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Abstract i.e., as a finite set of labelled partial orders (LPOs) [17].
LPOs are also known as partial words [8] or pomsets [19].
In this paper we present an algorithm to synthesize a In contrast to previous work on the synthesis problem, we
finite unlabeled place/transition Petri net (p/t-net) fran  considered partial order behaviour of Petri nets, trulyeep
possibly infinite partial language, which is given by a term senting the concurrency of events. Partial orders are often
over afinite set of labeled partial orders using operators fo considered the most appropriate representation of betnavio
union, iteration, parallel composition and sequential com of concurrent systems modelled by Petri nets.
position. The synthesis algorithm is based on the theory Based on our previous work, this paper tackles synthesis
of regions for partial languages presented in [18] and pro- of Petri nets from infinite partial languages. More pregisel
duces a p/t-net having minimal net behavior including the we introduce terms built from LPOs and composition oper-
given partial language. The algorithm uses linear program- ators including iteration. The semantics of an iterateddini
ming techniques that were already successfully applied in LPO is an infinite set of LPOs. Moreover, we consider op-
[17] for the synthesis of p/t-nets from finite partial lan- erators for sequential and parallel composition as well as a
guages. union operator. Given a term constructed this way from a
finite set of LPOs, we show in this paper how to synthesize
a finite p/t-net from this term such that the behaviour of the
net coincides with the set of LPOs represented by the term
— if such a net exists. The synthesis approach is based on

) ) ) o the so called theory of regions. Each transition of the syn-
Synthesis of Petri nets from behavioural descriptions hasihasized net is given by a label appearing in the term, and

been a successful line of research since the 1990s. There i§ach place of the net is given by a region. The synthesized

a rich body of nontrivial theoretical results, and there are et has minimal net behaviour including the behaviour
important applications in industry, in particular in ha@he specified by the given term.

system design [3, 11], and recently also in workflow design
[21]. Moreover, there are several synthesis tools that ACstruction of the p/t-net, but not an algorithm to decide & th

baseq on the theoretlgal results [2]. o . behaviour of the synthesized net coincides with the speci-
Originally, synthesis means algorithmic construction of g4 pehaviour. That means we do not characterize partial

a Petri net from sequential observations. It can be app“edlanguages generated by (unlabeled) p/t-nets. This is out of
to various classes of Petri nets, including elementary nets

. i scope of this paper and a topic of further research.
[6] and place/transition nets (p/t-nets) [1]. Synthesis ca . . : . .
. . : : We emphasize at this point that we aim at the synthesis
start with a transition system representing the sequédrgial . . . . . "
. : " of unlabeledPetri nets (i.e. Petri nets with unique transition
haviour of a system as well as with a step transition system

which additionally represents steps of concurrent eveis [ names) and concentrate on the algorithmic solution. In con-

Synthesis can also be based on a language, i.e., on a set cg?aSt’ in [14] partial _Ianguages generatec_j by safe labeted P
nets are characterized. In [15, 16] partial languages which
occurrence sequences or step sequences [4, 1].

Recentlv. we solved the svnthesis problem for b/t-nets can be generated from singletons via operators for union,
with behav)&)ur ven in termsyof a finitz artial Ianpua o iteration, parallel composition and sequential compositi
9 P guage, (so calledseries-rational sp-languaggsre characterized
*This paper was supported by tBerman Research Coungjproject through so Ca”eqbranChmg automatawhich can be inter-
SYNOPS preted as a restricted class of labeled p/t-nets. Otherpape

1 Introduction

In contrast to [17], in this paper we only give the con-




consider unlabeled nets, but do not consider algorithmic as We use the notations defined for partial orders also for
pects, such as [10] (characterizing the branching behaviou LPOs. If T is the set of labels ofpo = (V, <,[) then
of p/t-nets without auto-concurrency by event structures) for a setV’ C V, we define the multi-sgf’’|; € N” by
and [9] (proposing a trace semantics for p/t-nets). [V'i(t) = {v € V' | l(v) = t}|. We consider LPOs
The remainder of the paper is organized as follows: We only up to isomorphism. As usual, two LPQE, <, ) and
start with a brief introduction to the behavioural modelcon (V’, <’,1") are calledsomorphic if there is a bijective map-
sidered in this paper: We define the so called partial lan- pingy : V' — V' such thai(v) = I'(¢(v)) for eachv € V,
guage of runs of a p/t-netin Section 2. In Section 3 the termandv < w <= ¥ (v) <’ ¥(w) for eachv, w € V. By [Ipo]
based representation of infinite partial languages is intro we denote the set of all LPOs isomorphido.
duced, generalizing regular expressions of sequential lan _ .
guages in two ways: a single partial word generalizes a se-D€finition 2 (Partial language)Let 7' be a set. A set

guential word, and we have a parallel composition operator.
The latter only makes sense for partial words which can ex-

press independent, parallel execution of events. In Sectio
4 we first recall definitions and main results from [18] and

[17] on the theory of regions for partial languages. Then [
we introduce regions of terms. Finally, the last Section 5

L C {[lpo] | Ipo = (V,<,l)isan LPO,/(V) C T} with
Ujv,<iyjec [(V) = T'is calledpartial language ovef'.

A partial language is given by a set of concrete LAOs
representing in the sense thdtpo] € £ <= Jlpo’ € L :
Ipo] = [Ipo’].

A netis atriple(P, T, F), whereP is a (possibly infinite)

shows that, although the set of regions of a term is infinite ¢ ofplaces 7' is a finite set otransitionssatisfying P N

in general, finitely many regions suffice for our construc-
tion, yielding a finite Petri net. This finite set is effectiye
constructed using concepts of linear programming.

2 The Partial Language of Runs of a P/t-net

T =0,andF C (P xT)U (T x P)is aflow relation

Definition 3 (Place/transition net)A place/transition-net
(p/t-ne) N is a quadruple(P, T, F,W), where(P, T, F)
is anet, andV : FF — N7 is aweight function

We extend the weight functioll” to pairs of net ele-

In this section we introduce the behavioural model con- ments(x,y) € (P x T) U (T x P) with (z,y) ¢ F by

sidered in this paper. B we denote th@onnegative in-

W(z,y) = 0. A markingofanetN = (P,T,F,WW) is a

tegers N* denotes the positive integers. Given a finite set fynctionm : P — N, i.e. a multi-set ove®. A marked

A, the symbol|A| denotes theardinality of A. The set
of all multi-setsover a setA is the seftN“ of all functions
f A — N. Given a binary relatiom® C A x A, we
write aRb to denote(a, b) € R. A directed graphis a pair
(V,—), whereV is a finiteset of nodesnd—C V x V
is called theset of arcs A partial orderis a directed graph
po = (V, <), where<C V x V is irreflexive and transitive.

Definition 1 (Labelled partial order)A labelled partial or-
der (LPO) is a triplelpo = (V,<,l), where(V,<) is a
partial order andl! : V' — T is alabelling functionwith set
of labelsT'.

In our context, a node of an LPO(V, <,!) is called
event representing an occurrence fgfv). Two nodes
v,v" € V are calledindependenif v £ v andv’ &£ wv.
Notice that by this definition, independence is reflexive. By
co C V x V we denote the set of all pairs of indepen-
dent nodes of/. A co-setis a subsetC C V satisfying
Vx,y € C: zcoy. A cutis a maximal co-set (w.r.t. setin-
clusion). For a co-set’ of a partial orde(V, <) and a node
veV\Cwewritev < C,if v < sforanelement € C,
andvcoC, if vcos for all elementss € C. A partial or-
der(V’, <’) is aprefixof a partial orde(V, <) if V/ C V,
=< |yixyrand(v € V' Av < V) = (v € V).
Given two partial orderpo; = (V, <;) andpo, = (V, <2),
we say thatpo, is a sequentialization ofo, if <;C<s.

p/t-netis a pair(N, mg), whereN is a p/t-net, andn, is a
marking of N, calledinitial marking. The occurrence rule

of p/t-nets is defined as usual [20]. The non-sequential se-
mantics of a p/t-net can be given lepabled LPOsalso
calledruns An LPO is enabled in a net if the events of the
LPO can occur in the net respecting the concurrency rela-
tion of the LPO [22].

Definition 4 (Enabledness)Let (N, mq) be a marked
p/t-net, N = (P, T,F,W). An LPOlpo = (V,<,l)

with { V. — T is called enabled w.rt. (N,my)

if for every cutC of lpo and everyp € P there
hO|dSm0(p) + ZuEV/\v<C(W(l(v)ap) - W(pal(v )) 2

> wec W(p,1(v)). Its occurrenceleads to the marking
m’ given bym'(p) = mo(p) + Xpey (W((v),p) —

W (p,1(v))) for eachp € P.

Definition 5 (Partial language of runs)The set of all iso-
morphism classes of LPOs enabled w.r.t. a given marked
p/t-net (N, mg) is denoted byL(N,mg). L(N,mg) is
called thepartial language of runsf (IV, my).

Given a partial languagé&, we are interested in al-
gorithms to calculate a marked p/t-nétV,mg) with
L(N,mg) = L, if such a net exists. Observe th&tN, mg)
is alwayssequentialization and prefix closece. every se-
guentialization and every prefix of an enabled LPO is again



enabled w.r.t. (N, mg). Moreover, the set of labels of
L(N,myp) is finite by definition. Therefore, when specify- & I [a]
ing the behaviour of a net by a partial language, this partial &l G [l :

language must necessarily be sequentialization and prefix [b]
closed, and it must have a finite set of labels.

Bl

3 Term Based Finite Representation of Infi- @
nite Partial Languages 0

When specifying a partial language as the input for a 2] o] El eoe
synthesis algorithm, this specification has to be finite. In (0] B
[17] we developed an algorithm to solve the synthesis prob- 0]
lem for finite partial languages. We consider infinite par- b
tial languages in this paper. Consequently, we finitely rep- , ( ) .
resent infinite partial languages. More precisely we con- Figure 1. Representations of partial lan-
sider term-based finite representations of infinite paletiad guages.
guages. This approach was already successfully applied
for the synthesis of nets from languages of occurrence se ((@1)*) = {A1... Ay | Ay, ..., Ay € K(an)} U{A}
guences given by regular expressions over a finite aIphabetK(Oél_H az) = {41 || Az | f_ll < K(Oél)7 Az G_K(az)} )
of transitions [4]. In this paper, the alphabet is a finiteafet ~ L(c) is the set of sequentializations of prefixes of LPOs in
LPOs. The considered terms extend regular expressions by (). £(e) = {[lpo] | Ipo € L(a)} is the partial lan-

a parallel composition operator representing concurrency 9uage ofv.
Thus we consider a class of partial languages specified by

terms over a given finite set of LPQ4, where terms are An example for a partial languages of an LPO-term is de-
constructed by iteration, parallel and sequential composi picted in Figure 1, part (a), showing the set of LPR& ||

tion and union. Ford € A we write A = (Va,<a,l4a), b*). The set of LPOs from part (b) cannot be generated by
and we denote by = (0,0, §) the empty LPO. an LPO-term (this is also the case if we consider its prefix-

closure), because by sequential composition and iterétion
is not possible to append an LPO only to a part of another
LPO. Note that this set of LPOs could be defined through a
recursive expression of the from = a(A || b) + \. Syn-
thesis from such expressions is a topic of further research.
It is also possible to consider further composition opera-
tors (see [19] for an overview). In [12] an operator for syn-

If each LPO inA is a singleton, an LPO-term defines a chronous composition of single actions is used, leading to

Definition 6 (LPO-term) The set oLPO-termsover a fi-
nite set of LPOsA is inductively defined as follows: The
charactersA € A and )\ are LPO-terms. Letv; and as
be LPO-terms. Them = ai;as (sequential composi-
tion), @« = a3 + a2 (union),a = (aq)* (iteration) and
a = oy || ag (parallel composition) are LPO-terms.

so calledseries rational sp-languagil5, 16]. In a simi-  terms which cannotlonger be represented by (sets of) LPOs
lar way, we assign to an arbitrary LPO-terma possibly ~ but by causal structures extending LPOs.
infinite set of LPOsSL(«) representing a partial language. Altogether, the partial languages of LPO-terms (over fi-

Given an LPO-termy, we first inductively define a set of nite sets of LPOs) form a certain class of infinite partial
LPOs K («) represented by. The setL(«) is the prefix languages. Note that not each partial language of runs of a

and sequentialization closure &f(«). To defineK(«), p/t-net can be described through LPO-tefmis.is easy to

we define the sequential composition of LP@sB € A see that also not each partial language of runs of an elemen-
by AB = (V4 UVp, <4 U <p UVa x Vg),la Ulp), tary net or even of a marked graph can be described through
the parallel composition of LPO4,B € Aby A | B = LPO-terms>

(VaUVg,<a U <p,laUlp), and denoted® = X and Note that, for simplicity of figures, in all examples we

At = Ar~tAforn € N* (we can assume that, B have  only consider LPO-terms constructed from singletons.
disjoint sets of nodes).

Definition 7 (Partial language of an LPO-term)Ve set 1The partial language of runs of the p/t-net having the twoesa and
K(\) = {)\} and K(A) = {A}. We further define in- ¢ defined by (p,a) = W (a, p) = W(a, q) = W(q,b) = 1 equals the
ductively for LPO-termsy; andao: pargal Ian_guage depicted in part (b)_ of Flgurfa'l.

Consider the marked graph having transitians, c, d and four places
K(a1 +ag) = K(a1) U K(az) p,q,7,s defined byW (p,a) = W(a,q) = W(g,b) = W(bp) =
K(Oél; O[Q) = {AlAQ | A€ K(Oél), Ay € K(O{Q)} W(a,r)=W(r,c) = W(b,s) = W(s,d) = 1.



Given: An LPO-terma.

Searched: A marked p/t-net( N, mg) with L(N,mg) =
L(«) if such(N,mg) exists.

We use the so called theory of regions to solve the synthe-

@
sis problem. Like the synthesis algorithm for finite partial
languages in [17], the synthesis algorithm in this paper is I 1
based on the notion of regions of partial languages intro- E o u n ° n
2
(b) (c)

4 Regions of LPO-terms bl @ [ [a] [a]
The synthesis problem tackled in this paper is as follows: O0C
' o [l m“a
[b] [a]
a,

duced in [18]. Transitions of the synthesized net are given

by the labels of the partial language and places are given by

regions. In the case of infinite partial languages, a region . .
according to [18] is a function with an infinite number of Figure 2. (a) K(b + (a; (a [| b)*)), (b) feasible
variables that has to fulfill an infinite number of constraint place, (c) non-feasible place.

Such regions are not computable. The aim of this section(N7 mo), N = (P, T, F,W), such thatP is the set of all

is to define computable regions of an LPO-tetnwhich  3ces feasible w.r.iC is calledsaturated feasible (w.r.)
define the same places as the regions (@f) from [18].

We first recall the general ideas of region based synthe-Theorem 10([18]). Let(N,m) be the saturated feasible
sis. The basic approach is the construction of a marked p/t-p/t-net w.r.t. a partial language. Thenl C L(N,my)
net from a given partial languagkaccording to the follow-  and£(N, mg) is minimal with this property.
ing strategy: The set of transitions of the synthesizedset i . ,
the finite set of labels of. Clearly, each LPO specified if Altogether, given an LPO-term, the saturated feasible
is a run of the marked p/t-net consisting only of these transi N€t (V;mo) W.rt. L(a) solves the formulated synthesis
tions (with empty set of places), because there are no causdl"Plem. i-e. L(N,mo) = L(«), or there is no such net.
dependencies between the transitions. Therefore, this nef* Problem that we solve in Section 5 is that there are in-
in general has many runs not specifiedinThus, one re-  linitely many feasible places. , _
stricts the behaviour of this net by creating causal depen- BY regionsof partial languages itis possible to define the
dencies between the transitions through addition of places sgt of al feas_|ble places on the level of the partial languag
Places are defined by their initial marking and the weights Given a partl_al Ianguag;_é _overT _represented by a set of
on the arcs connecting them to transitions. Two kinds of -POS L. the idea of defining regions af was developed
places can be distinguished. In the case that there is an LPd" [18]: If two eventsz andy satisfyz < y in an LPO
specified inZ which is no run of the net which has only P° = (Vi <,1) € L, this specifies that the corresponding
the one considered place, this place restricts the behavioutrans't'ond(z) and!(y) may be causa_dly dependent. Such
too much. Such places anen-feasible (W.r.t.C). In the a causal dependency arises exactly if the occurrence of the

other case, the considered placéeisible (w.r.t.C). Every transition/(z) produces one or more tokens in a place, and
feasible place is added to the net to be constructed some of these tokens are consumed by the occurrence of the

other transitiori(y). Such a place can be defined as follows:
Definition 8 (Feasible place)Let £ be a partial language ~ Assign to every edgér, y) of an LPO inL a natural num-
over the finite set of label§ and let (N,m,), N = ber representinghe number of tokens which are produced
({p},T, F,,W,) be a marked p/t-net with only one place by the occurrence dfxz) and cgnsumed by the occurrence
p (F,, W,, m,, are defined according to the definitionf of I(y) in the place to be definedWe extend each LPO
The placep is calledfeasible (w.r.t.C), if £ C L(N,m,,), Ipo € L by an initial and a final event, representing transi-
otherwisenon-feasible (w.r.tZ). tions producing the initial marking and consuming the final

marking (after the occurrence hfo).
Examples of a feasible place and a non-feasible place are

depicted in Figure 2, showing the set of LPE§+(a; (a ||~ DEfinition 11 (x-extension) é*-EthnSiO_mf Ipo = (V, <
b)*)) in part (a): Using Definition 4 one can easily verify /) € LisanLPOIlpo™ = (V*, <*,1*) satisfying: There is
that all LPOs inL(b+ (a; (a || b)*)) are enabled in the one- an.|n|t|al nodev;,;; € V* s_maller than all other nodes and
place net depicted in part (b). The third LPO of part (a) is @ final nodevyinq; € V* bigger than all other nodes, both

not enabled in the one-place net depicted in part (c). with new labels, and there hold$ = V* \ {vinit, Vfinai }-
For eachlpo € L, letlpo* = (V*,<*,1*) be ax-
Definition 9 (Saturated feasible p/t-netl.et £ be a partial extension ofpo such thatx-extensions have disjoint node

language over the finite set of lab&ls The marked p/t-net  sets and all initial and final nodes have different labels.



Then the seL* = {Ipo* | Ipo € L} is calledx-extension
of L. We denoté] = Uy . jyer- <-

Assume we have fixed &extension ofL. According
to the above explanation, we define a plageby assign-
ing for each LPOlpo = (V,<,l) € L a natural number
r(x,y) to each edgér, y) of thex-extension ofpo through
a functionr : E7 — N. The sum of the natural num-
bers assigned to ingoing edges y) of a nodey € V* is
denoted byln(y,r) = >, ., r(z,y). We callIn(y,r)
the intoken flowof y. If y is no initial or final node, the
intoken flow of y is interpreted as the weight of the arc
connecting the new place. with the transitioni(y), i.e.
we defineW (p,,l(y)) = In(y,r). The sum of the nat-
ural numbers assigned to outgoing edg¢esy) of a node
z € V*isdenoted but(z,r) = > ., r(z,y). We call
Out(z,r) theouttoken flowof . If x is no initial or final
node, the outtoken flow af is interpreted as the weight of
the arc connecting the transitidfx) with the new place,.,
i.e. we definelW (l(x),p,) = Out(x,r). If zis the ini-
tial node of thex-extension oflpo, then the outtoken flow
of z is interpreted as the initial marking of the new place
pr, i.e. we definemg(p,) = Out(z,r). We also denote
Init(lpo,r) = Out(z,r) and callInit(lpo, r)theinitial to-
ken flowof Ipo. The valuer(z,y) is called thetoken flow
betweenxz andy. Since equally labeled nodes formalize
occurrences of the same transitign,is well-defined only
if equally labeled nodes have equal intoken flow and equal
outtoken flow. Since the initial token flow of all LPOs for-
malizes the initial markingp,. is well-defined only if all
LPOs have equal initial token flow. In general we say that a
functionr : Ef — N fulfills the property(x) w.r.t. L if for
all LPOslpo = (V, <,1),lpo’ = (V',<',lI') € L and for
allv e Vv € V' holds

(¥) Init(lpo,r) = Init(lpo’,r) A (I(v) = I'(v)) =
In(v,r) = In(v',r) A Out(v,r) = Out(v',r)).

Every function- fulfilling (x) for a set of LPO4. defines
a placep, as shown above. The plapg is said to becor-
respondingo r. If z is the final node of the-extension of
Ipo € L, we denotel'inal(lpo,r) = In(z,r). Moreover,
we write Init(p,.) = Init(lpo,r) and Final(lpo,p,) =
Final(Ipo,r). For a functionr on the edges of a-
extension of a single LPGo we say that it fulfills(x) if
r fulfills (x) w.r.t. {Ipo}.

Definition 12 (Region) Aregionof a partial languageC is
afunctionr : E7 — N fulfilling ().

The main result of [18] is that the set of places corre-

urated feasible net can be given by the set of places corre-
sponding to regions.

Theorem 13. Let £ be a partial language. Then each place
corresponding to a region af is feasible w.r.t.L and each
place feasible w.r.t£ corresponds to a region df.

In this paper we deal with partial languagégy) given
by an LPO-termv. According to propertyx) of regions it
is enough to define regions of a partial langu#de:) on
the edges of LPOs itk (a)* because such regions can be
extended to edges of LPOs («)* \ K («a)*: If Ipo
(V,<,1) is a prefix oflpo’ = (V',<’,1') and a region is
defined on(<’)* then merge the nodes @f’)* \ V* to one
node representing the maximal nodelpd* thus defining
aregion on<*. If Ipo = (V, <,1) is a sequentialization of
Ipo’ = (V/,</,lI’) and a region is defined ofx’)* then
assign the value to edges in<* \ (<’)*.

An example region of the partial languagg«) intro-
duced in Figure 2 is depicted in Figure 3. The feasible place
in Figure 2, part (b), corresponds to this region. The non-
zero values ofr are assigned to the arcs of the LPOs in
K (o). Initial and final nodes are not drawn. The non-zero
values ofr assigned to edges starting from an initial node
respectively ending in a final node are depicted with small
ingoing resp. outgoing arrows. The intoken flowaoéndb
equalsl, the outtoken flow o equals2, the outtoken flow
of b equald). The initial token flow equals.

Figure 3. A region of a partial language.

We now describe a technique to represent the regions of a
possibly infinite partial languag&(«), defined on the edges
of K(«), through regions of a finite representationfofa).
By now K («) may contain infinitely many LPOs, caused by
the iteration operator. An LPA can occur arbitrary often
consecutively in a certain marking if and only if it consumes
in every place at most as many tokens as it produces in this
place (then an occurrence df does not reduce the num-
ber of tokens in this place). Consequentlydifcan occur
iterated in a certain markinge, then another LP@3 can
occur after the occurrence df* for eachn € N if and only
if it can occur inm, since an occurrence of does not re-
duce the number of tokens in a place. This principle can

sponding to regions of a partial language equals the set ofbe used to represent the infinite $&ta) by two finite sets

feasible places w.r.t. this partial languaydhus the sat-

SIn [18] it is assumed that the set of LP@srepresentingl fulfills
some technical requirements. Since such representataways possible
we omit a detailed presentation here.

of LPOs R(«) and(«). We define regions by these two
sets. This approach is similar to the ideas in [4] where the
authors define regions by two finite sets representing a reg-
ular expression. Our sets differ from these sets because of



two reasons. First, [4] deals with occurrence sequences ofquirement, that the final token flow of each LPQifav) ex-
pure nets instead of LPOs of p/t-nets. Second, a region inceeds its initial token flow. Given an LPIpo = (V, <, 1)
[4] does not include the value of the initial marking of the and some placg, the sum

corresponding place.
For arbitrary LPO-terms: we define inductively the fi-

nite representation sét(«) consisting of, roughly speak-
ing, all LPOs inK («) neglecting iterations. To ensure that
all LPOs inR(«) are enabled w.r.t the place defined by the

region, we require that regions satigfy) w.rt. R(a). It

remains to ensure that certain LPOs can occur iterated. Forv, <,1).

this we define inductively the second finite iteration Ket)

of LPOs consisting of, roughly speaking, all LPOs associ-
ated to iterated subterms af We require that the LPOs in

I(«) produce at least as many tokens as they consume i ! !
the place to be defined by the region. This ensures that the?€ the final node of the«-extension of Ipo.

place defined by the region is feasible w.{«).

Definition 14 (Representation/Iteration set)The repre-
sentation sef?(«) and theiteration set/(«) of a partial
languageL(«) are defined inductively for LPO-terms,
andas as follows:

R(A) = {ALI(N) =0,

R(A) ={A},I(A) =0for A e A,

R(OZ1+062) = R(Oél)UR(OQ), I(OL1+OLQ) = I(Oél)UI(OLQ),
R(O{l;OLQ) = {A1A2 | Al S R(Oél), AQ S R(OLQ)},
I(og;a2) = I(an) U (),

R((a1)*) = R(a1) U{A} I((en)") = I(oa1) U R(en),
R(ay || a2) = {A1 || A2 | A1 € R(an), Az € R(az)},
I(Oél H 042) = I(Oél) U I(Oég).

We denote Wo = Uw.<per@:V: Ea

U(V,<,l)6R(a)* <la = U(V,<,l)€R(a)* L.

Figure 4, part (a), shows the representation 3¢t +
(a; (a || b)*)) and the iteration sef(b + (a;(a || b)*))
of the partial languag€ (b + (a; (a || b)*)) introduced in

Figure 2, together with an annotated region (defined later).

(b)
Figure 4. (a) Region of representation and it-
eration set, (b) A part of the synthesized net.

The requirement, that every LPO iH{«) produces at

Prod(lpo, p) := Z V9i(t)(W(t,p) — W(p,t))
tel(V)

equals the difference of the final and the initial token flow.

Lemma 15. Let (V*, <*,1*) be a*-extension olpo =
If r :<*— N satisfies(x) then there holds
Prod(lpo, p,) = Final(Ipo, p,) — Init(p,).

Proof. It holds > . Out(v,7) = Yoecerrle) =
In(v,r). Letw,;; be the initial node an@y;,q,
Then

vev Out(v, 1) + Out(vini, ) + Out(viina,r) =
Yovey In(v,r) 4+ In(vinit,r) + In(vgina,r).  Since
OUt(Ufinala ’f‘) =0= I’n(’l}init,T), we get[n(vfinahr) -
Out(vinit,7) = Y ey (Out(v,r) — In(v,r)) =
Ztel(\/) |V|l(t)(W(t7pT) - W(prvt))- O

We define a region of an LPO-term as a function on the
edges ofR(«a)*.

veV*

Definition 16 (Region of an LPO-term)A regions of an
LPO-terma is a functions : E, — N satisfying(x) w.r.t.
R(«), which additionally fulfills for all LPOgpo € I(«):

(%) Prod(lpo, ps) = 0.

Each regions of an LPO-term defines a corresponding
place p, in an analogous way as regions of partial lan-
guages. Figure 4, part (a), shows a regioof the LPO-
termb + (a; (a || b)*) (illustrated analogously as in Fig-
ure 3). It defines the feasible plapg shown grey in Fig-
ure 4, part (b). For the single LP®o € I(«) the value
Final(Ipo,ps) = 2 (Init(ps) = 2) is attached to a big
outgoing (ingoing) arc.

Finally, we will prove that the places defined by regions

of « and the places defined by regions&fa) coincide.
For this we need three lemmas. Two of these regard techni-
cal constructions. These two are arranged at the end of the
section after the main theorem. The relationship between
K (o) andR(«) gets clear in the following lemma.

Lemma 17. Given an LPO-ternw and a regions of «,
for eachlpo € K(a) there islpo®™ € R(a) such that
Prod(Ipo, ps) > Prod(lpo™, py).

Proof by induction.Given A € AitholdsK (A) = {A} =
R(A),i.e. we can seti® = A. Assume the statement holds
for oy andas:

ad (+): Givenlpo € K(ay + ag), thenlpo € K(a1)
orlpo € K(a3). Letlpo € K(«1). By assumption there is
Ipo™ € R(a1) € R(a1 + ) such thatProd(lpo, ps) >

least as many tokens as it consumes, corresponds to the rdProd(lpoR,ps).



ad (;): Givenlpo € K(aq;az2), there islpo;, € K(aq)
andlpo, € K(az) such thatlpo,;lpo, = lpo. By as-
sumption there arépol’ € R(ay), Ipoy € R(asg) such
that Prod(IpoZ, ps) < Prod(Ipo;,ps), i = 1,2. It holds
Ipof;lpos € R(aq;az) with Prod(lpof’; Ipod, p,) =
Prod(lpof,ps) + Prod(lpog,ps) < Prod(lpoq,ps) +
Prod(1pos, ps) = Prod(1poy;1pos, ps).

ad(]): Givenlpo € K (a1 || az2), thereidpo, € K (1)
andlpo, € K(a2) such thatlpo; || lpo, = lpo. By
assumption there ipol’ € R(ay), Ipoy € R(ag) such
thatProd(lpozR,ps) < Prod(lpo;,ps), i = 1,2. It holds
Ipoft || Ipod € R(a || az) with Prod(lpot || Ipok', r) =
Prod(Ipo¥, ps) + Prod(lpo,p,) < Prod(lpoy,ps) +
Prod(lpoy, ps) = Prod(lpoy || Ipog, ps).

ad (x): Givenlpo € K(aj), there ardpo,, ...,lpo, €
K(aq) such thatlpo,;...;lpo,, = Ipo. By assump-
tion and (**), for eachlpo, (i € {1,...,n}) there
is Ipo € R(a) C I(a*) with Prod(lpo;,ps) >
Prod(lpof,p;) > 0. It holds lpof € R(a?)
with  Prod(lpo’®,p,) <  Prod(lpoy,ps) + ... +

Prod(lpo,,, ps) = Prod(lgol; ...;1po,,, ps). O

a regionr; of K(«q) with corresponding place and a re-
gionrq of K (as9) with corresponding placge,. Givenlpo €
K (a1; ap) there isipol® € K (o) andlpos € K (az) such
thatlpo’*; IpoX = Ipo. Observe thafinal(lpo} ,p) =
Init(p) + Prod(Ipo¥, p) > Init(p) + Prod(lpo,),;,,p) =
Init(p2). This is the precondition for Lemma 20 and we
are able to construct a functieq,, fulfilling () and corre-
sponding tg. Definer = r|j,, on eachipo € K(aq; as).

ad (+): Let s be aregion aof; + o with corresponding
placep. SinceR (a1 + az) = R(a1) U R(a) andI(ay +
ag) = I(aq) U I(ag) we directly get regions; of oy and
so of iy both corresponding tp just by restrictings onto
R(ay) resp. R(az). By assumption there is a region
of K(«y) and a region, of K(«s) corresponding t.
Givenlpo € K(a1 + «a2), there holddpo € K(aq) or
Ipo € K(as). Therefore; Ury is aregion ofK (a; + as)
with corresponding place.

ad (||): Let s be a region ofv; || as with correspond-
ing placep. First we construct a regiog; of a;. Fix
anlpo, € R(az). For everylpo, € R(«aj) there holds
Ipo; || lpoy € R(aq || a2). To defines; onlpo; we

The following theorem proves the correspondence be-start withs on (Ipo; || Ipo,)* and just delete all nodes of

tween regions of LPO-terms and regions of partial lan-

guages corresponding to LPO-terms.

Theorem 18. Leta be an LPO-term. It holds:

(i) Let s be a region ofx with corresponding place. Then
there is a region- of £(«) with corresponding place.

(i) Let  be a region of£(«) with corresponding place.
Then there is a region of o with corresponding place.

Proof by induction.As described, it is enough to consider
K (o) instead ofL («).

ad (i): Given A4 € Awe haveR(A) = {A} = K(A).
That means we can chose= s. Assume the statement
holds fora, a; andas:

ad (;): Let s be a region ofay; as with correspond-
ing placep. First we construct a regios; of a; and a
region s, of oy from s. For the construction of; fix
Ipo, € R(ag2). For eachlpo, € R(aq) there holds
Ipo;;1lpoy, € R(ai;az). In Lemma 19 we describe how
to construct a function|;,,, which satisfiegx) on {lpo, }
and corresponds to the plape On everylpo; € R(aq)
defines; = s|ipo,. Sincel(ai) C I(aq;aq), s1 satis-
fies (xx), i.e. is a region ofy;. For the construction of
s fix Ipol™™ € R(ay) such that for alllpo € R(a1)
there holdsProd(lpo7"",p) < Prod(lpo,p). For each
Ipo, € R(ay) there holddpol*";1po, € R(aj;az). In
Lemma 19 we describe how to construct a functitp,,
which satisfiegx) on {Ipo, } and corresponds to the place
p2 which differs fromp only in its initial marking. It holds
Init(ps) = Init(p)+ Prod(Ipo]™™, p). Definess = s|ipo,
on everylpo € R(asq). Sincel(as) C I(ag;as), so sat-
isfies (xx), i.e. is a region ofvy. By assumption there is

Ipos and adjacent edges. There results a functipon a
*-extension oflpo; which fulfills (x) and corresponds to
a placep’, wherep’ equalsp except for its initial mark-
ing. On everylpo, € R(ai) defines; = s|;p,. Since
I(aq) C I(aq || az), s1 satisfies(xx), i.e. is a region of
aq. Analogously we fix somépo, € R(«;) and construct
aregions, of as with corresponding place’ equal top ex-
cept for its initial marking. It holddnit(p') + Init(p”) =
Init(p). By assumption there is a region of K («;) with
corresponding place defining and a regionr, of K (az2)
with corresponding placg’. Givenlpo € K(ay || a2),
there islpo; € K(a;) andlpos € K(az) such that
Ipol || Ipos € K(ay || az). To getafunction on the edges
of (Ipo || 1po&)* fulfilling (x) take (Ipo,)* and (lpo,)*
with the annotated regions andr, and join the two initial
and final nodes. The resulting function corresponds to

ad (x): Let s be a region otv* with corresponding place
p. s directly defines a region; of « with corresponding
placep sinceR(a) C R(a*) andI(«) C I(a*). By as-
sumption there is a regior, of K(«a) with correspond-
ing placep. Givenlpo € K(a*) there islpo;, € K(«),
¢t = 1,...,n, such thatpo,;...;lpo,, = lpo. As in the
case (), we apply Lemma 20 to get a functio on the
edges of(Ipoy;Ipo,)* satisfying (x) with corresponding
placep. For this we need to show that the preconditions
of lemma 20 are fulfilled. Fdipo, € K («) there islpof® €
R(a) with Prod(Ipo,,p) > Prod(Ipoi’,p) (Lemma 17).
Because ofR(a) C I(a*) it holds Prod(Ipo¥,p) > 0.
We getProd(Ipo,,p) > 0 and it holdsInit(lpo,,r) =
Init(lpoy, 1) sincer; is a region of K(«y). Finally
it holds Fiinal(Ipoy,p) = Init(p) + Prod(lpo,,p) >



Init(p). Inductively we get a functiom,, on the edges of
Ipo* fulfilling (x) with corresponding place.

ad (ii): |, is afunction on the edges &f«) satisfying
(%) corresponding tp sinceR(a) C K(«). It remains to
show (xx) for s = r|g, . We assume that there liso €
I(a) such thatProd(lpo,p) < 0. From the definition of
I(«) there are subterms and~ of a with § = ~* and
Ipo € R(y) C I(f) C I(«). Itholds(lpo)™ € L(3) and
Prod((Ipo)™,p) = n- Prod(lpo, p) < —n for eachn € N.
That meang satisfies the following property

(4): For eachn there is an LPQpo,, € L(/) such that
Prod(lpoy,,p) < —n.

Itis easy to observe that if an LPO-term satifies prop-
erty (+), then for arbitrary LPO-termas also the LPO-
termsa; + agz, a1 || a9, a1; a9, az;aq and o satisfy
property(+). Sinceg is a subterm ofy this implies that
also« satisfies property+). Therefore there is an LPO
Ipoy € L(«) such thatProd(lpoy,p) < —Init(p). This
gives Final(Ipoy,p) = Prod(Ipoy,p) + Init(p) < 0, a
contradiction. O

Lemma 19. Let s be a function on the edges of
(Ipoy;lpos)* satisfying (x) with corresponding place.
Then there is a functios|;,,, on the edges dpo} satisfy-
ing () with corresponding placge, and a functiors|;,, on
the edges dipo; satisfying(x) with corresponding placg,,
such thatW (pl,t) = W{(ps,t) and W (t,p.,) = W (t, ps)
for everyt € T andInit(p,) = Init(ps)+ Prod(lpoy, ps)-

Proof. Denotelpo, = (Vi,<1,01), Ipoy = (Va,<a,l2)
andlpo = Ipoy; Ipo,. Letv},;, andv},, ,; be the initial and

int “inal

() with corresponding places, such thatWW(ps,t) =

W(p,t) and W (t,p2) = W(t,p) for everyt € T and

Final(Ipoy,p) > Init(p2) for a placep. Then there is
a functionr on the edges dpo* = (Ipo,;Ipo,)* fulfilling

(*) with corresponding place.

Proof. Letv},;, andv?,,,, be the initial and final nodes of
the x-extension oflpo;, i = 1,2, and letv;,;; andvyina
be the initial and final node of the-extension oflpo. We
define a functiom on the edges dbo* by:

() Ve e V1 x V1 : r(e) =r1(e),

(i) Ve € Vo x Vo i 1(e) =rafe),

(iii) Yo € Vi 1 r(vinit, v) = r1(v),5, v),

(V) Vo € Vo 7(0, v inat) = rg(v,vj%mal).

By now all nodes inV; got theright intoken flow, all
nodes inV, got theright outtoken flow. It remains to
distribute the final token flow ofpo, onto the edges in
{vinit} U Vi}) x ({Va U {vfina}), such thatr fulfills
(x) on the edges ofpo*, i.e. such that each node in
({V2 U {vsinar}) gets enough intoken flow. This is pos-
sible sinceF'inal(Ipoy, p) > Init(ps). By construction the
functionr satisfieq(x) and corresponds ta O

5 Computing Regions of Term-based Partial
Languages

In this section we develop an algorithm to calculate a fi-
nite representation of the saturated feasible net w.r.ara p
tial languageC(«) given by an LPO-termy. This algorithm
solves the formulated synthesis problem.

final nodes of the-extension otpo,, i = 1,2, and letv;,;;
andvy,q be the initial and final node of theextension of
Ipo. First defines|y,,, on the edges dbo7 by:

(i) Ve € Vi x V1 1 sipo, () = s(e),

(i) Yo € V1 © 8[ipo, (vl i650) = 8(Vinit, v),

(iil) Vv € Vi 2 slipo, (0, V}inar) = Zwe%u{vﬁml} s(v, w),
(iv) S|1po1 (vilnitv U}'mal) = Zwevzu{vfmal} $(Vinit, w).
Since by this construction the intoken and outtoken flow of
nodes inV; and of the initial node are not changed,,.,
fulfills () and corresponds tp,. We defines|,,, on the
edges ofpo} by

The algorithm is based on a method to compute regions
of an LPO-term as solutions of a finite homogenous linear
inequation system. More precisely, we calculate a basis of
the solution space of such a system. The places correspond-
ing to such a basis span the set of all feasible places. That
means the calculated net has the same partial language of
runs as the saturated feasible net.

To construct a region of an LPO-termwe first need to
construct a function on the set of edgeg,, of R(a) =
{Ipoy, . .+, 1Ipo| p(ay } fulfilling (x). Such a function can be
found by solving a corresponding equation systam -

(i) Ve € Vo x Va & s|ipo, (€) = s(e), x = 0 (Ag finite). The vectorx contains|E,| = n
(i) Vo € Va : $[ipo, (v’v]%inal) = 5(V, Vfinal)s entries. Considering a fixed numbering of the edges in
(iii) Vv € Vi : s|ipo, (v2,,,0) = Zwevlu{umt} s(w, v), E, = {ei,...,e,}, a solutionx = (zq,...,x,) oOf

AR - x = 0 defines a functiom on E,, via r(e;) := z;.

The rows of A i encode the propertfx) as follows: We
order the events di’,, with the same label € T in a set
Wy ={veW,|lalv) =t} = {v{,...,vat|}. For each

(IV) 5|1p02 (vi2nit7 ’UJQ"inal) = Zwevlu{vm“} S(w’ vfinal)-

Since by this construction the intoken and outtoken flow of
nodes inV,2 and of the final node are not changed,.,
fulfills (x) and corresponds to a plapé with Init(p,) =

Init(ps) + Prod(Ipoy, ps). 0 setW; we define rows! (and rowsb?) pf AR to ensure

that the intoken (outtoken) flow of the first nodgand the
Lemma 20. Consider two LPO$po, andlpo,, a function i-th nodev! with labelt are equal; = 2,...,|W;|. We
1 on the edges olpoy fuffilling (x) with corresponding  definea; = (aj ,,...,a;,,), wherea] ; equalsl if ¢; is an

place p and a functionr, on the edges ofpo3 fulfilling ingoing edge ofv}, equals—1 if ¢; is an ingoing edge of



v; and equal® otherwise. We defink; = (b} ;,...,b; ), Figure 4, part (b), shows a part of the net synthesized
whereb! ; equalsl if e; is an outgoing edge af!, equals  from the LPO-ternd + (a; (a || b)*) by this algorithm. Al-
—1if e; is an outgoing edge af! and equal$) otherwise. together, the algorithm computes 12 basis regions (places)
Thenitholdsa!-x = 0 (b!-x = 0) ifand only if the intoken  for this example, where those not shown in the figure
(outtoken) flows ofv} andv! are equal. Finally, to ensure are less restrictive than the drawn places. It is easy to
that all LPOs have the same initial token flow, we add rows see, that the net still generates the occurrence sequences
¢i,2 <i < |R(a)| to Ag. We definec; = (¢i1,..-,¢in), abb, ababb, abababb, . . . which do not belong to the partial
wherec; ; equalsl if e; is an outgoing edge of the initial language specified by + (a; (a || b)*). That means, this
node oflpo}, equals—1 if e; is an outgoing edge of the partial language is not a net language. In general the run-
initial node oflpo; and equal$) otherwise. Then it holds time of the presented synthesis algorithm (Algorithm 1) is
c; - x = 0 if and only if the initial token flows ofipo, not polynomial. In particular the set of basis solutions can
andlpo, are equal. Each non-negative integer solution of be exponential in the worst case, but in practice the num-
AR -x = 0 corresponds to a function: £, — N given by ber of basis solutions of such inequation systems is often
r(e;) = x; fulfilling (x) w.r.t. R(«) and vice versa. small. We are currently working on an implementation of
Given a non-negative integer solutiaof Ay - x = 0, the algorithm.
the set of LPOd («) should additionally fulfill (xx). For

eachlpo, = (Vi, <;,l;) € I(a) = {Ipoy,...,1poja)} 1. Agr, Ar — EmptyMatrix
we define a romd; = (d;1,...,d;,) of a second ma- 2: forall t € T do

trix A; such that the inequatiod; - x > 0 ensures 3 form=1to|W;—1do
Prod(lpo,,p.) > 0. For eacht € T, we fix one node 4: Ag.addRows(al,, b))
vy € Wy, with I(v;) = ¢ (such a node always exists by con- | 50 end for

struction of R,). We define for each edge the entries 6: end for

dij = d4t — d;" of the vectord,. The valued;"' equals 7. for m =1to |R(«)| — 1 do
[Vili(t) if e; is an outgoing edge af; (¢t € T') and0 other- 8:  Ap.addRow(cy,)

wise. The valuel;”; equals|Vi|;(t) if e, is an ingoing edge 9: end for

of v; (t € T') and0 otherwise. Then it holdd; - x > 0 if 10: for m =1to |I(«)| do

=
[

and only if Prod(Ipo,, p,) > 0. Ar.addRow(d,,)

: end for

: Solutions «— getBasisSolutions(Agr, Ar)
: (Nv mo) - (Q)v T, Q)v @, Q))

: forall » € Solutions do

(N, mg).addCorrespondingPlace(r)

: end for

return (N, myg)

iy
N

Theorem 21. Given an LPO-termy there is a one-to-one
correspondence between the regionsf o« and the non-
negative integer solutions &z -x =0,A;-x > 0.

[ S Y
o g A w

Thus we can compute regions af and subsequently
places of the searched saturated feasible p/t-net by soly-
ing a finite linear homogenous inequation system. The se
of solutions of such a system is callechalyhedral cone ~ Algorithm 1: Calculates a netlV, mo) from an LPO-term
According to a theorem of Minkowski polyhedral cones o Which solves the formulated synthesis problem.
are finitely generated, that means there are finite solutions
¥1,....¥n (also calledbasis solutionssuch that each ele- 6 Conclusion
mentx of the polyhedral cone is a non-negative linear sum

e
o ~

=3

x = Y i, Ny forsome)q, ..., \, = 0. Such basis so- In contrast to [17] we did not present an algorithm to
lutionsy,...,y, can be effectively computed. Since all decide if £L(N,mg) = L(a) for the computed p/t-net

inequations contain only integer coefficients, the enioies (N, mg). Such an algorithm cannot be developed similarly
all y; can be chosen as integers. as in [17]. On contrary, it is an open question whether

Lemma 13 in [17] shows that all places which do not this equality problem is actually decidable. We believe
correspond to a basis solution can be deleted from the satthat there is an algorithm deciding the equality of those
urated feasible p/t-net without changing its partial laagg language, but to prove this, an elaborated examination of
of runs. That means computing such a basis yields a finitethe class of partial languages generated by LPO-terms is
representation of the saturated feasible p/t-net, céléesis needed. One possibility is to consider so calledng con-
representation Altogether to solve the formulated synthe- tinuations A wrong continuation is a not specified LPO
sis problem, we add to the set of all transitions (given by the minimally extending a specified LPO. The basic idea is to
labels appearing in) the places corresponding to basis so- calculate a finite set afirong continuationef LPOs speci-
lutions of the constructed inequation system. The desdribe fied by an LPO-term satisfying that the synthesized net ex-
synthesis algorithm is shown in Algorithm 1. actly generates the specified partial language if and only if



none of these wrong continuations is enabled in this net. currency and Petri Netsvolume 3098 ofLecture Notes in
The problem is that it is not clear whether such a finite set Computer Sciencgages 413-438. Springer, 2003.
of wrong continuations exists in general, i.e. whether the [6] A.Ehrenfeuchtand G. Rozenberg. Partial (set) 2-Stmast
(infinite) set of all wrong continuations is finitely gener- Ea” III Bsas'c 20“0”5 a;uéthe Repre;e”taﬁoﬁn Prl"tf"em /
ated. For sequential languages, it is proven that if a lan- art II: State Spaces of Concurrent Systemécta Inf,

5 . iy L 27(4):315-368, 1989.
guage satisfies certain conditions semi-linearity the set

; . T [7] J. Fanchon and R. Morin. Regular Sets of Pomsets with
of wrong continuations is finitely generated and therefore Autoconcurrency. In L. Brim; P. Jancar: M. Kretinsky: A.

the equality problem is decidable [5]. Thisis the case fer ex Kucera, editorCONCUR volume 2421 ot_ecture Notes in
ample for regular and deterministic context free languages Computer Sciencgages 402—417. Springer, 2002.

and can possibly be carried over to partial languages gen- [8] J. Grabowski. On Partial Languagégindamenta Informat-
erated by LPO-terms. There are also several results con-  icae 4(2):428-498, 1981. _ _

cerning context-equivalence of LPOs w.r.t partial langsag [ P- Hoogers, H. Kleijn, and P. Thiagarajan. - A Trace Se-
[7], which are perhaps useful to establish the result. An- mantics for Petri Nets. Information and Computatign

th indirect his (o t lat tial | 117(1):98-114, 1995.
other, more indirect, approach Is to transiate a partial lan [10] P. Hoogers, H. Kleijn, and P. Thiagarajan. An Event &tru

guage given by an LPO-term into its corresponding step ture Semantics for General Petri NeEseoretical Computer
language. We believe that such a step language can be rep-  science153(1&2):129-170, 1996.

resented by a regular expression over a finite set of steps[11] M. B. Josephs and D. P. Furey. A Programming Approach to

Interpreting steps as singletons, existing techniquesder the Design of Asynchronous Logic Blocks. In J. Cortadella,
quential languages as described above can be appliedto de- ~ A. Yakovlev, and G. Rozenberg, editoGpncurrency and
cide on language equality on the level of steps. Then it can Hardware Designvolume 2549 ofecture Notes in Com-

puter Sciencepages 34—60. Springer, 2002.

be used that the synthesized net exactly generates the given .
y Y9 9 [12] G. Juhas, R. Lorenz, and S. Mauser. Causal Semantics of

partial language if and only if it exactly generates the eorr Algebraic Petri Nets distinguishing Concurrency and Syn-
sponding step language and the partial languagerizplete chronicity. Fundam. Inform,.page to appear, 2007.

w.rt. the step languagghis means thaéachLPO, whose  [13] G. Juhas, R. Lorenz, and S. Mauser. Complete Process Se
corresponding step sequences belong to the step language,  mantics for Inhibitor Nets. In J. Kleijn and A. Yakovlev, ed-
belongs to the partial language [13]). Thus, it remains to itors, ICATPN volume 4546 ol_ecture Notes in Computer
decide on completeness of the partial language w.r.t. the Sciencepages 184-203. Springer, 2007.

Corresponchng Step |anguage Also thls |S an Open problem[l4] D. Kuske and R. Morin. Pomsets for Local Trace Languages
for partial languages defined by LPO-terms. Nevertheless, - Recognizability, Logic & Petri Nets. In C. Palamidessi; ed
Theorem 10 shows that the n@Y, mg) computed fromn |tor_, CONCUR volume 1877 (_)Lecture Notes in Computer

. . . Sciencepages 426-441. Springer, 2000.

in any case represents the best upper approximation to the[15]

. . . K. Lodaya and P. Weil. Series-Parallel Posets: AlgeBra
behaviour given by the partial languagéx). tomata and Languages. In M. Morvan; C. Meinel; D. Krob,

editor, STACSvolume 1373 ol ecture Notes in Computer
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