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Abstract. In this paper we give an overview, how to apply region based methods
for the synthesis of Petri nets from languages to process mining.
The research domain of process mining aims at constructing aprocess model
from an event log, such that the process model can reproduce the log, and does
not allow for much more behaviour than shown in the log. We here consider
Petri nets to represent process models. Event logs can be interpreted as finite lan-
guages. Region based synthesis methods can be used to construct a Petri net from
a language generating the minimal net behaviour including the given language.
Therefore, it seems natural to apply such methods in the process mining domain.
There are several different region based methods in literature yielding different
Petri nets. We adapt these methods to the process mining domain and compare
them concerning efficiency and usefulness of the resulting Petri net.

1 Introduction

Often, business information systems log all performed activities together with the re-
spective cases the activities belong to in so called event logs. These event logs can be
used to identify the actual workflows of the system. In particular, they can be used to
generate a workflow definition which matches the actual flow ofwork. The generation
of a workflow definition from event logs is known asprocess mining. Application of
process mining and underlying algorithms gained increasing attention in the last years,
see e.g. [18] and [17]. There are a number of process mining tools, mostly implemented
in the ProM framework [13].

The formal problem of generating a system model from a description of its be-
haviour is often referred to as synthesis problem. Workflowsare often defined in terms
of Petri nets [16]. Synthesis of Petri nets is studied since the 1980s [8, 9]. Algorithms for
Petri net synthesis have often been applied in hardware design [5]. Obviously, process
mining and Petri net synthesis are closely related problems. Mining aims at a system
model which has at least the behaviour given by the log and does not allow for much
more behaviour. In the optimal case the system has minimal additional behaviour. The
goal is to find such a system which is not too complex, i.e., small in terms of its num-
ber of components. This is necessary, because practitioners in industry are interested
in controllable and interpretable reference models. Apparently, sometimes a trade-off
between the size of the model and the additional behaviour has to be found.

One of the main differences in Petri net synthesis is that oneis interested in a Petri
net representing exactly the specified behaviour. Petri netsynthesis was originally as-
suming a behavioural description in terms of transition systems. For a transition system,



sets of nodes calledregionscan be identified. Each region refers to a place of the syn-
thesized net. Analogous approaches in the context of process mining are presented in
[19, 15]. Since process mining usually does not start with a transition system, i.e., a
state based description of behaviour, but rather with a set of sequences, i.e., a language
based description of behaviour, the original synthesis algorithms are not immediately
applicable. In [19, 15] artificial states are introduced into the log in order to generate a
transition system. Then synthesis algorithms transforming the state-based model into a
Petri net, that exactly mimics the behaviour of the transition system, are applied. The
problem is that these algorithms include reproduction of the state structure of the tran-
sition system, although the artificial states of the transition system are not specified in
the log. In many cases this leads to a bias of the process mining result. However, there
also exist research results on algorithmic Petri net synthesis from languages [6, 1, 2,
10]. In these approaches, regions are defined on languages. It seems natural to directly
use these approaches for process mining, because logs can directly be interpreted as
languages. The aim of this paper is to adjust such language based synthesis algorithms
to solve the process mining problem. This approach is very well suited for process min-
ing, because wether or not the synthesized net exactly represents the given language, it
always reproduces the language (given by an event log).

We present and compare methods for process mining adapted from language based
synthesis and give a complete overview of the applicabilityof regions of languages
to the process mining problem. Finally, we provide a bridge from the more theoreti-
cal considerations of this paper to practically useful algorithms. The process mining
algorithms discussed in this paper are completely based on formal methods of Petri
net theory guaranteeing reliable results. By contrast, most existing process mining ap-
proaches are partly based on heuristic methods, although they borrow techniques from
formally developed research areas such as machine learningand grammatical inference
[18, 12], neural networks and statistics [18, 4], or Petri net algorithms [7, 19, 15].

We omitted formal definitions, lemmas, theorems and proofs in this short paper.
These are provided by the technical report [3]. In [3] the interested reader can also find
more detailed explanations and pseudo code of the developedalgorithms.

2 Application of Regions of Languages to Process Mining

First we introduce the process mining problem and show how the classical language
based theory of regions [6, 1] can be adapted to solve this problem. Process mining
aims at the construction of a process model from anevent logwhich is able to repro-
duce the behaviour (the process) of the log, and does not allow for much more behaviour
than shown in the log. The following example logσ will serve as a running example.
Since we focus on the control flow of activities (their ordering), we abstract from some
additional log information such as originators of events and time stamps of events. The
control flow, i.e. the behaviour, of the event log is given by aprefix-closed finite lan-
guage over the alphabet of activities, the so calledprocess languageL(σ).

event log (activity,case):
(a,1) (b,1) (a,2) (b,1) (a,3) (d,3) (a,4) (c,2) (d,2) (e,1) (c,3) (b,4) (e,3) (e,2) (b,4) (e,4)
process language:
a ab abbabbeac acdacdead adcadce



Figure 1 shows amarked place/transition-net (p/t-net)(N, m0) having exactly the
process languageL(σ) as itslanguage of occurrence sequencesL(N, m0). That means
this Petri net model is a process model describing the process given by the event logσ.
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Fig. 1. Petri net model fulfilling
L(N, m0) = L(σ).

The process model in the ideal case serves
as a reference model interpretable by practition-
ers. Therefore the model should be as small as
possible. As we will show, there is a trade-off
between the size of the constructed model and
the degree of the match of the behaviour gen-
erated by the model and the log. In this paper
we formalize process models as Petri nets and
consider the followingprocess mining problem:

Given: An event logσ. Searched: A preferably small finite marked p/t-net(N, m0)
such that(1) L(σ) ⊆ L(N, m0) and(2) L(N, m0) \ L(σ) is small.

In the following we will consider a fixed process languageL(σ) given by an event
log σ with set of activitiesT . An adequate method to solve the process mining prob-
lem w.r.t.L(σ) is applying synthesis algorithms using regions of languages: The set
of transitions of the searched net(N, m0) is given by the set of charactersT used in
L(σ). The behaviour of this net is restricted by adding places. Every place is defined
by its initial marking and the weights of the arcs connectingthem to each transition
t ∈ T . In order to guarantee (1), i.e. to reproduce the log, only places are added, which
do not prohibit sequences ofL(σ). Such places are calledfeasible (w.r.t.L(σ)). The
more feasible places we add the smaller is the setL(N, m0) \ L(σ). Addingall feasi-
ble places minimizesL(N, m0) \L(σ) (preserving (1)). That means the resulting net –
called thesaturated feasible net– is an optimal solution for the process mining problem
concerning (1) and (2). But it is not small, even not finite. Here the trade-off between
the size of the constructed net and (2) comes into play: The more feasible places we
add the better (2) is reached, but the bigger becomes the constructed net. The central
question is which feasible places should be added. Two procedures are candidates to
solve this problem: There are two basic algorithmic approaches throughout the litera-
ture to synthesize a finite net(N, m0) from a finite language. The crucial idea in these
approaches is to define feasible places structurally on the level of the given language:
Every feasible place is defined by a so calledregionof the language. A region is simply
a (2|T | + 1)-tuple of natural numbers which represents the initial marking of a place
and the number of tokens each transition consumes respectively produces in that place,
satisfying some property which ensures that no occurrence sequence of the given (pro-
cess) languageL(σ) is prohibited by this place. The set of regions can be characterized
as the set of non-negative integral solutions of a homogenous linear inequation system
AL(σ) ·r ≥ 0 (with integer coefficients) having|L(σ)| rows. Both approaches use linear
programming techniques and convex geometry to calculate a certain adequate finite set
of solutions of this system. In the following we adjust both procedures to the considered
process mining problem and discuss their applicability andtheir results in this context.

The first strategy to add a certain finite set of feasible places, used in [10], com-
putes a so calledfinite basisof the set of all feasible places (any feasible place is a
non-negative linear combination of the basis). Adding all basis places leads to a finite



representation of the saturated feasible net. Consequently, this approach leads to an op-
timal solution of the process mining problem concerning (2). The set of regions is given
by the integer points of a pointedpolyhedral cone[14]. The finite set of rays of the cone
leads to a (minimal) basis of the set of regions and thus defines a finite basis of the set
of feasible places [3, 14]. It can be effectively computed fromAL(σ) (see for example
[11]). The time complexity of the computation essentially depends on the numberk of
basis regions which is bounded byk 6

(|L(σ)|+2|T |+1
2|T |+1

)

. That means, in the worst case
the time complexity is exponential in|L(σ)|, whereas in most practical examples the
number of basis solutions is reasonable. The calculated finite set of basis places usually
still includes so called redundant places, which can be omitted from the net without
changing its language of occurrence sequences. Some of these redundant places can
easily be identified [3]. These are finally deleted from the constructed net. The resulting
process mining algorithm, called method 1 in the following,is shown in [3].

For the event log of the running example, method 1 computes 55basis places (cor-
responding to rays). 15 of these places are directly deletedas easily identifiable redun-
dant places. Many of the 40 places of the resulting net are still redundant. It is possible
to calculate a minimal subset of places generating the same language of occurrence se-
quences. This would lead to the net shown in Figure 1 with onlyfive key places. But this
is extremely inefficient. Thus, more efficient heuristic approaches to delete redundant
places are of interest. The practical applicability of the algorithm could be drastically
improved with such heuristics. In the considered example, most of the redundant places
are so called loop places. If we delete all loop places from the constructed net with 40
places, there remain the five places shown in Figure 1 plus theeight redundant places
shown in Figure 2. In this case this procedure did not change the behaviour of the net.
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Fig. 2. Redundant places computed
with method 1.

In this example the process language is ex-
actly reproduced by the constructed net. Usu-
ally this is not the case. For example omitting
the wordacde (but not its prefixes) from the
process language, the inequation system is not
changed. Therefore the net constructed from
this changed language with method 1 coincides
with the above example. This net has the addi-
tional occurrence sequenceadce not belonging
to the changed process language. Since the net
calculated by method 1 is the best approxima-
tion to the given language, the changed process
language (given by a log) has to be completed
in this way to be describable as a p/t-net.

The main advantage of method 1 is the optimality w.r.t. (2). The resulting process
model may be seen as a natural completion of the given probably incomplete log file.
Problematic is that the algorithm in some cases may be inefficient in time and space
consumption. Moreover, the resulting net may be relativelybig.

The second strategy to synthesize a finite net, used e.g. in [1, 2], is to add such
feasible places to the constructed net, whichseparatespecified behaviour from non-
specified behaviour. That means for eachw ∈ L(σ) and eacht ∈ T such thatwt 6∈



L(σ), one searches for a feasible placepwt, which prohibitswt. Suchwt is called
wrong continuation(also called faulty word in [1]) and such places are calledseparating
feasible places. If there is such a separating feasible place, it is added to the net. The
number of wrong continuations is bounded by|L(σ)| · |T |. Thus the set containing one
separating feasible place for each wrong continuation, forwhich such place exists, is
finite. The net resulting from adding such a set of places yields a good solution for the
process mining problem: If the process language of the log can exactly be generated by
a p/t-net, the constructed net is such a net. Consequently, in this case (2) is optimized.
In general (2) is not necessarily optimized, since it is possible that even if there is no
feasible place prohibitingwt, there might be one prohibitingwtt′ – but such places are
not added. However, in most practical cases this does not happen [3].

In order to compute a separating feasible place which prohibits a wrong continua-
tionwt, one defines so calledseparating regionsdefining such places. These are defined
by one additional (strict) inequation ensuring thatwt is prohibited. Thus a separating
regionr w.r.t. a wrong continuationwt can be calculated (if it exists) as a non-negative
integer solution of a homogenous linear inequation system with integer coefficients of
the formAL(σ) · r ≥ 0,bwt · r < 0. The matrixAL(σ) is defined as before. If there
exists no non-negative integer solution of this system, there exists no separating region
w.r.t. wt and thus no separating feasible place prohibitingwt. If there exists a non-
negative integer solution of the system, any such a solutiondefines a separating feasible
place prohibitingwt.

There are several linear programming solver to decide the solvability of such a sys-
tem and to calculate a solution if it is solvable. The choice of a concrete solver is a
parameter of the process mining algorithm, that can be used to improve the results or
the runtime. Since the considered system is homogenous, we can apply solvers search-
ing for rational solutions. In order to decide if there is a non-negative rational solution
and to find such a solution in the positive case, the ellipsoidmethod by Khachiyan [14]
can be used. The runtime of this algorithm is polynomial in the size of the inequation
system. Since there are at most|L(σ)| · |T | wrong continuations, the time complexity
for computing the final net is polynomial in the size of the input event logσ. Although
the method of Khachiyan yields an algorithm to solve the process mining problem in
polynomial time, usually a better choice is the classical Simplex algorithm or variants
of the Simplex algorithm [20]. While the Simplex algorithm is exponential in the worst
case, probabilistic and experimental results [14] show that the Simplex algorithm has a
significant faster average runtime than the algorithm of Khachiyan. The standard pro-
cedure to calculate a starting edge with the Simplex algorithm is a natural approach to
decide, if there is a non-negative integer solution of the linear inequation system and to
find such solution in the positive case. But it makes also sense to use the whole Sim-
plex method including a linear objective function. The choice of a reasonable objective
function for the Simplex solver is a parameter of the algorithm to improve the results,
e.g. a function minimizing the arc weights and the initial markings of the separating
feasible places. Moreover, there are several variants of the Simplex algorithm that can
improve the runtime of the mining algorithm [20]. For example the inequation systems
for the wrong continuations only differ in the last inequationbwt · r < 0. This enables
the efficient application of incremental Simplex methods.



Independently from the choice of the solver, certain separating feasible places may
separate more than one wrong continuation. For not yet considered wrong continua-
tions, that are prohibited by feasible places already addedto the constructed net, we do
not have to calculate a separating feasible place. Therefore we choose a certain ordering
of the wrong continuations. We first add a separating feasible place for the first wrong
continuation (if such place exists). Then we only add a separating feasible place for the
second wrong continuation, if it is not prohibited by an already added feasible places,
and so on. This way we achieve, that in the resulting net, various wrong continuations
are prohibited by the same separating feasible place. The chosen ordering of the wrong
continuations can be used as a parameter to positively adjust the algorithm. In particular,
given a fixed solver, there always exists an ordering of the wrong continuations, such
that the net has no redundant places. But in general the net may still include redundant
places. Again easily identifiable redundant places are finally deleted from the computed
net. The resulting process mining algorithm, called method2, is shown in [3].

To calculate a net from the log of the running example with method 2, we consider
the length- plus-lexicographic order of the 45 wrong continuations:b, c, d, e, aa, ae,
aba, abc, abd, abe, . . .. To compute a separating feasible place for a given wrong con-
tinuation, we use the standard Simplex algorithm. We choosean objective function (for
the Simplex algorithm) that minimizes all arc weights outgoing from the constructed
place as well as the initial marking. Figure 3 shows the places resulting from the first
five wrong continuationsb, c, d, e andaa. In Figures we annotate the constructed sepa-
rating feasible places with the wrong continuation, for which the place was calculated.
The next wrong continuationae leads theae-place in Figure 4. Thenaba is already pro-
hibited by theaa-place and thus no additional place is computed. The next three wrong
continuationsabc, abd andabe lead to the respective separating feasible places in Fig-
ure 4. Then all remaining 35 wrong continuations are prohibited by one of the already
calculated nine feasible places. Theb-, c-, andd-place from Figure 3 are finally deleted
in Figure 4 as easily identifiable redundant places. Consequently the net in Figure 4
with six places results from Method 2 (only thee-place is still redundant).
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Fig. 3. First places computed with method 2.
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Fig. 4. Final net constructed with method 2.

The main advantage of method 2 is that the number of added places is bounded by
|L(σ)| · |T | and that in most practical cases it is a lot smaller. Usually the resulting net is
small and concise. The calculation of the net is efficient. There exists a polynomial time
algorithm. Problematic is, that a good solution regarding (2) is not guaranteed, i.e. there
may be intricate examples leading to a bad solution of the process mining problem.
In [3] we show an example, where the constructed net is not optimal regarding (2),



but this example was really hard to find. Therefore, in most cases the net should be an
optimal solution. Moreover if the constructed net is not optimal, the respective example
in [3] indicates that it is usually still a good solution of the process mining problem.
Altogether the process model resulting from method 2 is a reasonable completion of the
given probably incomplete log file. Although optimality regarding (2) is not guaranteed,
the distinct advantages of method 2 concerning the runtime and the size of the calculated
net altogether argue for method 2. But method 1 can still leadto valuable results, in
particular if combined with some heuristics to decrease thenumber of places of the
constructed net. Mainly, algorithms deleting redundant places are of interest.

3 Conclusion
The presented methods only considered p/t-nets as process models. To complete the
outline of applying language based Petri net synthesis to process mining, we discuss al-
ternative Petri net classes in this paragraph. In the example using method 1, we proposed
to omit loops to simplify the constructed net. Leaving loopsfrom p/t-nets in general,
leads to the simpler class of pure nets. The process mining approach can analogously be
developed for this net class. The inequation systems get simpler, in particular the num-
ber of variables is halved. Therefore the process mining approach gets more efficient
for pure nets, but the modelling power is restricted in contrast to p/t-nets. Typical work-
flow Petri nets often have unweighted arcs. To construct suchnets from a log with the
presented methods, one simply has to add additional inequations ensuring arc weights
smaller or equal than one. A problem is that the resulting systems are inhomogeneous.
Method 1 is not applicable in this case (adaptions are still possible). Method 2 is still
useable, but the linear programming techniques to find separating feasible places be-
come less efficient [14]. A popular net class with unweightedarcs are elementary nets.
In elementary nets the number of tokens in a place is bounded by one. This leads to ad-
ditional inhomogeneous inequations ensuring this property. Note that the total number
of possible places is finite in the case of elementary nets. Thus also the set of feasible
places is finite leading to improvements of method 1. So far our considerations were
based on the regions definition in [6, 1]. There exists one further synthesis approach
based on regions of languages [10], which we discuss and compare in [3].

The big advantage of the presented process mining approaches based on regions
of languages is that they lead to reliable results. Other process mining algorithms are
often more or less heuristic and their applicability is shown only with experimental
results. We showed theoretical results that justify that the presented methods lead to a
good or even optimal solution regarding (2), while (1) is guaranteed. A problem of the
algorithms may be the required time and space consumption aswell as the size of the
resulting nets. The presented algorithms can be seen as a basis, that can be improved in
several directions. Method 2 for computing separating feasible places is flexible w.r.t.
the used solver and the chosen ordering of the wrong continuations. Varying the solver
could improve time and space consumption, heuristics for fixing an appropriate ordering
of the wrong continuations could lead to smaller nets. Both methods could be improved
by additional approaches to find redundant places yielding smaller nets. For example,
in this paper we used a simple special objective function in the simplex algorithm to
rule out some redundant places. To develop such approaches,experimental results and
thus an implementation of the algorithms is necessary.
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