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Abstract. In this paper we give an overview, how to apply region based methods
for the synthesis of Petri nets from languages to process mining.
The research domain of process mining aims at constructing a process model
from an event log, such that the process model can reproduce the log, and does
not allow for much more behaviour than shown in the log. We here consider
Petri nets to represent process models. Event logs can be interpreted as finite lan-
guages. Region based synthesis methods can be used to construct a Petri net from
a language generating the minimal net behaviour including the given language.
Therefore, it seems natural to apply such methods in the process mining domain.
There are several different region based methods in literature yielding different
Petri nets. We adapt these methods to the process mining domain and compare
them concerning efficiency and usefulness of the resulting Petri net.

1 Introduction

Often, business information systems log all performed activities together with the re-
spective cases the activities belong to in so called event logs. These event logs can be
used to identify the actual workflows of the system. In particular, they can be used to
generate a workflow definition which matches the actual flow of work. The generation
of a workflow definition from event logs is known as process mining. Application of
process mining and underlying algorithms gained increasing attention in the last years,
see e.g. [23] and [22]. There are a number of process mining tools, mostly implemented
in the ProM framework [18].

The formal problem of generating a system model from a description of its be-
haviour is often referred to as synthesis problem. Workflows are often defined in terms
of Petri nets [21]. Synthesis of Petri nets is studied since the 1980s [9, 10, 8]. Algorithms
for Petri net synthesis have often been applied in hardware design [5, 4].

Obviously, process mining and Petri net synthesis are closely related problems.
Mining aims at a system model which has at least the behaviour given by the log and
does not allow for much more behaviour. In the optimal case the system has minimal
additional behaviour. The goal is to find such a system which is not too complex, i.e.,
small in terms of its number of components. This is necessary, because practitioners in
industry are interested in controllable and interpretable reference models. Apparently,
sometimes a trade-off between the size of the model and the additional behaviour has
to be found.



One of the main differences in Petri net synthesis is that one is interested in a Petri
net representing exactly the specified behaviour. Petri net synthesis was originally as-
suming a behavioural description in terms of transition systems. For a transition system,
sets of nodes called regions can be identified. Each region refers to a place of the syn-
thesized net. Analogous approaches in the context of process mining are presented in
[24, 20]. Since process mining usually does not start with a transition system, i.e., a
state based description of behaviour, but rather with a set of sequences, i.e., a language
based description of behaviour, the original synthesis algorithms are not immediately
applicable. In [24, 20] artificial states are introduced to the log in order to generate a
transition system. Then synthesis algorithms transforming the state-based model into a
Petri net, that exactly mimics the behaviour of the transition system, are applied. The
problem is that these algorithms include reproduction of the state structure of the tran-
sition system, although the artificial states of the transition system are not specified in
the log. In many cases this leads to a bias of the process mining result. However, there
also exist research results on algorithmic Petri net synthesis from languages [6, 1, 2,
12]. In these approaches, regions are defined on languages. It seems natural to directly
use these approaches for process mining, because logs can directly be interpreted as
languages. The aim of this paper is to adjust such language based synthesis algorithms
to solve the process mining problem.

The idea of language based synthesis algorithms is as follows: The transitions of
the constructed net are given by the characters of the language. Adding places restricts
the behaviour of the net. Only places not prohibiting sequences of the language are
added. Thus the resulting net includes the behaviour specified by the language. This
approach is very well suited for process mining. If the language is given by an event
log, the constructed net reproduces the log. The algorithmic methods of language based
synthesis, deciding which places are added to the net, will turn out to guarantee, that
the constructed net does not allow for much more behaviour than shown in the log.

We will present methods for process mining adapted from language based synthesis
methods. We compare the methods and give a complete overview of the applicability of
regions of languages to the process mining problem.

The process mining algorithms discussed in this paper are completely based on for-
mal methods of Petri net theory guaranteeing reliable results. By contrast, most existing
process mining approaches are partly based on heuristic methods, although they borrow
techniques from formally developed research areas such as machine learning and gram-
matical inference [23, 17], neural networks and statistics [23, 3], or Petri net algorithms
[7, 24, 20].

The paper is organized as follows. Section 2 provides formal definitions. Section
3 motivates and explains language based synthesis algorithms and defines the process
mining problem tackled in this paper more formally. A preliminary solution to the pro-
cess mining problem defines nets with infinitely many places. In Section 4, two meth-
ods for identifying finite (and small) subsets of places which suffice for representing
the behaviour of the given event log are presented and compared. Finally, the conclu-
sion completes the overview of the applicability of language based synthesis for process
mining and provides a bridge from the more theoretical considerations of this paper to
practically useful algorithms.



2 Preliminaries

In this section we recall the basic notions of languages, event logs and place/transition
Petri nets. An alphabet is a finite set A. The set of all strings (words) over an alphabet A
is denoted by A∗. The empty word is denoted by λ. A subset L ⊆ A∗ is called language
over A. For a word w ∈ A∗, |w| denotes the length of w and |w|a denotes the number of
occurrences of a ∈ A in w. Given two words v, w, we call v prefix of w if there exists a
word u such that vu = w. A language L is prefix-closed, if for every w ∈ L each prefix
of w also belongs to L.

The following definition is a formalization of typical log files. Since we focus on the
control flow of activities (their ordering), we abstract from some additional information
such as originators of events and time stamps of events.

Definition 1 (Event log). Let T be a finite set of activities and C be a finite set of cases.
An event is an element of T × C. An event log is an element of (T × C)∗.

Given a case c ∈ C we define the function pc : T × C → T by pc(t, c′) = t if
c = c′ and pc(t, c′) = λ else. Given an event log σ = e1 . . . en ∈ (T × C)∗ we define
the process language L(σ) of σ by L(σ) = {pc(e1) . . . pc(ei) | i ≤ n, c ∈ C} ⊆ T ∗.

Observe that the process language of an event log is finite and prefix closed. It rep-
resents the control flow of the activities given by the log. Each case of the log adds one
word (drawn in italic in the following example) over the set of activities together with
its prefixes to the process language. Of course several cases may add the same words to
the process language (e.g. the word abba in the following example). Therefore in real
life, the control flow given by an event log is a bag of words. In this paper we do not
distinguish words w.r.t. their frequencies. Therefore, the process language is defined as
a set of words. The following example log will serve as a running example.

event log (activity,case):
(a,1) (b,1) (a,2) (b,1) (a,3) (d,3) (a,4) (c,2) (d,2) (e,1) (c,3) (b,4) (e,3) (e,2) (b,4) (e,4)
process language:
a ab abb abbe ac acd acde ad adc adce

Example 1.
A net is a triple N = (P, T, F ), where P is a (possibly infinite) set of places, T is

a finite set of transitions satisfying P ∩ T = ∅, and F ⊆ (P × T ) ∪ (T × P ) is a flow
relation. Let x ∈ P∪T be an element. The preset •x is the set {y ∈ P∪T | (y, x) ∈ F},
and the post-set x• is the set {y ∈ P ∪ T | (x, y) ∈ F}.

Definition 2 (Place/transition-net). A place/transition-net (p/t-net) is a quadruple N
= (P, T, F, W ), where (P, T, F ) is a net, and W : F → N is a weight function.

We extend the weight function W to pairs of net elements (x, y) ∈ (P×T )∪(T×P )
with (x, y) 6∈ F by W (x, y) = 0. A marking of a p/t-net N = (P, T, F,W ) is a
function m : P → N0 assigning m(p) tokens to a place p ∈ P . A marked p/t-net is a
pair (N, m0), where N is a p/t-net, and m0 is a marking of N , called initial marking.
As usual, places are drawn as circles including tokens representing the initial marking,
transitions are depicted as rectangles and the flow relation is shown by arcs which have
annotated the values of the weight function (the weight 1 is not shown).



A transition t ∈ T is enabled to occur in a marking m of a p/t-net N if m(p) ≥
W (p, t) for every place p ∈ •t. If a transition t is enabled to occur in a marking m,
then its occurrence leads to the new marking m′ defined by m′(p) = m(p)−W (p, t)+
W (t, p) for every p ∈ P . That means t consumes W (p, t) tokens from p and produces
W (t, p) tokens in p. We write m

t−→ m′ to denote that t is enabled to occur in m and
that its occurrence leads to m′. A finite sequence of transitions w = t1 . . . tn, n ∈ N,
is called an occurrence sequence enabled in m and leading to mn if there exists a
sequence of markings m1, . . . , mn such that m

t1−→ m1
t2−→ . . .

tn−→ mn. In this case
mk (1 ≥ k ≥ n) is given by mk(p) = m(p) +

∑k
i=1(W (ti, p)−W (p, ti)) for p ∈ P .

The set of all occurrence sequences enabled in the initial marking m0 of a marked
p/t-net (N, m0) forms a language over T and is denoted by L(N, m0). Observe that
L(N, m0) is prefix closed. L(N, m0) models the (sequential) behaviour of (N, m0).
There is the following straightforward characterization of L(N, m0):

Lemma 1. Let (N,m0) be a marked p/t-net. Then w = t1 . . . tn ∈ T ∗, n ∈ N, is in
L(N, m0) if and only if for each 1 6 k 6 n and each p ∈ P there holds:
m0(p) +

∑k−1
i=1 (W (ti, p)−W (p, ti)) ≥ W (p, tk).

Let w = t1 . . . tn ∈ L(N,m0) and t ∈ T . Then wt 6∈ L(N,m0) if and only if for one
p ∈ P there holds: m0(p) +

∑n
i=1(W (ti, p)−W (p, ti)) < W (p, t).

Figure 1 shows a marked p/t-net having exactly the process language of the running
example as its language of occurrence sequences. That means this Petri net model is a
process model describing the process given by the event log.
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Fig. 1. Petri net model describing the event log of the running example.

3 Theory of Regions Applied to Process Mining

In this section we formally define the process mining problem and show how the classi-
cal language based theory of regions can be adjusted to solve this problem. The regions



definition introduced in this section is an adaption of the definition in [6, 1] to the set-
ting of process mining. In [6, 1] languages given by regular expressions instead of finite
languages given by event logs and pure nets instead of p/t-nets are considered. In the fol-
lowing section we will develop concrete algorithms from the considerations presented
in this section.

Process mining aims at the construction of a process model from an event log which
is able to reproduce the behaviour (the process) of the log, and does not allow for much
more behaviour than shown in the log. Moreover, as argued already in the introduction,
the process model in the ideal case serves as a reference model which can be interpreted
by practitioners. Therefore the model should be as small as possible. As we will show,
there is a trade-off between the size of the constructed model and the degree of the
match of the behaviour generated by the model and the log. In this paper we formalize
process models as Petri nets and consider the following process mining problem:

Given: An event log σ. Searched: A preferably small finite marked p/t-net (N, m0)
such that (1) L(σ) ⊆ L(N, m0) and (2) L(N,m0) \ L(σ) is small.

In the following we will consider a fixed process language L(σ) given by an event
log σ with set of activities T . An adequate method to solve the process mining problem
w.r.t. L(σ) is applying synthesis algorithms using regions of languages. Region-based
synthesis algorithms all follow the same principle: Given a language L(σ), the set of
transitions of the searched net is given by the set of characters T used in L(σ). Then
each w ∈ L(σ) is an enabled occurrence sequence w.r.t. the resulting marked p/t-net
(∅, T, ∅, ∅, ∅) consisting only of these transitions (having an empty set of places), be-
cause there are no causal dependencies between the transitions. That means L(σ) ⊆
L(∅, T, ∅, ∅, ∅) = T ∗ and thus (∅, T, ∅, ∅, ∅) fulfills (1). But this net has many enabled
occurrence sequences not specified in L(σ), because L(σ) is finite. That means (2) is
not fulfilled. Thus, the behaviour of this net is restricted by adding places leading to a
marked p/t-net (N, m0), N = (P, T, F, W ). Every place p ∈ P is defined by its initial
marking m0(p) and the weights W (p, t) and W (t, p) of the arcs connecting them to
each transition t ∈ T . In order to preserve (1), only places are added, which do not
prohibit sequences of L(σ). Such places are called feasible (w.r.t. L(σ)).

Definition 3 (Feasible place). Let (N, mp), N = ({p}, T, Fp,Wp) be a marked p/t-
net with only one place p (Fp, Wp, mp are defined according to the definition of p). The
place p is called feasible (w.r.t. L(σ)), if L(σ) ⊆ L(N, mp), otherwise non-feasible.

Adding only feasible places yields a net fulfilling (1), while adding any non-feasible
place yields a net not fulfilling (1). The more feasible places we add the smaller is the set
L(N, m0) \ L(σ). Adding all feasible places minimizes L(N, m0) \ L(σ) (preserving
(1)). That means the resulting net – called the saturated feasible net – is an optimal
solution for the process mining problem concerning (1) and (2) (but it is not small).

Definition 4 (Saturated feasible net). The marked p/t-net (Nsat,msat), Nsat = (P, T,
F, W ), such that P is the set of all places feasible w.r.t. L(σ) is called saturated feasible
(w.r.t. L(σ)) (F , W , m0 are defined according to the definitions of the feasible places).

Theorem 1. The saturated feasible p/t-net (Nsat,msat) w.r.t. L(σ) satisfies L(σ) ⊆
L(Nsat,msat) and ∀(N, m0) : L(N,m0) ( L(Nsat, msat) =⇒ L(σ) 6⊆ L(N, m0).



In particular there holds either L(Nsat,msat) = L(σ) or there is no p/t-net (N, m0)
satisfying L(N, m0) = L(σ).

The problem is that (Nsat,msat) is not finite. Therefore, Theorem 1 has only theo-
retical value. Moreover, in the above considerations we did not include the formulated
aim to construct a small p/t-net. Here the trade-off between the size of the constructed
net and (2) comes into play: The more feasible places we add the better (2) is reached,
but the bigger becomes the constructed net. The central question is which feasible places
should be added.

There are two basic algorithmic approaches throughout the literature to synthe-
size a finite net (N, m0) from a language. In both approaches (N,m0) represents
(Nsat,msat) in the sense that L(N, m0) = L(σ) ⇔ L(Nsat,msat) = L(σ). The
crucial idea in these approaches is to define feasible places structurally on the level of
the given language. Every feasible place is defined by a so called region of the language.
A region is simply a tuple of natural numbers which represents the initial marking of a
place and the number of tokens each transition consumes respectively produces in that
place, satisfying some property which ensures that no occurrence sequence of the given
language is prohibited by this place.

Definition 5 (Region). Denoting T = {t1, . . . , tn}, a region of L(σ) is a tuple r =
(r0, . . . , r2n) ∈ N2n+1 satisfying for every wt ∈ L(σ) (w ∈ L(σ), t ∈ T ):

(∗) r0 +
n∑

i=1

(|w|ti · ri − |wt|ti · rn+i) ≥ 0.

Every region r of L(σ) defines a place pr via m0(pr) := r0, W (ti, pr) := ri and
W (pr, ti) := rn+i for 1 6 i 6 n. The place pr is called corresponding place to r.

From Lemma 1, we deduce:

Theorem 2. Each place corresponding to a region of L(σ) is feasible w.r.t. L(σ). and
each place feasible w.r.t. L(σ) corresponds to a region of L(σ).

Thus, the set of feasible places w.r.t. L(σ) corresponds to the set of regions of L(σ).
The set of regions can be characterized as the set of non-negative integral solutions of a
homogenous linear inequation system

AL(σ) · r ≥ 0.

The matrix AL(σ) consists of rows awt = (awt,0, . . . , awt,2n) for all wt ∈ L(σ),
satisfying awt · r ≥ 0 ⇔ (∗). This is achieved by setting for each wt ∈ L(σ):

awt,i =





1 for i = 0,
|w|ti for i = 1, . . . , n
−|wt|ti−n for i = n + 1, . . . , 2n.

The next table shows this inequation system for the process language of Example 1.



a r0 − r6 ≥ 0
ab r0 + r1 − r6 − r7 ≥ 0
abb r0 + r1 + r2 − r6 − 2r7 ≥ 0
abbe r0 + r1 + 2r2 − r6 − 2r7 − r10 ≥ 0
ac r0 + r1 − r6 − r8 ≥ 0
acd r0 + r1 + r3 − r6 − r8 − r9 ≥ 0
acde r0 + r1 + r3 + r4 − r6 − r8 − r9 − r10 ≥ 0
ad r0 + r1 − r6 − r9 ≥ 0
adc r0 + r1 + r4 − r6 − r9 − r8 ≥ 0
adce r0 + r1 + r4 + r3 − r6 − r9 − r8 − r10 ≥ 0

The inequation system may have less inequations than the number of words in the
considered language. In this example the inequations for acde and adce coincide.

Altogether the idea of adding feasible places is very well suited for process mining,
because this guarantees (1). But so far it is not clear which feasible places should be
added such that the resulting net does not become too big and (2) is still satisfactorily
fulfilled. The two mentioned region based approaches to synthesize a finite net from a
language propose two different procedures to add a finite set of feasible places. These
procedures are the candidates to yield a good solution of the process mining problem.
Both approaches are based on linear programming techniques and convex geometry
to calculate a certain finite set of regions based on the above characterization of the
set of regions by a linear inequation system. In the following section we adjust both
approaches to the considered process mining problem and discuss their applicability
and their results in this context.

4 Solving the Process Mining Problem

We first introduce three basic principles to identify redundant places. Redundant places
can be omitted from a marked p/t-net (N, m0) without changing L(N,m0). That means,
when constructing a net by adding feasible places, we do not add redundant feasible
places (since this does not influence (2)).

Definition 6 (Redundant place). Given a marked p/t-net (N,m0), N = (P, T, F, W ),
a place p ∈ P is called redundant if L(N, m0) = L(P \ {p}, T, F ∩ ((P \ {p} × T )∪
(T × P \ {p})),W |(P\{p}×T )∪(T×P\{p}),m0|P\{p}).

A place p fulfilling W (p, t) ≤ W (t, p) for each t ∈ T and m0(p) ≥ max{W (p, t) |
t ∈ T} induces no behavioural restriction and is therefore called useless. A place p is
called a non-negative linear combination of places p1, . . . , pk if there are non-negative
real numbers λ1, . . . , λk (k ∈ N) such that m0(p) =

∑k
i=1 λi · m0(pi), W (p, t) =∑k

i=1 λi · W (pi, t) and W (t, p) =
∑k

i=1 λi · W (t, pi) for all transitions t. In such a
case we shortly write p =

∑k
i=1 λi · pi. A place p is called less restrictive than a place

p′ if λ ·m0(p) ≥ m0(p′) and λ ·W (t, p) ≥ W (t, p′) as well as λ ·W (p, t) ≤ W (p′, t)
for all transitions t and some λ > 0. In such a case we shortly write p ¹ p′.

Lemma 2. Let (P, T, F, W,m0) be a marked p/t-net and let p, p′, p1, . . . , pk ∈ P be
pairwise different places. Then there holds:



(i) p useless =⇒ p is redundant.
(ii) p ¹ p′ =⇒ p is redundant.

(iii) p =
∑k

i=1 λi · pi =⇒ p is redundant.

Proof. (i) and (ii) are clear by definition, (iii) is proven in [12].

These results can be used to effectively construct a finite net solving the process
mining problem. In the following subsections the two mentioned existing basic ap-
proaches are introduced, optimized w.r.t. the process mining problem and compared.

4.1 Method 1: Finite Basis of Feasible Places

The first strategy to add a certain finite set of feasible places, used in [12], computes a
so called finite basis of the set of all feasible places. Such a basis is a finite set of fea-
sible places Pb = {p1, . . . , pk}, such that each other feasible place p is a non-negative
linear combination of p1, . . . , pk. The idea is to add only basis places. Adding all basis
places leads to a finite representation of the saturated feasible net. By Lemma 2 (iii)
the resulting marked p/t-net (Nb, mb), N = (Pb, T, Fb,Wb), fulfills L(Nsat,msat) =
L(Nb,mb). Consequently, this approach leads to an optimal solution of the process
mining problem concerning (2). The following considerations show that such a finite
basis always exists and how it can be computed.

As mentioned, the set of feasible places can be defined exactly as the set of non-
negative integer solutions of AL(σ) · r ≥ 0. The set of non-negative real solutions of
such a system is a pointed polyhedral cone [19]. According to a theorem of Minkowski
[15, 19] polyhedral cones are finitely generated, that means there are finitely many so-
lutions y1, . . . ,yk, called basis solutions, such that each element r of the polyhedral
cone is a non-negative linear sum r =

∑k
i=1 λi · yi for some λ1, . . . , λk > 0. Pointed

polyhedral cones have a unique (except for scaling) minimal (w.r.t. set inclusion) set of
basis solutions given by the rays of the cone [19]. If all entries of AL(σ) are integers,
then also the entries of the basis solutions can be chosen as integers. If r =

∑k
i=1 λi ·yi

for basis solutions y1, . . . ,yk of AL(σ) · r ≥ 0, r ≥ 0, then pr =
∑k

i=1 λi · pyi . Thus,
to compute a finite representation of (Nsat,msat), we compute a finite set of integer
basis solutions of AL(σ) · r ≥ 0, r ≥ 0. The set of places Pb corresponding to such
basis solutions forms a basis of the set of all feasible places. The minimal set of basis
solutions y1, . . . ,yk can be effectively computed from AL(σ) (see for example [16]).
The time complexity of the computation essentially depends on the number k of ba-
sis solutions which is bounded by k 6

(|L(σ)|+2|T |+1
2|T |+1

)
. That means, in the worst case

the time complexity is exponential in the number of words of L(σ), whereas in most
practical examples of polyhedral cones the number of basis solutions is reasonable.

The finite set Pb usually still includes redundant places. The redundant places de-
scribed in Lemma 2 by (i) and (ii) are deleted from (Nb, mb) in order to get a preferably
small net solving the process mining problem. Algorithm 1 computes (Nb,mb).

An example for a net calculated by this algorithm is shown for the event log of
Example 1. We used the Convex Maple [14] package from [11] to calculate the rays of
the inequation system AL(σ) · r ≥ 0, r ≥ 0. The number of basis places corresponding
to rays is 55 in this example. Steps 11 to 13 of Algorithm 1 delete 15 of these places.



1: L(σ) ← getProcessLanguage(σ)
2: A ← EmptyMatrix
3: (P, T, F, W, m0) ← (∅, getActivities(σ), ∅, ∅, ∅)
4: for all w ∈ L(σ) do
5: A.addRow(aw)
6: end for
7: Solutions ← getIntegerRays(A · r ≥ 0, r ≥ 0)
8: for all r ∈ Solutions do
9: P.addCorrespondingP lace(r)

10: end for
11: for all (p, p′) ∈ P × P, p 6= p′ do
12: if p.isUseless() ∨ p ¹ p′ then P.delete(p) end if
13: end for
14: return (P, T, F, W, m0)

Algorithm 1: Computes (Nb,mb) from an event log σ.

Many of the 40 places of the resulting net (Nb, mb) are still redundant. It is possible to
calculate a minimal subset of places, such that the resulting net has the same behaviour
as (Nb,mb). This would lead to the net shown in Figure 2 with only five places. But this
is extremely inefficient. Thus, more efficient heuristic approaches to delete redundant
places are of interest. The practical applicability of Algorithm 1 could be drastically
improved with such heuristics. In the considered example, most of the redundant places
are so called loop places. A loop place is in the pre- and the postset of one transition. If
we delete all loop places from (Nb,mb), there remain the five places shown in Figure
2 plus the eight redundant places shown in Figure 3. In this case this procedure did not
change the behaviour of the net (i.e. all loop places were redundant).
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Fig. 2. Key places of the net constructed from
the event log of Example 1 with method 1.
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Fig. 3. Further places of the net constructed from
the event log of Example 1 with method 1.

In this example the process language is exactly reproduced by the constructed net,
i.e. L(Nb,mb) = L(σ). Usually this is not the case. For example omitting the word
acde (but not its prefixes) from the process language, the inequation system is not
changed, since adce defines the same inequation. Therefore the net constructed from



this changed language with Algorithm 1 coincides with the above example. This net
has the additional occurrence sequence adce not belonging to the changed process lan-
guage. Since the net calculated by Method 1 is the best approximation to the given
process language, the changed process language (given by a respective log) has to be
completed in this way to be describable through a p/t-net.

The main advantage of method 1 is the optimality w.r.t. (2). The resulting process
model may be seen as a natural completion of the given probably incomplete log file.
Problematic is that the algorithm in some cases may be inefficient in time and space
consumption. Moreover, the resulting net may be relatively big.

4.2 Method 2: Separating Feasible Places

The second strategy, used e.g. in [1, 2], is to add such feasible places to the constructed
net, which separate specified behaviour from non-specified behaviour. That means for
each w ∈ L(σ) and each t ∈ T such that wt 6∈ L(σ), one searches for a feasible place
pwt, which prohibits wt (as shown in the second part of Lemma 1). Such wt is called
wrong continuation (also called faulty word in [1]) and such places are called separat-
ing feasible places. If there is such a separating feasible place, it is added to the net. The
number of wrong continuations is bounded by |L(σ)| · |T |. Thus the set Ps containing
one separating feasible place for each wrong continuation, for which such place exists,
is finite. The resulting net (Ns,ms), Ns = (Ps, T, Fs,Ws) yields a good solution for
the process mining problem: It holds L(Nsat,msat) = L(σ) ⇔ there exists a separat-
ing feasible place for each wrong continuation ⇔ L(Ns,ms) = L(σ). That means, if
the process language of the log can exactly be generated by a p/t-net, the constructed
net (Ns,ms) is such a net. Consequently, in this case (2) is optimized. But in gen-
eral (Ns,ms) does not necessarily optimize (2), since L(Ns,ms) ) L(Nsat, msat) =
L(Nb,mb) is possible (because even if there is no feasible place prohibiting wt, there
might be one prohibiting wtt′ – but such places are not added). However, in most practi-
cal cases L(Ns,ms) = L(Nb,mb) is fulfilled (see Subsection 4.3). In situations, where
this is not the case, L(Ns,ms)\L(Nb,mb) is usually small and thus L(Ns, ms)\L(σ)
is small. The following heuristic can be used to further reduce L(Ns,ms) \ L(σ) in
such situations: If there is no feasible place prohibiting a wrong continuation wt, try to
construct a feasible place prohibiting wtt′, and if there is no such place, try to construct
a feasible place prohibiting wtt′t′′, and so on, until you reach a satisfactory result.

In order to compute a separating feasible place which prohibits a wrong continua-
tion wt, one defines so called separating regions defining such places:

Definition 7 (Separating region). Let r be a region of L(σ) and let wt be a wrong
continuation. The region r is a separating region (w.r.t. wt) if

(∗∗) r0 +
n∑

i=1

(|w|ti · ri − |wt|ti · rn+i) < 0.

Lemma 1 shows that each separating feasible place prohibiting a wrong continua-
tion wt corresponds to a separating region w.r.t. wt and vice versa. A separating region



r w.r.t. a wrong continuation wt can be calculated (if it exists) as a non-negative integer
solution of a homogenous linear inequation system with integer coefficients of the form

AL(σ) · r ≥ 0

bwt · r < 0.

The vector bwt = (b0, . . . , b2n) is defined in such a way that bwt · r < 0 ⇔ (∗∗). This
is achieved by setting

bwt,i =





1 for i = 0,
|w|ti for i = 1, . . . , n
−|wt|ti−n

for i = n + 1, . . . , 2n.

The matrix AL(σ) is defined as before. For example the inequation bwt · r < 0 for
the wrong continuation abc of the process language of Example 1 reads as follows:

r0 + r1 + r2 − r6 − r7 − r8 < 0.

If there exists no non-negative integer solution of this system, there exists no sep-
arating region w.r.t. wt and thus no separating feasible place prohibiting wt. If there
exists a non-negative integer solution of the system, any such solution defines a sep-
arating feasible place prohibiting wt. There are several linear programming solver to
decide the solvability of such a system and to calculate a solution if it is solvable. The
choice of a concrete solver is a parameter of the process mining algorithm, that can be
used to improve the results or the runtime. Since the considered system is homogenous,
we can apply solvers searching for rational solutions, because each rational solution
of the system can be transformed to an integer solution by multiplying with the com-
mon denominator. In order to decide if there is a non-negative rational solution and
to find such solution in the positive case, the ellipsoid method by Khachiyan [19] can
be used. The runtime of this algorithm is polynomial in the size of the inequation sys-
tem. Since there are at most |L(σ)| · |T | wrong continuations, the time complexity for
computing (Ns,ms) is polynomial in the size of the input event log σ. Although the
method of Khachiyan yields an algorithm to solve the process mining problem in poly-
nomial time, usually a better choice is the classical Simplex algorithm or variants of the
Simplex algorithm [25]. While the Simplex algorithm is exponential in the worst case,
probabilistic and experimental results [19] show that the Simplex algorithm has a signif-
icant faster average runtime than the algorithm of Khachiyan. The standard procedure
to calculate a starting edge with the Simplex algorithm is a natural approach to decide, if
there is a non-negative integer solution of the linear inequation system and to find such
solution in the positive case. But it makes also sense to use the whole Simplex method
including a linear objective function that is optimized (minimized or maximized). The
choice of a reasonable objective function for the Simplex solver is a parameter of the
algorithm to improve the results. An appropriate example for this is a function minimiz-
ing the resulting separating region, i.e. generating minimal arc weights and a minimal
initial marking. Moreover, there are several variants of the Simplex algorithm that can
improve the runtime of the mining algorithm [25]. For example the inequation systems
for the different wrong continuations only differ in the last inequation bwt · r < 0. This
enables the efficient application of incremental Simplex methods.



Independently from the choice of the solver, certain separating feasible places may
separate more than one wrong continuation. For not yet considered wrong continua-
tions, that are prohibited by feasible places already added to the constructed net, we do
not have to calculate a separating feasible place. Therefore we choose a certain ordering
of the wrong continuations. We first add a separating feasible place for the first wrong
continuation (if such place exists). Then we only add a separating feasible place for the
second wrong continuation, if it is not prohibited by an already added feasible places,
and so on. This way we achieve, that in the resulting net (Ns,ms), various wrong con-
tinuations are prohibited by the same separating feasible place. The chosen ordering
of the wrong continuations can be used as a parameter to positively adjust the algo-
rithm. In particular, given a fixed solver, there always exists an ordering of the wrong
continuations, such that the constructed net has no redundant places.

In general (Ns,ms) may still include redundant places. There exist no redundant
places w.r.t. (i) of Lemma 2, but there may exist redundant places w.r.t. (ii). These places
can finally be deleted from (Ns,ms) in order to get a preferably small net. Algorithm
2 calculates (Ns,ms).

1: L(σ) ← getProcessLanguage(σ)
2: WC ← getWrongContinuations(L(σ))
3: A ← EmptyMatrix
4: (P, T, F, W, m0) ← (∅, getActivities(σ), ∅, ∅, ∅)
5: for all w ∈ L(σ) do
6: A.addRow(aw)
7: end for
8: for all w ∈ WC do
9: if isOccurrenceSequence(w, (P, T, F, W, m0)) then

10: r ← Solver.getIntegerSolution(A · r ≥ 0, r ≥ 0,bw · r < 0)
11: if r 6= null then
12: p ← correspondingP lace(r)
13: for all p′ ∈ P do
14: if p′ ¹ p then P.delete(p′) end if
15: end for
16: P.add(p)
17: end if
18: end if
19: end for
20: return (P, T, F, W, m0)

Algorithm 2: Computes (Ns,ms) from an event log σ.

An example for a net calculated by this algorithm is shown for the log of Example
1. We considered the length-plus-lexicographic order of the 45 wrong continuations: b,
c, d, e, aa, ae, aba, abc, abd, abe, aca, acb, acc, ace, ada, adb, add, ade, abba, abbb,
abbc, abbd, acda, acdb, acdc, acdd, adca, adcb, adcc, adcd, abbea, abbeb, abbec, abbed,
abbee, acdea, acdeb, acdec, acded, acdee, adcea, adceb, adcec, adced, adcee. To cal-
culate a separating feasible place for a given wrong continuation, we used the Simplex



method of the Maple Simplex package [14]. We chose an objective function (for the
Simplex algorithm) that minimizes all arc weights outgoing from the constructed place
as well as the initial marking. Figure 4 shows the places resulting from the first five
wrong continuations b, c, d, e and aa. In Figures we annotate the constructed separat-
ing feasible places with the wrong continuation, for which the place was calculated.
The next wrong continuation ae leads the ae-place in Figure 5. Then aba is already
prohibited by the aa-place and thus steps 10 to 17 of Algorithm 2 are skipped for this
wrong continuation. The next three wrong continuations abc, abd and abe lead to the
respective separating feasible places in Figure 5. All remaining 35 wrong continuations
are prohibited by one of the already calculated feasible places. The b-, c-, and d-place
from Figure 4 are deleted in Figure 5, because each of these places is less restrictive
than either the abc- or the abd-place. Thus, they are deleted as redundant places accord-
ing to step 13 to 15 of Algorithm 2. Consequently the net in Figure 5 with six places
results from Algorithm 2 (only the e-place is still redundant). Altogether the Simplex
algorithm was used to calculate nine separating feasible places, of which we deleted
three as redundant places.
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Fig. 4. First five places calculated from the
event log of Example 1 with method 2.
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Fig. 5. Final net constructed from the event
log of Example 1 with method 2.

The resulting net exactly reproduces the behaviour of the log. Omitting the word
acde (but not its prefixes) from the process language, the algorithm calculates also the
net from Figure 5 (the inequation systems are not changed). This net does not exactly
match the behaviour of this changed process language. But it is still an optimal solution
regarding (2) (although this is not guaranteed, since L(Nb,mb) 6= L(σ)).

The main advantage of method 2 is that the number of added places is bounded by
|L(σ)| · |T | and that in most practical cases it is a lot smaller. Usually the resulting net is
small and concise. The calculation of the net is efficient. There exists a polynomial time
algorithm. Problematic is, that a good solution regarding (2) is not guaranteed, i.e. there
may be intricate examples leading to a bad solution of the process mining problem. The
next subsection shows an example, where the constructed net is not optimal regarding
(2), but this example was really hard to find. Therefore, in most cases the net should
be an optimal solution. In the special case L(Nsat, msat) = L(σ), the optimality of



method 2 is even guaranteed. Moreover if the constructed net is not optimal, the exam-
ple of the next subsection indicates that it is usually still a good solution of the process
mining problem. Altogether the process model resulting from method 2 is a reasonable
completion of the given probably incomplete log file. Lastly it remains to mention that
in contrast to method 1, method 2 also computes if the process language of the log is
exactly reproduced by the constructed net, since there holds L(Ns,ms) = L(σ) if and
only if there is a separating feasible place for every wrong continuation.

4.3 Comparison of Method 1 and Method 2

While L(Nb,mb) is the smallest net language including L(σ) and thus (Nb,mb) is op-
timal w.r.t. (2), this must not be the case for (Ns,ms). On the other hand, the examples
and considerations in Subsection 4.1 and 4.2 have shown, that method 2 (calculating
(Ns,ms)) is more efficient than method 1 (calculating (Nb,mb)) and that method 2
leads to significantly smaller nets. The nets resulting from method 1 usually need some
heuristical adaptions to get a manually tractable size.

In the following we consider an example event log leading to a situation, in which
method 1 can lead to a better solution than method 2 (dependent on the chosen param-
eters of method 2) regarding (2).

event log (activity,case):
(a,1) (a,1) (b,2) (b,2) (b,1)
process language:
a aa aab b bb

Example 2.
Method 1 computes the net (Nb,mb) in Figure 6. The behaviour of the net (Nb,mb)

completes L(σ) by the occurrence sequence ab, i.e. L(Nb, mb) \L(σ) = {ab}. The net
resulting from method 2 is dependent on two parameters: the order of the wrong contin-
uations and the solver calculating the separating feasible places (i.e. which solutions of
the inequation systems are computed). We fixed the length-plus-lexicographic order for
the wrong continuations. Our standard procedure using the Maple Simplex algorithm
calculated the net on the bottom in Figure 7. This net is optimal regarding (2). But
choosing another solver could also lead to the net depicted on the top in Figure 7. This
net contains another separating feasible place for the wrong continuation aabb (the cor-
responding region also solves the respective inequation system). It has one additional
occurrence sequence abb in contrast to the nets in Figure 6 and Figure 7. Thus it is not
optimal regarding (2). Since the region corresponding to this place is not an edge of the
polyhedron defined by the inequation system corresponding to the wrong continuation
aabb and the Simplex algorithm always computes edges, the Simplex solver computed
the edge-solution defining the aabb-place on the bottom of Figure 7. Thus, we could
not find a solver leading to a non-optimal net regarding (2). But of course we cannot
rule out the possibility, that there are log files such that a solver generates such a non-
optimal solution. It remains to mention that we searched a long time for the presented
example event log, in which it is at least possible that method 2 computes a non-optimal
solution.
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ba
aaa ba

2

2

aabb

ba
aaa ba

2

2

2
aabb

Fig. 7. Two alternative nets calculated with
method 2

We showed in this subsection that it is actually possible that method 1 leads to a
better solution regarding (2) than method 2. As argued, it is reasonable to assume that
this happens only in really rare cases. Method 2 still provides a good solution in these
cases. It can be optimized w.r.t. two parameters – the chosen solver and the ordering of
the wrong continuations. The distinct advantages of method 2 concerning the runtime
and the size of the calculated net altogether argue for method 2. But method 1 can still
lead to valuable results, in particular if combined with some heuristics to decrease the
number of places of the constructed net. Mainly, algorithms deleting redundant places
are of interest.

5 Conclusion

The presented methods were restricted in two ways. Firstly we only considered p/t-nets
as process models. Of course there are several other net classes of interest, such as for
example workflow nets and elementary nets. Secondly there is one other definition of
regions of languages (to define feasible places) in the literature, that could be applied.
We also adapted and tested region based synthesis methods w.r.t. such other net classes
and region definitions. In this section we will shortly argue that these methods follow
the same lines of computing a finite representation of (Nsat,msat) through basis or
separating solutions of linear inequation systems. We compare these methods with the
presented ones.

First, we discuss alternative Petri net classes. In the example of Subsection 4.1, we
proposed to omit loops to simplify the constructed net. Leaving loops from p/t-nets in
general, leads to the simpler class of pure nets. The connection between a transition and
a place can then be described by one integer number z: If z is positive, the transition
produces z tokens in the place, and if z is negative, the transition consumes −z tokens
from the place. The process mining approach can be developed for this net class analo-
gously as for p/t-nets. The inequation systems get simpler in this case, in particular the



number of variables is halved. Therefore the process mining approach based on regions
of languages gets more efficient for pure nets, but the modelling power is restricted in
contrast to p/t-nets.

Typical workflow Petri nets often have unweighted arcs. To construct such nets from
a log with the presented methods, one simply has to add additional inequations ensur-
ing arc weights smaller or equal than one to the considered inequation systems. The
problem is that the resulting systems are inhomogeneous. Method 1 is not applicable in
this case (adaptions of this method are in some cases still possible). Method 2 is still
useable, but the linear programming techniques to find separating feasible places have
to be adapted. The approaches become less efficient in the inhomogeneous case [19].

A popular net class with unweighted arcs are elementary nets. In elementary nets the
number of tokens in a place is bounded by one. This leads to additional inhomogeneous
inequations ensuring this property. The process mining methods can in this case be
applied as described in the last paragraph. Note that the total number of possible places
is finite in the case of elementary nets. Thus also the number of feasible places is finite.
This leads to some simplifications concerning a compact representation of the saturated
feasible net (similar to method 1), which can be calculated itself.

In [13] regions of partial languages are introduced (in partial languages concurrency
between activities can be specified), and in [12] their calculation for the case of a finite
partial language is shown. Since the process language of an event log considered in
this paper is a special case of a finite partial language, this approach can directly be
applied in our setting. Since the set of regions in this case can also be characterized
as the set of non-negative integer solutions of a homogeneous inequation system, the
two computation methods of Section 4 can analogously be used with this alternative
regions definition. But the number of variables as well as the number of inequations is
larger than with the regions definition of this paper, in particular the dimension of the
resulting cone is bigger. We tested this approach, but the complexity of the algorithm
as well as the size of the resulting nets are worse. Nevertheless the approach can be in-
teresting for process mining, if there is some additional information, that can be used to
identify independent (concurrent) events in the event log. Extracting such independency
information in logs is already applied in [18].

The big advantage of the presented process mining approaches based on regions
of languages is that they lead to reliable results. Other process mining algorithms are
often more or less heuristic and their applicability is shown only with experimental
results. We showed theoretical results that justify that the presented methods lead to a
good or even optimal solution regarding (2), while (1) is guaranteed. A problem of the
algorithms may be the required time and space consumption as well as the size of the
resulting nets. The presented algorithms can be seen as a basis, that can be improved in
several directions. Method 2 for computing separating feasible places is flexible w.r.t.
the used solver and the chosen ordering of the wrong continuations. Varying the solver
could improve time and space consumption, heuristics for fixing an appropriate ordering
of the wrong continuations could lead to smaller nets. Moreover, both methods could
be improved by additional approaches to find redundant places yielding smaller nets.
For example, in this paper we used a simple special objective function in the simplex
algorithm to rule out some redundant places. To develop such approaches, experimental



results and thus an implementation of the algorithms is necessary. An implementation
of the presented process mining algorithms is the next step to realize a practically usable
tool.
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