
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

HOW TO SYNTHESIZE NETS FROM LANGUAGES - A SURVEY

Robert Lorenz
Sebastian Mauser

Department of Computer Science
Catholic University of Eichstätt-Ingolstadt

85072 Eichstätt, GERMANY

Gabriel Juhás

Faculty of Electrical Eng. and Information Technology
Slovak University of Technology Bratislava

Bratislava, SLOVAKIA
ABSTRACT

In this paper we present a survey on methods for the synthesis
of Petri nets from behavioral descriptions given as languages.
We consider place/transition Petri nets, elementary Petri
nets and Petri nets with inhibitor arcs. For each net class
we consider classical languages, step languages and partial
languages as behavioral description.

All methods are based on the notion of regions of
languages. We identify two different types of regions and two
different principles of computing from the set of regions of a
language a finite Petri net generating this language. For finite
or regular languages almost each combination of Petri net
class, language type, region type and computation principle
can be considered to compute such a net. Altogether, we
present a framework for region-based synthesis of Petri
nets from languages which integrates almost all known
approaches and fills several remaining gaps in literature.

1 INTRODUCTION

Synthesis of Petri nets from behavioral descriptions has
been a successful line of research since the 1990s. There
is a rich body of nontrivial theoretical results and there are
important applications in industry, in particular in hardware
design (Cortadella et al. 2000, Josephs and Furey 2002), in
control of manufacturing systems (Zhou and Cesare 1993)
and recently also in workflow design (van der Aalst et al.
2003, van der Aalst and Günther 2007).

The synthesis problem is the problem to construct, for
a given behavioral specification, a Petri net such that the
behavior of this net coincides with the specified behavior
(if such a net exists). There are many different methods
which are presented in literature to solve this problem. They
differ mainly in the Petri net class and the model for the
behavioral specification considered. On the other hand, all
these methods are based on one common theoretical concept,
the so called theory of regions. In this paper, we present an
1-4244-1306-0/07/$25.00 ©2007 IEEE
overview on region-based synthesis methods, which regard
languages as behavioral specifications.

A Petri net N (of any Petri net class) has a set of
places P and a set of transitions T . While transitions
model events, places define pre-, post- and side-conditions of
transitions. That means, places define states of the modeled
system in which transitions (events) can occur and determine
how the occurrence of a transition changes such states.
Through places causal dependencies between transitions
may be introduced. Figure 1 shows a place/transition-net,
which serves as a running example in this paper.

a b
2

Figure 1: A place/transition-net with transitions a and b
and three places. Places carry tokens determining their
state. Numbers assigned to arcs from places to transitions
specify the number of tokens consumed by the occurrence
of a transition. Numbers assigned to arcs from transitions
to places specify the number of tokens produced by the
occurrence of a transition. Arc weights of value 1 are not
shown.

The behavior of a Petri net model N is defined by the
language of executions L(N) generated by N. Executions
are representations of observations of transition occurrences
of the Petri net (for example finite sequences of transition
occurrences). There are several different (formal) notions
of executions of Petri nets depending on the considered
net semantics, resulting in different language types. For
example, for the place/transition-net shown in Figure 1
we have L(N) = {b,a,ab,aab,aba} w.r.t. to the so called
sequential semantics. Altogether, we formally consider the
following synthesis problem w.r.t. different Petri net classes
and different language types:

Given: A language L over a finite alphabet A.
Searched: A Petri net N with L(N) = L.
637

Lorenz, Mauser, and Juhás
That means, we search for an exact solution of the
problem. Such an exact a solution may not exist, i.e. not
each language L is a net language. The idea of region-based
synthesis common to all mentioned methods to compute
such a net N is as follows: The set of transitions of this
net is T = A. We first consider the net N having an empty
set of places. This net generates each execution in L (i.e.
L⊆ L(N)), because there are no places restricting transition
occurrences. But it generates much more executions. Since
we are interested in an exact solution, we restrict L(N) by
adding places.

There are places p, which restrict the set of executions
too much in the sense that L \L(N) 6= /0, if p is added to
N. Such places are called non-feasible (w.r.t. L). We only
add so called feasible places p satisfying L⊆ L(N), if p is
added to N (Figure 2). The idea of region-based synthesis
is to add all feasible places to N. The resulting net Nsat is
called the saturated feasible net. On the one hand, Nsat has
by construction the following very nice property

(min) L(Nsat) is the smallest net language satisfying
L ⊆ L(Nsat).

This is clear, since L(Nsat) could only be further re-
stricted by adding non-feasible places. The property (min)
directly implies that there is an exact solution of the syn-
thesis problem if and only if Nsat is such an exact solution.
Moreover, if there is no exact solution, Nsat is the best
approximation to such a solution.

On the other hand, this result is only of theoretical
value, since the set of feasible places is in general infinite
(Figure 3). Therefore, for a practical solution, a finite subset
of the set of all feasible places is defined, such that the net
N f in defined by this finite subset fulfills L(N f in) = L(Nsat).
Such a net N f in is called finite representation of Nsat . In order
to construct such a finite representation, in an intermediate
step a feasible place is defined through a so called region
of the given language L.

The described approach is common to all known region-
based synthesis methods (see Figure 4). But these methods
differ in the definition of regions (of a language) and of
the finite representation N f in. In this paper it is for the
first time observed, that one can distinguish two types of
definitions of regions and two types of definitions of finite
representations, covering all known region-based synthesis
methods. We show that these different types of definitions
can be applied to almost each Petri net class and each
language type in all four possible combinations (leading to
different nets N f in having the same behavior).

Summarized, the form of the synthesis problem and
the solution method can be varied along the following
lines: Petri net class (p/t-nets, elementary nets, p/t-nets
with inhibitor arcs and elementary nets with inhibitor arcs),
language type (finite or regular classical languages, trace
6

a b
2

a b

Figure 2: A feasible place (left part) and a non-feasible
place (right part) w.r.t. the language L = {b,a,ab,aab,aba}
(aba is no execution of the right net).

a b
2n

n

n

Figure 3: The shown place is feasible w.r.t. L =
{b,a,ab,aab,aba} for each integer n ∈ N.

Language L Petri net N with
L⊆L(N), L(N) minimal

Regions
(finite repr.)

Feasible places
(finite repr.)

Figure 4: The approach of region-based synthesis.

languages and partial languages), region type (transition-
region, token flow-region) and finite representation type
(separating representation, basis representation).

The structure of the rest of the paper is as follows.
In Section 2 we recall basic mathematical notations and
give basic definitions of language types, Petri net classes
and executions of Petri nets. In Section 3 we introduce
transition-regions and token flow-regions for each mentioned
combination of Petri net class and language type. We show
in each case that the set of regions equals the set of non-
negative integral solutions of a possibly infinite linear system
of the form AL ·x 6 bL (AL may have infinite many rows
and columns). This linear system is finite for finite and
for regular languages. In Section 4 we introduce the finite
basis representation of the set of solutions of finite linear
systems of the form AL · x 6 0 and the finite separating
representation of the set of solutions of finite linear systems
of the form AL ·x 6 bL, leading to different nets N f in solving
the synthesis problem. In Section 5 we give the references
concerning known results stated in the Sections 3 and 4.
We integrate all these existing approaches into the presented
framework and identify and discuss new alternatives (given
by the framework) for solving the synthesis problem. Proofs
are omitted due to lack of space. All presented algorithms
involve integer programming techniques. Since there are
many different such techniques and we did not want to give a
survey on these, we omit to give references in this direction.
38

Lorenz, Mauser, and Juhás
Due to lack of space, we also did not add an elaboration
of applications in practise (there are quite a lot) and the
relation to the simulation area. Some brief comments on
that can be found in the conclusion.

2 MATHEMATICAL PRELIMINARIES

In this section we briefly introduce basic mathematical
notions we use in the paper. In particular, the different
considered language types and Petri net classes are defined.

By N0 we denote the set of nonnegative integers, by N
the set of positive integers. Given a function f from X to Y
and a subset Z of X we write f |Z to denote the restriction of
f to the set Z. Given a finite set X , the symbol |X | denotes
the cardinality of X . The set of all multi-sets over a set X is
the set NX of all functions f : X →N. Addition + on multi-
sets is defined as usual by (m+m′)(a) = m(a)+m′(a). We
also write ∑a∈X m(a)a to denote a multi-set m over X and
write a ∈m if m(a) > 0. Given a binary relation R⊆ X×X
over a set X , the symbol R+ denotes the transitive closure
of R. We write aRb to denote (a,b) ∈ R. A directed graph
is a pair (V,→), where V is a finite set of vertices and
→⊆ V ×V is a binary relation over V, called the set of
edges (all graphs considered in this paper are finite).

A partial order is a directed graph po = (V,<), where <
is a binary relation on V which is irreflexive (∀v∈V : v 6< v)
and transitive (<=<+). Two nodes v,v′ ∈ V of a partial
order (V,<) are called independent if v 6< v′ and v′ 6< v. By
co ⊆ V ×V we denote the set of all pairs of independent
nodes of V . A co-set is a subset C ⊆V fulfilling ∀x,y ∈C :
xcoy. A cut is a maximal co-set. For a co-set C of a partial
order (V,<) and a node v ∈V \C we write v < C, if v < s
for an element s ∈C and vcoC, if vcos for all elements
s ∈C. A partial order (V ′,<′) is a prefix of another partial
order (V,<) if V ′ ⊆V with (v′ ∈V ′∧ v < v′) =⇒ (v ∈V ′)
and <′=< |V ′×V ′ . We say that such a prefix is defined by
V ′. To each cut C, there corresponds a prefix defined by
V ′ = {v∈V | v <C}. Given two partial orders po1 = (V,<1)
and po2 = (V,<2), we say that po2 is a sequentialization
of po1 if <1⊆<2.

Sets of executions of Petri nets are languages. We will
consider classical languages, step languages and partial
languages. Let A be a finite set of characters. Formally,
a (classical) language over A is a (possibly infinite) set
of finite sequences of characters from A. Such sequences
describe sequential executions of Petri nets. An example
of a (finite) classical language is L = {b,a,ab,aba,aab}.
A (concurrent) step over A is a multi-set over A. A step
language over A is a (possibly infinite) set of finite sequences
of steps over A. Such sequences describe step executions of
Petri nets, where actions belonging to a step are considered
to be independent. An example of a (finite) step language is
L = {(2a)b,a(a+b)}. For a classical language L and w∈ L,
|w|a denotes the number of a’s occurring in w (for example
6

|aba|a = 2). For a step language L and w = α1 . . .αm ∈ L,
|w|a = ∑

m
i=1 αi(a) denotes the number of a’s occurring in w

(for example |a(a+b)|a = 2).
A partial language over A is a (possibly infinite) set of

non-isomorphic (finite) so called labeled partial orders over
A. A labeled partial order (LPO) is a triple lpo = (V,<, l),
where (V,<) is a partial order, and l : V → A is a labeling
function with set of labels A. LPOs describe non-sequential
computations of Petri nets. The ordering between events is
interpreted as an ”earlier than”-relation between events. If
two events are not ordered, then they can occur concurrently
(in any order and also at the same time, Figure 5).

b
a

b a

a

b

a
a

a

a

b

a

Figure 5: LPOs with three nodes and labels a and b. The first
LPO (from left to right) describes the sequential computation
aba, the second LPO the step computation a(a+b) and the
third LPO the step computation (2a)b. The fourth LPO
describes the possibility that the sequence ab can occur
concurrently to a.

The labeling function l is lifted to a subset Y of V in
the following way: l(Y) is the multi-set over A given by
l(Y)(a) = |l−1(a)∩Y | for every a ∈ A.

Classical languages and step languages can be seen as
special classes of partial languages. That means a finite
sequence σ of characters from A or of (concurrent) steps over
A can be represented as a LPO lpoσ . For σ = a1 . . .am,
ai ∈ A for i ∈ {1, . . . ,m}, define lpoσ = (V,<, l) by V =
{v1, . . . ,vm}, vi < v j ⇔ i < j and l(vi) = ai for i∈ {1, . . . ,m}.
For example, lpoaba is the first LPO in Figure 5. For a
finite sequence σ = α1 . . .αm of steps over A define lpoσ =
(V,<, l) by V =

⋃m
i=1 Vi, l(Vi)(a) = αi(a) for a ∈ A and

<=
⋃

i< j Vi×Vj. For example, lpoa(a+b) is the second LPO
and lpo(2a)b is the third LPO in Figure 5.

In the following we define different Petri net classes
and their different notions of executions. We will not give
the classical definitions, instead we introduce different Petri
net classes by their different types of places. A Petri net
consists of a set of transitions T and a set of places P. For
any considered Petri net class, the state of a Petri net is
given by a marking m of places, assigning to each place
p ∈ P a number m(p) ∈ N0.

Definition 1 (place) We introduce places of
place/transition-nets and elementary nets (with and without
inhibitor arcs). For any Petri net class, each place has
assigned an initial marking m0(p) determining the initial
state of the Petri net. The other parameters of places
39

Lorenz, Mauser, and Juhás
depend on the considered net class and assign pre-, post-
and side-conditions to transitions.

Place/transition nets (p/t-nets): A p/t-net place p ∈ P is
determined (besides its initial marking) through the number
W (p, t) ∈ N0 of tokens consumed by (an occurrence of) t
in p and the number of tokens W (t, p) ∈N0 produced by t
in p for each transition t ∈ T .

Elementary nets: An elementary net place p ∈ P is a
p/t-net place which satisfies m0(p) 6 1, W (p, t) 6 1 and
W (t, p) 6 1 (for each t ∈ T).

Nets with inhibitor arcs: A inhibitor net place p ∈
P is a p/t-net place (resp. elementary net place) which
is additionally determined by so called inhibitor values
I(p, t) ∈ N0 ∪{ω}, which serve as upper bounds for the
number of tokens allowed in p for the occurrence of t ∈ T .

Graphically, places are drawn as circles and transitions
as squares. The initial marking m0(p) is illustrated by draw-
ing m0(p) tokens inside p, the number W (p, t) is assigned
to an arrow from p to t and W (t, p) is assigned to an arrow
from t to p. For example the left place p in Figure 2 is de-
fined by m0(p) = 1, W (p,a) = 1, W (p,b) = 1, W (a, p) = 2
and W (b, p) = 0. A number I(p, t) is assigned to an arrow
from p to t which as a circle as arrowhead.

The definition of executions of Petri nets depends on
the occurrence rule of transitions, stating in which markings
a transition (or a multi-set of transitions) can occur and how
these markings are changed by its occurrence.

Definition 2 (occurrence rule) For all considered
Petri net classes the change of a marking by the occurrence
of transitions is defined in the same way: If a transition
t occurs in a marking m, then resulting marking m′ is
defined by m′(p) = m(p)−W (p, t)+W (t, p) for p ∈ P. If
a multi-set of transitions τ occurs in m, then the resulting
marking m′ is defined by m′(p) = m(p)−∑t∈τ τ(t)W (p, t)+
∑t∈τ τ(t)W (t, p) for p ∈ P. We write m t−→ m′ (m τ−→ m′)
to denote that t (τ) can occur in m and that its occurrence
leads to m′. Transitions can occur according to the following
conditions:

P/t-nets: A transition t ∈ T can occur in a marking m,
if ∀p ∈ P : m(p) > W (p, t). A multi-set of transitions τ can
occur in m, if ∀p ∈ P : m(p) > ∑t∈τ τ(t)W (p, t).

Elementary nets: A transition t ∈ T can occur in a
marking m, if ∀p ∈ P : m(p) > W (p, t)∧m′(p) 6 1. A
multi-set of transitions τ can to occur in m, if ∀p ∈ P :
m(p) > ∑t∈τ τ(t)W (p, t)∧m′(p) 6 1.

Nets with inhibitor arcs: There are two different se-
mantics of inhibitor arcs. We only consider the a-posteriori
semantics here: A transition t ∈ T can occur in a marking
m, if additionally to the conditions of p/t-nets (elementary
nets) it is satisfied ∀p ∈ P : m(p) +W (t, p) 6 I(p, t). A
multi-set of transitions τ can to occur in m, if additionally
∀p ∈ P : m(p)+∑t∈τ τ(t)W (t, p) 6 I(p, t).
6

The notion of execution depends on the chosen net
semantics.

Definition 3 (execution) We consider the sequen-
tial semantics, the step semantics and the partial order
semantics of Petri nets:

Sequential semantics: A sequential execution of a Petri
net is a finite sequence of transitions σ = t1 . . . tm such
that there are markings m1, . . . ,mn satisfying m

t1−→m1
t2−→

. . .
tm−→ mm.
Step semantics: A step execution of a Petri net is a

finite sequence of multi-sets of transitions σ = τ1 . . .τm such
that there are markings m1, . . . ,mn satisfying m

τ1−→m1
τ2−→

. . .
τm−→ mm.
Partial order semantics: A partial order execution of a

Petri net is a LPO lpo such that each finite sequence of
multi-sets of transitions σ = τ1 . . .τm, such that lpoσ is a
sequentialization of lpo, is a step execution. Equivalently, a
partial order execution of a p/t-net can be defined as a LPO
lpo = (V,<, l) such that for each cut C of lpo and each place
p there holds: m0(p) + ∑v<C(W (l(v), p)−W (p, l(v))) >
∑v∈C W (p, l(v)). For elementary nets one requires ad-
ditionally m0(p)+ ∑v<C∨v∈C(W (l(v), p)−W (p, l(v))) 6 1.
For inhibitor nets one requires additionally m0(p) +
∑v<C(W (l(v), p)−W (p, l(v))) + ∑v∈C W (l(v), p) 6 I(p, t)
for each t ∈ l(C).

Each sequential execution is also a step execution and
each sequential or step execution is also a partial order exe-
cution. The set of (sequential, step, partial order) executions
is always prefix and sequentialization closed. The p/t-net
from Figure 1 has the sequential executions b,a,ab,aba,aab
and the step executions b,a,ab,aba,aab,a(a+b). Note that
(2a)b is not a step execution of this net and that therefore
the fourth LPO in Figure 5 is not a partial order execution
of this net.

3 REGIONS

As mentioned in the introduction, one can identify two
types of regions for the definition of feasible places. We
will show that for both types the set of all regions of a given
language L equals the set of non-negative integral solutions
of a possibly infinite linear system of the form AL ·x 6 bL.
For finite or regular languages, this representation of regions
is used to define computable finite representations of the
infinite set of all regions in the next section.

3.1 Transition-regions

A transition-region r can be defined for each mentioned
combination of net class and language type. It directly
defines a p/t-net- or elementary net-place pr by determining
40

Lorenz, Mauser, and Juhás
the numbers m0(pr) and W (pr, t),W (t, pr) for t ∈ T . If
T = {t1, . . . , tn}, then r is given as a (2n + 1)-tuple r =
(r0, . . . ,r2n) of non-negative integers. Its components define
these numbers via m0(pr) = r0, W (pr, ti) = ri andW (ti, pr) =
rn+i for i ∈ {1, . . . ,n}. Denoting t1 = a and t2 = b, then the
left place in Figure 2 is defined by rle f t = (1,1,1,2,0) and
the right place by rright = (1,1,1,1,0).

For inhibitor net places additionally the numbers I(p, t)
for t ∈ T must be defined. For such nets r is a (3n+1)-tuple
r = (r0, . . . ,r3n) of non-negative integers, where I(pr, ti) =
r2n+i for i ∈ {1, . . . ,n}.

Since a region r is intended to define a feasible place
pr, it is required to satisfy a property (f)L ensuring that pr
is feasible w.r.t. L. We define

Definition 4 (transition-region) A tuple r as above
is called a transition-region if it satisfies (f)L.

The property (f)L depends on the considered net class
and on the type of L. In the following we state (f)L for
several combinations of net class and language type. The
following statement is shown in literature for p/t-nets with
and without inhibitor arcs and classical languages and step
languages. For the other combinations of net class and
language type, the theorem is firstly stated in this paper.

Theorem 1 A tuple r satisfies (f)L if and only if
pr is feasible w.r.t. L.

That means the regions of L exactly define feasible
places. Remember that pr is feasible w.r.t. L if the net
resulting from adding pr still generates L. The property
(f)L is defined as follows:

3.1.1 P/T-nets

Classical languages: For each w = w′am ∈ L it holds r0−
∑

n
i=1 |w|tiri +∑

n
i=1 |w′|tirn+i > 0. This is the case if and only

if aw · r 6 0 for aw = (aw,0, . . . ,aw,2n) defined by

aw, j =


−1 if j = 0,
|w|t j if j ∈ {1, . . . ,n},
−|w′|t j−n if j ∈ {n+1, . . . ,2n}.

Denoting t1 = a and t2 = b, for the right place of Figure 2
defined by rright = (1,1,1,1,0) there holds for w = aba:
aw = (−1,2,1,−1,−1) and aw · rright = 1 > 0. Thus rright
is not a region of L = {aba} and this place is non-feasible
w.r.t. L. On the other side, for the left place of Figure 2
defined by rle f t = (1,1,1,2,0) there holds for w = aba:
aw · rle f t = 0. Thus rle f t is a region of L and this place is
feasible w.r.t. L.

Step language: For each w = w′αm ∈ L it holds r0 −
∑

n
i=1 |w|tiri +∑

n
i=1 |w′|tirn+i > 0. This is the case if and only
6

if aw · r 6 0 for aw = (aw,0, . . . ,aw,2n) by

aw, j =


−1 if j = 0,
|w|t j if j ∈ {1, . . . ,n},
−|w′|t j−n if j ∈ {n+1, . . . ,2n}.

Consider the step language L = {(2a),a(a + b)}. Then
both place from Figure 2 are non-feasible w.r.t. L. This
can be verified by similar computations as above: a(2a) =
(−1,2,0,0,0), aa(a+b) = (−1,2,1,−1,−1) and a(2a) ·rle f t =
aa(a+b) · rright = 1 > 0.

Partial language: For each lpo∈ L it holds for each cut
C of lpo: r0 +∑

n
i=1 l(V ′)(ti)(rn+i− ri)−∑

n
i=1 l(C)(ti)ri > 0,

where V ′ = {v ∈V | v < C}. This is the case if and only if
alpo,C · r 6 0 for alpo,C = (aC,0, . . . ,aC,2n) defined by:

aC, j =

 −1 if j = 0,
l(V ′∪C)(t j) if j ∈ {1, . . . ,n},
−l(V ′)(t j−n) if j ∈ {n+1, . . . ,2n}.

Let lpo be the fourth LPO from Figure 5 and L = {lpo}.
The both places from Figure 2 are non-feasible w.r.t. L.
This can be verified as follows: Let Cle f t be the cut of lpo
consisting of the two a-labeled events and Cright be the cut
of lpo consisting of one a- and one b-labeled node (there is
only one such possibility). Then: aCle f t ,lpo = (−1,2,0,0,0),
aCright ,lpo = (−1,2,1,−1,−1) and aCle f t ,lpo · rle f t = 1 > 0,
aCright ,lpo · rright = 1 > 0.

In this case, Theorem 1 can be shown by a straight-
forward computation using the definition of partial order
executions and the definition of places pr.

Altogether, r is a transition-region of some language
L w.r.t. a p/t-net if and only if r is a non-negative integer
solution of AL · r 6 0 for an appropriately defined matrix
AL (which possibly has infinite many rows).

3.1.2 Elementary Nets

It is additional required that ∀i ∈ {0, . . . ,2n} : ri 6 1. This
can be expressed by ei ·r 6 1 for i ∈ {0, . . . ,2n}, where the
i-th component of ei equals 1 and all other components
equal 0.

Moreover, each marking reachable by transition occur-
rences from m0(p) is required to be less or equal to 1 (this
directly follows from the definition of the occurrence rule of
elementary nets). This second requirement formally reads
as follows for the different language types:

Classical languages: For each w ∈ L it holds r0 −
∑

n
i=1 |w|tiri +∑

n
i=1 |w|tirn+i 6 1. This is the case if and only

if ew · r 6 1 for the vector ew = (ew,0, . . . ,ew,2n) defined by

ew, j =


1 if j = 0,
−|w|t j if j ∈ {1, . . . ,n},
|w|t j−n if j > n+1.
41

Lorenz, Mauser, and Juhás
Step languages: For each α1 . . .αm ∈ L it holds
r0 −∑

n
i=1 |α1 . . .αm|tiri + ∑

n
i=1 |α1 . . .αm|tirn+i 6 1. This is

the case if and only if ew · r 6 1 for the vector ew =
(ew,0, . . . ,ew,2n) defined by

ew, j =


1 if j = 0,
−|w|t j if j ∈ {1, . . . ,n},
|w|t j−n if j > n+1.

Partial languages: For each lpo ∈ L it holds for each
cut C of lpo: r0 + ∑

n
i=1 l(V ′ ∪C)(ti)(rn+i − ri) 6 1, where

V ′ = {v ∈ V | v < C}. This is the case if and only if
elpo,C · r 6 1 for the vector elpo,C = (eC,0, . . . ,eC,2n) defined
by

eC, j =

 1 if j = 0,
−l(V ′∪C)(t j) if j ∈ {1, . . . ,n},
l(V ′∪C)(t j−n) if j > n+1.

Altogether, r is a transition-region of L w.r.t. an elemen-
tary net if and only if r is a non-negative integer solution
of AL · r 6 bL.

3.1.3 Inhibitor Nets

A transition-region w.r.t. an inhibitor net is a (3n+1)-tuple.
We set aw, j = aC, j = e j = ew, j = eC, j = 0 for j ∈ {2n +
1, . . . ,3n}. Then we additionally require for the different
language types:

Classical languages: For each w = w′am ∈ L and tk = am
it holds r0−∑

n
i=1 |w′|tiri +∑

n
i=1 |w|tirn+i−r2n+k 6 0 in the a-

posteriori semantics. This is the case if and only if cw ·r 6 0
for the vector cw = (cw,0, . . . ,cw,3n) defined by

cw, j =


1 if j = 0,
−|w′|t j if j ∈ {1, . . . ,n},
|w|t j−n if n+1 6 j 6 2n,

−1 if j = 2n+ k,
0 else

Step languages: For each w = w′αm ∈ L and each
tk ∈ αm it holds r0−∑

n
i=1 |w′|tiri +∑

n
i=1 |w|tirn+i−r2n+ j 6 0

in the a-posteriori semantics. This is the case if and only
if cw · r 6 0 for the vector cw = (cw,0, . . . ,cw,3n) defined by

cw, j =


1 if j = 0,
−|w′|t j if j ∈ {1, . . . ,n},
|w|t j−n if n+1 6 j 6 2n,

−1 if j = 2n+ k,
0 else

Partial languages: For each lpo∈ L, for each cutC of lpo
and for each tk ∈ l(C) it holds r0 +∑

n
i=1 l(V ′)(ti)(rn+i−ri)+

∑
n
i=1 l(C)(ti)rn+i − r2n+ j 6 0 in the a-posteriori semantics

6

(where V ′ = {v∈V | v < C}). This is the case if and only if
clpo,C · r 6 0 for the vector clpo,C = (cC,0, . . . ,cC,3n) defined
by

cC, j =


1 if j = 0,
−l(V ′)(t j) if j ∈ {1, . . . ,n},
l(V ′∪C)(t j−n) if n+1 6 j 6 2n,
−1 if j = 2n+ k,
0 else

Altogether, r is a transition-region of L w.r.t. an inhibitor
net if and only if r is a non-negative integer solution of
AL · r 6 0 in the p/t-net case and of AL · r 6 bL in the
elementary net case.

3.2 Token Flow-regions

Also a token flow-region r can be defined for each combi-
nation of net class and language type. It defines a place pr
indirectly by determining the token flow (in this place) be-
tween transition occurrences, i.e. by determining the number
of tokens produced by a transition which are consumed by a
subsequent transition. For this, it is appropriate to consider
the different language types as special classes of partial
languages (as introduced in the last paragraph of Section
2). Then an execution is given as a LPO and such token
flows can be assigned to its edges. In the definition also
token flows of tokens consumed from the initial marking
and of tokens which are produced but not further consumed
are considered. If W =

⋃
(V,<,l)∈L V is the set of nodes of

LPOs in L and E =
⋃

(V,<,l)∈L < is the set of edges of LPOs
in L, then r is given as a tuple r = (ri)i∈W×{in,out}∪E of non-
negative integers (with possibly infinite many components).
Its components define

• the number of tokens, an event v ∈W consumes
from the initial marking by rv,in.

• the number of tokens, which are produced by an
event v and not consumed by a subsequent event
by rv,out .

• the number of tokens, which are produced by an
event v and consumed by an event w for e = (v,w)∈
E by re.

Consider the partial language L given in Figure 6.
Figure 7 illustrates the token flow-region r defined by rv1,in =
1, rv2,in = 1, rv3,in = 0, rv4,in = 0 and rv1,out = 0, rv2,out = 0,
rv3,out = 0, rv4,out = 2 and rv2,v4 = 1, rv2,v3 = 1.

Such a region r defines a p/t-net-place pr as follows:
m0(pr) = ∑v∈V rv,in for some LPO (V,<, l) ∈ L – the sum
is called initial token flow of the LPO; W (pr, t) = rv,in +
∑e=(u,v)∈< re for some LPO (V,<, l) ∈ L and v ∈ V with
l(v) = t – the sum is called intoken flow of v; W (t, pr) =
rv,out +∑e=(v,u)∈< re for some LPO (V,<, l) ∈ L and v ∈V

42

Lorenz, Mauser, and Juhás
b
a

b a

L

lpo1 lpo2

v1

v2

v3 v4

Figure 6: A partial language L = {lpo1, lpo2} with W =
{v1,v2,v3,v4} and E = {(v2,v4),(v2,v3)}.

b
a

b a

1

1

1 1

2

0

0

0
0 0

Figure 7: A token flow-region defining the left place from
Figure 2. The intoken flow of both a-labeled nodes equals
1, the intoken flow of both b-labeled nodes equals 1, the
outtoken flow of both a-labeled nodes equals 2, the outtoken
flow of both b-labeled nodes equals 0 and the initial token
flow of both LPOs equals 1.

with l(v) = t – the sum is called outtoken flow of v (compare
Figure 7). This construction is still dependent on the choice
of (V,<, l) ∈ L and v ∈ V , thus pr is not well-defined.
Therefore, we require r to fulfill a property (wd)L which
makes pr well defined. The property (wd)L states the
following:

The initial token flows of different LPOs are equal:
∑v∈V rv,in = ∑v′∈V ′ rv′,in for (V,<, l),(V ′,<′, l′) ∈ L. This
property can be expressed as linear equation system AL,a ·r =
0 as follows: Let L = {lpo1, lpo2, . . .} and lpon = (Vn,<n
, ln). Then for each n the matrix AL,a has a row an =
(an,i)i∈W×{in,out}∪E defined by

an,i =

 1 if i = (v, in) for v ∈Vn,
−1 if i = (v′, in) for v′ ∈Vn+1
0 else.

The intoken flows of equally labeled events are equal:
rv,in +∑e=(u,v)∈< re = rv′,in +∑e=(u,v′)∈<′ re for v∈V , v′ ∈V ′,
(V,<, l),(V ′,<′, l′) ∈ L and l(v) = l′(v′). This property can
be expressed as linear equation system AL,b ·r = 0 as follows:
Let Wt = {v ∈W | l(v) = t}= {vt

1,v
t
2, . . .} be the set of all

t-labeled events for t ∈ T . Then for each t and each n the
matrix AL,b has a row bt

n = (bt
n,i)i∈W×{in,out}∪E defined by

bt
n,i =

 1 if i = (vt
n, in)∨ i = (u,vt

n),
−1 if i = (vt

n+1, in)∨ i = (u,vt
n+1)

0 else.

The outtoken flows of equally labeled events are equal:
rv,out +∑e=(v,u)∈< re = rv′,out +∑e=(v′,u)∈<′ re for v ∈V , v′ ∈
6

V ′, (V,<, l),(V ′,<′, l′) ∈ L and l(v) = l′(v′). This property
can be expressed as linear equation system AL,c · r = 0 as
follows: For each t and each n the matrix AL,c has a row
ct

n = (ct
n,i)i∈W×{in,out}∪E defined by

ct
n,i =

 1 if i = (vt
n,out)∨ i = (vt

n,u),
−1 if i = (vt

n+1,out)∨ i = (vt
n+1,u)

0 else.

It can be shown that the place pr then is feasible w.r.t.
L by construction, that means there is no need for a property
(f)L as for transition-regions. As argued, there is a matrix
AL such that r is a token flow-region of L w.r.t. a p/t-net if
and only if r is a non-negative integer solution of AL ·r = 0
(AL possibly has infinite many rows and columns)

To define elementary net-places, r has to satisfy an
additional requirement (elem)L. Property (elem)L reflects
as in case of transition-regions that all numbers defining a
place are less or equal to 1, and that each marking reachable
by transition occurrences from m0(p) is less or equal to
1. The first condition can be encoded by requiring that all
initial token flows, intoken flows and outtoken flows are less
or equal to 1 (which can be written as linear inhomogenous
inequations). The second condition can be encoded by
requiring that for each cut C the sum of token flows on
edges from events v < C to events v 6< C, from the initial
marking to events v 6< C and from events v < C to the final
marking is less or equal to 1 (which also can be written
as a linear inhomogenous inequation). We omit to give the
additional rows of the linear system.

To define inhibitor places from token flow-regions,
we add new components to regions defining inhibitor net
places. As in the case of transition regions, we add such a
component for each transition t defining by this component
the value I(p, t) for the place p defined by the region. Then
an additional property (inh)L is required to define token
flow-regions for inhibitor nets. This property states that for
each cut C and each w ∈C the sum of token flows on edges
from events v < C to events v 6< C, from the initial marking
to events v 6< C, from events v < C to the final marking
and from events v ∈C to other events or the final marking
is less or equal to the component defining I(p, l(w)). This
condition can be written as a linear homogenous inequation.
We omit to give the additional rows of the linear system.

Altogether, we have the following definition of token
flow-regions:

Definition 5 (token flow-region) A tuple r as
above is called a token flow-region w.r.t. p/t-nets if it satis-
fies (wd)L. It is called a token flow region w.r.t. elementary
nets, if it additionally satisfies (elem)L. It is called a token
flow region w.r.t. inhibitor nets, if it additionally satisfies
(inh)L.
43

Lorenz, Mauser, and Juhás
The following statement is shown in literature for p/t-
nets with and without inhibitor arcs and partial languages
(including classical languages and step languages). For
elementary nets, the theorem is firstly stated in this paper.

Theorem 2 A tuple r as above is a token flow-region
if and only if pr is feasible w.r.t. L.

4 COMPUTING FINITE REPRESENTATIONS

As shown in the last paragraph, each of the properties (f)L,
(wd)L, (elem)L and (inh)L can in each case be encoded
by a system of linear equations or inequations of the form
AL · r = 0, AL · r 6 0 or AL · r 6 bL for a matrix AL and a
vector bL. Each row of AL reflects one condition of the
considered property, that means AL has in general infinite
many rows and in the case of token flow-regions, AL also
has infinite many columns.

But there are several cases, when AL can be chosen
with finite many rows and columns. If L is finite then this is
obviously the case. If L is infinite, then there are finite repre-
sentations of L allowing to chose AL to be finite. This is the
case for example if L = L(α) is a regular language given by a
regular expression α (combining characters by +-operation
(choice), ;-operation (sequence) and ∗-operation (iteration)).
Then there can be constructed a finite subset L′ ⊆ L(α) to
define the mentioned equations and inequations. Additional
equations ensure that parts of the executions (defined by
the ∗-operation in α) can be iterated. This construction
can be generalized to regular step languages and regular
partial languages, where characters in α are interpreted as
multi-sets of events resp. as LPOs. There is also an exten-
sion by the ‖-operation for concurrent composition. These
constructions are too involved to be presented here (here
we refer the reader to existing publications, Section 5).

Altogether, in these cases it is possible to define a
finite matrix AL such that r is a region if and only if r
is a non-negative integer solution of AL · r = 0, AL · r 6 0
or AL · r 6 bL. In other words, the set of regions can be
computed as the set of non-negative integer solutions of
such a system. There are two possibilities to define a finite
representation of such a set of solutions.

4.1 Basis Representation

For systems of the form AL · r = 0 or AL · r 6 0 there is a
so called basis representation of the set of all non-negative
solutions. That means there are non-negative basis-solutions
y1, . . . ,yn such that each solution x is a non-negative linear
combination of y1, . . . ,yn of the form x = ∑

n
i=1 λiyi for real

numbers λ1, . . . ,λn > 0. In the case that all values in AL are
integral (this is the case here) also the values of y1, . . . ,yn
can be chosen integral. If pi is the place defined by yi and
N f in is the net containing exactly the places p1, . . . , pn, then
64
it is shown that L(N f in) = L(Nsat). That means N f in is the
best approximation to a solution of the synthesis problem
generating L. Since from the construction it is not clear
whether N f in is an exact solution of the synthesis problem,
it is finally necessary to test whether L(N f in) = L or not.
Such tests are briefly discussed at the end of this section.
N f in is called basis representation of Nsat .

The property L(N f in) = L(Nsat) is shown for p/t-nets,
token flow-regions and finite partial languages. Since clas-
sical languages and step languages are special classes of
partial languages, this also holds for p/t-nets, token flow-
regions and such languages (which are finite). Moreover,
this statement carries over to transition-regions and it is
possible to show it also for p/t-inhibitor net places.

For systems of the form AL · r = 0 , y1, . . . ,yn can
be chosen as so called minimal solutions. That means,
the numbers m0(pi),W (pi, t),W (t, pi) determined by yi are
minimal. This is the case for token flow-regions and p/t-nets
with or without inhibitor nets. In the worst case n can be
exponential in the number of rows of AL, but in practise it
is often small. There are effective algorithms to compute
y1, . . . ,yn. Unfortunately, it is not possible to define a basis
representation for elementary net-regions. This is because
the linear inequation system defining regions is then not
longer homogenous.

4.2 Separating Representation

Another idea is to separate behavior specified in L from
behavior not specified in L by a finite set of regions. For
this, one defines a finite set Lc with L∩Lc = /0 satisfying
that L(N)∩ Lc = /0 =⇒ L(N) = L for each net N. Then
for each w ∈ Lc one tries to find a region rw such that
w is not an execution of the net having the place prw ,
i.e. a region which separates L from w. If such a region
exists, then the corresponding place is added to the net
N f in called separating representation of Nsat . There is an
exact solution of the synthesis problem if and only if for
each w ∈ Lc there is such a region rw. In case L is a net
language, it holds L(N f in) = L(Nsat) = L – that means N f in
is a possible solution. In case L is not a net language, it
holds L(Nsat)⊆ L(N f in) but in general not L(Nsat) = L(N f in).
Thus, the separating representation in general is not the
best approximation to a solution of the synthesis problem
generating L (in opposite to the basis representation). On
the other hand, it can be defined and computet not only for
p/t-nets and inhibitor nets, but also for elementary nets.

It is easy to define and compute a separating repre-
sentation for finite languages. The definition of the finite
set Lc depends on the considered language type. The ele-
ments of Lc are called wrong continuations. In each case, a
wrong continuation is an execution in L extended by some
subsequent event.
4

Lorenz, Mauser, and Juhás
Classical languages: The finite set Lc = {wt |w∈ L, t ∈
T, wt 6∈ L} satisfies Lc∩L = /0 and L(N)∩Lc = /0 =⇒ L(N) =
L for each net N. For L = {b,a,ab,aba,aab} there holds
Lc = {ba,bb,abb,abab,abaa,aabb,aaba}.

Step languages: The finite set Lc = {w(α +
t) | wα ∈ L, t ∈ T, w(α + t) 6∈ L} satisfies Lc ∩
L = /0 and L(N) ∩ Lc = /0 =⇒ L(N) = L for each
net N. For L = {b,a,ab,aba,aab,a(a + b)} there
holds Lc = {ba,bb,abb,abab,abaa,aabb,aaba,(2b),(b +
a),(2a),a(2b),ab(2a),ab(a + b),aa(2b),aa(a + b),a(a +
2b),a(2a+b)}.

Partial languages: The finite set Lc of LPOs lpoC,t 6∈ L,
which are constructed from some prefix of a sequentialization
lpo of a LPO in L by adding a t-labeled event subsequent to
some co-set C (C is allowed to be empty), satisfies Lc∩L = /0
and L(N)∩Lc = /0 =⇒ L(N) = L for each net N. For L given
in Figure 6 some LPOs in Lc are shown in Figure 8.

a

b a
b

b
b a

b

Figure 8: Some LPOs in Lc for L given in Figure 6. The
most left LPO is constructed from the empty co-set C.

A region separating L from some w∈ Lc is computed as
an arbitrary solution of an adequate linear inequation system.
Such a system consists of the equations/inequations given
by AL defining regions and an additional row dw. The row
is defined in such a way that dw · r < 0 if and only if w is
not an execution of the net having the place pr. There are
polynomial algorithms to compute a non-negative integer
solution of a system AL · r 6 bL, dw · r < 0.

For transition-regions and p/t-nets, the row dw is defined
in a similar way as the rows of AL. For each w ∈ L there
is a row aw of AL such that w is an execution of a net N if
and only if all places pr of N satisfy aw ·r 6 0. That means,
w is not an execution of a net N if and only if there is a
place pr of N satisfying aw ·r > 0. Thus dw can be defined
as dw = −aw for w ∈ Lc. In the case of elementary nets
and inhibitor nets additional possibilities to separate L from
some w ∈ Lc must be considered. These can be deduced
from the additional conditions regions satisfy for such nets.

For token flow-regions, dw counts intoken flows and
outtoken flows of events of prefixes of LPOs. If w is a
wrong continuation, extending the execution v ∈ L by an
event e, then dw is defined in such a way that dw ·r counts
the number of tokens remaining in pr after the execution
of v minus the number of tokens consumed by e (as it is
the case for transition-regions).

There is an approach to define Lc and compute a separat-
ing representation of transition-regions for regular classical
6

languages which is too involved to be presented here. This
approach was not generalized to regular step languages or
regular partial languages so far, neither for transition-regions
nor for token flow-regions.

Finally, we want to mention that it is possible to develop
a test for L(N f in) = L from Lc, if N f in is a basis representation:
It is simply enough to test whether no LPO in Lc is an
execution of N f in. This can be done for each LPO by the
polynomial algorithm given in Juhás, Lorenz, and Desel
(2005).

5 DISCUSSION

In Darondeau (1998), Badouel and Darondeau (1996a),
and Badouel and Darondeau (1996b), transition regions are
defined for a parametric definition of p/t-nets, so called type
of nets, and regular classical languages. With types of nets,
all net classes considered in this paper can be instantiated.
There is derived a separating representation for types of
nets. This representation coincides with the presented one
for finite classical languages (we did not present in this
paper the solution for regular languages), although we used
a different terminology here. In the case of p/t-nets, the
separating representation can be computed in polynomial
time, if the regular language is given by a regular expression
in a special form. Computing this special form (from an
arbitrary one) needs exponential size in the worst case.

In Lorenz et al. (2007), Lorenz and Juhás (2006), and
Lorenz, Bergenthum, and Mauser (2007), token flow regions
are introduced for p/t-nets with and without inhibitor arcs
and partial languages. For finite partial languages, a basis
representation is deduced. In Lorenz et al. (2007) a test
of L(N f in) = L for a basis representation N f in is developed
through defining a set Lc as in the last section. As argued at
the end of the last section, it is possible to define from Lc a
separating representation. The presentation of token flow-
regions in this paper follows essentially the lines presented in
Lorenz et al. (2007) and Lorenz, Bergenthum, and Mauser
(2007).

In Hoogers, Kleijn, and Thiagarajan (1995) transition-
regions for trace languages (step languages) and p/t-nets are
introduced. The authors do not consider the subclasses of
finite or regular step languages and therefore only define an
infinite separating representation (involving infinite many
constraints corresponding to the constraints given in Section
3)

There are many other publications considering (step)
transition systems instead of languages as behavioral model
(e.g., Ehrenfeucht and Rozenberg 1989a, Ehrenfeucht and
Rozenberg 1989b, Mukund 1992, Pietkiewicz-Koutny 1999,
Busi and Pinna 1997, Pietkiewicz-Koutny 2002, Darondeau
2003). These approaches are restricted to transition-regions
and separating representations and yield polynomial synthe-
sis algorithms in case of p/t-nets. They do not guarantee in
45

Lorenz, Mauser, and Juhás
general that the computed net has the smallest net behavior
including the specified behavior.

There are some approaches starting from languages, we
did not mention yet. One is the generalization of of regular to
deterministic context-free classical languages in Darondeau
(1998). Another is the generalization of partial languages to
stratified languages, which describe the behavior of inhibitor
nets w.r.t. the so called a-priori semantics, see Lorenz,
Bergenthum, and Mauser (2007).

In this paper we developed new synthesis algorithms
from transition regions applied to partial languages, com-
puting a basis representation or a separating representation.
The other way round, we combined for the first time to-
ken flow-regions and basis representations with classical
languages. Moreover, we introduced the first synthesis
algorithms for step languages. Up to now, there are no
synthesis algorithms starting from regular step languages
or regular partial languages.

Finally, there is some speciality concerning the synthesis
from descriptions of sequential behavior, we did not mention
yet. In the beginning of research in synthesis of Petri nets,
one proposed methods to synthesize elementary nets without
loops from descriptions of sequential behavior. Because of
the absence of loops, the synthesized net has maximal
concurrency among transitions in this case (from the two
sequences ab and ba there would be synthesized a net with
two concurrent transitions a and b, which do not share
a common resource in form of a loop place). If loops a
allowed, one gets a net with minimal concurrency among
transitions, because such loop places are always feasible
w.r.t. sequential behavior. Of course this is not the case if one
considers non-sequential behavior. It should be clear to the
reader how to modify the inequation system for computing
feasible places in order to avoid loops for both types of
regions.

Concerning performance, it seems that solving the syn-
thesis problem for languages needs in general exponential
time. One exception are finite languages, where separat-
ing representations can be computed in polynomial time
for classical and for step languages. For partial languages,
all presented algorithm need exponential time. However,
although computing a basis representation is exponential
in worst case, since there can be exponentially many basis
solutions, in practise the set of basis solutions is often small.

The presented framework offers several different syn-
thesis algorithms which can be applied in a concrete setting.
Each of these algorithms yields a different resulting net.
In depends on the application area, which method is fi-
nally most appropriate. In general, the computation of
basis representations and token flow-regions seems to be
more time consuming than of separating representations
and transitions-regions. On the other hand, only the basis-
representation guarantees that the computed net has the
minimal net behavior including the given language. Token
6

flow-regions lead to minimal solutions and therefore ”nice”
places.

6 CONCLUSION

In this paper we presented a survey on region-based synthe-
sis methods from languages. These approaches are based
on the definition of the infinite saturated feasible net which
has minimal net behavior including the given language.
We identified two types of regions and two types of finite
representations of the saturated feasible net and showed,
that these can be arbitrarily combined in order to solve
the synthesis problem for many Petri net classes and lan-
guage types. The presented framework integrates almost all
known region-based methods and completes these existing
approaches by several new algorithms. It is common to all
methods that they involve integer programming methods.

An actual application area of synthesis methods is the
area of process mining (van der Aalst and Günther 2007,
Bergenthum et al. 2007). There one tries to compute system
models from event logs (generated by some information
system). These event logs can be thought of as observations
of some real system. A topic of future research could be to
synthesize in a similar way system models from trajectories
of simulation.

ACKNOWLEDGMENTS

This work was supported by the German Academic Ex-
change Service (DAAD) within the project SAMANET and
by the German Research Council (DFG) within the project
SYNOPS.

REFERENCES

Badouel, E., and P. Darondeau. 1996a. On the synthesis of
general petri nets. Technical Report 3025, Inria.

Badouel, E., and P. Darondeau. 1996b. Theory of regions.
In Petri Nets, ed. W. Reisig; G. Rozenberg, Volume
1491 of Lecture Notes in Computer Science, 529–586:
Springer.

Bergenthum, R., J. Desel, R. Lorenz, and S. Mauser. 2007.
Process mining based on regions of languages. In Pro-
ceedings of BPM 2007.

Busi, N., and G. M. Pinna. 1997. Synthesis of nets with
inhibitor arcs. In CONCUR, ed. A. W. Mazurkiewicz; J.
Winkowski, Volume 1243 of Lecture Notes in Computer
Science, 151–165: Springer.

Cortadella, J., M. Kishinevsky, A. Kondratyev, L. Lavagno,
and A. Yakovlev. 2000. Hardware and petri nets: Ap-
plication to asynchronous circuit design. In ICATPN,
ed. M. Nielsen; D. Simpson, Volume 1825 of Lecture
Notes in Computer Science, 1–15: Springer.
46

Lorenz, Mauser, and Juhás
Darondeau, P. 1998. Deriving unbounded petri nets from
formal languages. In CONCUR, ed. D. Sangiorgi; R.
de Simone, Volume 1466 of Lecture Notes in Computer
Science, 533–548: Springer.

Darondeau, P. 2003. Unbounded petri net synthesis. In
Lectures on Concurrency and Petri Nets, ed. J. Desel,
W. Reisig, and G. Rozenberg, Volume 3098 of Lecture
Notes in Computer Science, 413–438: Springer.

Ehrenfeucht, A., and G. Rozenberg. 1989a. Partial (set) 2-
structures. part I: Basic notions and the representation
problem. Acta Inf. 27 (4): 315–342.

Ehrenfeucht, A., and G. Rozenberg. 1989b. Partial (set) 2-
structures. part II: State spaces of concurrent systems.
Acta Inf. 27 (4): 343–368.

Hoogers, P., H. Kleijn, and P. Thiagarajan. 1995. A trace se-
mantics for petri nets. Information and Computation 117
(1): 98–114.

Josephs, M. B., and D. P. Furey. 2002. A programming
approach to the design of asynchronous logic blocks.
In Concurrency and Hardware Design, Volume 2549
of Lecture Notes in Computer Science, 34–60.

Juhás, G., R. Lorenz, and J. Desel. 2005. Can I execute
my scenario in your net? In ICATPN, ed. G. Ciardo
and P. Darondeau, Volume 3536 of Lecture Notes in
Computer Science, 289–308: Springer.

Lorenz, R., R. Bergenthum, and S. Mauser. 2007. Theory of
regions for the synthesis of inhibitor nets from scenarios.
In Proceedings of ICATPN 2007.

Lorenz, R., R. Bergenthum, S. Mauser, and J. Desel. 2007.
Synthesis of petri nets from finite partial languages. In
Proceedings of ACSD 2007.

Lorenz, R., and G. Juhás. 2006. Towards synthesis of petri
nets from scenarios. In ICATPN, ed. S. Donatelli and
P. S. Thiagarajan, Volume 4024 of Lecture Notes in
Computer Science, 302–321: Springer.

Mukund, M. 1992. Petri nets and step transition systems.
Int. J. Found. Comput. Sci. 3 (4): 443–478.

Pietkiewicz-Koutny, M. 1999. The synthesis problem for
elementary net systems with inhibitor arcs. Fundam.
Inform. 40 (2-3): 251–283.

Pietkiewicz-Koutny, M. 2002. Synthesising elementary net
systems with inhibitor arcs from step transition systems.
Fundam. Inform. 50 (2): 175–203.

van der Aalst, W., and C. Günther. 2007. Finding structure
in unstructered processes: The case of process mining.
In Proceedings of ACSD 2007, invited paper.

van der Aalst, W. M. P., B. F. van Dongen, J. Herbst,
L. Maruster, G. Schimm, and A. J. M. M. Weijters. 2003.
Workflow mining: A survey of issues and approaches.
Data Knowl. Eng. 47 (2): 237–267.

Zhou, M., and F. D. Cesare. 1993. Petri net synthesis for dis-
crete event control of manufacturing systems. Kluwer.
64
AUTHOR BIOGRAPHIES

ROBERT LORENZ is an assistant professor in computer
science at the Catholic University of Eichsttt-Ingolstadt
in Germany. In 2006 he finished his postdoctoral lecture
qualification with the habilitation thesis “Scenario based
verification and synthesis of Petri net models.” Actual he
is leader of the DFG project SYNOPS (Synthesis of Petri
nets from Scenarios) concerning the efficiency of Petri
net synthesis methods and their applicability in several
application areas (for example process mining). Since
this year he is member of the program committee of the
conference series “Petri Nets.”

SEBASTIAN MAUSER finished his Diplom (German
university degree) in business mathematics at the Catholic
University Eichstt-Ingolstadt in 2006. Then he started
his postgraduate studies as a research assistant at the
department of Applied Computer Science in Eichsttt.

JUHÁS GABRIEL is full professor in computer science at
the Slovak University of Technology in Bratislava, Solvakia.
Since several years he is member of the program committee
of the conference series “Petri Nets.” In 2007 he organizes the
7th International Conference on Application of Concurrency
to System Design (ACSD). Actual he leader of the slovakian
side of the DAAD project SAMANET (Scenario based
approaches for misbehavior detection in ad hoc wireless
networks) concerning the application of Petri net verification
and synthesis methods to misbehavior detection in ad hoc
wireless networks.
7

	INTRODUCTION
	MATHEMATICAL PRELIMINARIES
	REGIONS
	Transition-regions
	 P/T-nets
	 Elementary Nets
	 Inhibitor Nets

	Token Flow-regions

	COMPUTING FINITE REPRESENTATIONS
	Basis Representation
	Separating Representation

	DISCUSSION
	CONCLUSION

