
Experimental Results on the Synthesis of Petri Nets from Partial

Languages∗

Robin Bergenthum, Sebastian Mauser

Lehrstuhl für Angewandte Informatik

Katholische Universität Eichstätt-Ingolstadt, Eichstätt, Germany
e-mail: {robin.bergenthum, sebastian.mauser}@ku-eichstaett.de

Abstract

In [8] a synthesis algorithm for place/transition-nets
from finite partial languages was developed. In this
paper we present an implementation into VipTool
[5] and experimental results for this synthesis algo-
rithm.

1 Introduction

Synthesis of Petri nets from behavioural descriptions
has been a successful line of research since the 1990s.
There is a rich body of nontrivial theoretical results,
and there are important applications in industry, in
particular in hardware system design, and recently
also in workflow design.
Originally, synthesis means algorithmic construction
of a Petri net from sequential observations. It can
be applied to various classes of Petri nets, including
elementary nets [6, 7] and place/transition nets (p/t-
nets) [1]. Synthesis can start with a transition sys-
tem (synthesis up to isomorphism) representing the
sequential behaviour of a system or with a step tran-
sition system which additionally represents steps of
concurrent events [1]. Synthesis can also be based
on a language (synthesis up to language equivalence),
e.g. a set of occurrence sequences or step sequences
[4]. The classical synthesis problem is the problem to
decide whether, for a given behavioural specification

∗Supported by the German research council - project ”Syn-
thesis of Petri nets from Scenarios” (SYNOPS)

(transition system, language), there exists an unla-
belled Petri net of the respective class, such that the
behaviour of this net coincides with the specified be-
haviour. In the positive case usually a solution net is
constructed.

Recently, we solved the synthesis problem for p/t-
nets with behaviour given in terms of a finite partial
language, i.e., as a finite set of labelled partial orders
(LPOs) [8].1 In contrast to previous work on the syn-
thesis problem, we considered partial order behaviour
of Petri nets, truly representing the concurrency of
events. Partial orders are often considered the most
appropriate representation of behaviour of concurrent
systems modelled by Petri nets. The decision algo-
rithm presented in [8] for the synthesis problem in the
considered setting (behavioural specification: partial
language, target Petri net class: p/t-nets) is based on
the so-called theory of regions. We now implemented
the algorithm and integrated it in a beta version of
our framework VipTool [5]. In this paper we will ex-
plain some algorithmic details of the implementation
of this synthesis algorithm (going beyond the scope of
the paper [8]) and finally present experimental results
(performance tests, etc.).

The synthesis algorithm is divided into two parts.
First a p/t-net having the smallest partial order be-
haviour including the specified partial language is
constructed. This net represents a partial language
being a best upper approximation of the given partial
language through net behaviour. Thus either this net

1LPOs are also known as partial words or pomsets.

solves the synthesis problem positively or the synthe-
sis problem has a negative answer. This is checked
by the second part of the decision algorithm, i.e. it
is checked whether the partial order behaviour of the
constructed net coincides with the specified partial
language. For this second part two alternative proce-
dures are proposed in [8], the so-called ”optimistic”
and the so-called ”pessimistic equality test”. In this
paper we only consider the ”optimistic equality test”.

For practical applications in particular the first part
of the synthesis algorithm is of interest, because the
main focus usually lies in the construction of a system
model from a given specification (not in the decision
of the synthesis problem). In this context the first
algorithm part is a useful standalone algorithm to
compute a p/t-net system, which is a best upper ap-
proximation for a set of scenarios specified in terms
of LPOs. The central idea of the computation of
the p/t-net is sketched in the cover picture: While
the transitions of the synthesized net are given by
the labels of the LPOs, the places are given by the
rays of a pointed polyhedral cone, which is defined by
an inequation system having the set of edges of the
LPOs as variables (details are explained in the next
section).

2 The Synthesis Algorithm

In this section the two parts of the synthesis algo-
rithm, in particular important implementation de-
tails, are explained with a running example. Figure
1 shows a set of two LPOs lpo1 and lpo2 designed
in VipTool. This set represents the specified partial
language in the running example.

Place/transition-nets (p/t-nets) are general Petri
nets regarding arc weights (e.g. see the cover picture
or the net basisNet in Figure 1). The labels of events
of a given LPO refer to transition occurrences in a
p/t-net. The order relation of an LPO is interpreted
as an ”earlier than” relation between transition oc-
currences. Unordered events are concurrent. A given
LPO is an execution, i.e. included in the partial or-
der behaviour, of a p/t-net, if the events of the LPO
can occur in the p/t-net respecting the order relation
and the concurrency relation of the LPO. For exam-

ple the second LPO lpo2 in Figure 1 is an execution
of a p/t-net, if and only if in the initial marking of
the p/t-net, the transition A is enabled, and after
the occurrence of A , the transitions A and B are
concurrently enabled. That means lpo2 is enabled in
the p/t-net depicted on the cover picture as well as
in the p/t-net basisNet in Figure 1.

2.1 First Part – Computing a Best

Upper Approximation

The first part of our synthesis algorithm computes a
p/t-net, being a best upper approximation to a p/t-
net having the specified partial order behaviour, as
follows: The transitions of the p/t-net are given by
the finite set of labels of the partial language, i.e. A

and B in the running example. Adding places to the
p/t-net restricts the enabledness of these transitions.
Places are defined by their initial marking and the
weights on the arcs connecting them to each transi-
tion. Adding only places to the p/t-net, which do not
prohibit any specified LPO from being an execution
of the p/t-net, guarantees the partial order behaviour
of the computed p/t-net to be an upper approxima-
tion of the specified partial language. Such places
are called feasible. Adding all feasible places obvi-
ously generates a best upper approximation, the so
called saturated feasible p/t-net. This net generates
the specified behaviour and minimal additional be-
haviour, but it has infinitely many places. So-called
regions enable the computation of a finite subset of
the set of all feasible places generating the same be-
haviour. Such set of places is finally added to the
synthesized p/t-net.
Regions of a partial language define the set of all
feasible places structurally on the level of the given
partial language. The idea of defining regions is as
follows: If two events are ordered in an LPO this spec-
ifies that the corresponding transition occurrences
may be causally dependent. Such a causal depen-
dency arises exactly if the first transition occurrence
produces tokens in a place, and some of these tokens
are consumed by the second transition occurrence.
Such a place can be defined as follows: Assign to ev-
ery edge of an LPO a non-negative integer, a so-called
token flow, representing the number of tokens which

Figure 1: A screenshot of VipTool: On the left side it shows two LPOs (lpo1 and lpo2) drawn in the VipTool
editor. These two LPOs form the specified partial language in our running example. On the right side the
p/t-net (basisNet) consisting of all places defined by basis regions of the partial language is depicted.

are produced by the first transition occurrence and
consumed by the second transition occurrence in the
place to be defined. Then the number of tokens con-
sumed overall by a transition occurrence in this place
is given as the sum of the token flows assigned to in-
going edges of the event, the so-called intoken flow.
This number can then be interpreted as the weight
of the arc connecting the new place with the respec-
tive transition. Similarly, the number of tokens pro-
duced overall by a transition occurrence in this place
is given as the sum of the token flows assigned to out-
going edges of the event, the so-called outtoken flow.
This number can then be interpreted as the weight
of the arc connecting the respective transition with
the new place. Moreover, transition occurrences can
also consume tokens from the initial marking of the

new place (tokens which are not produced by another
transition occurrence): In order to specify the num-
ber of such tokens, we extend each LPO by an initial
event labelled by the same symbol (S in the cover
picture) representing a start-transition producing the
initial marking. The initial event is in ”earlier than”
relationship to all other events of the LPO. The out-
token flow of this event can be interpreted as the
initial marking of the new place. Similarly transi-
tion occurrences can produce tokens in the new place
which remain in the final marking after the execu-
tion of the LPO (tokens which are not consumed by
some subsequent transition occurrence): In order to
specify the number of such tokens, we extend each
LPO by a final event labelled by different symbols
(E and F in the cover picture) representing tran-

sitions consuming the final marking. All the other
events of an LPO are in ”earlier than” relationship
to the final event. The LPOs of the running example
extended by initial and final events are depicted on
the cover picture. The edges of all LPOs are enumer-
ated. These unique numbers are annotated in circles
as ”identifiers” to the edges. We refer to the token
flow on a certain edge by these numbers in circles.
In the last paragraph we explained how to define a
place by adding non-negative integers to each edge
of the set of extended specified LPOs. The weight
on the arc ingoing to (outgoing from) the place and
outgoing from (ingoing to) a certain transition is de-
fined by the outtoken (intoken) flow of some event
(of some specified LPO) labelled by the respective
transition. The initial marking of the place is de-
fined by the outtoken flow of an initial event of
some LPO. This is only well-defined if the outtoken
and intoken flows of equally labelled events (includ-
ing the initial events) in the partial language coin-
cide. A mapping adding token flows to the edges
of the set of extended specified LPOs, which fulfils
this property, is called token flow function. Each to-
ken flow function defines a place. An example to-
ken flow function for the running example is given
by (©1 ,©2 ,©3 ,©4 ,©5 ,©6 ,©7 ,©8 ,©9 ,©10 ,©11 ,©12) =
(0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2) (the numbers in circles
refer to the token flows on the respective edges, see
the cover picture). The initial marking of the place
defined by this token flow function is one and the
weights on the edges to (from) A and B are one
and one (two and zero). A weight of zero means that
there is no edge. The example place can be found on
the cover picture as well as in the p/t-net basisNet
in Figure 1. In [8] we showed that the set of places
defined by a token flow function coincides with the
set of feasible places. A token flow function is called
region of the given partial language.
Altogether a region of a finite partial language is sim-
ply a finite vector assigning token flows, i.e. non-
negative integers, to the edges of the set of extended
specified LPOs, such that the intoken and outtoken
flows of equally labelled nodes coincide. The latter
condition can easily be encoded in homogeneous lin-
ear equations. In the running example we need an
equation (i) to ensure that the two S -labelled (ini-

tial) events have equal intoken flow, an equation (ii)
to ensure that the two A -labelled events have equal
intoken flow, an equation (iii) to ensure that the two
A -labelled events have equal outtoken flow, an equa-
tion (iv) to ensure that the two B -labelled events
have equal intoken flow and an equation (v) to ensure
that the two B -labelled events have equal outtoken
flow:

(i) ©1 + ©2 −©4 −©5 −©6 −©7 = 0

(ii) ©5 −©7 −©9 = 0

(iii) ©8 + ©9 + ©10 −©12 = 0

(iv) ©2 −©6 −©8 = 0

(v) ©3 −©11 = 0

The non-negativity condition of regions defines one
homogeneous inequation for each variable, i.e. for
each edge. In the running example we have ©1 ≥
0,©2 ≥ 0,©3 ≥ 0,©4 ≥ 0,©5 ≥ 0,©6 ≥ 0,©7 ≥ 0,©8 ≥
0,©9 ≥ 0,©10 ≥ 0,©11 ≥ 0,©12 ≥ 0 . Finally only
integers are allowed as entries of a region vector.
Altogether the set of regions equals the set of non-
negative integer solutions of a homogeneous linear
equation system with integer coefficients. The num-
ber of equations is linear in the number of nodes of the
specified partial language. The number of variables
equals the number of edges of the set of extended
specified LPOs. The discussed equation system to-
gether with inequations ensuring the non-negativity
of the variables (as shown above), defines a pointed
polyhedral cone. Such a cone is illustrated on the
cover picture (in three instead of twelve dimensions).
The set of regions is the set of integer points of this
cone. A pointed polyhedral cone is generated by the
finite set of its rays. More precisely choosing one vec-
tor on each ray results in a minimal basis of the cone.
That means every vector of the cone can be generated
as a non-negative linear combination of this basis and
the basis is minimal (in the number of elements) with
this property. Since in our case the considered equa-
tions have integer coefficients, this basis can be cho-
sen as integer vectors, i.e. as regions. We showed in
[8] that the finite net having the set of places defined
by this set of basis regions has the same partial order

behaviour as the infinite net consisting of all feasi-
ble places. In the running example this finite net is
the p/t-net basisNet depicted in Figure 1. The corre-
spondence of the computed places to the rays of the
considered cone is illustrated on the cover picture by
drawing places onto the rays of the depicted cone.
The computed set of places defined by basis regions
still contains many implicit places, which can be
deleted without changing the behaviour of the syn-
thesized net. Therefore a simple and efficient proce-
dure to delete implicit places of the synthesized net is
included in the first part of our synthesis algorithm.
This procedure deletes places, that are dominated
(w.r.t. the behavioural restriction) by one another
place, but combinations of places dominating other
places are not searched. Applying this procedure, the
algorithm returns the net finalNet depicted in Figure
2 (this net is also shown on the cover picture), i.e.
the first part of our synthesis algorithm computes this
net. The places p0 , p3 , p7 and p8 are deleted from
the p/t-net basisNet of Figure 1, since p0 , p7 and
p8 induce no behavioural restriction at all and p3

is dominated by p6 . Advanced methods to detect
implicit places (considering combinations of places)
still offer extensive improvement possibilities for this
module of our synthesis algorithm.
The implementation of the first part of the synthe-
sis algorithm is as follows: First the equation system
defining the cone is constructed from the given partial
language as shown before. The integer basis of the
cone is computed from the equation system using the
algorithm of Tschernikow [3]. This algorithm starts
by constructing a matrix consisting of the identity
matrix and the transpose of the matrix defining the
considered equations horizontally arranged. The ma-
trix is stepwise transformed. In each step a non-zero
lead column corresponding to one of the equations is
chosen and so called balanced pairs of rows are trans-
formed to equilibrium rows w.r.t. the lead column.
After such transformation the previous lead column
only contains zero values. One transformation step
may increase the number of rows at most quadrati-
cally. The algorithm finishes, when each column cor-
responding to an equation is zero, i.e. it performs at
most as many steps as the number of equations. The
non-negative integer basis solutions of the considered

equation system can then directly be read out from
the last constructed matrix. These solutions are the
basis regions. A p/t-net is then synthesized by adding
a transition for each label in the partial language and
a place for each computed basis region as explained
before (in the running example leading to the p/t-net
basisNet in Figure 1). Implicit places dominated by
one another place are finally deleted by comparing
the computed places pairwise. In the running ex-
ample this leads to the p/t-net depicted on the cover
picture. Altogether the net on the cover picture is the
final synthesized net of the first part of our synthesis
algorithm applied to the running example. The cone
behind the net illustrates the computation principle
of the places of this net.
Concerning the performance of this first part of the
synthesis algorithm, the crucial factor is the Tsch-
ernikow algorithm. It computes the non-negative in-
teger basis of an integral homogeneous equation sys-
tem, which has linear size in the size of the input par-
tial language. The algorithm is very well suited for
our purposes, because it is developed for computing
basis solutions for the set of non-negative solutions of
a homogeneous equation system as it is given in our
situation. Tschernikow exploits this setting to get an
improved version of a previous algorithm to compute
the basis of a homogeneous inequation systems devel-
oped by Motzkin and Burger. Since we have a sparse
matrix (i.e. many entries of a lead column are al-
ready zero), the algorithm should perform quite well
in our setting. In particular the growth of the num-
ber of rows of the stepwise computed matrices should
be very limited, often the number even decreases in
a transformation step. Nevertheless the runtime may
be exponential in worse cases. Also the size of the fi-
nally computed basis may be exponential in the worst
case. But usually it has a reasonable size. Moreover
some places defined by basis regions are deleted as
implicit places in the final synthesized net. The final
number of places is important, because the synthe-
sized net is input for the second part of the synthesis
algorithm. Moreover the constructed net may be of
interest for further analysis. Thus a reasonable size
of this net is especially desired. The performance of
this first part of our synthesis algorithm, and in par-
ticular the size of the synthesized net, is tested with

Figure 2: A screenshot of VipTool: On the left side the p/t-net (finalNet) resulting from the p/t-net
basisNet (Figure 1) by deleting places, dominated by one another place, is depicted. The net is also depicted
on the cover picture. This net is synthesized by the first part of the synthesis algorithm applied to the
partial language of the running example (Figure 1). On the right side the executions of the p/t-net finalNet
(execution1, execution2 and execution3) computed by our unfolding algorithm are shown.

practical examples in the next section.

2.2 Second Part – Equality Test

The second part of the synthesis algorithm – the op-
timistic equality test, whether the computed net has
exactly the specified partial order behaviour – con-
sists of two steps: In a first step the partial order
behaviour of the constructed net is computed, and
in the second step it is tested, if this behaviour is
specified in the given partial language. Note here,
that from the best upper approximation property of
the synthesized p/t-net, we already know the reverse,
that the specified partial language is included in the

partial order behaviour of the p/t-net. The partial
order behaviour of the p/t-net is computed by an
unfolding algorithm. We implemented a newly de-
veloped very fast unfolding algorithm to compute
the partial order behaviour of p/t-nets. In [2] we
present this algorithm and demonstrate its superior
performance in contrast to classical unfolding algo-
rithms. The algorithm constructs all partial orders
corresponding to finite Goltz-Reisig processes of max-
imal length of the p/t-net. We showed in [8] that the
synthesized p/t-net has only finite Goltz-Reisig pro-
cesses. Thus the computed set of partial orders is
a set of executions of maximal length of the p/t-net
including all minimal (w.r.t. the causal orderings) ex-

ecutions of the net. In the running example the syn-
thesized p/t-net, that has to be unfolded, is the net
finalNet shown in Figure 2. Figure 2 shows the set of
executions (execution1, execution2 and execution3),
of this net computed by our unfolding algorithm. In
a second step it is checked if each computed execution
of the synthesized p/t-net is specified. That means
for each such execution it is tested, if it is isomorphic
to a sequentialization (i.e. having a bigger causal-
ity relation) of one of the specified LPOs. Since the
computed executions include all minimal executions
of maximal length, this check actually shows, if the
partial order behaviour of the p/t-net is specified in
the partial language. Thus a positive check implies a
positive answer to the synthesis problem having the
synthesized p/t-net as a witness, and a negative check
implies a negative answer. In the running example it
is obvious, that the computed set of executions of
the synthesized p/t-net (Figure 2) is specified in the
given partial language (Figure 1), since execution1
equals lpo1, execution2 equals lpo2 and execution3
sequentializes lpo2. Thus we have a positive answer
to the synthesis problem in this case and the net on
the cover picture is a solution net.
Concerning the performance of this second part of the
synthesis algorithm, one has to regard that in general,
the number of Goltz-Reisig processes of a p/t-net is
exponential in the size of the p/t-net. This is prob-
lematic, because each computed execution has to be
tested in the second step of this part of the synthe-
sis algorithm. But in our special situation we expect
that the number of computed executions roughly co-
incides with the size of the given partial language,
because the computed executions form a best upper
approximation to the given language. A further prob-
lem is that the calculation of this set of executions re-
quires an exponential runtime in the worst case, but
our unfolding algorithm is at least very efficient com-
pared to classical unfolding algorithms. The test, if a
computed execution is isomorphic to a sequentializa-
tion of one of the specified LPOs, is a special graph
isomorphism problem. Graph isomorphism problems
are assumed to form an own complexity class be-
tween P and NP. The common procedure to solve
graph isomorphism problems is applying backtrack-
ing algorithms constructing a set of possible isomor-

phism, and then checking each possible isomorphism,
if it actually is an isomorphism. The efficiency of the
procedure depends on the quality of restricting the
set of possible isomorphisms in the backtracking al-
gorithm. Our implementation uses such a backtrack-
ing procedure. It applies a very restrictive process of
eliminating possible isomorphisms by identifying cer-
tain equivalence classes of events. These equivalence
classes account for the label of the event as well as
the labels of all events in the pre- and post-set of the
event. This is very restrictive because of the transi-
tivity of LPOs. Thus an efficient isomorphism test is
ensured. The experimental results in the next section
reveal the performance of the two steps of the second
part of the synthesis algorithm in practice.
We implemented the synthesis algorithm for p/t-nets
from partial languages as described in this section
into our framework VipTool [5]. Figure 1 and Fig-
ure 2 show examples of the user interface of VipTool.
The partial language may be specified in the VipTool
editor or as an xml-file. The synthesized net is stored
as a pnml-file and can be visualized with VipTool.

3 Experimental Results

In this section we show experimental results of
the implementation of the described synthesis algo-
rithm.2 The considered partial languages are subsets
of the LPOs shown in Figure 1, Figure 3 and Figure 4.
The table on the next page shows the runtime in milli
seconds (”ms”) of the first part of the synthesis al-
gorithm (”Synthesis”) and the runtime of the second
part (optimistic equality test) divided into the un-
folding procedure (”Unfolding”) and the comparison
of the computed executions and the specified partial
language (”Test”). We also show the number of ba-
sis regions (”basis”) and the final number of places
(”places”) of the net constructed in the first part of
the synthesis algorithm as well as the final result of
the equality test (”result”).
Concerning the runtime in particular the unfolding
algorithm seems problematic (the runtime entry ”-”

2We used Java SE 1.5.0 on an Intel Xeon 2.8 GHz machine
with 3072 MB RAM running Microsoft Windows Server 2003
SE operating system.

C

A A

C

B

C

C

B

lpo3 lpo4 lpo6

C

C

lpo5

Figure 3: Example LPOs lpo3, lpo4, lpo5, lpo6.

A

B C

D

A

B

C

D

B

A

B C

D

B C

A

E

D

lpo7a lpo7b lpo7c lpo8

Figure 4: Example LPOs lpo7a, lpo7b, lpo7c, lpo8.

means that the algorithm did not finish in reasonable
time), although we have already chosen an efficient
unfolder. We are currently working on an even more
efficient unfolding algorithm. Also further methods
to delete implicit places in the constructed net could
improve the situation. Lastly it could also be inter-
esting to implement the so-called pessimistic equality
test, which does not include an unfolding algorithm,
instead of the optimistic test used here.

Language Synthesis Unfolding Test

ms basis places ms ms result
{lpo1, lpo2} 131 9 5 62 5 true

{lpo1, lpo2, lpo3} 266 35 7 73 8 true
{lpo1, lpo2, lpo3, lpo4} 390 88 12 110 24 true

{lpo1, lpo2, lpo3, lpo4, lpo5} 1.890 220 17 - - -
{lpo1, lpo2, lpo6} 359 48 14 5.718 183 false
{lpo7a, lpo8} 279 49 19 93 3 true
{lpo7b, lpo8} 407 149 27 1188 113 true
{lpo7c, lpo8} 734 321 41 - - -

References

[1] E. Badouel and P. Darondeau. On the synthesis of
general petri nets. Technical Report 3025, Inria,
1996.

[2] R. Bergenthum, R. Lorenz, and S. Mauser. Faster
unfolding of general petri nets. In 14. Work-
shop Algorithmen und Werkzeuge für Petri Netze
(AWPN), 2007.

[3] S. N. Cernikov. Lineare Ungleichungen.
Deutscher Verlag der Wissenschaften, VEB, 1971.

[4] P. Darondeau. Deriving unbounded petri nets
from formal languages. In D. Sangiorgi; R. de
Simone, editor, CONCUR, volume 1466 of Lec-
ture Notes in Computer Science, pages 533–548.
Springer, 1998.

[5] J. Desel, G. Juhás, and R. Lorenz. Viptool-
homepage., 2003. http://www.informatik.ku-
eichstaett.de/projekte/vip/.

[6] A. Ehrenfeucht and G. Rozenberg. Partial (set) 2-
structures. part i: Basic notions and the represen-
tation problem. Acta Inf., 27(4):315–342, 1989.

[7] A. Ehrenfeucht and G. Rozenberg. Partial (set)
2-structures. part ii: State spaces of concurrent
systems. Acta Inf., 27(4):343–368, 1989.

[8] R. Lorenz, R. Bergenthum, S. Mauser, and J. De-
sel. Synthesis of petri nets from finite partial
languages. In Proceedings of the 7th Interna-
tional Conference on Application of Concurrency
to System Design (ACSD), pages 157–166, 2007.

