
Synthesis of Petri Nets from Scenarios with VipTool

Robin Bergenthum, Jörg Desel, Robert Lorenz, and Sebastian Mauser⋆

Department of Applied Computer Science,
Catholic University of Eichstätt-Ingolstadt,

firstname.lastname@ku-eichstaett.de

Abstract. The aim of this tool paper is twofold: First we show that VipTool [9,
2] can now synthesize Petri nets from partially ordered runs. To integrate this ex-
tension and further new functionalities, we changed the architecture of VipTool to
a flexible plug-in technology. Second we explain how VipToolincluding the syn-
thesis feature can be used for a stepwise and iterative formalization and validation
procedure for business process Petri net models. The synthesis functionalities fill
a gap in a previously defined procedure [9, 7] where the first definition of an initial
process model had to be done ”by hand”, i.e. without any tool support.

1 Introduction

Automatic generation of a system model from a specification of its behaviour in terms of
single scenarios is an important challenge in many application areas. Examples of such
specifications occurring in practice are workflow descriptions, software specifications,
hardware and controller specifications or event logs recorded by information systems.

In the field of Petri net theory, algorithmic construction ofa Petri net model from
a behavioural specification is known as synthesis.Synthesis of Petri netshas been a
successful line of research since the 1990s. There is a rich body of nontrivial theoretical
results, and there are important applications in industry,in particular in hardware system
design, in control of manufacturing systems and recently also in workflow design.

The classicalsynthesis problemis the problem to decide whether, for a given be-
havioural specification, there exists an unlabelled Petri net, such that the behaviour of
this net coincides with the specified behaviour. In the positive case, a synthesis algo-
rithm constructs a witness net. For practical applications, the main focus is the compu-
tation of a system model from a given specification, not the decision of the synthesis
problem. Moreover, applications require the computation of a net, whether or not the
synthesis problem has a positive answer. To guarantee a reasonable system model also
in the negative case, in this paper, the synthesized model isdemanded to be the best
(a good) upper approximation, i.e. a net including the specified behaviour and having
minimal (few) additional behaviour (for details see [12, 1]).

Theoretical results on synthesis mainly differ w.r.t. the consideredPetri net class
and w.r.t. the considered model for thebehavioral specification. Synthesis can be ap-
plied to various classes of Petri nets, including elementary nets [10, 11], place/transition
nets (p/t-nets) [1] and inhibitor nets [13]. The behavioural specification can be given by

⋆ Supported by the project ”SYNOPS” of the German Research Council



a transition system representing the sequential behaviourof a system or by a step tran-
sition system additionally considering steps of concurrent events [1]. Synthesis can also
be based on a language. Languages can be finite or infinite setsof occurrence sequences,
step sequences [1] or partially ordered runs [12]. Despite of this variety, the synthesis
methods follow one common theoretical concept, the so called theory of regions.

Although there is a wide application field, there is only few tool support for Petri
net synthesis so far. Synthesis of labelled elementary netsfrom transition systems is im-
plemented in the tool Petrify [6]. Petrify is tailored to support hardware system design
by synthesizing asynchronous controllers from signal transition graphs (both modelled
as Petri nets). The process mining tool ProM [15] uses synthesis methods to automat-
ically generate a process model (given by a Petri net) from socalled event logs. Event
logs specify a set of occurrence sequences. But ProM does notoffer pure Petri net syn-
thesis algorithms. Synet [5] is a software package synthesizing bounded p/t-nets from
transition systems. Synet supports methods for the synthesis of so called distributable
Petri nets (consisting of distributed components which communicate by asynchronous
message passing). It was applied in the area of communication protocol design. How-
ever, the authors point out that the tool should be considered as a preliminary prototype
rather than a stable and robust tool.

Synthesis

Unfolding

Executability
Test

Validation on 
Unfolding

A B
2

Petri Net

B
A

B A

„Computation of all 
partially ordered runs

(or process nets)“

„Computation of a net
having the specified

behaviour“

„Implementation of 
specifications and 
computation which

partially ordered runs
satisfy the

specifications“

„Check whether a 
partially ordered run is

executable in a net“

Partially Ordered Runs

Fig. 1.Sketch of the key functionalities of VipTool.

This paper presents a new synthesis tool. The tool supports for the first time syn-
thesis of place/transition-nets from a set of partially ordered runs. The set of partially
ordered runs models alternative executions of a place/transition-net. The tool is imple-
mented as an extension of VipTool [9, 2], which was originally designed at the Univer-
sity of Karlsruhe within the research project VIP (Verification of Information systems
by evaluation of Partially ordered runs) as a tool for modelling, simulation, validation
and verification of business processes using (partially ordered runs of) Petri nets. With
this new synthesis package all aspects concerned with partially ordered runs of Petri



nets – namely synthesis, unfolding (combined with respective validation) and testing
of executability (see Figure 1) – are covered by VipTool. So far, the synthesis package
is restricted to synthesis from finite sets of partially ordered runs as described in [12].
Typical applications of synthesis only have to deal with finite specifications. Since oc-
currence sequences and step sequences are special cases of partially ordered runs, the
synthesis algorithms are applicable for all kinds of finite languages. Two conceptually
different synthesis methods are implemented, covering themajor language based syn-
thesis approaches described in the literature [13]. The main approaches to deal with
finite representations of infinite languages will be implemented in the near future.

Due to the growth of the number of functionalities of VipTool, we redesigned Vip-
Tool in a flexible open plug-in architecture. Algorithms areimplemented as plug-ins.

There are many Petri net tools for modelling and analysis, but VipTool occupies
a special niche: VipTool is the only tool offering a comprehensive bundle of methods
(see Figure 1 for an overview) concerned with causality and concurrency modelled by
partially ordered runs of Petri nets (other tools concernedwith partial order behaviour
of Petri nets focus on model checking techniques employing unfoldings, but not on
causality and concurrency). In contrast to occurrence and step sequences, partially or-
dered runs allow to represent arbitrary concurrency relations between events. Therefore,
they are very well suited for the modelling of scenarios of concurrent systems. Advan-
tages over sequential scenarios are in intuition, efficiency and expressiveness [7, 9]. In
particular, to specify system behaviour, instead of considering sequential scenarios and
trying to detect possible concurrency relations from a set of sequential scenarios, it is
much easier and intuitive to work with partially ordered runs.

Starting with a specification of a distributed system in terms of partially ordered
runs, the synthesis package of VipTool is used for the generation of prototypes, to
uncover system faults or additional requirements using Petri net analysis, to evaluate
design alternatives, to visualize a specification or even for the automatic generation of
final system models (see [14, 7, 9, 8] for the significance of scenarios in requirements
engineering and system design). In the remainder of this section, we explain how to
apply the synthesis package in business process design and how the new functionalities
work together with the existing validation and verificationconcepts of VipTool.

One of the main issues of modelling a business process is analysis. Obviously, anal-
ysis requires a high degree of validity of the model with respect to the actual business
process in the sense that the model faithfully represents the process. For complex busi-
ness processes, a step-wise design procedure, employing validation of specifications
and verification of the model in each step, was suggested in [7, 9]. As shown in [9, 2],
so far VipTool supported most steps of this approach (see also Figure 1). It generates
occurrence nets representing partially ordered runs of Petri net models. Specifications
can be expressed on the system level by graphical means. Occurrence nets are analyzed
w.r.t. these specified properties. Runs that satisfy a behavioural specification are distin-
guished from runs that do not agree with the specification. The algorithms of VipTool
for testing executability of scenarios offer functionalities for detailed validation and
verification of the model or a specification w.r.t. single runs. A complicated step that is
not supported by previous VipTool versions is the creation of an initial Petri net model
for the design procedure. The classical approach to developa process model is identi-



fying tasks and resources of the process and then directly designing the control-flow.
The validity of the model is afterwards checked by examiningits behaviour in compar-
ison to the behaviour of the business process. Using synthesis algorithms (as supported
by VipTool) the procedure changes [8]. The desired behaviour of the model constitutes
the initial point. First scenarios (in some contexts also called use cases) of the business
process are collected. Then the process model is automatically created. In this approach
the main task for the user is to design appropriate scenariosof the process (exploiting
descriptions of known scenarios that have to be supported bythe business process).
Usually, it is less complicated to develop and model single scenarios of a process than
directly modelling the process as a whole. In particular, incontrast to a complete pro-
cess model, scenarios need not be designed by some modellingexpert, but they may
also be designed independently by domain experts.

In Section 2 we survey the new architecture and the features of VipTool. In Section
3 the new synthesis functionalities are illustrated with a small case study.

2 Architecture and Functional Features of VipTool

In this section we provide a detailed description of the functionalities and the architec-
ture of VipTool. VipTool is a platform independent softwaretool developed in Java. Its
previous versions [9, 2] were standalone applications providing functionalities for the
analysis of partially ordered runs of Petri nets based upon aJava Swing GUI. Due to
the growth of functionalities and to increase feature extensibility we redesigned Vip-
Tool as an open plug-in architecture. The focus is still on algorithms concerned with
partially ordered runs. VipTool uses only standard Java libraries and a GUI developed
with the Java swing widget toolkit. It is implemented strictly following advanced ob-
ject oriented paradigms. In the development of VipTool, we accounted for professional
standards such as design patterns, coding conventions, a bug-tracking system and an
extensive documentation. The following paragraph gives anoverview of the new archi-
tecture of VipTool.

The VipTool core platform offers a flexible plug-in technology. The so-called exten-
sion manager serves as the foundation for the integration ofplug-ins. More precisely,
it provides functions to load plug-ins into VipTool. Additionally, the core platform pro-
vides definition and implementation of basic GUI elements and related actions, project
management functionalities, job scheduling organizationas well as system-wide con-
figurations. Development of plug-ins is supported by the VipTool SDK library. VipTool
SDK provides appropriate interfaces that can be implemented by plug-ins as well as
interfaces arranging the connection to the VipTool core platform. VipTool SDK also in-
cludes some key support classes. Embedding of plug-ins intothe GUI of the core plat-
form is managed via xml-specifications supporting easy extensibility and scalability.
That means, xml-files are used to configure the GUI of VipTool by adequately adding
and extending menus, buttons, etc. relating to respective plug-ins. The functional com-
ponents of VipTool are arranged in an open plug-in architecture connectable to the
core platform by the extension manager. Figure 2 depicts this architecture, where the
functional component plug-ins are bundled to packages including homogeneous func-
tionalities. Component dependencies are indicated by arrows.



VipTool Core Platform

GUI
Project 
Management

Job 
Scheduling

Configurations

Extension 
Manager

VipTool SDK

Plug-Ins
Synthesis Package

GUI

SynTokenFlowBasisSynTokenFlowBasis

SynTransitionSeparSynTransitionSepar

PostProcessing

SynTokenFlowBasisSynTokenFlowBasis

PostProcessing

SynTokenFlowBasis

PostProcessing

SynTokenFlowBasis

OptimisticEqualityTest

Unfolding Package

SynTokenFlowBasisSynTokenFlowBasis

SynTransitionSeparValidationOfOccNets

SynTokenFlowBasisSynTokenFlowBasisSynTokenFlowBasisUnfoldingOccNetDepth

UnfoldingRunTokenFlow

PostProcessing

Executability
Package

SynTransitionSeparExecutabilityTest

PostProcessingPostProcessingPostProcessingMinExecutabilityTest

Graph Package

GeneralLayoutAcyclicLayoutProcessNet

LPartialOrderPetriNetGraphne
w

ne
w

ne
w

ne
w

ne
w

ne
w

ne
w

Fig. 2. Architecture of VipTool.

The key functionalities of previous VipTool versions have been extracted and reim-
plemented in independent plug-ins. In Figure 2, new components of VipTool are dis-
tinguished from reimplemented functionalities by a ”new”-label. Since the number of
supported graph and Petri net classes grew, we decided to define graph classes as gen-
eral as possible in a special plug-in and to implement editing and user interaction func-
tionalities for certain graph classes as additional plug-ins (”Graph Package”). Plug-ins
providing algorithmic functionalities (”Synthesis Package”, ”Unfolding Package”, ”Ex-
ecutability Package”) can be executed in different threadsusing the job system of the
core platform. Plug-ins may communicate with the core platform according to arbi-
trary communication patterns. The implementation of useful standard communication
patterns for algorithmic plug-ins such as status messages,progress bars and logging
information is supported by special interfaces of VipTool SDK. Algorithms can ma-
nipulate data by using common datastructures defined in Javaclasses and interfaces
of certain plug-ins. To simplify integration of componentsdeveloped independently or
cooperatively by different teams, VipTool also supports easy data exchange between
plug-ins and the core platform using xml-files, e.g. pnml-files in the case of Petri nets
(pnml is a widely acknowledged standard exchange format forPetri nets) and lpo-files
in the case of partially ordered runs (lpo is an xml-file format in the style of pnml). Thus,
common datastructures among plug-ins are not required, facilitating extensibility, scal-
ability, composability and reusability of VipTool functionalities. Respective xml-files
are arranged by the core platform in workspaces and projects, allowing an arbitrary
subfolder structure. The core platform supports a project tree window to offer easy file
management. This is important for flexible and easy invocation of algorithms because
the various functionalities have different and partly complex input and output types.



Short descriptions of the VipTool plug-ins shown in Figure 2:
Graph Package
Graph: Provides basic graph classes and interfaces. This plug-in forms the foundation
of the ”PetriNet”, ”LPartialOrder” and ”ProcessNet” plug-in.
PetriNet: Includes Petri net visualization and editing functionalities as well as simple
interactive features such as playing the token game and showing pre- and post-sets.
LPartialOrder: Supports visualization and design of partially ordered runs by labelled
partial orders and offers some related functionalities such as computing the transitive
closure of a binary relation or the skeleton of a partial order.
ProcessNet:Provides visualization functionalities for occurrence nets.
Acyclic Layout:Offers automatic layout functionalities for directed acyclic graphs such
as labelled partial orders and occurrence nets (based on theSugiyama algorithm).
General Layout:Offers automatic layout functionalities for general graphs such as Petri
nets (based on the spring embedder algorithm by Fruchtermanand Reingold).
Synthesis Package
SynTokenFlowBasis:Implements the constructive part of the synthesis algorithm for
place/transition Petri nets from a finite set of partially ordered runs as described in [12,
4]. So called token flow regions and a finite representation bybasis regions are applied
[13] (employing the algorithm of Chernikova). The result ofthe algorithm is a net rep-
resenting a best upper approximation to the specified behaviour.
SynTransitionSepar:Implements the constructive part of a synthesis algorithm for place/
transition Petri nets from a finite set of partially ordered runs using a translation to step
sequences (based on methods described in [1]). So called transition regions and a finite
representation by separating regions are applied [13] (employing the Simplex method).
The result of the algorithm is either a negative answer to thesynthesis problem com-
bined with a net, illustrating the reason for the negative answer, or a net representing a
best upper approximation to the specified behaviour. In the first case the computed net
is a good upper approximation but not necessarily a best upper approximation to the
specified behaviour (although a best upper approximation exists).
OptimisticEqualityTest:Implements the optimistic equality test described in [12, 4]
using the newly developed unfolding plug-in ”UnfoldingRunTokenFlow” (employs a
graph isomorphism test between single partially ordered runs by a branch-and-bound
procedure optimized for partially ordered runs [4]). It shows if the behaviour of a net
synthesized by the ”SynTokenFlowBasis” or the ”SynTransitionSepar” plug-in matches
the specified behaviour. In the positive case the synthesis problem has a positive answer,
otherwise a negative answer.
PostProcessing:Contains a simple and very fast method to delete implicit places from
a net. This reduces the size of nets synthesized with the ”SynTokenFlowBasis” or the
”SynTransitionSepar” plug-in. More advanced post-processing methods are planned.
Unfolding Package
UnfoldingOccNetDepth:Unfolds a Petri net to its occurrence nets (following standard
techniques). Occurrence nets are constructed on the fly in a depth first order. Also con-
struction of the branching process including cut-off criteria is supported. See also [9].
ValidationOfOccNets:Allows to specify graphically certain properties of a Petrinet,
like specific forms of forbidden and desired behaviour. The set of runs, computed by



the ”UnfoldingOccNetDepth” plug-in, is divided into theseruns, which fulfill the spec-
ifications, and runs, which do not fulfill at least one of the specifications. See also [9].
UnfoldingRunTokenFlow:Implements the unfolding algorithm to construct the set of all
partially ordered runs of a Petri net described in [3]. The algorithm applies an innovative
unfolding concept based on token flows, which in the case of general place/transition-
nets is considerably superior to standard unfolding algorithms in time and memory con-
sumption. This is in particular important to improve the runtime of the ”OptimisticE-
qualityTest”, which depends on an unfolding algorithm. Thealgorithm does not regard
cut-off criteria.
Executability Package
ExecutabilityTest:Supports the polynomial test, whether a given partially ordered run
is executable in a given Petri net, explained in [2] (employing methods from the theory
of flow networks). The plug-in facilitates failure analysisand constructs an occurrence
net corresponding to a checked partially ordered run. See also [2].
MinExecutabilityTest:Offers an algorithm to compute whether a partially ordered run,
executable in a Petri net, is minimal executable (based on the plug-in ”Executabili-
tyTest”). See also [2].

3 Case Study

We briefly illustrate the new synthesis functionalities of VipTool by a simple case study.
We consider the workflow caused by a damage report in an insurance company, i.e.
how a claim is processed. The workflow is described by possible (alternative) scenarios
of the business process represented by partially ordered runs (note that it is enough
to consider maximal runs with minimal causality). A Petri net model of the business
process is automatically generated either by the ”SynTokenFlowBasis” plug-in or the
”SynTransitionSepar” plug-in.

Figure 3 shows the partially ordered runs modelled in VipTool and the nets com-
puted with the synthesis plug-ins. There are three possiblescenarios: All start with the
registration of the loss form submitted by the client (task ”Register”), followed by two
concurrent tasks ”Check Damage” and ”Check Insurance”. Thelatter models checking
validity of the clients insurance, the former represents checking of the damage itself.
Scenario 1 models the situation that both checks are evaluated positively, meaning that
the damage is payed (task ”Pay Damage”) after the two checks.If one evaluation is neg-
ative, the company sends a refusal letter. Thus the task ”Send Refusal Letter” is either
performed after a negative evaluation of the task ”Check Damage” (scenario 2) or after
a negative evaluation of the task ”Check Insurance” (scenario 3).

Combining these three scenarios to a Petri net by synthesis algorithms yields the net
damageReportTF in the case of the ”SynTokenFlowBasis” plug-in (and the ”PostPro-
cessing” plug-in) and the net damageReportSSS in the case ofthe ”SynTransitionSepar”
plug-in. Both nets faithfully represent the considered business process. The test by the
”OptimisticEqualityTest” plug-in is positive in both cases. While the net damageRe-
portSSS is nearly the simplest Petri net implementation of the considered business pro-
cess, the net damageReportTF is complicated. This shows that the ”SynTokenFlowBa-
sis” plug-in requires advanced post-processing methods for better readable results.



Fig. 3. Screenshot of VipTool showing the standard user interface.

Fig. 4. Screenshot of VipTool showing the user interface of the editor for partially ordered runs.



Figure 4 depicts the scenarios of a more complex variant of the above workflow.
The refusal letter can still be sent after the completion of both parallel ”Check” tasks
if one is evaluated negatively (scenario 1). But if a negative evaluation of one ”Check”
task already causes sending a refusal letter, while the other ”Check” task has not been
performed yet, this second ”Check” task has to be disabled (i.e. it does not occur in a
respective scenario), since it is no longer necessary (scenario 2 and 3). If both ”Check”
tasks are evaluated positively, an acceptance letter is sent (scenario 4-6). Then either the
damage is immediately payed (scenario 4) or additional queries to improve estimation
of the loss are asked one (scenario 5) or two (scenario 6) times before the damage is
payed. Additionally all six scenarios include the task ”SetAside Reserves”. This task is
performed after the ”Register” task in a subprocess concurrent to all other tasks except
for ”Pay Damage”. Since the damage is payed from the respective reserves, the reserves
have to be built up first. Reserves are set aside in any situation, since, in the case the
insurance company rejects paying, the reserves have to cover the risk of a lawsuit.

Figure 5 shows the net damageReportComplexSSS synthesizedwith the ”SynTran-
sitionSepar” plug-in from the set of partially ordered runsdepicted in Figure 4. The
net represents a very compact model of the described complexbusiness process. The
”OptimisticEqualityTest” yields a positive answer.

Fig. 5.Screenshot of VipTool showing the user interface of the editor for Petri nets.

The example gives an intuition for our assumption that directly designing a Petri
net model of a business process is often challenging, while modelling scenarios and
synthesizing a net is easy. Manually developing a complex Petri net such as the net
damageReportComplexSSS for the described business process is an error-prone task,
but the design of the six scenarios 1-6 is straightforward, yielding automatically a Petri
net by synthesis algorithms.

4 Conclusion

In this paper we surveyed the new synthesis package of VipTool and its applicability
in business process design. Discussion of the computational complexity of the imple-



mented synthesis algorithms and experimental results (showing the limitations of the
algorithms) can be found in [4] and in a journal version of [12] accepted for Funda-
menta Informaticae. The current version of VipTool can freely be downloaded from
”http://www.ku-eichstaett.de/Fakultaeten/MGF/Informatik/Projekte/Viptool”.

Next steps in the development of VipTool are the implementation of functionalities
tuning VipTool to better practical applicability. This includes methods to

– improve the performance of the algorithms of the ”Unfolding”, ”Synthesis” and
”Executability” package,

– improve the ”PostProcessing” plug-in,
– include further synthesis variants,
– further improve editing functionalities of the ”Graph” package,
– deal with high-level nets.

We acknowledge the work of all other members of the VipTool development team:
Thomas Irgang, Leopold von Klenze, Andreas Klett, Christian Kölbl, Robin Löscher.

References

1. E. Badouel and P. Darondeau. Theory of Regions. InPetri Nets, LNCS 1491, pages 529–586,
1996.

2. R. Bergenthum, J. Desel, G. Juhás, and R. Lorenz. Can I Execute My Scenario in Your Net?
Viptool Tells You! In ICATPN 2006, LNCS 4024, pages 381–390, 2006.

3. R. Bergenthum, R. Lorenz, and S. Mauser. Faster Unfoldingof General Petri Nets. InAWPN
2007, pages 63–68, 2007.

4. R. Bergenthum and S. Mauser. Experimental Results on the Synthesis of Petri Nets from
Partial Languages. InPetri Net Newsletter, volume 73, pages 3–10, 2007.

5. B. Caillaud. Synet. http://www.irisa.fr/s4/tools/synet/.
6. J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Petrify: A Tool

for Manipulating Concurrent Specifications and Synthesis of Asynchronous Controllers.IE-
ICE Trans. of Informations and Systems, E80-D(3):315–325, 1997.

7. J. Desel. Model Validation - A Theoretical Issue? InICATPN 2002, LNCS 2360, pages
23–43, 2002.

8. J. Desel. From Human Knowledge to Process Models. InAccepted for UNISCON, 2008.
9. J. Desel, G. Juhás, R. Lorenz, and C. Neumair. Modelling and Validation with Viptool. In

BPM 2003, LNCS 2678, pages 380–389, 2003.
10. J. Desel and W. Reisig. The Synthesis Problem of Petri Nets.Acta Inf., 33(4):297–315, 1996.
11. A. Ehrenfeucht and G. Rozenberg. Partial (set) 2-Structures: Part I + II.Acta Inf., 27(4):315–

368, 1989.
12. R. Lorenz, R. Bergenthum, J. Desel, and S. Mauser. Synthesis of Petri Nets from Finite

Partial Languages. InACSD 2007, pages 157–166, IEEE Computer Society, 2007.
13. R. Lorenz, G. Juhás, and S. Mauser. How to Synthesize Nets from Languages - a Survey. In

Proceedings of the Wintersimulation Conference (WSC), 2007.
14. C. Seybold, S. Meier, and M. Glinz. Scenario-Driven Modeling and Validation of Require-

ments Models. InSCESM 2006, pages 83–89, ACM, 2006.
15. W. M. P. van der Aalst et al. ProM 4.0: Comprehensive Support for real Process Analysis.

In ICATPN 2007, LNCS 4546, pages 484–494, 2007.


