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Abstract. In this paper we propose two new unfolding semantics for general
Petri nets combining the concept of prime event structures with the idea of token
flows developed in [11]. In contrast to the standard unfolding based on branch-
ing processes, one of the presented unfolding models avoidsto represent iso-
morphic processes while the other additionally reduces thenumber of (possibly
non-isomorphic) processes with isomorphic underlying runs. We show that both
proposed unfolding models still represent the complete partial order behavior.
We develop a construction algorithm for both unfolding models and present ex-
perimental results. These results show that the new unfolding models are much
smaller and can be constructed significantly faster than thestandard unfolding.

1 Introduction

Non-sequential Petri net semantics can be classified into unfolding semantics, process
semantics, step semantics and algebraic semantics [17]. While the last three semantics
do not provide semantics of a net as a whole, but specify only single, deterministic com-
putations, unfolding models are a popular approach to describe the complete behavior
of nets accounting for the fine interplay between concurrency and nondeterminism.
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Fig. 1.Example net N. Instead of place-
names we used different colors.

To study the behavior of Petri nets pri-
marily two models for unfolding semantics
were retained: labeled occurrence nets and
event structures. In this paper we consider
general Petri nets, also called place/transition
Petri nets or p/t-nets (Figure 1). The stan-
dard unfolding semantics for p/t-nets is based
on the developments in [19, 5] (see [14] for
an overview) in terms of so called branching
processes, which are acyclic occurrence nets
having events representing transition occur-
rences and conditions representing tokens in
places. Branching processes allow events to
be in conflict through branching conditions. Therefore branching processes can rep-
resent alternative processes simultaneously (processes are finite branching processes
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without conflict). Branching processes were originally introduced in [19] for safe nets,
and extended in [5] to initially one marked p/t-nets withoutarc weights, by viewing
the tokens as individualized entities. In contrast to [5], branching processes for p/t-nets
even individualize tokens having the same ”history”, i.e. several (concurrent) tokens
produced by some transition occurrence in the same place aredistinguished through
different conditions (see [14]). Analogously as in [5] one can define a single maximal
branching process, called the unfolding of the system (in the rest of the paper we will
refer to this unfolding as the standard unfolding). The unfolding includes all possible
branching processes as prefixes, and thus captures the complete non-sequential branch-
ing behavior of the p/t-net. In the case of bounded nets, according to a construction
by McMillan [16] a complete finite prefix of the unfolding preserving full information
on reachable markings can always be constructed. This construction was generalized
in [3] to unbounded nets through building equivalence classes of reachable markings.
In the case of bounded nets, the construction of unfoldings and complete finite pre-
fixes is well analyzed and several algorithmic improvementsare proposed in literature
[7, 15, 13]. By restricting the relations of causality and conflict of a branching process
to events, one obtains a labeled prime event structure [20] underlying the branching
process, which represents the causality between events of the branching process. An
event structure underlying a process, i.e. without conflict, is called a run. In the view of
the development of fast model-checking algorithms employing unfoldings resp. event
structures [6] there is still the important problem of efficiently building them.
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Fig. 2.Standard unfolding of N. The colors
of conditions refer to the place the corre-
sponding tokens belong to.

The p/t-net shown in Figure 1 has a fi-
nite standard unfolding (as defined for ex-
ample in [14]). A part of this unfolding
is shown in Figure 2. An unfolding has a
unique minimal event producing the ini-
tial conditions. Each condition in the un-
folding corresponds to a token in the net,
i.e. tokens are individualized. In the initial
marking there are three possibilities for
transitionB to consume two tokens from
the grey place (and for transitionA to con-
sume one token from the grey and one to-
ken from the white place). All these possi-
bilities define Goltz-Reisig processes [8]
of the net, are in conflict and are reflected
in the unfolding. That means, individual-
ized tokens cause the unfolding to con-
tain events with the same label, being in
conflict and having the same number of

equally labeled pre-conditions with the same ”history” (for each place label), where
two conditions have the same ”history” if they have the same pre-event. Such events
are calledstrong identical. In Figure 2 allA-labeled and allB-labeled events are strong
identical, since all grey conditions have the same ”history”. Strong identical events pro-
duce isomorphic processes in the unfolding and therefore are redundant.



After the occurrence of transitionsA andB there are four tokens in the black place
and there are four possibilities for transitionC to consume three of these tokens (Fig-
ure 2). For each of those possibilities, aC-labeled event is appended to the branching
process. Two of these events consume two tokens produced byA and one token pro-
duced byB (these are strong identical), the other two consume one token produced
by A and two tokens produced byB (these are also strong identical). The first pair of
strong identical C-events is not strong identical to the second pair, but they all causally
depend on the same two events. Such events having the same label, being in conflict
and depending causally from the same events, are calledweak identical. Weak identi-
cal events produce processes with isomorphic underlying runs and therefore also are
redundant. Note finally, that the described four weak identicalC-labeled events are ap-
pended to each of the three consistent pairs ofA- andB-labeled events. That means,
the individualized tokens in the worst case increase the number of events exponentially
for every step of depth of the unfolding.
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Fig. 3.Prime event structure of N. The col-
ors of the events refer to the consistency
sets. Transitive arcs are omitted.

Figure 3 illustrates the labeled prime
event structure underlying the unfolding
shown in Figure 2. Formally a prime
event structure is a partially ordered set
of events (transition occurrences) together
with a set of (so called)consistency sets
[20]. ”History-closed” (left-closed) con-
sistency sets represent partially ordered
runs. The labeled prime event structure
underlying an unfolding is obtained by
omitting the conditions and keeping the
causality and conflict relations between
events. Events not being in conflict define
consistency sets. Thus, left-closed consis-
tency sets correspond to processes and their underlying runs in the unfolding. Strong
and weak identical events lead to consistency sets corresponding to processes with iso-
morphic underlying runs in the prime event structure.

In this paper we are interested in algorithms to efficiently construct unfoldings. As
explained, the standard unfolding has the drawback, that itcontains a lot of redundancy
in form of isomorphic processes and processes with isomorphic underlying runs. This is
caused by the individualization of tokens producing strongand weak identical events.
Unfolding models with less nodes could significantly decrease the construction time,
because a construction algorithm in some way always has to test all co-sets of events
or conditions of the so-far constructed model to append further events. In this paper
we propose two unfolding approaches reducing the number of events in contrast to the
standard unfolding by neglecting (strong resp. weak) identical events.

Instead of considering branching processes, we use labeledprime event structures
and assign so called token flows to its edges. Token flows were developed in [11] for
a compact representation of processes. Token flows abstractfrom the individuality of
conditions of a process and encode the flow relation of the process by natural numbers.
For each place natural numbers are assigned to the edges of the partially ordered run



underlying a process. Such a natural number assigned to an edge(e, e′) represents the
number of tokens produced by the transition occurrencee and consumed by the tran-
sition occurrencee′ in the respective place. This principle is generalized to branching
processes/unfoldings and their underlying prime event structures in this paper.
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Fig. 4.Token flow unfolding of N. The col-
oring of the events illustrates the sets of
consistent events.

The idea is to annotate each edge of
the prime event structure underlying a
branching process by the numbers of con-
ditions between the corresponding pair of
events of the branching process and omit
isomorphic consistency sets having equal
annotated token flow. The resulting prime
event structure is shown in Figure 4. The
eventv is the unique initial event produc-
ing the initial marking. The edges have at-
tached natural numbers, which are inter-
preted as token flows as described, where
the colors refer to the places the tokens
belong to. The assigned token flow spec-
ifies in particular that transitionA con-
sumes one initial token from the white

place and one initial token from the grey place, while transition B consumes two initial
tokens from the grey place. That means in this model the different possibilities for tran-
sition A andB of consuming initial tokens are not distinguished. Transition C either
consumes one token produced byA and two tokens produced byB or vice versa in the
black place. The respective twoC-labeled events having the same pre-events but a dif-
ferent token flow are distinguished. They are in conflict yielding different consistency
sets. In this approach strong identical events are avoided,while weak identical events
still exist. Figure 4 only contains one of the threeA andB events and two of the twelve
C events. However, full information on reachable markings isstill available. For exam-
ple, the sum of all token flows assigned to edges from the initial eventv to consistent
events equals the initial marking. The example shows that through abstracting from the
individuality of conditions, it is possible to generate an unfolding in form of a prime
event structure with assigned token flow information havingsignificantly less events
than the standard unfolding.

A prime event structure with assigned token flow informationis called atoken flow
unfolding if left-closed consistency sets represent processes and there are no strong
identical events which are in conflict. Observe that to represent all possible processes
we have to allow strong identical events which are not in conflict. For a given marked
p/t-net, it is possible to define a unique maximal token flow unfolding, in which each
process is represented through a consistency set with assigned token flows correspond-
ing to the process. Figure 4 shows the maximal token flow unfolding for the example net
N . We will show that the maximal token flow unfolding contains isomorphic processes
only in specific situations involving auto-concurrency.

The token flow unfolding from Figure 4 still contains processes (consistency sets)
which have isomorphic underlying runs, since token flow unfoldings still allow for weak



identical events. In Figure 5 a prime event structure with assigned token flow informa-
tion is shown without weak identical events. Namely, the twoweak identicalC-labeled
events in Figure 4 do not occur in Figure 5. This causes that the token flow information
is not any more complete in contrast to token flow unfoldings,i.e. not each possible
token flow distribution resp. process is represented. Instead example token flows are
stored for each partially ordered run, i.e. each run is represented through one possible
process. Note that still in this reduced unfolding full information on reachable markings
is present, since markings reached through occurrence of a run do not depend on the
token flow distribution within this run.
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Fig. 5.Reduced token flow unfolding.

If a prime event structure with as-
signed token flow information does not
contain weak identical events, this un-
folding model is called areduced token
flow unfolding. We can define a unique
maximal reduced token flow unfolding, in
which each run is represented through a
left-closed consistency set with assigned
token flows corresponding to a process
having this underlying run. It can be seen
as a very compact unfolding model cap-
turing the complete behavior of a p/t-net.
Figure 5 shows the maximal reduced token flow unfolding for the example netN . We
will show that the maximal reduced token flow unfolding contains processes with iso-
morphic underlying runs only in specific situations involving auto-concurrency.

For both new unfolding approaches we develop a constructionalgorithm for finite
unfoldings and present an implementation together with experimental results. Token
flow unfoldings can be constructed in a similar way as branching processes. The main
difference is that processes are not implicitly given through events being in conflict, but
are explicitly stored in consistency sets. This implies that new events are appended to
consistency sets and not to co-sets of conditions. From the token flow information we
can compute, how many tokens in which place, produced by someevent, are still not
consumed by subsequent events. These tokens can be used to append a new event. The
crucial advantage of token flow unfoldings is that much less events must be appended.
One disadvantage is that a possible exponential number of consistency sets must be
stored. Moreover, for the construction of the reduced tokenflow unfolding not the full
token flow information is available, since not each possiblebut only one example token
flow distribution is displayed. Therefore the procedure of appending a new event is
more complicated, because eventually an alternative tokenflow distribution has to be
calculated (there is an efficient method for this calculation based on the ideas in [11]).
Experimental results show that the two new unfolding modelscan be constructed much
faster and memory consumption is decreased. The bigger the markings and arc weights
are, the more efficient is the new construction compared to the standard one.

Altogether, the two new unfolding approaches on the one handallow a much more
efficient construction, and on the other hand still offer full information on concurrency,
nondeterminism, causality and reachable markings. In particular, the assigned token



flows allow to compute the reachable marking corresponding to a consistency set. This
allows to apply the theory of complete finite prefixes of the standard unfolding also to
the presented new models. Acceleration of model checking algorithms working on the
standard unfolding can be done by adapting them to the new smaller unfolding models.
Another benefit is, that the new methods may lead to a more efficient computation of
the set of all processes of a p/t-net.

There are also other attempts to extend the unfolding approach of [19] for safe nets
to p/t-nets, where in some of them tokens are individualizedas in the standard unfolding
([17, 18]) and in some of them such an individualization of tokens is avoided as in our
approach ([10, 9, 2, 12, 1]). In [17, 18] conditions are grouped into families (yielding
so called decorated occurrence nets) in order to establish desirable algebraic and order-
theoretic properties. In [10] so called local event structures instead of prime event struc-
tures are introduced as an unfolding semantics of p/t-nets without autoconcurrency. In
this approach, conflict and causality relations among events are not any more explicitly
given by the model structure. Algorithmic aspects are not considered. In [2] arbitrarily
valued and non-safe occurrence nets are used. Also here the direct link with prime event
structures is lost. In [9], general nets are translated intosafe nets by introducing places
for reachable markings (which considerably increases the size of the structure) in or-
der to apply branching processes for safe nets. In [1] a swapping equivalence between
conditions introduces a collective token view.1 Finally, in [12] events and conditions
are merged according to appropriate rules yielding a more compact unfolding structure
which not longer needs to be acyclic. Nevertheless it can be used for model checking.
It cannot be directly computed from the p/t-net but only fromits finite complete prefix
which needs to be computed first. In contrast to all these approaches we propose a com-
pact unfolding semantics avoiding individualized tokens while still explicitly reflecting
causal relations between events through prime event structures. Moreover, basic order
theoretic properties such as the existence of a unique maximal unfolding can be estab-
lished. Our main focus is the development of fast construction algorithms, established
so far for the finite case.

The remainder of the paper is organized as follows: In Section 2 we introduce basic
mathematical notations and briefly restate the standard unfolding approach for p/t-nets.
In Section 3 we develop the two new unfolding models. We provethat in both cases
there is a unique maximal unfolding representing all processes resp. runs and formalize
in which cases isomorphic processes resp. runs are avoided.Finally, in Section 4 we
present algorithms for the construction of the new unfolding models in the finite case
and provide experimental results in Section 5.

2 P/T-Nets and Standard Unfolding Semantics

In this section we recall the definitions of place/transition Petri nets and the standard
unfolding semantics based on branching processes. We beginwith some basic mathe-
matical notations.

1 Note here that the token flow unfolding and the reduced token flow unfolding define an equiv-
alence on processes which is finer than the swapping equivalence, i.e. weak and strong equiv-
alent events always produce swapping equivalent processes.



We useN to denote thenonnegative integers. A multi-setover a setA is a function
m : A → N ∈ N

A. For an elementa ∈ A the numberm(a) determines the number of
occurrences ofa in m. Given a binary relationR ⊆ A × A over a setA, the symbol
R+ denotes thetransitive closureof R andR∗ denotes thereflexive transitive closure
of R. A directed graphG is a tupleG = (V,→), whereV is its set ofnodesand
→⊆ V × V is a binary relation overV called its set ofarcs. As usual, given a binary
relation→, we writea → b to denote(a, b) ∈→. Forv ∈ V andW ⊆ V we denote by
•v = {v′ ∈ V | v′ → v} thepresetof v, and byv• = {v′ ∈ V | v → v′} thepostset
of v, •W =

⋃
w∈W

•w is thepresetof W andW • =
⋃

w∈W w• is thepostsetof W .
A partial order is a directed graph(V, <), where<⊆ V × V is an irreflexive and

transitive binary relation. In this case, we also call< a partial order. In the context of
this paper, a partial order is interpreted as ”earlier than”-relation between events. Two
nodes (events)v, v′ ∈ V are calledindependentif v 6< v′ andv′ 6< v. By co< ⊆ V ×V

we denote the set of all pairs of independent nodes ofV . A co-setis a subsetS ⊆ V

fulfilling ∀x, y ∈ S : x co< y. A cut is a maximal co-set. For a co-setS and a node
v ∈ V \ S we writev < S (v > S), if ∃s ∈ S : v < s (∃s ∈ S : v > s), andv co< S,
if ∀s ∈ S : v co< s. A nodev is calledmaximalif v• = ∅, andminimal if •v = ∅. A
subsetW ⊆ V is calledleft-closedif ∀v, v′ ∈ V : (v ∈ W ∧ v′ < v) =⇒ v′ ∈ W. For
a left-closed subsetW ⊆ V , the partial order(W, < |W×W ) is calledprefixof (V, <),
defined byW . The left-closureof a subsetW is given by the setW ∪ {v ∈ V | ∃w ∈
W : v < w}. The node set of a finite prefix equals the left-closure of the set of its
maximal nodes. Given two partial orderspo1 = (V, <1) andpo2 = (V, <2), we say
that po2 is a sequentialization ofpo1 if <1⊆<2. By <s⊆< we denote the smallest
subset<′ of < which fulfils (<′)+ =<, called theskeleton of<.

A labeled partial order(LPO) is a triple(V, <, l), where(V, <) is a partial order,
and l is a labeling functionon V . We use all notations defined for partial orders also
for LPOs. If V is a set andl : V → X is a labeling function onV , then for a finite
subsetW ⊆ V , we define the multi-setl(W ) ⊆ N

X by l(W )(x) = |{v ∈ W |
l(v) = x}|. LPOs are used to represent partially ordered runs of Petri nets. Such runs
are distinguished only up to isomorphism. Two LPOs(V1, <1, l2) and(V1, <1, l2) are
isomorphicif there is a bijective mappingϕ : V1 → V2 satisfying∀v1 ∈ V1 : l(v1) =
l(ϕ(v1)) and∀v1, v

′
1 ∈ V1 : v1 <1 v′1 ⇐⇒ ϕ(v1) <2 ϕ(v′1).

A netis a tripleN = (P, T, F ), whereP is a set ofplaces, T is a set oftransitions,
satisfyingP ∩ T = ∅, andF ⊆ (P ∪ T ) × (T ∪ P ) is a flow relation. Places and
transitions are called the nodes ofN . Presets and postsets of (sets of) nodes are defined
w.r.t. the directed graph(P ∪ T, F ). We denote�N= F ∗ and≺N= F+. If N is clear
from the context, we also write� instead of�N and≺ instead of≺N .

Assume now that≺N=≺ is a partial order. Then two nodesx, y (places or transi-
tions) ofN are in conflict, denoted byx#y, if there are distinct transitionst, t′ ∈ E

with •t ∩ •t′ 6= ∅ such thatt � x andt′ � y. Two nodesx, y are calledindependentif
x co ≺y and¬(x#y). Maximal and minimal nodes ofN and prefixes ofN are defined
w.r.t. (P ∪ T,≺).

Definition 1 (Place/transition net).A place/transition-net(shortlyp/t-net) N is a qua-
druple(P, T, F, W ), where(P, T, F ) is a net with finite sets of places and transitions,
andW : F → N \ {0} is a weight function. A markingof a p/t-netN = (P, T, F, W )



is a functionm : P → N. A marked p/t-netis a pair(N, m0), whereN is a p/t-net, and
m0 is a marking ofN , calledinitial marking.

We extend the weight functionW to pairs of net elements(x, y) ∈ (P×T )∪(T×P )
satisfying(x, y) 6∈ F by W ((x, y)) = 0. A transition t ∈ N is enabled to occur
in a markingm of N if ∀p ∈ P : m(p) ≥ W ((p, t)). If t is enabled to occur in
a markingm, then itsoccurrenceleads to the new markingm′ defined bym′(p) =
m(p) − W ((p, t)) + W ((t, p)) for p ∈ P .

Unfolding semantics of p/t-nets is given by so calledbranching processeswhich are
based on occurrence nets. A conflict relation between eventsdistinguishes alternative
runs. Runs are given by conflict-free, left-closed sub-netsof branching processes.

Definition 2 (Occurrence net).Anoccurrence netis a netO = (B, E, G) satisfying

– O is acyclic, i.e.≺O is a partial order.
– ∀b ∈ B : | •b| 6 1.
– ∀x ∈ B ∪ E : ¬(x#x).
– ∀x ∈ B ∪ E : |{y | y ≺ x}| is finite.

Elements ofB are calledconditionsand elements ofE are calledevents. MIN(O)
denotes the set of minimal elements (w.r.t.≺O).

Definition 3 (Branching process).Let (N, m0), N = (P, T, F, W ) be a marked p/t-
net. Abranching processof (N, m0) is a pair π = (O, ρ) whereO = (B, E, G) is an
occurrence net andρ : B ∪ E → X with P ∪ T ⊂ X is a labeling function satisfying:

– There iseinit ∈ E with MIN(O) = {einit} andρ(einit) 6∈ P ∪ T .
– ∀b ∈ B : ρ(b) ∈ P and∀e ∈ E \ {einit} : ρ(e) ∈ T .
– ∀e ∈ E \ {einit}, ∀p ∈ P : |{b ∈ •e | ρ(b) = p}| = W ((p, ρ(e))) ∧ |{b ∈ e• |

ρ(b) = p}| = W ((ρ(e), p)).
– ∀p ∈ P : |{b ∈ e•init | ρ(b) = p}| = m0(p).
– ∀e, f ∈ E : ( •e = •f ∧ ρ(e) = ρ(f)) =⇒ (e = f).

In a branching process,≺ is interpreted as ”earlier than”-relation between transition
occurrences. A finite branching process with empty conflict relation is called aprocess.

Two branching processesπ′ = (O′, ρ′), O′ = (B′, E′, G′), andπ = (O, ρ), O =
(B, E, G), are isomorphic, if there is a bijectionIso : B ∪ E → B′ ∪ E′ satisfying
Iso(B) = B′, Iso(E) = E′, ρ′ ◦ Iso = ρ and(x, y) ∈ G ⇔ (Iso(x), Iso(y)) ∈ G′

for x, y ∈ B ∪ E.
A branching processπ = (O, ρ), O = (B, E, G), is a prefix of another branching

processπ′ = (O′, ρ′), O′ = (B′, E′, G′), denoted byπ ⊑ π′, if O is a prefix ofO′

satisfyingB = MIN(O) ∪ (
⋃

e∈E e• ) andρ is the restriction ofρ′ to B ∪ E. For
each marked p/t-net(N, m0) there exists a unique, w.r.t.⊑ maximal, branching process
πmax(N, m0), called theunfolding of(N, m0).

Sometimes one is only interested in storing the causal dependencies of events of a
branching process. For this conditions are omitted and the≺- and#-relation are kept
for events. Formally the resulting object is a so-calledprime event structure.



Definition 4 (Prime event structure). A prime events structureis a triple PES =
(E, Con,≺) consisting of a setE of events, a partial order≺ on E and a setCon of
finite subsets ofE satisfying:

– ∀e ∈ E : {e′ | e′ ≺ e} is finite.
– {e} ∈ Con.
– Y ⊆ X ∈ Con =⇒ Y ∈ Con.
– ((X ∈ Con) ∧ (∃e′ ∈ X : e ≺ e′)) =⇒ (X ∪ {e} ∈ Con).

A consistent subsetof E is a subsetX satisfying∀Y ⊆ X, Y finite : Y ∈ Con. The
conflict relation# between events ofPES is defined bye#e′ ⇔ {e, e′} 6∈ Con.

A pair (PES, l), wherePES is a prime events structure andl is a labeling function
onE, is calledlabeled prime event structure.

A (labeled) prime event structure withE consistent we interpret as an LPO, i.e. in
this case we omit the set of consistency setsCon.

If π = (O, ρ), O = (B, E, G) is a branching process, thenPES(π) = (E, Con,

≺ |E×E), whereX ∈ Con if and only if X ⊆ E is finite and fulfills∀e, e′ ∈ X :
¬(e#e′), is a prime event structure.PES(π) is calledcorresponding toπ. If π is a
process, thenPES(π) is a finite LPO, called therun underlyingπ.

3 Unfoldings Based on Token Flows

One basic problem of the unfolding of a p/t-net is, that it contains a lot of redundancy.
This arises from the individuality of conditions in branching processes. When append-
ing a new transition occurrence to a branching process, eachparticular choice of a set
of conditions representing the preset of this transition yields a different process, where
some of these processes are isomorphic and others have isomorphic underlying runs
(see Figure 2 and the explanations in the introduction). In this section we propose two
new unfolding semantics of p/t-nets avoiding such redundancy. Both approaches are
based on the notion of token flows presented in [11]. In the following we restate this
notion and its role in the representation of single processes. In the next subsection, the
concepts will be transferred to unfoldings.

In the following, LPOs are considered to be finite. The edges of LPOs, representing
partially ordered runs of a p/t-net, are annotated by (tuples of) non-negative integers
interpreted as token flow between transition occurrences. Namely, for a processK =
(O, ρ), O = (B, E, G), of a marked p/t-net(N, m0), N = (P, T, F, W ), we defined
a so calledcanonical token flow functionxK :≺→ N

P assigned to the edges of the
run (E,≺, ρ) underlyingK via xK((e, e′)) = ρ(e• ∩ •e′). That meansxK((e, e′))
represents for each place the number of tokens which are produced by the occurrence
of the transitionρ(e) and then consumed by the occurrence ofρ(e′). Such a token flow
function abstracts away from the individuality of conditions in a process and encodes
the token flow by natural numbers for each place. It is easy to see thatxK satisfies:

– (IN): ∀e ∈ E \ {einit}, ∀p ∈ P : (
∑

e′≺e xK(e′, e))(p) = W (p, ρ(e)).
– (OUT): ∀e ∈ E \ {einit}, ∀p ∈ P : (

∑
e≺e′ xK(e, e′))(p) 6 W (ρ(e), p).

– (INIT): ∀p ∈ P : (
∑

einit≺e′ x(einit, e
′))(p) 6 m0(p).



– (MIN): ∀(e, e′) ∈≺s: (∃p ∈ P : xK(e, e′)(p) > 1).

(IN), (OUT) and (INIT) reflect the consistency of the token flow distribution given
by xK with the initial marking and the arc weights of the considered net. (MIN) holds
since skeleton arcs define the ”earlier than”-causality between transition occurrences
and this causality is produced by non-zero token flow. Non-skeleton edges may carry a
zero token flow, since they are induced by transitivity of thepartial order. A zero flow
of tokens means, that there is no direct dependency between events. In particular, there
are no token flows between concurrent events.

In [11] we showed, that the other way round for an LPO(E,≺, ρ) with unique initial
eventeinit, a token flow functionx :≺→ N

P satisfying (IN), (OUT), (INIT) and (MIN)
is a canonical token flow function of a process. That means processes are in one-to-one
correspondence with LPOs having token flow assigned to theiredges fulfilling (IN),
(OUT), (INIT) and (MIN). Such LPOs yield an equivalent but more compact represen-
tation of partially ordered runs. In particular full information on reachable markings as
well as causal dependency and concurrency among events is preserved.

3.1 Token Flow Unfolding

In the following, we extend these ideas to branching processes by assigning token flows
to the edges of prime event structures. We will prove that in such a way one gets a
more compact representation of the branching behavior of p/t-nets while preserving
full information on markings, concurrency, causal dependency and conflict.

Let PES = (E, Con,≺) be a prime event structure. We denote the set of left-
closed consistency sets byConpre ⊆ Con. For a token flow functionx :≺→ N

P , a
consistency setC ∈ Conpre and an evente ∈ C we denote

– INC(e) =
∑

e′≺e, e′∈C x(e′, e) the intoken flow ofe w.r.t. C.
– OUTC(e) =

∑
e≺e′, e′∈C x(e, e′) theouttoken flow ofe w.r.t. C.

A prime token flow event structure is a labeled prime event structure together with
a token flow function. Since equally labeled events represent different occurrences of
the same transition, they are required to have equal intokenflow. Since not all tokens
which are produced by an event are consumed by further events, there is no analogous
requirement for the outtoken flow. It is assumed that there isa unique initial event
producing the initial marking.

Definition 5 (Prime token flow event structure).A prime token flow event structure
is a pair ((PES, l), x), wherePES = (E, Con,≺) is a prime event structure,l is a
labeling function onE andx :≺→ N

P is a token flow functionsatisfying:

– There is a unique minimal eventeinit w.r.t.≺ with l(einit) 6= l(e) for all e 6= einit.
– ∀C, C′ ∈ Conpre, ∀e ∈ C, e′ ∈ C′ : l(e) = l(e′) =⇒ INC(e) = INC′(e′).

A token flow unfolding of a marked p/t-net is a prime token flow event structure,
in which intoken and outtoken flows are consistent with the arc weights resp. the initial



marking of the net within each left-closed consistency set.Moreover, we neglect so-
calledstrong identical eventsin such unfoldings which turn out to produce isomorphic
process nets.2

Definition 6 (Strong identical events).Let ((PES, l), x) be a prime token flow event
structure. Two eventse, e′ ∈ E fulfilling

(l(e) = l(e′)) ∧ ( •e = •e′) ∧ (∀f ∈ •e : x(f, e) = x(f, e′))

are calledstrong identical.

Definition 7 (Token flow unfolding). Let (N, m0), N = (P, T, F, W ), be a marked
p/t-net. Atoken flow unfolding of(N, m0) is a prime token flow event structure((PES

, l), x), l : E → X with T ⊂ X and∀e ∈ E \ {einit} : l(e) ∈ T , satisfying:

– (IN): ∀C ∈ Conpre, ∀e ∈ C \ {einit}, ∀p ∈ P : INC(e)(p) = W (p, l(e)).
(OUT): ∀C ∈ Conpre, ∀e ∈ C \ {einit}, ∀p ∈ P : OUTC(e)(p) 6 W (l(e), p).
(INIT): ∀C ∈ Conpre, ∀p ∈ P : OUTC(einit)(p) 6 m0(p).
(MIN): ∀(e, e′) ∈≺s: (∃p ∈ P : x(e, e′)(p) > 1).

– There are no strong identical eventse, e′ satisfying{e, e′} 6∈ Con.

Two token flow unfoldingsµ′ = ((PES′, l′), x′), PES′ = (E′, Con′,≺′), and
µ = ((PES, l), x), PES = (E, Con,≺), are isomorphicif there is a bijectionI :
E → E′ satisfying∀e ∈ E : l(e) = l′(I(e)) ∧ I( •e) = •I(e) ∧ I(e• ) = I(e)• ,
∀C ⊆ E : C ∈ Con ⇔ I(C) ∈ Con′ and∀e ≺ f : x(e, f) = x′(I(e), I(f)).

Given a token flow unfoldingµ = ((PES, l), x), PES = (E, Con,≺), each non-
empty left-closed subsetE′ ⊆ E defines a token flow unfoldingµ′ = ((PES′, l′), x′),
PES′ = (E′, Con′,≺′) by Con′ = {C ∈ Con | C ⊆ E′}, ≺′=≺ |E′×E′ , l′ =
l|E′ and x′ = x|≺′ . Each token flow unfoldingµ′′ = ((PES′′, l′), x′), PES′′ =
(E′, Con′′,≺′), Con′′ ⊆ Con′ is called prefix ofµ, denoted byµ′′ ⊑ µ. By ⊏=⊑ \id,
a partial order on the set of token flow unfoldings is given. Wenow want to prove
that up to isomorphism, there exists a unique maximal (in general infinite) token flow
unfolding w.r.t.⊏. The partial order⊏ can be defined through appending new events to
(consistency sets of) existing token flow unfoldings starting with the initial event. There
is a unique maximal token flow unfolding (fix point) only if theorder of appending
events does not matter, i.e. if events are appended in different orders, isomorphic token
flow unfoldings are constructed.

A new transition occurrence can be appended to a consistencyset, if there are
enoughremaining tokens produced by events in the consistency set (tokens which
are not consumed by subsequent events in the consistency set). For e ∈ E \ {einit}
and C ∈ Conpre, the remaining tokens produces bye are formally given by the
residual token flowResC(e) (of e w.r.t. C) defined byResC(e)(p) = W (l(e), p) −∑

e≺e′, e′∈C x(e, e′)(p) for p ∈ P . Similarly, for eachp ∈ P , ResC(einit)(p) =

2 Note that omitting strong identical events disables the possibility of applying prime event
structures having a set of consistency sets defined by a binary conflict relation, which is the
case for example for prime event structures corresponding to branching processes.



m0(p)−
∑

einit≺e′, e′∈C x(einit, e
′)(p). Let Mar(C) =

∑
e∈C ResC(e) be the the

residual markingof C. If there are enough tokens in the residual marking to fire a tran-
sition t, there may be several choices which of the remaining tokens are used to append
a respective transition occurrence to the consistency set.Each such choice is formally
represented by anenabling functiony : C → N

P satisfying∀e ∈ C : ResC(e) > y(e)
and∀p ∈ P : (

∑
e∈C y(e))(p) = W ((p, t)). Such an enabling function defines a new

eventey by l′(ey) = t, •ey = {e ∈ C | ∃e′ : y(e′) 6= 0 ∧ (e = e′ ∨ e ≺ e′)} and
∀e ∈ •ey : x′(e, ey) = y(e). If there is already a strong identical event not belonging
to the consistency set, then this strong identical event is added to the consistency set.
Otherwise, the new event is added.

Definition 8 (Appending events).Let (N, m0), N = (P, T, F, W ), be a marked p/t-
net and letµ = ((PES, l), x), PES = (E, Con,≺), be a token flow unfolding of
(N, m0).

Let t ∈ T andC ∈ Conpre be such thatMar(C)(p) > W ((p, t)) for eachp. Lety
be an enabling function andey be the associated new event.

If there is no evente 6∈ C which is strong identical toey, then we define a prime
token flow event structureExt(µ, C, y, t) = ((PES′, l′), x′), PES′ = (E′, Con′,≺′),
throughE′ = E ∪ {ey}, l′|E = l, x′|≺ = x, ≺′ |E×E =≺ andCon′ = Con ∪ {C′ ∪
{ey} | C′ ⊆ C}. We say thatµ is extended byey.

If there is an eventeid 6∈ C which is strong identical toey, then we define a prime
token flow event structureExt(µ, C, y, t) = ((PES′, l′), x′), PES′ = (E′, Con′,≺′),
throughE′ = E, l′ = l, x′ = x, ≺′=≺ andCon′ = Con ∪ {C′ ∪ {eid} | C′ ⊆ C}.
We say thatµ is updated byey.

The following lemma ensures that we have defined an appropriate procedure to
append events:

Lemma 1. Ext(µ, C, y, t) fulfills:

(i) Ext(µ, C, y, t) is a token flow unfolding.
(ii) µ ⊑ Ext(µ, C, y, t).
(iii) Every finite token flow unfoldingµ can be constructed by the procedure shown in

Definition 8: Given a token flow unfoldingµ = ((PES, l), x), PES = (E, Con,≺
), there exists a sequenceµ0, . . . , µn of token flow unfoldings withµ0 = ((({einit}
, {{einit}}, ∅), id), ∅), µn = µ andµi+1 = Ext(µi, Ci, yi, ti) for i = 0, . . . , n−1.

Proof. The first and second statement follow by construction. The third one can be
shown as follows: Fix one ordering ofE = {e1, . . . , en}, such thatei ≺ ej =⇒ i < j

and denoteEi = E \ {ei, . . . , en}. Thenµ0 ⊏ µE2
⊏ . . . ⊏ µEn

⊏ µE , whereµE′

is the prefix ofµ defined by a left-closed setE′ ⊆ E. By definition, there are triples
(Ci

1, y
i
1, l(ei)), . . . , (C

i
m, yi

m, l(ei)), such thatµEi+1
can be constructed fromµEi

by
appendingl(ei)-occurrences in arbitrary order toCi

j via yi
j for j = 1, . . . , m. Namely,

Ci
1, . . . C

i
m are the sets arising by omittingei from every left-closed consistency set in

µEi+1
which includesei and allyi

j are defined according to the intoken flow ofei. That
meanssuppi = {yi

k > 0} = {yi
j > 0} andyi

k|suppi
= yi

j |suppi
for all k, j. Therefore,

actually in the first appending step the eventei is appended and in the furtherm − 1
steps only consistency sets are updated.



In the construction of the above proof, the resulting token flow unfolding does not
depend on the used ordering of the events inE and also does not depend on the used or-
dering of the consistency sets enabling a fixed evente. This means that extending finite
token flow unfoldings by new events in different orders and w.r.t. different consistency
sets leads to isomorphic token flow unfoldings if after each extension all consistency
sets which enable the considered event are updated. Observemoreover that by defini-
tion also the extension by a new event and the update by another event can be mixed
up. This gives the following statement:

Lemma 2. Let (N, m0) be a marked p/t-net. There is a token flow unfoldingUnfmax

(N, m0), which is maximal w.r.t.⊏ (no more events can be appended to finite prefixes)
and unique up to isomorphism.

Unfmax(N, m0) can be defined as the limit of a sequence of finite token flow un-
foldings(µn)n∈N with µn+1 = Ext(µn, C, y, t), since the order of appending events
does not matter. Each finite left-closed consistency setC of Unfmax(N, m0) repre-
sents a processπC of (N, m0) in the sense that the LPOlpoC = (C,≺ |C×C , l|C) is
the run underlyingπC andxC = x|C×C is the canonical token flow function ofπC (this
follows from [11] sincexC satisfies (INIT), (IN), (OUT) and (MIN) onlpoC ). More-
over, inUnfmax(N, m0) all processes of(N, m0) are represented by finite left-closed
consistency sets. Namely, for each process, the underlyingrun with assigned canonical
token flow defines a token flow unfolding and without loss of generality we can assume
that this token flow unfolding equalsµk of a defining sequence ofUnfmax(N, m0) for
somek.

Theorem 1. Let (N, m0) be a marked p/t-net. Then for each processπ of (N, m0)
there is a left-closed consistency setC of Unfmax(N, m0) such thatπC is isomorphic
to π.

To show thatUnfmax(N, m0) avoids the generation of isomorphic processes, we
prove that only in special auto-concurrency situations processes of(N, m0) are repre-
sented more than once inUnfmax(N, m0).

Theorem 2. Let (N, m0) be a marked p/t-net andπ be a finite process of(N, m0). If
in Unfmax(N, m0) = ((PES, l), x), PES = (E, Con,≺), there are two finite sets
C 6= C′ ∈ Conpre representingπ, then there exist eventse ∈ C, e′ ∈ C′, e 6= e′ such
thate ande′ are strong identical and fulfill{e, e′} ∈ Con.

Proof. Assume there are finiteC, C′ ∈ Conpre such that the processesπC andπC′ are
isomorphic. Lete ∈ C \ C′ with •e ⊆ C ∩ C′. Such an evente exists sinceC ∩ C′

defines a prefix ofPES containingeinit and thereforee can be chosen as a minimal
element w.r.t.≺ in C \C′. Lete′ ∈ C′ be the image ofe under the isomorphism relating
πC andπC′ . SinceπC andπC′ are isomorphic, the left-closed consistency sets of all
pre-events ofe resp.e′ define isomorphic processes. Thus, eithere ande′ are strong
identical, or there aref ∈ •e \ •e′ andf ′ ∈ •e′ \ •e fulfilling the same property
ase ande′ that the left-closed consistency sets of all pre-events off resp.f ′ define
isomorphic processes. Since the number of pre-events off andf ′ is smaller than the
number of pre-events ofe ande′ (i.e. the procedure can only finitely often be iterated),



andeinit is a common pre-event, there is some pair of eventsg andg′ being strong
identical. By definition we haveg ∈ C, g′ ∈ C′ andg 6= g′. The definition of token
flow unfoldings ensures{g, g′} ∈ Con (sinceg, g′ are strong identical).

Since e and e′ are strong identical, they in particular have the same labeland
{e, e′} ∈ Con shows that they can occur concurrently in some marking.

Corollary 1. If (N, m0) allows no auto-concurrency (i.e. there is no reachable mark-
ing m, such that there is a transitiont fulfilling ∀p ∈ P : m(p) ≥ 2·W ((p, t))), there is
a one-to-one correspondence between left-closed consistency sets ofUnfmax(N, m0)
and (isomorphism classes of) processes.
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Fig. 6. P/t-net with token flow unfolding
containing two isomorphic (maximal) pro-
cesses.

Although we have seen that the non-
existence of strong identical events is not
enough to avoid isomorphic processes in
general, the number of isomorphic pro-
cesses represented in token flow unfold-
ings is significantly smaller than in the
standard unfolding approach (see the ex-
perimental results). Figure 6 shows a sit-
uation as discussed in Theorem 2, where
the token flow unfolding as introduced so
far is not small enough to completely ne-
glect isomorphic processes. Namely, the
two B-labeled events produce two iso-
morphic processes, despite they are not
strong identical (because they have no
common pre-events). Observe however, that the twoA-labeled pre-events of the two
B-labeled events are themselves strong identical, but are not in conflict (they are con-
current). To avoid such situation, we must generalize the notion of strong identical
events in the sense that two strong identical events have notnecessarily common, but
strong identical pre-events. This setting is formally described by the notion of isomor-
phic strong identical events as follows:

Let ((PES, l), x) be a prime token flow event structure. Let∼=⊆ E×E be the least
equivalence relation satisfying for alle, e′ ∈ E:

– ((l(e) = l(e′)) ∧ ( •e = •e′) ∧ (∀f ∈ • : x(f, e) = x(f, e′))) =⇒ (e ∼= e′).
– ((l(e) = l(e′)) ∧ (∃I : •e → •e′ bijective : (∀f ∈ •e : f ∼= I(f) ∧ x(f, e) =

x(I(f), e′))) =⇒ (e ∼= e′).

Two ∼=-equivalent eventse, e′ are calledisomorphic strong identical. Basically, omit-
ting isomorphic strong identical events yields a token flow unfolding representing no
isomorphic (maximal) processes at all (can be deduced similarly as Theorem 2). But
considering such an approach we encountered several intricate technical problems. In
particular, a test for the isomorphic strong identical property is complicated, such that
the algorithmic applicability is questionable.



3.2 Reduced Token Flow Unfolding

In a token flow unfolding there is still redundancy w.r.t causality and concurrency, since
there are consistency sets which induce processes which have the same underlying run
(but a different token flow distribution). Such consistencysets are caused by so-called
weak identical events(compare the introduction). To avoid weak identical events, since
many different processes produce one run and token flow distributions correspond to
processes, we store for each consistency set an example token flow distribution.

That means, we need to extend our model of prime event structuresPES = (E
, Con,≺) extended by token flows such that we can store for each consistency setC ∈
Conpre an individual token flowxC :≺ |C×C → N

P . For suchxC and an evente ∈ C

we denoteINC(e) =
∑

e′≺e xC(e′, e) andOUTC(e) =
∑

e≺e′ xC(e, e′). We intro-
ducegeneralized prime token flow event structuresas pairs((PES, l), (xC)C∈Conpre

),
wherePES = (E, Con,≺) is a prime event structure,l is a labeling function onE
and(xC)C∈Conpre

is a family of token flow functionsxC :≺ |C×C → N
P satisfying

analogous conditions as prime token flow event structures:

– There is a unique minimal eventeinit w.r.t.≺ with l(einit) 6= l(e) for all e 6= einit.
– ∀C, C′ ∈ Conpre, ∀e ∈ C, e′ ∈ C′ : l(e) = l(e′) =⇒ INC(e) = INC′(e′).

Two distinct eventse ∈ C, e′ ∈ C′, fulfilling l(e) = l(e′) ∧ •e = •e′, are calledweak
identical.

Definition 9 (Reduced token flow unfolding).Let (N, m0), N = (P, T, F, W ), be a
marked p/t-net. Areduced token flow unfolding of(N, m0) is a generalized token flow
unfolding((PES, l), (xC)C∈Conpre

) satisfying (IN), (OUT), (INIT),

(MIN): ∀C ∈ Conpre, ∀e, e′ ∈ C, e ≺s e′ : (∃p ∈ P : xC(e, e′)(p) > 1)

and having no weak identical eventse, e′ satisfying{e, e′} 6∈ Con.

Similar as for token flow unfoldings, prefixes can be defined. Given a reduced token
flow unfoldingµ = ((PES, l), (xC)C∈Conpre

), PES = (E, Con,≺), each non-empty
left-closed subsetE′ ⊆ E defines a reduced token flow unfoldingµ′ = ((PES′, l′),
(x′

C)C∈Con′

pre
), PES′ = (E′, Con′,≺′) by Con′ = {C ∈ Con | C ⊆ E′}, ≺′=≺

|E′×E′ , l′ = l|E′ andx′
C = xC . Each token flow unfoldingµ′′ = ((PES′′, l′), x′),

PES′′ = (E′, Con′′,≺′), Con′′ ⊆ Con′ is called prefix ofµ, denoted byµ′′ ⊑ µ.
Events can be appended to reduced token flow unfoldings similar as to token flow

unfoldings. The residual token flowResC(e) and the residual markingMar(C) are
defined analogously as before, usingxC instead ofx. If there are enough tokens in the
residual marking to fire a transitiont, in general a new token flow distribution for the
considered consistency set has to be stored in order to have the possibility to append
a respective transition occurrence to the consistency set via an enabling functiony.
Formally, such a token flow redistribution is given by a redistribution flow function
x :≺ |C×C → N

P fulfilling (IN), (OUT), (INIT) and ∀(e, e′) ∈ ≺s ∩ C × C : (∃p ∈
P : x(e, e′)(p) > 0) such that there is an enabling functiony : C → N

P satisfying
∀e ∈ C : W (l(e), p) −

∑
e≺e′ x(e, e′)(p) > y(e) and∀p ∈ P : (

∑
e∈C y(e))(p) =

W ((p, t)). The functionsx andy define a new eventex,y throughl′(ex,y) = t, •ex,y =



{e ∈ C | ∃e′ : y(e′) 6= 0 ∧ (e = e′ ∨ e ≺ e′)} and∀e ∈ •ex,y : x′(e, ex,y) = y(e).
If there is already a weak identical event not belonging to the consistency set, then this
weak identical event is added to the consistency set. Otherwise, the new event is added.

Definition 10 (Appending events).Let (N, m0), N = (P, T, F, W ), be a marked p/t-
net and letµ = ((PES, l), (xC)C∈Conpre

), PES = (E, Con,≺), be a reduced token
flow unfolding of(N, m0).

Let t ∈ T andC ∈ Conpre, such thatMar(C)(p) > W ((p, t)) for eachp. Letx
be a redistribution function with associated enabling function y andex,y be the corre-
sponding new event.

If there is no evente 6∈ C which is weak identical toex,y, then we define a gener-
alized prime token flow event structureExt(µ, C, x, y, t) = ((PES′, l′), x′), PES′ =
(E′, Con′,≺′), throughE′ = E∪{ex,y}, l′|E = l, Con′ = Con∪{C′∪{ex,y} | C′ ⊆
C}, ∀C′ ∈ Con′

pre, ex,y ∈ C′ : x′
C′ |≺ = x ∧ x′

C′ |C′×{ex,y} = x′ and≺′ |E×E =≺.
We say thatµ is extended byex,y.

If there is an eventeid 6∈ C which is weak identical toex,y, then define a prime token
flow event structureExt(µ, C, x, y, t) = ((PES′, l′), x′), PES′ = (E′, Con′,≺′),
updatingCon by enew throughE′ = E, l′ = l, ≺′=≺, Con′ = Con ∪ {C′ ∪ {eid} |
C′ ⊆ C} and∀C′ ∈ Con′

pre \ Conpre, eid ∈ C′ : x′
C′ |≺ = x ∧ x′

C′ |C′×{eid} = x′.
We say theµ is updated byex,y.

In the reduced token flow unfolding, only one event having a certain set of pre-
events is introduced (except for concurrent events in one run), although there are dif-
ferent possible distributions of the token flows on ingoing edges of the event. Only one
example distribution of these possible token flows is stored.

For the reduced token flow unfolding analogous results hold as for token flow un-
foldings. By constructionExt(µ, C, x, y, t) is a reduced token flow unfolding. Similar
as for token flow unfoldings, a prefix relation⊑ between reduced token flow unfold-
ings can be defined. Since through appending events, the token flow on old consistency
sets is not changed,µ ⊑ Ext(µ, C, x, y, t) holds. Moreover, every finite reduced to-
ken flow unfoldingµ can be constructed by a sequence of appending operations from
µ0 = ((({einit}, {{einit}}, ∅), id), ∅), whereC, x, y andt are chosen according toµ.

Appending events to a token flow unfolding in different orders leads to reduced
token flow unfoldings with isomorphic underlying prime event structures. Isomorphic
prefixes (in different such reduced token flow unfoldings) may have different token flow
distributions, representing processes with isomorphic underlying runs. In this sense, the
order of appending events plays no role and we can define a maximal (w.r.t.⊑) reduced
token flow unfoldingUnfred(N, m0) as the limit of a sequence of finite token flow
unfoldings(µn)n∈N with µn+1 = Ext(µn, C, x, y, t). Unfred(N, m0) is unique up to
isomorphism of the underlying prime event structure and up to the token flow stored for
a consistency set, where different possible token flows produce isomorphic runs.

Each left-closed consistency setC of Unfred(N, m0) represents a processπC of
(N, m0) in the sense that the LPOlpoC = (C,≺ |C×C , l|C) is the run underlyingπC

andxC is the canonical token flow function ofπC . Moreover, inUnfred(N, m0) all
runs underlying a process of(N, m0) are represented by consistency sets (without loss
of generality we can start the construction ofUnfred(N, m0) with an arbitrary process
representing a specific run).



Unfred(N, m0) avoids the generation of processes with isomorphic underlying
runs. Namely, only in special auto-concurrency situationsruns of(N, m0) are repre-
sented more than once inUnfred(N, m0). It can be seen similar as for token flow
unfoldings that, if there are two setsC 6= C′ ∈ Conpre representing processes with
isomorphic underlying runs, then there exist eventse ∈ C, e′ ∈ C′, e 6= e′ such thate
ande′ are weak identical and fulfill{e, e′} ∈ Con. That means, if(N, m0) allows no
auto-concurrency, there is a one-to-one correspondence between left-closed consistency
sets ofUnfred(N, m0) and (isomorphism classes of) runs.

As a topic of future research, similar as for strong identical events and isomorphic
processes, to avoid isomorphic runs, we can generalize the notion of weak identical
events in the sense that two weak identical events have not necessarily common, but
weak identical pre-events. This leads to the notion ofisomorphic weak identicalevents
analogously as for isomorphic strong identical events.

4 Algorithms

In this section we briefly describe two algorithms to construct unfolding models of a
marked p/t-net with finite behavior. The algorithms essentially follow the Definitions 8
and 10. We implemented both methods.

The first algorithm computes a token flow unfolding equal to the maximal token
flow unfolding, except that some isomorphic processes caused by auto-concurrency of
transitions are omitted. Starting with the token flow unfolding consisting only of the
initial eventeinit and having the only consistency set{einit}, events are appended to
maximal left-closed consistency sets in a breadth-first way. In each iteration step, the
algorithm picks the next consistency setC and, for each transitiont ∈ T , stores all en-
abling functions for appending at-occurrence. The enabling functions can be computed
from the residual token flows of eventse ∈ C and the residual marking ofC. Finding
all possible choices of enabling functions is a combinatorial problem. For each enabling
function, a new event is generated and the old token flow unfolding is either extended
or updated by the new event in a similar way as described in Definition 8. In contrast to
Definition 8, in each appending step only maximal left-closed consistency sets are con-
structed. Therefore, in some special cases of auto-concurrency the described algorithm
does not construct all possible isomorphic strong identical events. That is because not
all left-closures of subsets of strong identical events areconsidered as consistency sets
(if there are two concurrent strong identical events, one isappended first and the second
is only appended to consistency sets including the first appended event). Therefore, in
general the calculated token flow unfolding contains less events than the maximal token
flow unfolding. But calculating these events (which are isomorphic strong identical to
already appended events) would only lead to isomorphic processes (i.e. the unfolding
computed by the algorithm still represents all processes) and would worsen the runtime.

The second algorithm computes a reduced token flow unfoldingequal to the max-
imal reduced token flow unfolding, except that only processes with minimal causality
are represented. Starting with the token flow unfolding consisting only of the initial
eventeinit and having the only consistency set{einit}, the algorithm essentially ap-
pends events to prefixes of left-closed consistency sets in abreadth-first way. In each



iteration step, the algorithm picks the next consistency set C and tries to append each
transitiont to prefixes ofC. The aim is to find all minimal prefixes which allow to
append at-occurrence. We say that a transition occurrence can be appended to a prefix
of a consistency setC, if there exists a token flow function fulfilling (IN), (OUT) and
(INIT) of the resulting LPO. In [11] a polynomial algorithm to check this and to con-
struct such a token flow function in the positive case was presented. For each computed
token flow function, a new event is generated and the old tokenflow unfolding is either
extended or updated by the new event in a similar way as described in Definition 8
(the computed token flow function defines the redistributionfunction and the enabling
function). Since the algorithm appends transition occurrences only to minimal prefixes
of C for which this is possible, the resulting reduced token flow unfolding contains all
runs with minimal causality of the given p/t-net. In this sense it represents the complete
partial order behavior. Observe that weak identical eventsare only constructed in cases
of auto-concurrency, and that only left-closed consistency sets are constructed (each
appending step leads a maximal left-closed consistency set). In contrast to the construc-
tion algorithm of the token flow unfolding, here all isomorphic runs appearing through
auto-concurrency of events are computed, because all left-closures of subsets of weak
identical events are considered as prefixes of consistency sets.

5 Experimental Results

In this section we experimentally test our implementation of the construction algorithms
having the standard unfolding algorithm as a benchmark.

Standard unfolding Token flow unfolding Reduced token flow
unfolding

n m x y E P time mem E P time mem E P time mem
1 3 2 3 19 12 82ms 1133kb5 2 25ms 557kb 4 1 42ms 625kb
2 4 2 3 267 132 1406ms 2548kb15 6 43ms 667kb 9 4 76ms 865kb
1 3 4 2 91 315 2721ms 2365kb11 3 37ms 704kb 7 1 59ms 917kb
1 3 4 3 175 840 23622ms 4640kb9 6 40ms 685kb 5 1 55ms 754kb
3 4 2 3 799 612 90665ms 5067kb22 10 54ms 761kb12 7 103ms 1160kb
3 4 4 3 - - - - 43 56 271ms 2440kb13 3 102ms 1159kb
3 4 5 3 - - - - 45 104 672ms 6196kb17 7 178ms 1149kb

n m k
1 1 1 41 22 133ms 1011kb13 6 47ms 834kb 13 6 103ms 1135kb
1 2 1 47 28 180ms 1270kb13 6 49ms 841kb 13 6 114ms 1185kb
2 1 1 71 58 469ms 1325kb17 9 65ms 917kb 15 7 145ms 1211kb
2 2 1 77 67 694ms 1438kb17 9 65ms 917kb 15 7 145ms 1235kb
1 1 2 - - - - 179 150 640ms 5200kb71 68 8561ms 2580kb
2 2 2 - - - - 239 413 3498ms 16991kb95 147 54371ms 5414kb

Fig. 7. Experimental results: E shows the number of events and P the number of maximal
processes in the constructed unfolding.

To construct the standard unfolding, we use an adapted version of the unfolding
algorithm in [4]. When interpreting the results, one has to pay attention that this un-
folding algorithm is not completely runtime optimized, butthe remaining improvement



potential should be limited. We compare the runtime, memoryconsumption as well as
the size and the number of maximal processes of the resultingevent structures. The
upper table in Figure 7 shows a test of the parameterized version of the example net of
Figure 1 shown in Figure 8. The lower table in Figure 7 shows a test of the net in Figure
9 modeling for example a coffee automata.
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n m

x

y

x

Fig. 8. Parameterized test netN1.

A B
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C D
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Fig. 9. Parameterized test netN2.

The experimental results indicate that our new unfolding approaches are superior
to the standard approach. For the tested examples, the runtime, memory consumption
and the sizes of the resulting structure of our new algorithms are a lot better. It is clear
that the standard unfolding is least as big as the token flow unfolding and the reduced
token flow unfolding, but usually considerably bigger, if the net contains arc weights or
a non-safe initial marking. In these cases our new algorithms are significantly faster and
use less memory. Comparing the two new approaches shows thatin almost every tested
case the calculated reduced token flow unfolding is actuallysmaller than the calculated
token flow unfolding, but the redistribution of token flows ineach step worsens the
runtime.

6 Conclusion

In this paper we propose two new unfolding semantics for p/t-nets based on the con-
cepts of prime event structures and token flows. The definitions of the two unfolding
models are motivated by algorithmic aspects. We develop a construction algorithm for
both unfolding models, if they are finite. We show that there are many cases in which
our implemented algorithms are significantly more efficientthan standard unfolding
methods for p/t-nets.

We finally want to mention that the two presented unfolding models are a conser-
vative extension of the unfolding model introduced in [5] for safe nets. That means, for
safe nets, the standard unfolding, the token flow unfolding and the reduced token flow
unfolding coincide.

Topic of further research is the application of isomorphic weak resp. strong identi-
cal events to avoid isomorphic runs resp. isomorphic processes at all, the adaption of
the theory of complete finite prefixes to our approach and the adaption of model check-
ing algorithms. Although there are complete finite prefixes which also avoid redundant
events, we believe that our approach yields faster construction algorithms since such
complete finite prefixes rely on complex adequate orders which cannot be implemented
efficiently.
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