Faster Unfolding of General Petri Nets Based on Token
Flows

Robin Bergenthum, Robert Lorenz, and Sebastian Mauser

Department of Applied Computer Science,
Catholic University of Eichstatt-Ingolstadt,
firstnanme. | ast nane@u-ei chstaett. de

Abstract. In this paper we propose two new unfolding semantics for ggne
Petri nets combining the concept of prime event structuiigstive idea of token
flows developed in [11]. In contrast to the standard unfgdiased on branch-
ing processes, one of the presented unfolding models awoidspresent iso-
morphic processes while the other additionally reducesittmber of (possibly
non-isomorphic) processes with isomorphic underlyingsriile show that both
proposed unfolding models still represent the completéigbasrder behavior.
We develop a construction algorithm for both unfolding mednd present ex-
perimental results. These results show that the new umigidiodels are much
smaller and can be constructed significantly faster thasttredard unfolding.

1 Introduction

Non-sequential Petri net semantics can be classified irfilding semantics, process
semantics, step semantics and algebraic semantics [1 T Wh last three semantics
do not provide semantics of a net as a whole, but specify amfjfes deterministic com-
putations, unfolding models are a popular approach to destine complete behavior
of nets accounting for the fine interplay between concugre@mc nondeterminism.

To study the behavior of Petri nets pri-
marily two models for unfolding semantics
were retained: labeled occurrence nets and
event structures. In this paper we consider
general Petri nets, also called place/transition
Petri nets or p/t-nets (Figure 1). The stan-
dard unfolding semantics for p/t-nets is based
on the developments in [19, 5] (see [14] for
an overview) in terms of so called branching
processes, which are acyclic occurrence nets
having events representing transition occuFig. 1. Example net N. Instead of place-
rences and conditions representing tokens mames we used different colors.
places. Branching processes allow events to
be in conflict through branching conditions. Therefore lbrang processes can rep-
resent alternative processes simultaneously (processdmie branching processes

* Supported by the project SYNOPS of the German research itounc

without conflict). Branching processes were originallyaatuced in [19] for safe nets,
and extended in [5] to initially one marked p/t-nets withaut weights, by viewing
the tokens as individualized entities. In contrast to [BrThing processes for p/t-nets
even individualize tokens having the same "history”, i.evesal (concurrent) tokens
produced by some transition occurrence in the same placdistieguished through
different conditions (see [14]). Analogously as in [5] oranalefine a single maximal
branching process, called the unfolding of the system @rést of the paper we will
refer to this unfolding as the standard unfolding). The ldifay includes all possible
branching processes as prefixes, and thus captures theatemph-sequential branch-
ing behavior of the p/t-net. In the case of bounded nets,rdaug to a construction
by McMillan [16] a complete finite prefix of the unfolding pessing full information
on reachable markings can always be constructed. Thisrceotish was generalized
in [3] to unbounded nets through building equivalence @ass reachable markings.
In the case of bounded nets, the construction of unfoldimgisamplete finite pre-
fixes is well analyzed and several algorithmic improvemeangsproposed in literature
[7,15,13]. By restricting the relations of causality andhfiict of a branching process
to events, one obtains a labeled prime event structure [20¢nying the branching
process, which represents the causality between evenltg dfranching process. An
event structure underlying a process, i.e. without conflatalled a run. In the view of
the development of fast model-checking algorithms emplgyinfoldings resp. event
structures [6] there is still the important problem of e#iafly building them.

The p/t-net shown in Figure 1 has a fi-
nite standard unfolding (as defined for ex-
ample in [14]). A part of this unfolding
is shown in Figure 2. An unfolding has a
unique minimal event producing the ini-
tial conditions. Each condition in the un-
folding corresponds to a token in the net,
i.e. tokens are individualized. In the initial
marking there are three possibilities for
transition B to consume two tokens from
the grey place (and for transitiohto con-
sume one token from the grey and one to-
ken from the white place). All these possi-
bilities define Goltz-Reisig processes [8]
of the net, are in conflict and are reflected
in the unfolding. That means, individual-

. . i
Fig. 2. Standard unfolding of N. The colorsized tokens cause the unfolding to con-

of conditions refer to the place the corre-". . T
sponding tokens belong to. tain gvents with lthe same label, being in
conflict and having the same number of
equally labeled pre-conditions with the same "history”r(&@ach place label), where
two conditions have the same "history” if they have the samgeqvent. Such events
are callecstrong identical In Figure 2 allA-labeled and alB-labeled events are strong
identical, since all grey conditions have the same "histdjrong identical events pro-

duce isomorphic processes in the unfolding and thereferesatundant.

After the occurrence of transitions and B there are four tokens in the black place
and there are four possibilities for transitiohto consume three of these tokens (Fig-
ure 2). For each of those possibilitiesCalabeled event is appended to the branching
process. Two of these events consume two tokens producedamd one token pro-
duced byB (these are strong identical), the other two consume onentpkeduced
by A and two tokens produced by (these are also strong identical). The first pair of
strong identical C-events is not strong identical to theadgair, but they all causally
depend on the same two events. Such events having the saeheblaing in conflict
and depending causally from the same events, are cabedt identical Weak identi-
cal events produce processes with isomorphic underlying and therefore also are
redundant. Note finally, that the described four weak ideh@’-labeled events are ap-
pended to each of the three consistent pairg-oind B-labeled events. That means,
the individualized tokens in the worst case increase thebaumf events exponentially
for every step of depth of the unfolding.

Figure 3 illustrates the labeled prime
event structure underlying the unfolding
shown in Figure 2. Formally a prime
event structure is a partially ordered set
of events (transition occurrences) together
with a set of (so calledonsistency sets
[20]. "History-closed” (left-closed) con-
sistency sets represent partially ordered
runs. The labeled prime event structure
underlying an unfolding is obtained by
omitting the conditions and keeping thé-ig. 3. Prime event structure of N. The col-
causality and conflict relations betweefrs of the events refer to the consistency
events. Events not being in conflict defingets. Transitive arcs are omitted.
consistency sets. Thus, left-closed consis-
tency sets correspond to processes and their underlyirggimuthe unfolding. Strong
and weak identical events lead to consistency sets comesppto processes with iso-
morphic underlying runs in the prime event structure.

In this paper we are interested in algorithms to efficientipstruct unfoldings. As
explained, the standard unfolding has the drawback, ticanitains a lot of redundancy
in form of isomorphic processes and processes with isonyptderlying runs. This is
caused by the individualization of tokens producing strand weak identical events.
Unfolding models with less nodes could significantly desesthe construction time,
because a construction algorithm in some way always hast@ltleco-sets of events
or conditions of the so-far constructed model to appendé&irevents. In this paper
we propose two unfolding approaches reducing the numberesfte in contrast to the
standard unfolding by neglecting (strong resp. weak) idahévents.

Instead of considering branching processes, we use lapelaé event structures
and assign so called token flows to its edges. Token flows warelaped in [11] for
a compact representation of processes. Token flows abfwatthe individuality of
conditions of a process and encode the flow relation of thega®by natural numbers.
For each place natural numbers are assigned to the edges péattially ordered run

underlying a process. Such a natural number assigned toga{ed’) represents the
number of tokens produced by the transition occurrenaad consumed by the tran-
sition occurrence’ in the respective place. This principle is generalized tmbhing
processes/unfoldings and their underlying prime eventsires in this paper.

The idea is to annotate each edge of
the prime event structure underlying a
branching process by the numbers of con-
ditions between the corresponding pair of
events of the branching process and omit
isomorphic consistency sets having equal
annotated token flow. The resulting prime
event structure is shown in Figure 4. The
eventy is the unique initial event produc-
ing the initial marking. The edges have at-
tached natural numbers, which are inter-
preted as token flows as described, where

Fig. 4. Token flow unfolding of N. The col- the colors refer to _the places the tokens
oring of the events illustrates the sets dj€/ong to. The assigned token flow spec-
consistent events. ifies in particular that transitiomd con-

sumes one initial token from the white
place and one initial token from the grey place, while traosiB consumes two initial
tokens from the grey place. That means in this model therdiffigpossibilities for tran-
sition A and B of consuming initial tokens are not distinguished. TraasiC either
consumes one token producedAwand two tokens produced by or vice versa in the
black place. The respective twi¢-labeled events having the same pre-events but a dif-
ferent token flow are distinguished. They are in conflictdiied different consistency
sets. In this approach strong identical events are avoideite weak identical events
still exist. Figure 4 only contains one of the thréend B events and two of the twelve
C' events. However, full information on reachable markingstilsavailable. For exam-
ple, the sum of all token flows assigned to edges from thealrgtientv to consistent
events equals the initial marking. The example shows tmatitth abstracting from the
individuality of conditions, it is possible to generate anfalding in form of a prime
event structure with assigned token flow information hasignificantly less events
than the standard unfolding.

A prime event structure with assigned token flow informat®oalled atoken flow
unfoldingif left-closed consistency sets represent processes amd #re no strong
identical events which are in conflict. Observe that to reene all possible processes
we have to allow strong identical events which are not in ¢omnfror a given marked
p/t-net, it is possible to define a unique maximal token floolding, in which each
process is represented through a consistency set witmaskigken flows correspond-
ing to the process. Figure 4 shows the maximal token flow dirigifor the example net
N. We will show that the maximal token flow unfolding contaissiinorphic processes
only in specific situations involving auto-concurrency.

The token flow unfolding from Figure 4 still contains procesgconsistency sets)
which have isomorphic underlying runs, since token flow idifays still allow for weak

identical events. In Figure 5 a prime event structure withigaeed token flow informa-
tion is shown without weak identical events. Namely, the tweak identicalC'-labeled
events in Figure 4 do not occur in Figure 5. This causes tlegtotken flow information
is not any more complete in contrast to token flow unfoldings,not each possible
token flow distribution resp. process is represented. &nsexample token flows are
stored for each partially ordered run, i.e. each run is preed through one possible
process. Note that still in this reduced unfolding full infeation on reachable markings
is present, since markings reached through occurrencewf da not depend on the
token flow distribution within this run.

If a prime event structure with as-
signed token flow information does not
contain weak identical events, this un-
folding model is called aeduced token
flow unfolding We can define a unique
maximal reduced token flow unfolding, in
which each run is represented through a
left-closed consistency set with assigned
token flows corresponding to a process
having this underlying run. It can be seen
as a very compact unfolding model cap-
turing the complete behavior of a p/t-net. Fig.5.Reduced token flow unfolding.
Figure 5 shows the maximal reduced token flow unfolding ferekample netv. We
will show that the maximal reduced token flow unfolding camégprocesses with iso-
morphic underlying runs only in specific situations invalgiauto-concurrency.

For both new unfolding approaches we develop a construelgorithm for finite
unfoldings and present an implementation together witregrgental results. Token
flow unfoldings can be constructed in a similar way as bramgprocesses. The main
difference is that processes are not implicitly given tigioevents being in conflict, but
are explicitly stored in consistency sets. This implied tiew events are appended to
consistency sets and not to co-sets of conditions. Fromottentflow information we
can compute, how many tokens in which place, produced by swaet, are still not
consumed by subsequent events. These tokens can be usgeha @new event. The
crucial advantage of token flow unfoldings is that much legses must be appended.
One disadvantage is that a possible exponential numbernsistency sets must be
stored. Moreover, for the construction of the reduced tdl@m unfolding not the full
token flow information is available, since not each posdibifeonly one example token
flow distribution is displayed. Therefore the procedure ppending a new event is
more complicated, because eventually an alternative tékendistribution has to be
calculated (there is an efficient method for this calculatbased on the ideas in [11]).
Experimental results show that the two new unfolding modaisbe constructed much
faster and memory consumption is decreased. The biggerdhdngs and arc weights
are, the more efficient is the new construction compareddatéindard one.

Altogether, the two new unfolding approaches on the one ldod a much more
efficient construction, and on the other hand still offet finflormation on concurrency,
nondeterminism, causality and reachable markings. Inqodat, the assigned token

flows allow to compute the reachable marking correspondirggdonsistency set. This
allows to apply the theory of complete finite prefixes of trenstard unfolding also to
the presented new models. Acceleration of model checkipgyridhms working on the
standard unfolding can be done by adapting them to the neWesrnafolding models.
Another benefit is, that the new methods may lead to a moredegfticomputation of
the set of all processes of a p/t-net.

There are also other attempts to extend the unfolding appro19] for safe nets
to p/t-nets, where in some of them tokens are individual&seit the standard unfolding
([17,18]) and in some of them such an individualization detes is avoided as in our
approach ([10,9,2,12,1]). In [17,18] conditions are grediinto families (yielding
so called decorated occurrence nets) in order to estatdsihadble algebraic and order-
theoretic properties. In [10] so called local event streeslinstead of prime event struc-
tures are introduced as an unfolding semantics of p/t-nigkeut autoconcurrency. In
this approach, conflict and causality relations among evarg not any more explicitly
given by the model structure. Algorithmic aspects are nasaered. In [2] arbitrarily
valued and non-safe occurrence nets are used. Also hergebelishk with prime event
structures is lost. In [9], general nets are translatedsafe nets by introducing places
for reachable markings (which considerably increasesitteeaf the structure) in or-
der to apply branching processes for safe nets. In [1] a swgmguivalence between
conditions introduces a collective token viéwinally, in [12] events and conditions
are merged according to appropriate rules yielding a mamgpeat unfolding structure
which not longer needs to be acyclic. Nevertheless it canseed tor model checking.
It cannot be directly computed from the p/t-net but only frivgrfinite complete prefix
which needs to be computed first. In contrast to all thesecsmbies we propose a com-
pact unfolding semantics avoiding individualized tokerslevstill explicitly reflecting
causal relations between events through prime event stesctMoreover, basic order
theoretic properties such as the existence of a unique nadxinfolding can be estab-
lished. Our main focus is the development of fast constoaciigorithms, established
so far for the finite case.

The remainder of the paper is organized as follows: In Se@iwe introduce basic
mathematical notations and briefly restate the standamdinfy approach for p/t-nets.
In Section 3 we develop the two new unfolding models. We ptbe in both cases
there is a unique maximal unfolding representing all preessesp. runs and formalize
in which cases isomorphic processes resp. runs are avdtiwlly, in Section 4 we
present algorithms for the construction of the new unfajdimodels in the finite case
and provide experimental results in Section 5.

2 P/T-Nets and Standard Unfolding Semantics

In this section we recall the definitions of place/transitRetri nets and the standard
unfolding semantics based on branching processes. We wéhiisome basic mathe-
matical notations.

! Note here that the token flow unfolding and the reduced tokewdhfolding define an equiv-
alence on processes which is finer than the swapping equoslee. weak and strong equiv-
alent events always produce swapping equivalent processes

We useN to denote theonnegative integerg\ multi-setover a setd is a function
m: A — N € N4, For an element € A the numbern(a) determines the number of
occurrences ofi in m. Given a binary relatiolR C A x A over a set4, the symbol
R denotes théransitive closureof R and R* denotes theeflexive transitive closure
of R. A directed graphG is a tupleG = (V,—), whereV is its set ofnodesand
—C V x V' is a binary relation oveV called its set ofircs As usual, given a binary
relation—, we writea — b to denotga, b) €—. Forv € V andW C V we denote by
*v={v eV |v — v}thepresetof v, and byv® = {v' € V | v — v’} thepostset
ofv, *W =, ey *w is thepresetof W andW* =, w* is thepostseof .

A partial orderis a directed grapliV, <), where<C V x V is an irreflexive and
transitive binary relation. In this case, we also calk partial order. In the context of
this paper, a partial order is interpreted as "earlier thatdtion between events. Two
nodes (events), v’ € V are calledndependenit v £ v andv’ £ v.By co. CV xV
we denote the set of all pairs of independent nodels.of co-setis a subses C V
fulfilling Vz,y € S : zco< y. A cutis a maximal co-set. For a co-s€tand a node
veV\Swewrtev < S(v>5),ifdseS: v<s(@seS: v>s),andvcoc S,
if Vs € S : vcoc s. Anodeuv is calledmaximalif v* = (), andminimalif *v = (. A
subseti? C V is calledleft-closedf Vv,v' € V : (v € WAV <v) =" € W. For
a left-closed subsé¥’ C V, the partial orde(W, < | xw) is calledprefixof (V, <),
defined byl¥. Theleft-closureof a subsetV is given by the setV U {v € V | Jw €
W : v < w}. The node set of a finite prefix equals the left-closure of #teo$ its
maximal nodes. Given two partial ordgss; = (V, <1) andpo, = (V, <2), we say
that po, is a sequentialization ofo, if <1C<s. By <,C< we denote the smallest
subset’ of < which fulfils (<’)* =<, called theskeleton ok.

A labeled partial ordeLPO) is a triple(V, <, 1), where(V, <) is a partial order,
and! is alabeling functionon V. We use all notations defined for partial orders also
for LPOs. IfVisasetand : V — X is a labeling function or//, then for a finite
subset’? C V, we define the multi-sel(W) C N¥ by {(W)(z) = [{v € W |
I(v) = x}|. LPOs are used to represent partially ordered runs of Petsi Such runs
are distinguished only up to isomorphism. Two LP@3%, <1, 1) and(V1, <1, [2) are
isomorphicif there is a bijective mapping : Vi — V4 satisfyingvv, € Vi @ I(v1) =
I(p(v1)) andVoy, v) € V1 1 v <1 0] <= ¢(v1) <2 p(v)).

A netis atripleN = (P, T, F'), whereP is a set ofplaces T is a set otransitions
satisfyingP N'T = @, andF C (PUT) x (T U P) is aflow relation Places and
transitions are called the nodes/éf Presets and postsets of (sets of) nodes are defined
w.r.t. the directed graph” U T, F). We denote<y= F* and<y= FT.If N is clear
from the context, we also writg instead of< 5 and< instead of< .

Assume now thak y == is a partial order. Then two nodesy (places or transi-
tions) of N arein conflict denoted by:+#ty, if there are distinct transitionst’ € E
with ¢ N *t’ = () such that < = andt’ < y. Two nodesr, y are calledndependenif
x co zy and—(z#ty). Maximal and minimal nodes a¥ and prefixes ofV are defined
w.rt. (PUT, <).

Definition 1 (Place/transition net).A place/transition-ngshortlyp/t-ne) N is a qua-
druple (P, T, F,W), where(P, T, F) is a net with finite sets of places and transitions,
andW : F — N\ {0} is aweight function A markingof a p/t-netN = (P, T, F, W)

is a functionm : P — N. Amarked p/t-neis a pair (IV, m¢), whereN is a p/t-net, and
mg is @ marking ofV, calledinitial marking.

We extend the weight functioi’ to pairs of netelements;, y) € (PxT)U(T'x P)
satisfying (z,y) ¢ F by W((z,y)) = 0. A transitiont € N is enabled to occur
in a markingm of N if Vp € P : m(p) > W((p,1)). If ¢ is enabled to occur in
a markingm, then itsoccurrenceleads to the new marking)’ defined bym’(p) =
m(p) — W ((p,0)) + W((t,p)) forp € P.

Unfolding semantics of p/t-nets is given by so callednching processeshich are
based on occurrence nets. A conflict relation between edistiaguishes alternative
runs. Runs are given by conflict-free, left-closed sub-nélwanching processes.

Definition 2 (Occurrence net).Anoccurrence nds a netO = (B, E,) satisfying

— Os acyclic, i.e< is a partial order.
-Vbe B: |* <1.

— Ve € BUE: —~(z#x).

- Vexe BUE: |{y]|y <z} isfinite.

Elements ofB are callecconditionsand elements oF are callecevents M I N (O)
denotes the set of minimal elements (Wkb).

Definition 3 (Branching process).Let (N, mg), N = (P, T, F,W) be a marked p/t-
net. Abranching processf (N, my) is a pairm = (O, p) whereO = (B, E,G) is an
occurrence netangd : BU EF — X with PUT C X is a labeling function satisfying:

— There ise;ni: € E with MIN(O) = {eini:} andp(einit) € PUT.

—Vbe B: p(b) € PandVe € E\ {eini}: ple) €T.

- Ve € E\{einu}, Vp € P: [{b € ®e| p(b) = p} = W((p,p(e)) N{b € e® |
p(b) = p} = W((p(e), p)).

- VpeP: [{beef,; | pb) =p} =mo(p)

—Ve,feE: (*e="*fAple)=p(f)) = (e=f).

In a branching process; is interpreted as "earlier than”-relation between traosit
occurrences. A finite branching process with empty con#lzttion is called grocess

Two branching processes = (O',p'), O’ = (B, E',G’), andr = (O, p), O =
(B, E,G), are isomorphic, if there is a bijectiafso : BU E — B’ U FE’ satisfying
Iso(B) = B', Iso(E) = E', p' o Iso = pand(x,y) € G < (Iso(x), Iso(y)) € G’
forz,y € BUE.

A branching process = (O, p), O = (B, E,G), is a prefix of another branching
processt’ = (0, p), O’ = (B, E',G’), denoted byr C ', if O is a prefix ofO’
satisfyingB = MIN(O) U (U.cpe®) andp is the restriction of’ to B U E. For
each marked p/t-n€iV, m) there exists a unique, w.rit. maximal, branching process
Tmaz (N, mo), called theunfolding of(N, my).

Sometimes one is only interested in storing the causal dkpmies of events of a
branching process. For this conditions are omitted and<thand#-relation are kept
for events. Formally the resulting object is a so-cafeiche event structure

Definition 4 (Prime event structure). A prime events structuris a triple PES =
(E, Con, <) consisting of a seE of events, a partial ordex on £ and a setCon of
finite subsets of’ satisfying:

—Vee E: {e|e <e}isfinite.

— {e} € Con.

- YCXeCon=Y € Con.

—(XeCon)A(Fd eX:e<e)) = (XU{e} e Con).

A consistent subseif F is a subsetX satisfyingvY C X, Y finite: Y € Con. The
conflict relation# between events ¢fES is defined by#e’ < {e, e’} & Con.

Apair (PES, 1), wherePES is a prime events structure ards a labeling function
on F, is calledlabeled prime event structure

A (labeled) prime event structure witli consistent we interpret as an LPO, i.e. in
this case we omit the set of consistency s&is.

If # = (0,p), O = (B, E,G) is a branching process, thétES(7) = (E, Con,
< |exk), whereX € Con if and only if X C E is finite and fulfillsVe,e¢’ € X :
—(e#e’), is a prime event structurd? E£S(7) is calledcorresponding tar. If 7 is a
process, the® ES(r) is a finite LPO, called theun underlyingr.

3 Unfoldings Based on Token Flows

One basic problem of the unfolding of a p/t-net is, that itte@ms a lot of redundancy.
This arises from the individuality of conditions in branegiprocesses. When append-
ing a new transition occurrence to a branching process, patitular choice of a set
of conditions representing the preset of this transitia@idg a different process, where
some of these processes are isomorphic and others haverggtmanderlying runs
(see Figure 2 and the explanations in the introductionhisgection we propose two
new unfolding semantics of p/t-nets avoiding such redungaBoth approaches are
based on the notion of token flows presented in [11]. In thieiohg we restate this
notion and its role in the representation of single procedsethe next subsection, the
concepts will be transferred to unfoldings.

In the following, LPOs are considered to be finite. The eddéf®s, representing
partially ordered runs of a p/t-net, are annotated by (&1pR non-negative integers
interpreted as token flow between transition occurrencamely, for a proces& =
(O,p), O = (B, E,G), of a marked p/t-netN, mg), N = (P, T, F,W), we defined
a so calledcanonical token flow functiomy :<— N assigned to the edges of the
run (E, <, p) underlying K’ via xx ((e,e’)) = p(e® N ®¢’). That means:x((e,e’))
represents for each place the number of tokens which areipeddoy the occurrence
of the transitiorp(e) and then consumed by the occurrence(ef). Such a token flow
function abstracts away from the individuality of condit®in a process and encodes
the token flow by natural numbers for each place. It is easgédisatr - satisfies:

= (IN):Ve € E\ {eiit}, Vpe P: (3. .. vx (e e))(p) = W(p, p(e)).
— (OUT):Ve € E\{eini}, V0 € P: (3 Loz (e e))(p) < W(p(e),p).
= (NIT:Vpe P: (X, . <o ®(€init,€))(p) < mo(p).

— (MIN): V(e,e’) €<s: (Gp € P: xx(e,e)(p) = 1).

(IN), (OUT) and (INIT) reflect the consistency of the tokenafldistribution given
by x x with the initial marking and the arc weights of the considienet. (MIN) holds
since skeleton arcs define the "earlier than”-causalityvbeh transition occurrences
and this causality is produced by non-zero token flow. Naglethn edges may carry a
zero token flow, since they are induced by transitivity of piagtial order. A zero flow
of tokens means, that there is no direct dependency betweartseIn particular, there
are no token flows between concurrent events.

In [11] we showed, that the other way round for an LEQ <, p) with unique initial
evente;,;;, a token flow function: :<— N7 satisfying (IN), (OUT), (INIT) and (MIN)
is a canonical token flow function of a process. That meansgsses are in one-to-one
correspondence with LPOs having token flow assigned to gdges fulfilling (IN),
(OUT), (INIT) and (MIN). Such LPOs yield an equivalent but rm@ompact represen-
tation of partially ordered runs. In particular full infoation on reachable markings as
well as causal dependency and concurrency among eventsisrped.

3.1 Token Flow Unfolding

In the following, we extend these ideas to branching praesebyg assigning token flows
to the edges of prime event structures. We will prove thatuichsa way one gets a
more compact representation of the branching behaviortafigis while preserving
full information on markings, concurrency, causal depemgend conflict.

Let PES = (E,Con, <) be a prime event structure. We denote the set of left-
closed consistency sets l6yon,,. € Con. For atoken flow functiorx :<— NP, a
consistency set’ € Con,,.. and an event € C' we denote

— INc(e) = > 0 4. oec 2(€; €) theintoken flow ok w.rt. C.
- OUTc(e) =3 1o e ®(e, €) theouttoken flow ot w.rt. C.

A prime token flow event structure is a labeled prime evenicstire together with
a token flow function. Since equally labeled events repredifierent occurrences of
the same transition, they are required to have equal intken Since not all tokens
which are produced by an event are consumed by further e\thetg is no analogous
requirement for the outtoken flow. It is assumed that thera imique initial event
producing the initial marking.

Definition 5 (Prime token flow event structure).A prime token flow event structure
is a pair (PES, 1), z), wherePES = (E,Con, <) is a prime event structuré,is a
labeling function on® andx :<— N7 is atoken flow functionsatisfying:

— There is a unique minimal evesyt,;; W.r.t. < with [(e;,;1) # l(e) for all e # ez
- VC,C" € Congre, Ve € C,e' € C': l(e) =1(e/) = IN¢c(e) = INci (€').

A token flow unfolding of a marked p/t-net is a prime token floveet structure,
in which intoken and outtoken flows are consistent with thteevegights resp. the initial

marking of the net within each left-closed consistency Bkireover, we neglect so-
calledstrong identical eventim such unfoldings which turn out to produce isomorphic
process nets.

Definition 6 (Strong identical events).Let((PES,!),z) be a prime token flow event
structure. Two events ¢’ € F fulfilling

(U(e) =UeN A ("e=) A(Vf € “e: x(f.e) = x(f,€))
are calledstrong identical

Definition 7 (Token flow unfolding). Let (N, mg), N = (P, T, F,W), be a marked
p/t-net. Atoken flow unfolding ofl NV, m) is a prime token flow event structutfe” £.S
J),x), 1 E— X withT C X andVe € E\ {e;ni}: l(e) € T, satisfying:

— (IN): VC € Conyye, Ye € C\{einit}, Vp € P: INc(e)(p) = W(p,l(e)).
(OUT):VC € Conyye, Ve € C\{€ini}, Y0 € P: OUTc(e)(p) < W(l(e
(INIT): VC € Conypyre, ¥p € P: OUTc(einit)(p) < mo(p).

(MIN): Y(e,€’) €<s: (Ip € P: x(e,e’)(p) = 1).
— There are no strong identical events’ satisfying{e, ¢’} ¢ Con.

):P)-

Two token flow unfoldings’ = ((PES’,l'),2’), PES' = (E',Con’,<’), and
w = ((PES,1),x), PES = (E,Con, <), are isomorphicif there is a bijection/ :
E — E' satisfyingvVe € E : l(e) = 1'(I(e)) NI(®%) = *I(e) ANI(e®) = I(e)°®,
VCCE: CeConsI(C)eCon’andVe < f: x(e, f) =2'(I(e), I(f)).

Given a token flow unfoldingg = ((PES,[),z), PES = (E, Con, <), each non-
empty left-closed subsét’ C E defines a token flow unfolding’ = ((PES’, '), 2’),
PES" = (E',Con/,<') by Con' = {C € Con | C C F'}, <'=< |pixp, ' =
l|pr andz’ = z|</. Each token flow unfolding/” = ((PES”,l"),z'), PES" =
(E',Con”,<"), Con” C Con’ is called prefix ofu, denoted by.” C u. By C=LC \id,

a partial order on the set of token flow unfoldings is given. iidsv want to prove
that up to isomorphism, there exists a unique maximal (iregarinfinite) token flow
unfolding w.r.t.C. The partial order- can be defined through appending new events to
(consistency sets of) existing token flow unfoldings startvith the initial event. There

is a unique maximal token flow unfolding (fix point) only if tfeeder of appending
events does not matter, i.e. if events are appended ineglifferders, isomorphic token
flow unfoldings are constructed.

A new transition occurrence can be appended to a consistsateyf there are
enoughremainingtokens produced by events in the consistency set (tokenshwhi
are not consumed by subsequent events in the consistency¥eet € E \ {einit}
andC € Conye, the remaining tokens produces byare formally given by the
residual token flowResc(e) (of e w.r.t. C) defined byResc(e)(p) = W (i(e),p) —
Yoz eec (e e)(p) for p € P. Similarly, for eachp € P, Resc(einit)(p) =

2 Note that omitting strong identical events disables thesibdity of applying prime event
structures having a set of consistency sets defined by aybdaaflict relation, which is the
case for example for prime event structures correspondibganching processes.

mo(P)= D e,. s <er.ercc T(€init,) (p). Let Mar(C) = 3° . Resc(e) be the the
residual markingof C. If there are enough tokens in the residual marking to firaaxtr
sitiont, there may be several choices which of the remaining tokenssed to append

a respective transition occurrence to the consistencyset such choice is formally
represented by aenabling functiony : C — N7 satisfyingve € C : Resc(e) > y(e)
andvp € P: (3 .ccu(e))(p) = W((p,t)). Such an enabling function defines a new
evente, by l'(e,) =t, ®e, ={eec C |3 : yle') #0N(e=¢ Ve <¢)}and

Ve € ®e, : 2'(e,e,) = y(e). If there is already a strong identical event not belonging
to the consistency set, then this strong identical evendd®d to the consistency set.
Otherwise, the new event is added.

Definition 8 (Appending events).Let (N, mg), N = (P, T, F,W), be a marked p/t-
net and lety = ((PES,l),z), PES = (E,Con, <), be a token flow unfolding of
(Na mo).

Lett € T andC € Con,,. be such thabllar(C)(p) = W ((p,t)) for eachp. Lety
be an enabling function and, be the associated new event.

If there is no event ¢ C which is strong identical te,, then we define a prime
token flow event structu®xt(u, C,y,t) = (PES’,l'),2'), PES' = (E’,Con’, <),
throughE’ = EU{e,}, U'|lg =1, 2'|<x = 2, <" |gxe =< andCon’ = Con U {C' U
{ey} | C" C C'}. We say thaf is extended by,,.

If there is an event;y ¢ C which is strong identical te,, then we define a prime
token flow event structu®xt(u, C,y,t) = (PES’,l'),2'), PES' = (E',Con’, <),
throughE = E,I' = 1,2’ = z, <'=<andCon’ = Con U {C" U {eiq} | C' C C}.
We say thaj: is updated by,,.

The following lemma ensures that we have defined an appteppi@cedure to
append events:

Lemmal. Ext(u, C,y,t) fulfills:

() Ezt(n,C,y,t) is atoken flow unfolding.
(i) uC Eat(u, Cy,t).
(iii) Every finite token flow unfolding can be constructed by the procedure shown in
Definition 8: Given a token flow unfolding= ((PES.!),z), PES = (E, Con, <
), there exists a sequengs, . . ., i, of token flow unfoldings withy = ((({€in:t }

AH{einit}},0),id),0), prn = pandpuiry = Eat(pi, C,yi, ti) fori =0,...,n—1.

Proof. The first and second statement follow by construction. Tlel thne can be
shown as follows: Fix one ordering & = {ei,...,e,}, suchthae; < e; =i < j
and denote; = E\ {e;,...,en}. Thenuo C pup, C ... C pug, C pg, Wwherepg:
is the prefix ofy, defined by a left-closed sét’ C FE. By definition, there are triples
(C1,yi,1(e)), ..., (CL,yh l(e;)), such thatug,,, can be constructed fromg, by
appending(e;)-occurrences in arbitrary order &, via y; for j = 1,...,m. Namely,
Ci,...C% are the sets arising by omitting from every left-closed consistency set in
pE;., which includes:; and ally;'- are defined according to the intoken flowepf That
meanssupp; = {yj, > 0} = {y} > 0} andy;|supp, = Y}|supp, for all k, j. Therefore,
actually in the first appending step the events appended and in the further — 1
steps only consistency sets are updated.

In the construction of the above proof, the resulting tokew flinfolding does not
depend on the used ordering of the eventg iand also does not depend on the used or-
dering of the consistency sets enabling a fixed ewvelhis means that extending finite
token flow unfoldings by new events in different orders andtwdifferent consistency
sets leads to isomorphic token flow unfoldings if after eadersion all consistency
sets which enable the considered event are updated. Olmmereever that by defini-
tion also the extension by a new event and the update by anetkat can be mixed
up. This gives the following statement:

Lemma 2. Let (N, mg) be a marked p/t-net. There is a token flow unfoldifgf,,,q.
(N, mg), which is maximal w.r.t— (no more events can be appended to finite prefixes)
and unique up to isomorphism.

Un fmaz(IN, mo) can be defined as the limit of a sequence of finite token flow un-
foldings (tun)nen With 11 = Ext(un, C,y,t), since the order of appending events
does not matter. Each finite left-closed consistencysef Un f,,q..(IN, mo) repre-
sents a processc of (IV, myg) in the sense that the LPRo = (C, < |cxc, l|c) is
the run underlyingrc andzc = z|c < ¢ is the canonical token flow function @t (this
follows from [11] sincez satisfies (INIT), (IN), (OUT) and (MIN) oripo.). More-
over, inUn f,q..(N, mo) all processes of N, mg) are represented by finite left-closed
consistency sets. Namely, for each process, the undemrymgith assigned canonical
token flow defines a token flow unfolding and without loss ofeyatity we can assume
that this token flow unfolding equals; of a defining sequence &fn f,,,q. (N, mg) for
somek.

Theorem 1. Let (N, mg) be a marked p/t-net. Then for each processf (N, m)
there is a left-closed consistency §ebf Un f,,... (N, mg) such thatr is isomorphic
tom.

To show that/n f,,... (N, m) avoids the generation of isomorphic processes, we
prove that only in special auto-concurrency situationcesses of Vv, my) are repre-
sented more than once ifn f,,q.. (N, mg).

Theorem 2. Let (N, mg) be a marked p/t-net and be a finite process dfV, my). If
iNn Unfmaz(N,mg) = (PES,l),x), PES = (E,Con, <), there are two finite sets
C # C'" € Cony,. representingr, then there exist eventse C,e’ € C’, e # €’ such
thate ande’ are strong identical and fulfil{e, e’} € Con.

Proof. Assume there are finit€, C’ € Con,,. such that the processes andr¢- are
isomorphic. Lete € C'\ C”" with ®*e C C' N C’. Such an event exists sinceC' N C’
defines a prefix oP 'S containinge;,;; and therefore can be chosen as a minimal
elementw.rt<in C\C'. Lete’ € C’ be the image of under the isomorphism relating
mc andwer. Sincere andwe: are isomorphic, the left-closed consistency sets of all
pre-events ot resp.e’ define isomorphic processes. Thus, eithende’ are strong
identical, or there arg € °c\ ®¢’ andf’ € °¢’\ °e fulfilling the same property
ase ande’ that the left-closed consistency sets of all pre-eventg odsp. f/ define
isomorphic processes. Since the number of pre-eventsaofd /' is smaller than the
number of pre-events efande’ (i.e. the procedure can only finitely often be iterated),

ande;,;; is a common pre-event, there is some pair of everdsd ¢’ being strong
identical. By definition we have € C, ¢’ € C’ andg # ¢'. The definition of token
flow unfoldings ensure$g, ¢’} € Con (sinceg, ¢’ are strong identical).

Sincee and e’ are strong identical, they in particular have the same lainel
{e, e’} € Con shows that they can occur concurrently in some marking.

Corollary 1. If (N, mg) allows no auto-concurrency (i.e. there is no reachable mark
ing m, such that there is a transitiarfulfilling Vp € P : m(p) > 2-W((p, t))), there is

a one-to-one correspondence between left-closed consjsgets ot/ n f,q. (N, mo)
and (isomorphism classes of) processes.

Although we have seen that the non-
existence of strong identical events is not
enough to avoid isomorphic processes in Q
general, the number of isomorphic pro-
cesses represented in token flow unfold-
ings is significantly smaller than in the
standard unfolding approach (see the ex-
perimental results). Figure 6 shows a sit- ‘ .
uation as discussed in Theorem 2, where
the token flow unfolding as introduced so E
far is not small enough to completely ne-
glect isomorphic processes. Namely, the
two B-labeled events produce two isoFig- 6. P/t-net with token flow unfolding
morphic processes, despite they are ng@ntaining two isomorphic (maximal) pro-
strong identical (because they have ngfSS€s.
common pre-events). Observe however, that the Mwlabeled pre-events of the two
B-labeled events are themselves strong identical, but grmmonflict (they are con-
current). To avoid such situation, we must generalize thiionof strong identical
events in the sense that two strong identical events haveawassarily common, but
strong identical pre-events. This setting is formally disd by the notion of isomor-
phic strong identical events as follows:

Let ((PES,I),z) be a prime token flow event structure. Le€ E x F be the least
equivalence relation satisfying for all¢’ € E:

NN (Ce="2e)A(Vfe*: z(fe) =a(f e)) = (e=¢).
e) =1(e")) AN (3T : ®e — °¢ bijective: (Vf € ®e: f2I(f)Nx(f,e)=

Two =-equivalent events, ¢’ are calledsomorphic strong identicaBasically, omit-
ting isomorphic strong identical events yields a token floviolding representing no
isomorphic (maximal) processes at all (can be deducedaimias Theorem 2). But
considering such an approach we encountered severahietiechnical problems. In
particular, a test for the isomorphic strong identical gy is complicated, such that
the algorithmic applicability is questionable.

3.2 Reduced Token Flow Unfolding

In a token flow unfolding there is still redundancy w.r.t cality and concurrency, since
there are consistency sets which induce processes whiehthasame underlying run
(but a different token flow distribution). Such consisteseys are caused by so-called
weak identical eveni{gompare the introduction). To avoid weak identical evesitece
many different processes produce one run and token flowiliistins correspond to
processes, we store for each consistency set an exampieftokedistribution.

That means, we need to extend our model of prime event stesgcRES = (E
,Con, <) extended by token flows such that we can store for each censisset’' €
Con,,. an individual token flowzc :< |cxo — NP, For suchz and an event € C
we denote/ No(e) = > . ., zc(e,e) andOUTc(e) = 3, xc(e,e’). We intro-
ducegeneralized prime token flow event structuasgairg (PES, 1), (xc)cecon,,.)
wherePES = (E,Con, <) is a prime event structuré,is a labeling function or/
and(zc)cecon,,. is a family oftoken flow functionsc :< |cxc — N’ satisfying
analogous conditions as prime token flow event structures:

— There is a unique minimal eveag,;; w.r.t. < with l(e;;1) # l(e) for all e # ez
- VC,C" € Conyye, Ve € Cye' € C": l(e) =1(e') = IN¢c(e) = INci (€').

Two distinct eventg € C, ¢’ € ', fulfilling I(e) = I(e) A ®e = *¢€, are calledveak
identical

Definition 9 (Reduced token flow unfolding).Let (N, mg), N = (P, T, F,W), be a
marked p/t-net. Aeduced token flow unfolding dfV, m) is a generalized token flow
unfolding((PES, 1), (xc)cecon,..) satisfying (IN), (OQUT), (INIT),

(MIN): VC € Conyye,Ve,e' € Cie <5 €' : (3pe P zo(ee)(p) = 1)
and having no weak identical events’ satisfying{e, ¢’} & Con.

Similar as for token flow unfoldings, prefixes can be definadeGa reduced token
flow unfoldingy = ((PES, 1), (zc)cecon,,.) PES = (E, Con, <), each non-empty
left-closed subseE’ C E defines a reduced token flow unfoldipg = ((PES’, 1),
(zc)cecony,,) PES" = (E',Con’, <") by Con' = {C € Con | C C E'}, <'=<
|Erxe, I = l|g andz}, = z¢. Each token flow unfolding”” = ((PES”,l'),2"),
PES" = (E',Con”,<"), Con” C Con' is called prefix ofu, denoted by, C p.

Events can be appended to reduced token flow unfoldingsasiiml to token flow
unfoldings. The residual token floResc(e) and the residual marking/ar(C) are
defined analogously as before, using instead ofz. If there are enough tokens in the
residual marking to fire a transition in general a new token flow distribution for the
considered consistency set has to be stored in order to haveossibility to append
a respective transition occurrence to the consistencyiaearv enabling functiony.
Formally, such a token flow redistribution is given by a rédtsition flow function
7 :< |oxc — NF fulfilling (IN), (OUT), (INIT) and V(e,e’) € <, NC x C : (3p €
P : x(e,e’)(p) > 0) such that there is an enabling functign ¢ — N’ satisfying
Vee C: W(l(e),p) = > oo (e, €)(p) = yle)andVp € P: (3 .coyle))(p) =
W ((p,t)). The functionsc andy define a new event, , throughl’ (e, ,) =1, ®ey .y =

{eeC|3e: yle)#0N(e=¢€Ve=<e)}andVe € ®e,, : 2/(e,e4,) = yle).
If there is already a weak identical event not belonging eodbnsistency set, then this
weak identical event is added to the consistency set. Othertihe new event is added.

Definition 10 (Appending events)Let(N,mg), N = (P, T, F,W), be a marked p/t-
netand lety = ((PES,1), (zc)cecon,..) PES = (E,Con, <), be areduced token
flow unfolding of(N, my).

Lett € T andC € Cony,., such thatM ar(C)(p) = W((p,t)) for eachp. Letx
be a redistribution function with associated enabling fimey ande, , be the corre-
sponding new event.

If there is no event ¢ C which is weak identical te, ,, then we define a gener-
alized prime token flow event structueet(u, C, x, y,t) = (PES’,l’),2), PES" =
(E',Con/,<"), throughE’ = EU{e, .}, U'|g =1, Con’ = ConU{C"U{ey,} | C" C
C},VC' € Conlyye, eay € C' ¢ wiul< = w Aapi|orxge,,y = @' and <’ [pxp ==.
We say thaj is extended by, ,,.

Ifthere is an event;; ¢ C which is weak identical te, ,,, then define a prime token
flow event structurdgxt(u, C, x,y,t) = ((PES’ ",2"), PES" = (E',Con’,<’),
updatingCon by e,,c., throughE’' = E,I' =1, <'=<, Con’ = Con U {C" U {ezd} |
C’' C CrandvC" € Cony,,, \ Conpre, €ia € C' 2 2|« = AN Tei|orxfens) =
We say the: is updated by, ,,.

In the reduced token flow unfolding, only one event having dage set of pre-
events is introduced (except for concurrent events in ong aithough there are dif-
ferent possible distributions of the token flows on ingoidges of the event. Only one
example distribution of these possible token flows is stored

For the reduced token flow unfolding analogous results hsltbatoken flow un-
foldings. By constructiorFzt(u, C, z, y, t) is a reduced token flow unfolding. Similar
as for token flow unfoldings, a prefix relatian between reduced token flow unfold-
ings can be defined. Since through appending events, the figke on old consistency
sets is not changed, C FExt(u,C,x,y,t) holds. Moreover, every finite reduced to-
ken flow unfoldingu can be constructed by a sequence of appending operatians fro
po = ((({€init}» {{€imit}},0),id),), whereC, z, y andt are chosen according fo

Appending events to a token flow unfolding in different osléFads to reduced
token flow unfoldings with isomorphic underlying prime evstructures. Isomorphic
prefixes (in different such reduced token flow unfoldingsynave different token flow
distributions, representing processes with isomorphitedging runs. In this sense, the
order of appending events plays no role and we can define amabfiv.r.t.C) reduced
token flow unfoldingUn f,.4(N,mo) as the limit of a sequence of finite token flow
unfoldings(iin) nen With 41 = Ext(u,, C,x,y,t). Un frea(N, mg) IS unique up to
isomorphism of the underlying prime event structure andupé token flow stored for
a consistency set, where different possible token flowsyredsomorphic runs.

Each left-closed consistency sétof Un f,.q(N, mo) represents a procesg: of
(N, myg) in the sense that the LPRo~ = (C, < |cxc,l|¢) is the run underlyingre
andzx¢ is the canonical token flow function afc. Moreover, inUn f,..q(N, mg) all
runs underlying a process GV, m) are represented by consistency sets (without loss
of generality we can start the constructioridf f,..q (N, mo) with an arbitrary process
representing a specific run).

Unfrea(N, mp) avoids the generation of processes with isomorphic uniheyly
runs. Namely, only in special auto-concurrency situatiamss of (IV, mg) are repre-
sented more than once Winf,.q(N,mgp). It can be seen similar as for token flow
unfoldings that, if there are two set$ # C’ € Con,,. representing processes with
isomorphic underlying runs, then there exist events C, e’ € C’, e # ¢’ such thake
ande’ are weak identical and fulfife, ¢’} € Con. That means, if N, mg) allows no
auto-concurrency, there is a one-to-one correspondemwebe left-closed consistency
sets ofUn f,.a(IN, mo) and (isomorphism classes of) runs.

As a topic of future research, similar as for strong idemts@nts and isomorphic
processes, to avoid isomorphic runs, we can generalizedtiennof weak identical
events in the sense that two weak identical events have mesgsarily common, but
weak identical pre-events. This leads to the notioisofmorphic weak identicavents
analogously as for isomorphic strong identical events.

4 Algorithms

In this section we briefly describe two algorithms to constiunfolding models of a
marked p/t-net with finite behavior. The algorithms essgiytfollow the Definitions 8
and 10. We implemented both methods.

The first algorithm computes a token flow unfolding equal te thaximal token
flow unfolding, except that some isomorphic processes chiog@uto-concurrency of
transitions are omitted. Starting with the token flow unfietdconsisting only of the
initial evente;,,;; and having the only consistency det,.;: }, events are appended to
maximal left-closed consistency sets in a breadth-first Wagach iteration step, the
algorithm picks the next consistency getnd, for each transitione T, stores all en-
abling functions for appendingtaoccurrence. The enabling functions can be computed
from the residual token flows of events= C' and the residual marking @f. Finding
all possible choices of enabling functions is a combinatgrioblem. For each enabling
function, a new event is generated and the old token flow dirfglis either extended
or updated by the new event in a similar way as described imi@iefi 8. In contrast to
Definition 8, in each appending step only maximal left-ctbsensistency sets are con-
structed. Therefore, in some special cases of auto-cagreyrthe described algorithm
does not construct all possible isomorphic strong ideh&eants. That is because not
all left-closures of subsets of strong identical eventscaresidered as consistency sets
(if there are two concurrent strong identical events, omg@eended first and the second
is only appended to consistency sets including the first g event). Therefore, in
general the calculated token flow unfolding contains lessitsthan the maximal token
flow unfolding. But calculating these events (which are isgphic strong identical to
already appended events) would only lead to isomorphicgases (i.e. the unfolding
computed by the algorithm still represents all processesyauld worsen the runtime.

The second algorithm computes a reduced token flow unfolelingl to the max-
imal reduced token flow unfolding, except that only processith minimal causality
are represented. Starting with the token flow unfolding timg only of the initial
evente;,;; and having the only consistency set;,.;; }, the algorithm essentially ap-
pends events to prefixes of left-closed consistency setdbmeadth-first way. In each

iteration step, the algorithm picks the next consistenty’sand tries to append each
transitiont to prefixes ofC. The aim is to find all minimal prefixes which allow to
append &-occurrence. We say that a transition occurrence can bendpgdo a prefix
of a consistency seft, if there exists a token flow function fulfilling (IN), (OUT)nal
(INIT) of the resulting LPO. In [11] a polynomial algorithro theck this and to con-
struct such a token flow function in the positive case wasariesl. For each computed
token flow function, a new event is generated and the old tkenunfolding is either
extended or updated by the new event in a similar way as destin Definition 8
(the computed token flow function defines the redistribufiorction and the enabling
function). Since the algorithm appends transition ocowres only to minimal prefixes
of C for which this is possible, the resulting reduced token flaviolding contains all
runs with minimal causality of the given p/t-net. In this serit represents the complete
partial order behavior. Observe that weak identical evergonly constructed in cases
of auto-concurrency, and that only left-closed consistesats are constructed (each
appending step leads a maximal left-closed consistenkylsebntrast to the construc-
tion algorithm of the token flow unfolding, here all isomomphuns appearing through
auto-concurrency of events are computed, because alllteftires of subsets of weak
identical events are considered as prefixes of consistatsy s

5 Experimental Results

In this section we experimentally test our implementatibtme construction algorithms
having the standard unfolding algorithm as a benchmark.

Standard unfolding Token flow unfolding Reduced token flow
unfolding
n mx y|lE P tme mem/ E P tme mem|E P time mem
132 3|19 12 82ms 1133kb5 2 25ms 557kbj4 1 42ms 625kb
2 4 2 3267 132 1406ms 2548kd5 6 43ms 667kb9 4 76ms 865kb
1 3 4 2|91 315 2721ms 2365kl 3 37ms 704kb|7 1 59ms 917kb
1 3 4 3|175 840 23622ms 4640kl® 6 40ms 685kb|5 1 55ms 754kb
3 4 2 3799 612 90665ms 5067kR2 10 54ms 761kh12 7 103ms 1160kb
3443|- - - - |43 56 271ms 2440kH3 3 102ms 1159kb
3453|- - - - |45 104 672ms 6196kd7 7 178ms 1149kb
n mk
11 141 22 133ms 1011kH3 6 47ms 834kb13 6 103ms 1135kb
1 2 1|47 28 180ms 1270kH3 6 49ms 841kb13 6 114ms 1185kb
2 1 1|71 58 469ms 1325kH7 9 65ms 917kbj15 7 145ms 1211kb
2 2 1|77 67 694ms 1438kk7 9 65ms 917kbjl5 7 145ms 1235kb
112)- - - - |179 150 640ms 5200k[y1 68 8561ms 2580kb
22 2|- - - - 239 413 3498ms 16991Khb 147 54371ms 5414kb

Fig. 7. Experimental results: E shows the number of events and Puimber of maximal
processes in the constructed unfolding.

To construct the standard unfolding, we use an adaptedoveddithe unfolding
algorithm in [4]. When interpreting the results, one has &y pttention that this un-
folding algorithm is not completely runtime optimized, lbhié remaining improvement

potential should be limited. We compare the runtime, menconsumption as well as
the size and the number of maximal processes of the resudtiagt structures. The
upper table in Figure 7 shows a test of the parameterizetbwvens the example net of
Figure 1 shown in Figure 8. The lower table in Figure 7 shovesadf the net in Figure
9 modeling for example a coffee automata.

Fig. 8. Parameterized test naf; . Fig. 9. Parameterized test nak.

The experimental results indicate that our new unfoldingraaches are superior
to the standard approach. For the tested examples, thenejntiemory consumption
and the sizes of the resulting structure of our new algorsthne a lot better. It is clear
that the standard unfolding is least as big as the token fldelding and the reduced
token flow unfolding, but usually considerably bigger, iéthet contains arc weights or
a non-safe initial marking. In these cases our new algostara significantly faster and
use less memory. Comparing the two new approaches shown #iatost every tested
case the calculated reduced token flow unfolding is actgatigller than the calculated
token flow unfolding, but the redistribution of token flows éach step worsens the
runtime.

6 Conclusion

In this paper we propose two new unfolding semantics fonpts based on the con-
cepts of prime event structures and token flows. The defivstaf the two unfolding
models are motivated by algorithmic aspects. We develomataaction algorithm for
both unfolding models, if they are finite. We show that therermany cases in which
our implemented algorithms are significantly more efficithran standard unfolding
methods for p/t-nets.

We finally want to mention that the two presented unfoldingdeie are a conser-
vative extension of the unfolding model introduced in [5] $afe nets. That means, for
safe nets, the standard unfolding, the token flow unfoldmdjthe reduced token flow
unfolding coincide.

Topic of further research is the application of isomorphéak resp. strong identi-
cal events to avoid isomorphic runs resp. isomorphic pseE®at all, the adaption of
the theory of complete finite prefixes to our approach and dagtion of model check-
ing algorithms. Although there are complete finite prefixésol also avoid redundant
events, we believe that our approach yields faster corigirualgorithms since such
complete finite prefixes rely on complex adequate ordersiwtaanot be implemented
efficiently.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

E. Bestand R. Devillers. Sequential and concurrent betiain petri net theoryT heoretical
Computer Scien¢é5(1):87-136, 1987.

J.-M. Couvreur, D. Poitrenaud, and P. Weil. Unfoldings fgeneral petri nets.
http://lwww.labri.fr/perso/weil/publications/depliegpdf University de Bordeaux | (Talence,
France), University Pierre et Marie Curie (Paris, Fran2zep4.

J. Desel, G., and C. Neumair. Finite unfoldings of unba&dhpgetri nets. In J. Cortadella
and W. Reisig, editordCATPN volume 3099 ot ecture Notes in Computer Sciengages
157-176. Springer, 2004.

J. Desel, G. Juhas, and R. Lorenz. Viptool-homepag®3.2tttp://www.informatik.ku-
eichstaett.de/projekte/vip/.

J. Engelfriet. Branching processes of petri néista Informatica 28(6):575-591, 1991.

J. Esparza and K. Heljanko. Implementing Itl model chegkiith net unfoldings. In M. B.
Dwyer, editor, SPIN volume 2057 ofLecture Notes in Computer Sciengages 37-56.
Springer, 2001.

J. Esparza, S. Romer, and W. Vogler. An improvement of iteoms unfolding algorithm.
Formal Methods in System Desidt0(3):285-310, 2002.

U. Goltz and W. Reisig. The non-sequential behaviour of pets.Information and Contral
57(2/3):125-147, 1983.

S. Haar. Branching processes of general s/t-systeméaingtopertiesElectr. Notes Theor.
Comput. Scj.18, 1998.

P. Hoogers, H. Kleijn, and P. Thiagarajan. An event stinecsemantics for general petri
nets. Theoretical Computer SciencE53(1&2):129-170, 1996.

G. Juhas, R. Lorenz, and J. Desel. Can i execute my sceémgour net?. In G. Ciardo and
P. Darondeau, editor&CATPN volume 3536 olecture Notes in Computer Scienpages
289-308. Springer, 2005.

V. Khomenko, A. Kondratyev, M. Koutny, and W. Vogler. Med processes: a new con-
densed representation of petri net behaviéduta Inf, 43(5):307-330, 2006.

V. Khomenko and M. Koutny. Towards an efficient algoritfon unfolding petri nets. In
K. G. Larsen and M. Nielsen, editotSONCUR volume 2154 of_ecture Notes in Computer
Sciencepages 366—380. Springer, 2001.

V. Khomenko and M. Koutny. Branching processes of hiyel petri nets. In H. Garavel
and J. Hatcliff, editorsTACAS volume 2619 ol ecture Notes in Computer Sciengages
458-472. Springer, 2003.

V. Khomenko, M. Koutny, and W. Vogler. Canonical prefixégpetri net unfoldings.Acta
Inf., 40(2):95-118, 2003.

K. L. McMillan. Using unfoldings to avoid the state exgion problem in the verification
of asynchronous circuits. In G. von Bochmann; D. K. Probditog, CAV, volume 663 of
Lecture Notes in Computer Scienpages 164-177. Springer, 1992.

J. Meseguer, U. Montanari, and V. Sassone. On the modehgbutation of place/transition
petri nets. In R. Valette, editoApplication and Theory of Petri Netgolume 815 oL ecture
Notes in Computer Scienggages 16—38. Springer, 1994.

J. Meseguer, U. Montanari, and V. Sassone. On the sarsarffplace/transition petri nets.
Mathematical Structures in Computer Scientgl):359-397, 1997.

M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, evantictures and domains, part i.
Theoretical Computer Sciencg3:85-108, 1981.

G. Winskel. Event structures. In W. Brauer, W. Reisigl & Rozenberg, editoré\dvances
in Petri Nets volume 255 ofLecture Notes in Computer Scienpages 325-392. Springer,
1986.

