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Abstract

In this paper we present an algorithm to synthesize a
finite unlabeled place/transition Petri net (p/t-net) froma
possibly infinite partial language, which is given by a term
over a finite set of labeled partial orders using operators for
union, iteration, parallel composition and sequential com-
position. The synthesis algorithm is based on the theory
of regions for partial languages presented in [18] and pro-
duces a p/t-net having minimal net behavior including the
given partial language. The algorithm uses linear program-
ming techniques that were already successfully applied in
[17] for the synthesis of p/t-nets from finite partial lan-
guages.

1 Introduction

Synthesis of Petri nets from behavioural descriptions has
been a successful line of research since the 1990s. There is
a rich body of nontrivial theoretical results, and there are
important applications in industry, in particular in hardware
system design [3, 11], and recently also in workflow design
[21]. Moreover, there are several synthesis tools that are
based on the theoretical results [2].

Originally, synthesis means algorithmic construction of
a Petri net from sequential observations. It can be applied
to various classes of Petri nets, including elementary nets
[6] and place/transition nets (p/t-nets) [1]. Synthesis can
start with a transition system representing the sequentialbe-
haviour of a system as well as with a step transition system
which additionally represents steps of concurrent events [1].
Synthesis can also be based on a language, i.e., on a set of
occurrence sequences or step sequences [4, 1].

Recently, we solved the synthesis problem for p/t-nets
with behaviour given in terms of a finite partial language,
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i.e., as a finite set of labelled partial orders (LPOs) [17].
LPOs are also known as partial words [8] or pomsets [19].
In contrast to previous work on the synthesis problem, we
considered partial order behaviour of Petri nets, truly repre-
senting the concurrency of events. Partial orders are often
considered the most appropriate representation of behaviour
of concurrent systems modelled by Petri nets.

Based on our previous work, this paper tackles synthesis
of Petri nets from infinite partial languages. More precisely,
we introduce terms built from LPOs and composition oper-
ators including iteration. The semantics of an iterated finite
LPO is an infinite set of LPOs. Moreover, we consider op-
erators for sequential and parallel composition as well as a
union operator. Given a term constructed this way from a
finite set of LPOs, we show in this paper how to synthesize
a finite p/t-net from this term such that the behaviour of the
net coincides with the set of LPOs represented by the term
– if such a net exists. The synthesis approach is based on
the so called theory of regions. Each transition of the syn-
thesized net is given by a label appearing in the term, and
each place of the net is given by a region. The synthesized
p/t-net has minimal net behaviour including the behaviour
specified by the given term.

In contrast to [17], in this paper we only give the con-
struction of the p/t-net, but not an algorithm to decide if the
behaviour of the synthesized net coincides with the speci-
fied behaviour. That means we do not characterize partial
languages generated by (unlabeled) p/t-nets. This is out of
scope of this paper and a topic of further research.

We emphasize at this point that we aim at the synthesis
of unlabeledPetri nets (i.e. Petri nets with unique transition
names) and concentrate on the algorithmic solution. In con-
trast, in [14] partial languages generated by safe labeled p/t-
nets are characterized. In [15, 16] partial languages which
can be generated from singletons via operators for union,
iteration, parallel composition and sequential composition
(so calledseries-rational sp-languages) are characterized
through so calledbranching automata, which can be inter-
preted as a restricted class of labeled p/t-nets. Other papers



consider unlabeled nets, but do not consider algorithmic as-
pects, such as [10] (characterizing the branching behaviour
of p/t-nets without auto-concurrency by event structures)
and [9] (proposing a trace semantics for p/t-nets).

The remainder of the paper is organized as follows: We
start with a brief introduction to the behavioural model con-
sidered in this paper: We define the so called partial lan-
guage of runs of a p/t-net in Section 2. In Section 3 the term
based representation of infinite partial languages is intro-
duced, generalizing regular expressions of sequential lan-
guages in two ways: a single partial word generalizes a se-
quential word, and we have a parallel composition operator.
The latter only makes sense for partial words which can ex-
press independent, parallel execution of events. In Section
4 we first recall definitions and main results from [18] and
[17] on the theory of regions for partial languages. Then
we introduce regions of terms. Finally, the last Section 5
shows that, although the set of regions of a term is infinite
in general, finitely many regions suffice for our construc-
tion, yielding a finite Petri net. This finite set is effectively
constructed using concepts of linear programming.

2 The Partial Language of Runs of a P/t-net

In this section we introduce the behavioural model con-
sidered in this paper. ByN we denote thenonnegative in-
tegers. N

+ denotes the positive integers. Given a finite set
A, the symbol|A| denotes thecardinality of A. The set
of all multi-setsover a setA is the setNA of all functions
f : A → N. Given a binary relationR ⊆ A × A, we
write aRb to denote(a, b) ∈ R. A directed graphis a pair
(V,→), whereV is a finiteset of nodesand→⊆ V × V
is called theset of arcs. A partial order is a directed graph
po = (V,<), where<⊆ V ×V is irreflexive and transitive.

Definition 1 (Labelled partial order). A labelled partial or-
der (LPO) is a triple lpo = (V,<, l), where(V,<) is a
partial order andl : V → T is a labelling functionwith set
of labelsT .

In our context, a nodev of an LPO(V,<, l) is called
event, representing an occurrence ofl(v). Two nodes
v, v′ ∈ V are calledindependentif v 6< v′ andv′ 6< v.
Notice that by this definition, independence is reflexive. By
co ⊆ V × V we denote the set of all pairs of indepen-
dent nodes ofV . A co-setis a subsetC ⊆ V satisfying
∀x, y ∈ C : x co y. A cut is a maximal co-set (w.r.t. set in-
clusion). For a co-setC of a partial order(V,<) and a node
v ∈ V \ C we writev < C, if v < s for an elements ∈ C,
andv coC, if v co s for all elementss ∈ C. A partial or-
der(V ′, <′) is aprefixof a partial order(V,<) if V ′ ⊆ V ,
<′=< |V ′×V ′ and (v′ ∈ V ′ ∧ v < v′) =⇒ (v ∈ V ′).
Given two partial orderspo1 = (V,<1) andpo2 = (V,<2),
we say thatpo2 is a sequentialization ofpo1 if <1⊆<2.

We use the notations defined for partial orders also for
LPOs. If T is the set of labels oflpo = (V,<, l) then
for a setV ′ ⊆ V , we define the multi-set|V ′|l ⊆ N

T by
|V ′|l(t) = |{v ∈ V ′ | l(v) = t}|. We consider LPOs
only up to isomorphism. As usual, two LPOs(V,<, l) and
(V ′, <′, l′) are calledisomorphic, if there is a bijective map-
pingψ : V → V ′ such thatl(v) = l′(ψ(v)) for eachv ∈ V ,
andv < w ⇐⇒ ψ(v) <′ ψ(w) for eachv, w ∈ V . By [lpo]
we denote the set of all LPOs isomorphic tolpo.

Definition 2 (Partial language). Let T be a set. A set
L ⊆ {[lpo] | lpo = (V,<, l) is an LPO,l(V ) ⊆ T } with⋃

[(V,<,l)]∈L l(V ) = T is calledpartial language overT .

A partial language is given by a set of concrete LPOsL

representingL in the sense that[lpo] ∈ L ⇐⇒ ∃lpo′ ∈ L :
[lpo] = [lpo′].

A netis a triple(P, T, F ), whereP is a (possibly infinite)
set ofplaces, T is a finite set oftransitionssatisfyingP ∩
T = ∅, andF ⊆ (P × T ) ∪ (T × P ) is aflow relation.

Definition 3 (Place/transition net). A place/transition-net
(p/t-net) N is a quadruple(P, T, F,W ), where(P, T, F )
is a net, andW : F → N

+ is aweight function.

We extend the weight functionW to pairs of net ele-
ments(x, y) ∈ (P × T ) ∪ (T × P ) with (x, y) 6∈ F by
W (x, y) = 0. A markingof a netN = (P, T, F,W ) is a
functionm : P → N, i.e. a multi-set overP . A marked
p/t-netis a pair(N,m0), whereN is a p/t-net, andm0 is a
marking ofN , calledinitial marking. The occurrence rule
of p/t-nets is defined as usual [20]. The non-sequential se-
mantics of a p/t-net can be given byenabled LPOs, also
calledruns. An LPO is enabled in a net if the events of the
LPO can occur in the net respecting the concurrency rela-
tion of the LPO [22].

Definition 4 (Enabledness). Let (N,m0) be a marked
p/t-net, N = (P, T, F,W ). An LPO lpo = (V,<, l)
with l : V → T is called enabled w.r.t. (N,m0)
if for every cut C of lpo and every p ∈ P there
holdsm0(p) +

∑
v∈V ∧v<C(W (l(v), p) − W (p, l(v))) ≥∑

v∈C W (p, l(v)). Its occurrenceleads to the marking
m′ given bym′(p) = m0(p) +

∑
v∈V (W (l(v), p) −

W (p, l(v))) for eachp ∈ P .

Definition 5 (Partial language of runs). The set of all iso-
morphism classes of LPOs enabled w.r.t. a given marked
p/t-net (N,m0) is denoted byL(N,m0). L(N,m0) is
called thepartial language of runsof (N,m0).

Given a partial languageL, we are interested in al-
gorithms to calculate a marked p/t-net(N,m0) with
L(N,m0) = L, if such a net exists. Observe thatL(N,m0)
is alwayssequentialization and prefix closed, i.e. every se-
quentialization and every prefix of an enabled LPO is again



enabled w.r.t. (N,m0). Moreover, the set of labels of
L(N,m0) is finite by definition. Therefore, when specify-
ing the behaviour of a net by a partial language, this partial
language must necessarily be sequentialization and prefix
closed, and it must have a finite set of labels.

3 Term Based Finite Representation of Infi-
nite Partial Languages

When specifying a partial language as the input for a
synthesis algorithm, this specification has to be finite. In
[17] we developed an algorithm to solve the synthesis prob-
lem for finite partial languages. We consider infinite par-
tial languages in this paper. Consequently, we finitely rep-
resent infinite partial languages. More precisely we con-
sider term-based finite representations of infinite partiallan-
guages. This approach was already successfully applied
for the synthesis of nets from languages of occurrence se-
quences given by regular expressions over a finite alphabet
of transitions [4]. In this paper, the alphabet is a finite setof
LPOs. The considered terms extend regular expressions by
a parallel composition operator representing concurrency.
Thus we consider a class of partial languages specified by
terms over a given finite set of LPOsA, where terms are
constructed by iteration, parallel and sequential composi-
tion and union. ForA ∈ A we writeA = (VA, <A, lA),
and we denote byλ = (∅, ∅, ∅) the empty LPO.

Definition 6 (LPO-term). The set ofLPO-termsover a fi-
nite set of LPOsA is inductively defined as follows: The
charactersA ∈ A andλ are LPO-terms. Letα1 andα2

be LPO-terms. Thenα = α1;α2 (sequential composi-
tion), α = α1 + α2 (union),α = (α1)

∗ (iteration) and
α = α1 ‖ α2 (parallel composition) are LPO-terms.

If each LPO inA is a singleton, an LPO-term defines a
so calledseries rational sp-language[15, 16]. In a simi-
lar way, we assign to an arbitrary LPO-termα a possibly
infinite set of LPOsL(α) representing a partial language.
Given an LPO-termα, we first inductively define a set of
LPOsK(α) represented byα. The setL(α) is the prefix
and sequentialization closure ofK(α). To defineK(α),
we define the sequential composition of LPOsA,B ∈ A
by AB = (VA ∪ VB , <A ∪ <B ∪(VA × VB), lA ∪ lB),
the parallel composition of LPOsA,B ∈ A by A ‖ B =
(VA ∪ VB, <A ∪ <B, lA ∪ lB), and denoteA0 = λ and
An = An−1A for n ∈ N

+ (we can assume thatA,B have
disjoint sets of nodes).

Definition 7 (Partial language of an LPO-term). We set
K(λ) = {λ} andK(A) = {A}. We further define in-
ductively for LPO-termsα1 andα2:
K(α1 + α2) = K(α1) ∪K(α2)
K(α1;α2) = {A1A2 | A1 ∈ K(α1), A2 ∈ K(α2)}
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Figure 1. Representations of partial lan-
guages.

K((α1)
∗) = {A1 . . . An | A1, . . . , An ∈ K(α1)} ∪ {λ}

K(α1 ‖ α2) = {A1 ‖ A2 | A1 ∈ K(α1), A2 ∈ K(α2)}
L(α) is the set of sequentializations of prefixes of LPOs in
K(α). L(α) = {[lpo] | lpo ∈ L(α)} is the partial lan-
guage ofα.

An example for a partial languages of an LPO-term is de-
picted in Figure 1, part (a), showing the set of LPOsK(a ‖
b⋆). The set of LPOs from part (b) cannot be generated by
an LPO-term (this is also the case if we consider its prefix-
closure), because by sequential composition and iterationit
is not possible to append an LPO only to a part of another
LPO. Note that this set of LPOs could be defined through a
recursive expression of the fromA = a(A ‖ b) + λ. Syn-
thesis from such expressions is a topic of further research.
It is also possible to consider further composition opera-
tors (see [19] for an overview). In [12] an operator for syn-
chronous composition of single actions is used, leading to
terms which cannot longer be represented by (sets of) LPOs
but by causal structures extending LPOs.

Altogether, the partial languages of LPO-terms (over fi-
nite sets of LPOs) form a certain class of infinite partial
languages. Note that not each partial language of runs of a
p/t-net can be described through LPO-terms.1 It is easy to
see that also not each partial language of runs of an elemen-
tary net or even of a marked graph can be described through
LPO-terms.2

Note that, for simplicity of figures, in all examples we
only consider LPO-terms constructed from singletons.

1The partial language of runs of the p/t-net having the two placesp and
q defined byW (p, a) = W (a, p) = W (a, q) = W (q, b) = 1 equals the
partial language depicted in part (b) of Figure 1.

2Consider the marked graph having transitionsa, b, c, d and four places
p, q, r, s defined byW (p, a) = W (a, q) = W (q, b) = W (b, p) =
W (a, r) = W (r, c) = W (b, s) = W (s, d) = 1.



4 Regions of LPO-terms

The synthesis problem tackled in this paper is as follows:
Given: An LPO-termα.
Searched: A marked p/t-net(N,m0) with L(N,m0) =
L(α) if such(N,m0) exists.
We use the so called theory of regions to solve the synthe-
sis problem. Like the synthesis algorithm for finite partial
languages in [17], the synthesis algorithm in this paper is
based on the notion of regions of partial languages intro-
duced in [18]. Transitions of the synthesized net are given
by the labels of the partial language and places are given by
regions. In the case of infinite partial languages, a region
according to [18] is a function with an infinite number of
variables that has to fulfill an infinite number of constraints.
Such regions are not computable. The aim of this section
is to define computable regions of an LPO-termα which
define the same places as the regions ofL(α) from [18].

We first recall the general ideas of region based synthe-
sis. The basic approach is the construction of a marked p/t-
net from a given partial languageL according to the follow-
ing strategy: The set of transitions of the synthesized net is
the finite set of labels ofL. Clearly, each LPO specified inL
is a run of the marked p/t-net consisting only of these transi-
tions (with empty set of places), because there are no causal
dependencies between the transitions. Therefore, this net
in general has many runs not specified inL. Thus, one re-
stricts the behaviour of this net by creating causal depen-
dencies between the transitions through addition of places.
Places are defined by their initial marking and the weights
on the arcs connecting them to transitions. Two kinds of
places can be distinguished. In the case that there is an LPO
specified inL which is no run of the net which has only
the one considered place, this place restricts the behaviour
too much. Such places arenon-feasible (w.r.t.L). In the
other case, the considered place isfeasible (w.r.t.L). Every
feasible place is added to the net to be constructed.

Definition 8 (Feasible place). LetL be a partial language
over the finite set of labelsT and let (N,mp), N =
({p}, T, Fp,Wp) be a marked p/t-net with only one place
p (Fp,Wp,mp are defined according to the definition ofp).
The placep is calledfeasible (w.r.t.L), if L ⊆ L(N,mp),
otherwisenon-feasible (w.r.t.L).

Examples of a feasible place and a non-feasible place are
depicted in Figure 2, showing the set of LPOsK(b+(a; (a ‖
b)⋆)) in part (a): Using Definition 4 one can easily verify
that all LPOs inL(b+(a; (a ‖ b)⋆)) are enabled in the one-
place net depicted in part (b). The third LPO of part (a) is
not enabled in the one-place net depicted in part (c).

Definition 9 (Saturated feasible p/t-net). LetL be a partial
language over the finite set of labelsT . The marked p/t-net
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Figure 2. (a) K(b + (a; (a ‖ b)⋆)), (b) feasible
place, (c) non-feasible place.

(N,m0), N = (P, T, F,W ), such thatP is the set of all
places feasible w.r.t.L is calledsaturated feasible (w.r.t.L)

Theorem 10([18]). Let (N,m0) be the saturated feasible
p/t-net w.r.t. a partial languageL. ThenL ⊆ L(N,m0)
andL(N,m0) is minimal with this property.

Altogether, given an LPO-termα, the saturated feasible
net (N,m0) w.r.t. L(α) solves the formulated synthesis
problem, i.e.L(N,m0) = L(α), or there is no such net.
A problem that we solve in Section 5 is that there are in-
finitely many feasible places.

By regionsof partial languages it is possible to define the
set of all feasible places on the level of the partial language.
Given a partial languageL overT represented by a set of
LPOsL, the idea of defining regions ofL was developed
in [18]: If two eventsx andy satisfyx < y in an LPO
lpo = (V,<, l) ∈ L, this specifies that the corresponding
transitionsl(x) andl(y) may be causally dependent. Such
a causal dependency arises exactly if the occurrence of the
transitionl(x) produces one or more tokens in a place, and
some of these tokens are consumed by the occurrence of the
other transitionl(y). Such a place can be defined as follows:
Assign to every edge(x, y) of an LPO inL a natural num-
ber representingthe number of tokens which are produced
by the occurrence ofl(x) and consumed by the occurrence
of l(y) in the place to be defined. We extend each LPO
lpo ∈ L by an initial and a final event, representing transi-
tions producing the initial marking and consuming the final
marking (after the occurrence oflpo).

Definition 11 (⋆-extension). A ⋆-extensionof lpo = (V,<
, l) ∈ L is an LPOlpo⋆ = (V ⋆, <⋆, l⋆) satisfying: There is
an initial nodevinit ∈ V ⋆ smaller than all other nodes and
a final nodevfinal ∈ V ⋆ bigger than all other nodes, both
with new labels, and there holdsV = V ⋆ \ {vinit, vfinal}.

For each lpo ∈ L, let lpo⋆ = (V ⋆, <⋆, l⋆) be a ⋆-
extension oflpo such that⋆-extensions have disjoint node
sets and all initial and final nodes have different labels.



Then the setL⋆ = {lpo⋆ | lpo ∈ L} is called⋆-extension
of L. We denoteE⋆

L =
⋃

(V,<,l)∈L⋆ <.

Assume we have fixed a⋆-extension ofL. According
to the above explanation, we define a placepr by assign-
ing for each LPOlpo = (V,<, l) ∈ L a natural number
r(x, y) to each edge(x, y) of the⋆-extension oflpo through
a functionr : E⋆

L → N. The sum of the natural num-
bers assigned to ingoing edges(x, y) of a nodey ∈ V ⋆ is
denoted byIn(y, r) =

∑
x<⋆y r(x, y). We call In(y, r)

the intoken flowof y. If y is no initial or final node, the
intoken flow of y is interpreted as the weight of the arc
connecting the new placepr with the transitionl(y), i.e.
we defineW (pr, l(y)) = In(y, r). The sum of the nat-
ural numbers assigned to outgoing edges(x, y) of a node
x ∈ V ⋆ is denoted byOut(x, r) =

∑
x<⋆y r(x, y). We call

Out(x, r) theouttoken flowof x. If x is no initial or final
node, the outtoken flow ofx is interpreted as the weight of
the arc connecting the transitionl(x) with the new placepr,
i.e. we defineW (l(x), pr) = Out(x, r). If z is the ini-
tial node of the⋆-extension oflpo, then the outtoken flow
of z is interpreted as the initial marking of the new place
pr, i.e. we definem0(pr) = Out(z, r). We also denote
Init(lpo, r) = Out(z, r) and callInit(lpo, r)theinitial to-
ken flowof lpo. The valuer(x, y) is called thetoken flow
betweenx andy. Since equally labeled nodes formalize
occurrences of the same transition,pr is well-defined only
if equally labeled nodes have equal intoken flow and equal
outtoken flow. Since the initial token flow of all LPOs for-
malizes the initial marking,pr is well-defined only if all
LPOs have equal initial token flow. In general we say that a
functionr : E⋆

L → N fulfills the property(∗) w.r.t. L if for
all LPOs lpo = (V,<, l), lpo′ = (V ′, <′, l′) ∈ L and for
all v ∈ V, v′ ∈ V ′ holds

(∗) Init(lpo, r) = Init(lpo′, r) ∧ (l(v) = l′(v′) =⇒
In(v, r) = In(v′, r) ∧Out(v, r) = Out(v′, r)).

Every functionr fulfilling (∗) for a set of LPOsL defines
a placepr as shown above. The placepr is said to becor-
respondingto r. If z is the final node of the⋆-extension of
lpo ∈ L, we denoteFinal(lpo, r) = In(z, r). Moreover,
we write Init(pr) = Init(lpo, r) andFinal(lpo, pr) =
Final(lpo, r). For a functionr on the edges of a⋆-
extension of a single LPOlpo we say that it fulfills(∗) if
r fulfills (∗) w.r.t. {lpo}.

Definition 12 (Region). A regionof a partial languageL is
a functionr : E⋆

L → N fulfilling (∗).

The main result of [18] is that the set of places corre-
sponding to regions of a partial language equals the set of
feasible places w.r.t. this partial language.3 Thus the sat-

3In [18] it is assumed that the set of LPOsL representingL fulfills
some technical requirements. Since such representation isalways possible
we omit a detailed presentation here.

urated feasible net can be given by the set of places corre-
sponding to regions.

Theorem 13. LetL be a partial language. Then each place
corresponding to a region ofL is feasible w.r.t.L and each
place feasible w.r.t.L corresponds to a region ofL.

In this paper we deal with partial languagesL(α) given
by an LPO-termα. According to property(∗) of regions it
is enough to define regions of a partial languageL(α) on
the edges of LPOs inK(α)⋆ because such regions can be
extended to edges of LPOs inL(α)⋆ \ K(α)⋆: If lpo =
(V,<, l) is a prefix oflpo′ = (V ′, <′, l′) and a region is
defined on(<′)⋆ then merge the nodes of(V ′)⋆ \V ⋆ to one
node representing the maximal node oflpo⋆ thus defining
a region on<⋆. If lpo = (V,<, l) is a sequentialization of
lpo′ = (V ′, <′, l′) and a region is defined on(<′)⋆ then
assign the value0 to edges in<⋆ \(<′)⋆.

An example region of the partial languageL(α) intro-
duced in Figure 2 is depicted in Figure 3. The feasible place
in Figure 2, part (b), corresponds to this region. The non-
zero values ofr are assigned to the arcs of the LPOs in
K(α). Initial and final nodes are not drawn. The non-zero
values ofr assigned to edges starting from an initial node
respectively ending in a final node are depicted with small
ingoing resp. outgoing arrows. The intoken flow ofa andb
equals1, the outtoken flow ofa equals2, the outtoken flow
of b equals0. The initial token flow equals1.
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Figure 3. A region of a partial language.

We now describe a technique to represent the regions of a
possibly infinite partial languageL(α), defined on the edges
ofK(α), through regions of a finite representation ofK(α).
By nowK(α) may contain infinitely many LPOs, caused by
the iteration operator. An LPOA can occur arbitrary often
consecutively in a certain marking if and only if it consumes
in every place at most as many tokens as it produces in this
place (then an occurrence ofA does not reduce the num-
ber of tokens in this place). Consequently, ifA can occur
iterated in a certain markingm, then another LPOB can
occur after the occurrence ofAn for eachn ∈ N if and only
if it can occur inm, since an occurrence ofA does not re-
duce the number of tokens in a place. This principle can
be used to represent the infinite setK(α) by two finite sets
of LPOsR(α) andI(α). We define regions by these two
sets. This approach is similar to the ideas in [4] where the
authors define regions by two finite sets representing a reg-
ular expression. Our sets differ from these sets because of



two reasons. First, [4] deals with occurrence sequences of
pure nets instead of LPOs of p/t-nets. Second, a region in
[4] does not include the value of the initial marking of the
corresponding place.

For arbitrary LPO-termsα we define inductively the fi-
nite representation setR(α) consisting of, roughly speak-
ing, all LPOs inK(α) neglecting iterations. To ensure that
all LPOs inR(α) are enabled w.r.t the place defined by the
region, we require that regions satisfy(∗) w.r.t. R(α). It
remains to ensure that certain LPOs can occur iterated. For
this we define inductively the second finite iteration setI(α)
of LPOs consisting of, roughly speaking, all LPOs associ-
ated to iterated subterms ofα. We require that the LPOs in
I(α) produce at least as many tokens as they consume in
the place to be defined by the region. This ensures that the
place defined by the region is feasible w.r.t.L(α).

Definition 14 (Representation/Iteration set). The repre-
sentation setR(α) and theiteration setI(α) of a partial
languageL(α) are defined inductively for LPO-termsα1

andα2 as follows:
R(λ) = {λ}, I(λ) = ∅,
R(A) = {A}, I(A) = ∅ for A ∈ A,
R(α1+α2) = R(α1)∪R(α2), I(α1+α2) = I(α1)∪I(α2),
R(α1;α2) = {A1A2 | A1 ∈ R(α1), A2 ∈ R(α2)},
I(α1;α2) = I(α1) ∪ I(α2),
R((α1)

∗) = R(α1) ∪ {λ}, I((α1)
∗) = I(α1) ∪R(α1),

R(α1 ‖ α2) = {A1 ‖ A2 | A1 ∈ R(α1), A2 ∈ R(α2)},
I(α1 ‖ α2) = I(α1) ∪ I(α2).
We denote Wα =

⋃
(V,<,l)∈R(α)⋆ V , Eα =⋃

(V,<,l)∈R(α)⋆ <, lα =
⋃

(V,<,l)∈R(α)⋆ l.

Figure 4, part (a), shows the representation setR(b +
(a; (a ‖ b)⋆)) and the iteration setI(b + (a; (a ‖ b)⋆))
of the partial languageL(b + (a; (a ‖ b)⋆)) introduced in
Figure 2, together with an annotated region (defined later).
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Figure 4. (a) Region of representation and it-
eration set, (b) A part of the synthesized net.

The requirement, that every LPO inI(α) produces at
least as many tokens as it consumes, corresponds to the re-

quirement, that the final token flow of each LPO inI(α) ex-
ceeds its initial token flow. Given an LPOlpo = (V,<, l)
and some placep, the sum

Prod(lpo, p) :=
∑

t∈l(V )

|V |l(t)(W (t, p) −W (p, t))

equals the difference of the final and the initial token flow.

Lemma 15. Let (V ⋆, <⋆, l⋆) be a ⋆-extension oflpo =
(V,<, l). If r :<⋆→ N satisfies(∗) then there holds
Prod(lpo, pr) = Final(lpo, pr)− Init(pr).

Proof. It holds
∑

v∈V ⋆ Out(v, r) =
∑

e∈<⋆ r(e) =∑
v∈V ⋆ In(v, r). Let vinit be the initial node andvfinal

be the final node of the⋆-extension of lpo. Then∑
v∈V Out(v, r) + Out(vinit, r) + Out(vfinal, r) =∑
v∈V In(v, r) + In(vinit, r) + In(vfinal, r). Since

Out(vfinal, r) = 0 = In(vinit, r), we getIn(vfinal, r) −
Out(vinit, r) =

∑
v∈V (Out(v, r) − In(v, r)) =∑

t∈l(V ) |V |l(t)(W (t, pr)−W (pr, t)).

We define a region of an LPO-term as a function on the
edges ofR(α)⋆.

Definition 16 (Region of an LPO-term). A regions of an
LPO-termα is a functions : Eα → N satisfying(∗) w.r.t.
R(α), which additionally fulfills for all LPOslpo ∈ I(α):

(∗∗) Prod(lpo, ps) > 0.

Each regions of an LPO-term defines a corresponding
place ps in an analogous way as regions of partial lan-
guages. Figure 4, part (a), shows a regions of the LPO-
term b + (a; (a ‖ b)⋆) (illustrated analogously as in Fig-
ure 3). It defines the feasible placeps shown grey in Fig-
ure 4, part (b). For the single LPOlpo ∈ I(α) the value
Final(lpo, ps) = 2 (Init(ps) = 2) is attached to a big
outgoing (ingoing) arc.

Finally, we will prove that the places defined by regions
of α and the places defined by regions ofL(α) coincide.
For this we need three lemmas. Two of these regard techni-
cal constructions. These two are arranged at the end of the
section after the main theorem. The relationship between
K(α) andR(α) gets clear in the following lemma.

Lemma 17. Given an LPO-termα and a regions of α,
for each lpo ∈ K(α) there is lpoR ∈ R(α) such that
Prod(lpo, ps) ≥ Prod(lpoR, ps).

Proof by induction.GivenA ∈ A it holdsK(A) = {A} =
R(A), i.e. we can setAR = A. Assume the statement holds
for α1 andα2:

ad (+): Given lpo ∈ K(α1 + α2), thenlpo ∈ K(α1)
or lpo ∈ K(α2). Let lpo ∈ K(α1). By assumption there is
lpoR ∈ R(α1) ⊆ R(α1 + α2) such thatProd(lpo, ps) ≥
Prod(lpoR, ps).



ad (; ): Given lpo ∈ K(α1;α2), there islpo1 ∈ K(α1)
and lpo2 ∈ K(α2) such thatlpo1; lpo2 = lpo. By as-
sumption there arelpoR

1 ∈ R(α1), lpoR
2 ∈ R(α2) such

thatProd(lpoR
i , ps) ≤ Prod(lpoi, ps), i = 1, 2. It holds

lpoR
1 ; lpoR

2 ∈ R(α1;α2) with Prod(lpoR
1 ; lpoR

2 , ps) =
Prod(lpoR

1 , ps) + Prod(lpoR
2 , ps) ≤ Prod(lpo1, ps) +

Prod(lpo2, ps) = Prod(lpo1; lpo2, ps).
ad(‖): Givenlpo ∈ K(α1 ‖ α2), there islpo1 ∈ K(α1)

and lpo2 ∈ K(α2) such thatlpo1 ‖ lpo2 = lpo. By
assumption there islpoR

1 ∈ R(α1), lpoR
2 ∈ R(α2) such

thatProd(lpoR
i , ps) ≤ Prod(lpoi, ps), i = 1, 2. It holds

lpoR
1 ‖ lpoR

2 ∈ R(α1 ‖ α2) with Prod(lpoR
1 ‖ lpoR

2 , r) =
Prod(lpoR

1 , ps) + Prod(lpoR
2 , ps) ≤ Prod(lpo1, ps) +

Prod(lpo2, ps) = Prod(lpo1 ‖ lpo2, ps).
ad (∗): Given lpo ∈ K(α∗

1), there arelpo1, . . . , lpon ∈
K(α1) such that lpo1; . . . ; lpon = lpo. By assump-
tion and (**), for each lpoi (i ∈ {1, . . . , n}) there
is lpoR

i ∈ R(α) ⊆ I(α∗) with Prod(lpoi, ps) ≥
Prod(lpoR

i , ps) ≥ 0. It holds lpoR
1 ∈ R(α∗

1)
with Prod(lpoR

1 , ps) ≤ Prod(lpo1, ps) + . . . +
Prod(lpon, ps) = Prod(lpo1; . . . ; lpon, ps).

The following theorem proves the correspondence be-
tween regions of LPO-terms and regions of partial lan-
guages corresponding to LPO-terms.

Theorem 18. Letα be an LPO-term. It holds:
(i) Let s be a region ofα with corresponding placep. Then
there is a regionr ofL(α) with corresponding placep.
(ii) Let r be a region ofL(α) with corresponding placep.
Then there is a regions ofα with corresponding placep.

Proof by induction.As described, it is enough to consider
K(α) instead ofL(α).

ad (i): GivenA ∈ A we haveR(A) = {A} = K(A).
That means we can choser = s. Assume the statement
holds forα, α1 andα2:

ad (; ): Let s be a region ofα1;α2 with correspond-
ing placep. First we construct a regions1 of α1 and a
region s2 of α2 from s. For the construction ofs1 fix
lpo2 ∈ R(α2). For eachlpo1 ∈ R(α1) there holds
lpo1; lpo2 ∈ R(α1;α2). In Lemma 19 we describe how
to construct a functions|lpo1

which satisfies(∗) on {lpo1}
and corresponds to the placep. On everylpo1 ∈ R(α1)
defines1 = s|lpo1

. SinceI(α1) ⊆ I(α1;α2), s1 satis-
fies (∗∗), i.e. is a region ofα1. For the construction of
s2 fix lpomin

1 ∈ R(α1) such that for alllpo ∈ R(α1)
there holdsProd(lpomin

1 , p) ≤ Prod(lpo, p). For each
lpo2 ∈ R(α2) there holdslpomin

1 ; lpo2 ∈ R(α1;α2). In
Lemma 19 we describe how to construct a functions|lpo2

which satisfies(∗) on {lpo2} and corresponds to the place
p2 which differs fromp only in its initial marking. It holds
Init(p2) = Init(p)+Prod(lpomin

1 , p). Defines2 = s|lpo2

on everylpo ∈ R(α2). SinceI(α2) ⊆ I(α1;α2), s2 sat-
isfies(∗∗), i.e. is a region ofα2. By assumption there is

a regionr1 of K(α1) with corresponding placep and a re-
gionr2 ofK(α2) with corresponding placep2. Givenlpo ∈
K(α1;α2) there islpoK

1 ∈ K(α1) andlpoK
2 ∈ K(α2) such

that lpoK
1 ; lpoK

2 = lpo. Observe thatFinal(lpoK
1 , p) =

Init(p)+Prod(lpoK
1 , p) ≥ Init(p)+Prod(lpomin, p) =

Init(p2). This is the precondition for Lemma 20 and we
are able to construct a functionrlpo fulfilling (∗) and corre-
sponding top. Definer = r|lpo on eachlpo ∈ K(α1;α2).

ad (+): Let s be a region ofα1 +α2 with corresponding
placep. SinceR(α1 + α2) = R(α1) ∪R(α2) andI(α1 +
α2) = I(α1) ∪ I(α2) we directly get regionss1 of α1 and
s2 of α2 both corresponding top just by restrictings onto
R(α1) resp. R(α2). By assumption there is a regionr1
of K(α1) and a regionr2 of K(α2) corresponding top.
Given lpo ∈ K(α1 + α2), there holdslpo ∈ K(α1) or
lpo ∈ K(α2). Thereforer1 ∪ r2 is a region ofK(α1 + α2)
with corresponding placep.

ad (‖): Let s be a region ofα1 ‖ α2 with correspond-
ing placep. First we construct a regions1 of α1. Fix
an lpo2 ∈ R(α2). For everylpo1 ∈ R(α1) there holds
lpo1 ‖ lpo2 ∈ R(α1 ‖ α2). To defines1 on lpo1 we
start withs on (lpo1 ‖ lpo2)

⋆ and just delete all nodes of
lpo2 and adjacent edges. There results a functions1 on a
⋆-extension oflpo1 which fulfills (∗) and corresponds to
a placep′, wherep′ equalsp except for its initial mark-
ing. On everylpo1 ∈ R(α1) defines1 = s|lpo1

. Since
I(α1) ⊆ I(α1 ‖ α2), s1 satisfies(∗∗), i.e. is a region of
α1. Analogously we fix somelpo1 ∈ R(α1) and construct
a regions2 of α2 with corresponding placep′′ equal top ex-
cept for its initial marking. It holdsInit(p′) + Init(p′′) =
Init(p). By assumption there is a regionr1 of K(α1) with
corresponding place definingp′ and a regionr2 of K(α2)
with corresponding placep′′. Given lpo ∈ K(α1 ‖ α2),
there is lpoK

1 ∈ K(α1) and lpoK
2 ∈ K(α2) such that

lpoK
1 ‖ lpoK

2 ∈ K(α1 ‖ α2). To get a function on the edges
of (lpoK

1 ‖ lpoK
2 )⋆ fulfilling (∗) take(lpo1)

⋆ and(lpo2)
⋆

with the annotated regionsr1 andr2 and join the two initial
and final nodes. The resulting function corresponds top.

ad (∗): Let s be a region ofα∗ with corresponding place
p. s directly defines a regions1 of α with corresponding
placep sinceR(α) ⊆ R(α∗) andI(α) ⊆ I(α∗). By as-
sumption there is a regionr1 of K(α) with correspond-
ing placep. Given lpo ∈ K(α∗) there islpoi ∈ K(α),
i = 1, . . . , n, such thatlpo1; . . . ; lpon = lpo. As in the
case (;), we apply Lemma 20 to get a functionr2 on the
edges of(lpo1; lpo2)

⋆ satisfying (∗) with corresponding
placep. For this we need to show that the preconditions
of lemma 20 are fulfilled. Forlpo1 ∈ K(α) there islpoR

1 ∈
R(α) with Prod(lpo1, p) ≥ Prod(lpoR

1 , p) (Lemma 17).
Because ofR(α) ⊆ I(α∗) it holdsProd(lpoR

1 , p) ≥ 0.
We getProd(lpo1, p) ≥ 0 and it holdsInit(lpo1, r1) =
Init(lpo2, r1) since r1 is a region ofK(α1). Finally
it holds Final(lpo1, p) = Init(p) + Prod(lpo1, p) ≥



Init(p). Inductively we get a functionrn on the edges of
lpo⋆ fulfilling (∗) with corresponding placep.

ad (ii): r|Eα
is a function on the edges ofR(α) satisfying

(∗) corresponding top sinceR(α) ⊆ K(α). It remains to
show(∗∗) for s = r|Eα

. We assume that there islpo ∈
I(α) such thatProd(lpo, p) < 0. From the definition of
I(α) there are subtermsβ andγ of α with β = γ∗ and
lpo ∈ R(γ) ⊆ I(β) ⊆ I(α). It holds(lpo)n ∈ L(β) and
Prod((lpo)n, p) = n ·Prod(lpo, p) 6 −n for eachn ∈ N.
That meansβ satisfies the following property

(+): For eachn there is an LPOlpon ∈ L(β) such that
Prod(lpon, p) 6 −n.

It is easy to observe that if an LPO-termα1 satifies prop-
erty (+), then for arbitrary LPO-termsα2 also the LPO-
termsα1 + α2, α1 ‖ α2, α1;α2, α2;α1 andα∗

1 satisfy
property(+). Sinceβ is a subterm ofα this implies that
alsoα satisfies property(+). Therefore there is an LPO
lpoN ∈ L(α) such thatProd(lpoN , p) < −Init(p). This
givesFinal(lpoN , p) = Prod(lpoN , p) + Init(p) < 0, a
contradiction.

Lemma 19. Let s be a function on the edges of
(lpo1; lpo2)

⋆ satisfying(∗) with corresponding placeps.
Then there is a functions|lpo1

on the edges oflpo⋆
1 satisfy-

ing (∗) with corresponding placeps and a functions|lpo2
on

the edges oflpo⋆
2 satisfying(∗) with corresponding placep′s

such thatW (p′s, t) = W (ps, t) andW (t, p′s) = W (t, ps)
for everyt ∈ T andInit(p′s) = Init(ps)+Prod(lpo1, ps).

Proof. Denotelpo1 = (V1, <1, l1), lpo2 = (V2, <2, l2)
andlpo = lpo1; lpo2. Letvi

init andvi
final be the initial and

final nodes of the⋆-extension oflpoi, i = 1, 2, and letvinit

andvfinal be the initial and final node of the⋆-extension of
lpo. First defines|lpo

1
on the edges oflpo⋆

1 by:
(i) ∀e ∈ V1 × V1 : s|lpo

1
(e) = s(e),

(ii) ∀v ∈ V1 : s|lpo
1
(v1

init, v) = s(vinit, v),
(iii) ∀v ∈ V1 : s|lpo

1
(v, v1

final) =
∑

w∈V2∪{vfinal}
s(v, w),

(iv) s|lpo
1
(v1

init, v
1
final) =

∑
w∈V2∪{vfinal}

s(vinit, w).
Since by this construction the intoken and outtoken flow of
nodes inV1 and of the initial node are not changed,s|lpo

1

fulfills (∗) and corresponds tops. We defines|lpo
2

on the
edges oflpo⋆

2 by
(i) ∀e ∈ V2 × V2 : s|lpo

2
(e) = s(e),

(ii) ∀v ∈ V2 : s|lpo
2
(v, v2

final) = s(v, vfinal),
(iii) ∀v ∈ V2 : s|lpo

2
(v2

init, v) =
∑

w∈V1∪{vinit}
s(w, v),

(iv) s|lpo
2
(v2

init, v
2
final) =

∑
w∈V1∪{vinit}

s(w, vfinal).
Since by this construction the intoken and outtoken flow of
nodes inV2 and of the final node are not changed,s|lpo2

fulfills (∗) and corresponds to a placep′s with Init(p′s) =
Init(ps) + Prod(lpo1, ps).

Lemma 20. Consider two LPOslpo1 and lpo2, a function
r1 on the edges oflpo⋆

1 fulfilling (∗) with corresponding
place p and a functionr2 on the edges oflpo⋆

2 fulfilling

(∗) with corresponding placep2, such thatW (p2, t) =
W (p, t) and W (t, p2) = W (t, p) for every t ∈ T and
Final(lpo1, p) ≥ Init(p2) for a placep. Then there is
a functionr on the edges oflpo⋆ = (lpo1; lpo2)

⋆ fulfilling
(∗) with corresponding placep.

Proof. Let vi
init andvi

final be the initial and final nodes of
the ⋆-extension oflpoi, i = 1, 2, and letvinit andvfinal

be the initial and final node of the⋆-extension oflpo. We
define a functionr on the edges oflpo⋆ by:
(i) ∀e ∈ V1 × V1 : r(e) = r1(e),
(ii) ∀e ∈ V2 × V2 : r(e) = r2(e),
(iii) ∀v ∈ V1 : r(vinit , v) = r1(v

1
init, v),

(iv) ∀v ∈ V2 : r(v, vfinal) = r2(v, v
2
final).

By now all nodes inV1 got the right intoken flow, all
nodes inV2 got the right outtoken flow. It remains to
distribute the final token flow oflpo1 onto the edges in
({vinit} ∪ V1}) × ({V2 ∪ {vfinal}), such thatr fulfills
(∗) on the edges oflpo⋆, i.e. such that each node in
({V2 ∪ {vfinal}) gets enough intoken flow. This is pos-
sible sinceFinal(lpo1, p) ≥ Init(p2). By construction the
functionr satisfies(∗) and corresponds top.

5 Computing Regions of Term-based Partial
Languages

In this section we develop an algorithm to calculate a fi-
nite representation of the saturated feasible net w.r.t. a par-
tial languageL(α) given by an LPO-termα. This algorithm
solves the formulated synthesis problem.

The algorithm is based on a method to compute regions
of an LPO-term as solutions of a finite homogenous linear
inequation system. More precisely, we calculate a basis of
the solution space of such a system. The places correspond-
ing to such a basis span the set of all feasible places. That
means the calculated net has the same partial language of
runs as the saturated feasible net.

To construct a region of an LPO-termα we first need to
construct a functionr on the set of edgesEα of R(α) =
{lpo1, . . . , lpo|R(α)|} fulfilling (∗). Such a function can be
found by solving a corresponding equation systemAR ·
x = 0 (AR finite). The vectorx contains|Eα| = n

entries. Considering a fixed numbering of the edges in
Eα = {e1, . . . , en}, a solutionx = (x1, . . . , xn) of
AR · x = 0 defines a functionr onEα via r(ei) := xi.
The rows ofAR encode the property(∗) as follows: We
order the events ofWα with the same labelt ∈ T in a set
Wt = {v ∈ Wα | lα(v) = t} = {vt

1, . . . , v
t
|Wt|
}. For each

setWt we define rowsat
i (and rowsbt

i) of AR to ensure
that the intoken (outtoken) flow of the first nodevt

1 and the
i-th nodevt

i with label t are equal,i = 2, . . . , |Wt|. We
defineat

i = (at
i,1, . . . , a

t
i,n), whereat

i,j equals1 if ej is an
ingoing edge ofvt

1, equals−1 if ej is an ingoing edge of



vt
i and equals0 otherwise. We definebt

i = (bti,1, . . . , b
t
i,n),

wherebti,j equals1 if ej is an outgoing edge ofvt
1, equals

−1 if ej is an outgoing edge ofvt
i and equals0 otherwise.

Then it holdsat
i ·x = 0 (bt

i ·x = 0) if and only if the intoken
(outtoken) flows ofvt

1 andvt
i are equal. Finally, to ensure

that all LPOs have the same initial token flow, we add rows
ci, 2 6 i 6 |R(α)| to AR. We defineci = (ci,1, . . . , ci,n),
whereci,j equals1 if ej is an outgoing edge of the initial
node of lpo⋆

1, equals−1 if ej is an outgoing edge of the
initial node of lpo⋆

i and equals0 otherwise. Then it holds
ci · x = 0 if and only if the initial token flows oflpo1

and lpoi are equal. Each non-negative integer solution of
AR ·x = 0 corresponds to a functionr : Eα → N given by
r(ei) = xi fulfilling (∗) w.r.t.R(α) and vice versa.

Given a non-negative integer solutionx of AR · x = 0,
the set of LPOsI(α) should additionally fulfill(∗∗). For
eachlpoi = (Vi, <i, li) ∈ I(α) = {lpo1, . . . , lpo|I(α)|},
we define a rowdi = (di,1, . . . , di,n) of a second ma-
trix AI such that the inequationdi · x ≥ 0 ensures
Prod(lpoi, pr) ≥ 0. For eacht ∈ T , we fix one node
vt ∈ Wα with l(vt) = t (such a node always exists by con-
struction ofRα). We define for each edgeej the entries
di,j = dout

i,j − d
in
i,j of the vectordi. The valuedout

i,j equals
|Vi|l(t) if ej is an outgoing edge ofvt (t ∈ T ) and0 other-
wise. The valuedin

i,j equals|Vi|l(t) if ej is an ingoing edge
of vt (t ∈ T ) and0 otherwise. Then it holdsdi · x ≥ 0 if
and only ifProd(lpoi, pr) ≥ 0.

Theorem 21. Given an LPO-termα there is a one-to-one
correspondence between the regionsr of α and the non-
negative integer solutions ofAR · x = 0,AI · x ≥ 0.

Thus we can compute regions ofα and subsequently
places of the searched saturated feasible p/t-net by solv-
ing a finite linear homogenous inequation system. The set
of solutions of such a system is called apolyhedral cone.
According to a theorem of Minkowski polyhedral cones
are finitely generated, that means there are finite solutions
y1, . . . ,yn (also calledbasis solutions) such that each ele-
mentx of the polyhedral cone is a non-negative linear sum
x =

∑n
i=1 λiyi for someλ1, . . . , λn > 0. Such basis so-

lutionsy1, . . . ,yn can be effectively computed. Since all
inequations contain only integer coefficients, the entriesof
all yi can be chosen as integers.

Lemma 13 in [17] shows that all places which do not
correspond to a basis solution can be deleted from the sat-
urated feasible p/t-net without changing its partial language
of runs. That means computing such a basis yields a finite
representation of the saturated feasible p/t-net, calledbasis
representation. Altogether to solve the formulated synthe-
sis problem, we add to the set of all transitions (given by the
labels appearing inα) the places corresponding to basis so-
lutions of the constructed inequation system. The described
synthesis algorithm is shown in Algorithm 1.

Figure 4, part (b), shows a part of the net synthesized
from the LPO-termb+ (a; (a ‖ b)⋆) by this algorithm. Al-
together, the algorithm computes 12 basis regions (places)
for this example, where those not shown in the figure
are less restrictive than the drawn places. It is easy to
see, that the net still generates the occurrence sequences
abb, ababb, abababb, . . . which do not belong to the partial
language specified byb + (a; (a ‖ b)⋆). That means, this
partial language is not a net language. In general the run-
time of the presented synthesis algorithm (Algorithm 1) is
not polynomial. In particular the set of basis solutions can
be exponential in the worst case, but in practice the num-
ber of basis solutions of such inequation systems is often
small. We are currently working on an implementation of
the algorithm.

1: AR, AI ← EmptyMatrix

2: for all t ∈ T do
3: for m = 1 to |Wt| − 1 do
4: AR.addRows(a

t
m, b

t
m)

5: end for
6: end for
7: for m = 1 to |R(α)| − 1 do
8: AR.addRow(cm)
9: end for

10: for m = 1 to |I(α)| do
11: AI .addRow(dm)
12: end for
13: Solutions← getBasisSolutions(AR, AI)
14: (N,m0)← (∅, T, ∅, ∅, ∅)
15: for all r ∈ Solutions do
16: (N,m0).addCorrespondingP lace(r)
17: end for
18: return (N,m0)

Algorithm 1: Calculates a net(N,m0) from an LPO-term
α which solves the formulated synthesis problem.

6 Conclusion

In contrast to [17] we did not present an algorithm to
decide if L(N,m0) = L(α) for the computed p/t-net
(N,m0). Such an algorithm cannot be developed similarly
as in [17]. On contrary, it is an open question whether
this equality problem is actually decidable. We believe
that there is an algorithm deciding the equality of those
language, but to prove this, an elaborated examination of
the class of partial languages generated by LPO-terms is
needed. One possibility is to consider so calledwrong con-
tinuations. A wrong continuation is a not specified LPO
minimally extending a specified LPO. The basic idea is to
calculate a finite set ofwrong continuationsof LPOs speci-
fied by an LPO-term satisfying that the synthesized net ex-
actly generates the specified partial language if and only if



none of these wrong continuations is enabled in this net.
The problem is that it is not clear whether such a finite set
of wrong continuations exists in general, i.e. whether the
(infinite) set of all wrong continuations is finitely gener-
ated. For sequential languages, it is proven that if a lan-
guage satisfies certain conditions onsemi-linearity, the set
of wrong continuations is finitely generated and therefore
the equality problem is decidable [5]. This is the case for ex-
ample for regular and deterministic context free languages
and can possibly be carried over to partial languages gen-
erated by LPO-terms. There are also several results con-
cerning context-equivalence of LPOs w.r.t partial languages
[7], which are perhaps useful to establish the result. An-
other, more indirect, approach is to translate a partial lan-
guage given by an LPO-term into its corresponding step
language. We believe that such a step language can be rep-
resented by a regular expression over a finite set of steps.
Interpreting steps as singletons, existing techniques forse-
quential languages as described above can be applied to de-
cide on language equality on the level of steps. Then it can
be used that the synthesized net exactly generates the given
partial language if and only if it exactly generates the corre-
sponding step language and the partial language iscomplete
w.r.t. the step language(this means thateachLPO, whose
corresponding step sequences belong to the step language,
belongs to the partial language [13]). Thus, it remains to
decide on completeness of the partial language w.r.t. the
corresponding step language. Also this is an open problem
for partial languages defined by LPO-terms. Nevertheless,
Theorem 10 shows that the net(N,m0) computed fromα
in any case represents the best upper approximation to the
behaviour given by the partial languageL(α).

References

[1] E. Badouel and P. Darondeau. Theory of Regions. In
W. Reisig; G. Rozenberg, editor,Petri Nets, volume 1491
of Lecture Notes in Computer Science, pages 529–586.
Springer, 1996.

[2] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,
and A. Yakovlev. Petrify: A Tool for Manipulating Con-
current Specifications and Synthesis of Asynchronous Con-
trollers. IEICE Trans. of Informations and Systems, E80-
D(3):315–325, 1997.

[3] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,
and A. Yakovlev. Hardware and Petri Nets: Application to
Asynchronous Circuit Design. In M. Nielsen; D. Simpson,
editor,ICATPN, volume 1825 ofLecture Notes in Computer
Science, pages 1–15. Springer, 2000.

[4] P. Darondeau. Deriving Unbounded Petri Nets from Formal
Languages. In D. Sangiorgi; R. de Simone, editor,CON-
CUR, volume 1466 ofLecture Notes in Computer Science,
pages 533–548. Springer, 1998.

[5] P. Darondeau. Unbounded Petri Net Synthesis. In J. De-
sel, W. Reisig, and G. Rozenberg, editors,Lectures on Con-

currency and Petri Nets, volume 3098 ofLecture Notes in
Computer Science, pages 413–438. Springer, 2003.

[6] A. Ehrenfeucht and G. Rozenberg. Partial (set) 2-Structures.
Part I: Basic Notions and the Representation Problem /
Part II: State Spaces of Concurrent Systems.Acta Inf.,
27(4):315–368, 1989.

[7] J. Fanchon and R. Morin. Regular Sets of Pomsets with
Autoconcurrency. In L. Brim; P. Jancar; M. Kretı́nský; A.
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