcs and then assign
inhibitor values to each node. Now, these inhibitor values are determined as maxima
over all final markings of classical prefixes of nodes of an LPO, where one has to use
a slightly different definition of final markings. It is moreover possible to adapt the
presented definition of regions to other less general inhibitor net classes, such as p/t-
nets with unweighted inhibitor arcs and elementary nets with inhibitor arcs. Thereby
in the case of elementary nets one additionally has to regardthat a place defined by
a region must not carry more than one token in each intermediate state of an LSO.
This can be ensured by only allowing final markings of prefixes6 1 (that means by an
analogous mechanism as used for the definition of inhibitor arcs). For step transition
systems and stratified languages which produce the same language of step sequences,
it would be interesting to compare our (adapted) definition of regions for elementary
nets with inhibitor arcs and the definition of regions from [11, 12]. The relation is not
obvious since several different step transition systems may define the same language of
step sequences. In general the ideas presented in this papershould also be useful for the
consideration of the synthesis problem of other so-structure based net classes (such as
nets with read arcs, priorities, reset arcs, etc.) as well asnet classes conceptually similar
to inhibitor nets (e.g. elementary nets and nets with capacities).

One of course is interested in practical algorithmic solutions of the synthesis prob-
lem. Basically the regions approach has the problem that there is an infinite number of
feasible places respectively regions of a stratified language. Our recent publication [9]
tackles this problem for finite partial languages and p/t-nets, i.e. a special case of the
setting in [10]. Thereto the definition of token flow functionis translated into a finite
integer system of homogenous inequationsA ·x ≥ 0: The finite vectorx represents the
token flow function and the inequations reflect the conditions of Definition 9 and en-
sure positive token flows (x ≥ 0). It is shown that one can calculate a finite set of basis
solutions of this system which defines a set of places spanning all feasible places.6 That

5 Note that such a region based approach is not appropriate to find a pti-net(N, m0) such that
L(N, m0) ⊆ L andL(N, m0) is as large as possible.

6 An alternative approach is to compute finite many regions which ”separate” specified be-
haviour from not specified behaviour. It is possible to deduce appropriate separation properties
from the mentioned algorithm. Such an approach leads to a different finite representation of
the saturated feasible net.

means the net consisting only of these finite, algorithmically determinable set of places
has the same set of executions as the saturated feasible net.Furthermore an algorithm
testing if this net has the behaviour specified by the finite partial language is shown. In
the setting of this paper a similar approach for the effective synthesis of pti-nets from
finite stratified languages is possible, i.e. it is possible to calculate finitely many basis
regions spanning the set of all regions (using an adequate inequation system). The for-
mal evolution and proofs for this approach including complexity issues are one of our
recent research projects in this topic.

But this approach still leaves the problem that it does not work for infinite stratified
languages. For algorithmic purposes an infinite stratified language first has to be finitely
represented. This problem is strongly connected to the similar problem in the case of
p/t-nets and partial languages which is one of our central current research fields.

References

1. E. Badouel and P. Darondeau. On the synthesis of general petri nets. Technical Report 3025,
Inria, 1996.

2. N. Busi and G. M. Pinna. Synthesis of nets with inhibitor arcs. In A. W. Mazurkiewicz; J.
Winkowski, editor,CONCUR, volume 1243 ofLecture Notes in Computer Science, pages
151–165. Springer, 1997.

3. J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Hardware and
petri nets: Application to asynchronous circuit design. InM. Nielsen; D. Simpson, editor,
ICATPN, volume 1825 ofLecture Notes in Computer Science, pages 1–15. Springer, 2000.

4. A. Ehrenfeucht and G. Rozenberg. Partial (set) 2-structures. part i: Basic notions and the
representation problem.Acta Inf., 27(4):315–342, 1989.

5. A. Ehrenfeucht and G. Rozenberg. Partial (set) 2-structures. part ii: State spaces of concur-
rent systems.Acta Inf., 27(4):343–368, 1989.

6. R. Janicki and M. Koutny. Semantics of inhibitor nets.Inf. Comput., 123(1):1–16, 1995.
7. G. Juhás, R. Lorenz, and S. Mauser. Complete process semantics for inhibitor nets. In

Proceedings of ICATPN 2007, 2007.
8. H. C. M. Kleijn and M. Koutny. Process semantics of generalinhibitor nets. Inf. Comput.,

190(1):18–69, 2004.
9. R. Lorenz, R. Bergenthum, S. Mauser, and J. Desel. Synthesis of petri nets from finite partial

languages. InProceedings of ACSD 2007, 2007.
10. R. Lorenz and G. Juhás. Towards synthesis of petri nets from scenarios. In S. Donatelli

and P. S. Thiagarajan, editors,ICATPN, volume 4024 ofLecture Notes in Computer Science,
pages 302–321. Springer, 2006.

11. M. Pietkiewicz-Koutny. The synthesis problem for elementary net systems with inhibitor
arcs.Fundam. Inform., 40(2-3):251–283, 1999.

12. M. Pietkiewicz-Koutny. Synthesising elementary net systems with inhibitor arcs from step
transition systems.Fundam. Inform., 50(2):175–203, 2002.

13. W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and A. J.
M. M. Weijters. Workflow mining: A survey of issues and approaches. Data Knowl. Eng.,
47(2):237–267, 2003.

14. W. M. P. van der Aalst, T. Weijters, and L. Maruster. Workflow mining: Discovering process
models from event logs.IEEE Trans. Knowl. Data Eng., 16(9):1128–1142, 2004.

15. M. Zhou and F. D. Cesare.Petri Net Synthesis for Discrete Event Control of Manufacturing
Systems.Kluwer, 1993.

