Synthesis of Petri Nets from Scenarios with VipTool

Robin Bergenthum, Jorg Desel, Robert Lorenz, and Selpdelt#aiser

Department of Applied Computer Science,
Catholic University of Eichstatt-Ingolstadt,
firstnane.| ast nane@u- ei chstaett. de

Abstract. The aim of this tool paper is twofold: First we show that VijT¢o,
2] can now synthesize Petri nets from partially ordered rlinsntegrate this ex-
tension and further new functionalities, we changed theitacture of VipTool to
a flexible plug-in technology. Second we explain how VipToeluding the syn-
thesis feature can be used for a stepwise and iterative fizatian and validation
procedure for business process Petri net models. The symt@ctionalities fill
agap in a previously defined procedure [9, 7] where the fifgtitien of an initial
process model had to be done "by hand”, i.e. without any toppsrt.

1 Introduction

Automatic generation of a system model from a specificatfas dehaviour in terms of
single scenarios is an important challenge in many appicareas. Examples of such
specifications occurring in practice are workflow descoipsi, software specifications,
hardware and controller specifications or event logs resmbhy information systems.

In the field of Petri net theory, algorithmic constructionaoPetri net model from
a behavioural specification is known as syntheSimthesis of Petri netsas been a
successful line of research since the 1990s. There is aodh &f nontrivial theoretical
results, and there are important applications in industiyarticular in hardware system
design, in control of manufacturing systems and recensly ad workflow design.

The classicabynthesis problers the problem to decide whether, for a given be-
havioural specification, there exists an unlabelled Petrji such that the behaviour of
this net coincides with the specified behaviour. In the pasitase, a synthesis algo-
rithm constructs a witness net. For practical applicatitims main focus is the compu-
tation of a system model from a given specification, not theisien of the synthesis
problem. Moreover, applications require the computatiba oet, whether or not the
synthesis problem has a positive answer. To guarantee @nazls system model also
in the negative case, in this paper, the synthesized modkdnsanded to be the best
(a good) upper approximation, i.e. a net including the detbehaviour and having
minimal (few) additional behaviour (for details see [12, 1]

Theoretical results on synthesis mainly differ w.r.t. tlemsideredPetri net class
and w.r.t. the considered model for thehavioral specificationSynthesis can be ap-
plied to various classes of Petri nets, including elemgntats [10, 11], place/transition
nets (p/t-nets) [1] and inhibitor nets [13]. The behavidspecification can be given by

* Supported by the project "SYNOPS” of the German Researcin€bu

a transition system representing the sequential behasfausystem or by a step tran-
sition system additionally considering steps of concuregents [1]. Synthesis can also
be based on a language. Languages can be finite or infinitefsetsurrence sequences,
step sequences [1] or partially ordered runs [12]. Desgitlis variety, the synthesis
methods follow one common theoretical concept, the sod#ileory of regions

Although there is a wide application field, there is only femltsupport for Petri
net synthesis so far. Synthesis of labelled elementaryfretstransition systems is im-
plemented in the tool Petrify [6]. Petrify is tailored to ggot hardware system design
by synthesizing asynchronous controllers from signalsitaon graphs (both modelled
as Petri nets). The process mining tool ProM [15] uses sgighmethods to automat-
ically generate a process model (given by a Petri net) froweied event logs. Event
logs specify a set of occurrence sequences. But ProM doesfeopure Petri net syn-
thesis algorithms. Synet [5] is a software package syrehmesbounded p/t-nets from
transition systems. Synet supports methods for the syistbéso called distributable
Petri nets (consisting of distributed components which mamicate by asynchronous
message passing). It was applied in the area of communicataiocol design. How-
ever, the authors point out that the tool should be consitiesea preliminary prototype
rather than a stable and robust tool.

,Check whether a
partially ordered run is
executable in a net*

Executability
Test

,Computation of a net
having the specified
behaviour*

,Computation of all
partially ordered runs
(or process nets)”

Unfolding

Petri Net

wmplementation of
specifications and
. . computation which
Validation on partially ordered runs

Unfolding satisfy the
specifications*

Fig. 1. Sketch of the key functionalities of VipTool.

This paper presents a new synthesis tool. The tool suppmrthé first time syn-
thesis of place/transition-nets from a set of partiallyeved! runs. The set of partially
ordered runs models alternative executions of a placeitian-net. The tool is imple-
mented as an extension of VipTool [9, 2], which was origipndisigned at the Univer-
sity of Karlsruhe within the research project VIP (Verificat of Information systems
by evaluation of Partially ordered runs) as a tool for mddgllsimulation, validation
and verification of business processes using (partiallgmdi runs of) Petri nets. With
this new synthesis package all aspects concerned withafhamirdered runs of Petri

nets — namely synthesis, unfolding (combined with respectalidation) and testing

of executability (see Figure 1) — are covered by VipTool. &g the synthesis package
is restricted to synthesis from finite sets of partially eetkruns as described in [12].
Typical applications of synthesis only have to deal withtérgpecifications. Since oc-
currence sequences and step sequences are special caazd&@alyy prdered runs, the

synthesis algorithms are applicable for all kinds of findeduages. Two conceptually
different synthesis methods are implemented, coveringrajer language based syn-
thesis approaches described in the literature [13]. Thea rapproaches to deal with
finite representations of infinite languages will be implemee in the near future.

Due to the growth of the number of functionalities of VipTowek redesigned Vip-
Tool in a flexible open plug-in architecture. Algorithms argplemented as plug-ins.

There are many Petri net tools for modelling and analysis MipiTool occupies
a special niche: VipTool is the only tool offering a compresige bundle of methods
(see Figure 1 for an overview) concerned with causality attarrency modelled by
partially ordered runs of Petri nets (other tools concemuitld partial order behaviour
of Petri nets focus on model checking techniques employirfgldings, but not on
causality and concurrency). In contrast to occurrence geplsequences, partially or-
dered runs allow to represent arbitrary concurrency miatbetween events. Therefore,
they are very well suited for the modelling of scenarios af@aarent systems. Advan-
tages over sequential scenarios are in intuition, effigiemzl expressiveness [7,9]. In
particular, to specify system behaviour, instead of caeréid) sequential scenarios and
trying to detect possible concurrency relations from a $sequential scenarios, it is
much easier and intuitive to work with partially orderedsun

Starting with a specification of a distributed system in terh partially ordered
runs, the synthesis package of VipTool is used for the géioeraf prototypes, to
uncover system faults or additional requirements using Ret analysis, to evaluate
design alternatives, to visualize a specification or evenhfe automatic generation of
final system models (see [14,7, 9, 8] for the significance efados in requirements
engineering and system design). In the remainder of thisosgeave explain how to
apply the synthesis package in business process desigroarttiénnew functionalities
work together with the existing validation and verificatmmcepts of VipTool.

One of the main issues of modelling a business process igsasaDbviously, anal-
ysis requires a high degree of validity of the model with eztfo the actual business
process in the sense that the model faithfully representpriicess. For complex busi-
ness processes, a step-wise design procedure, employlidgtiean of specifications
and verification of the model in each step, was suggested #i.[As shown in [9, 2],
so far VipTool supported most steps of this approach (seeFture 1). It generates
occurrence nets representing partially ordered runs of Rett models. Specifications
can be expressed on the system level by graphical meanstrécce nets are analyzed
w.r.t. these specified properties. Runs that satisfy a betial specification are distin-
guished from runs that do not agree with the specificatioe. digorithms of VipTool
for testing executability of scenarios offer functionialt for detailed validation and
verification of the model or a specification w.r.t. singlesuA complicated step that is
not supported by previous VipTool versions is the creatibainitial Petri net model
for the design procedure. The classical approach to dewefmpcess model is identi-

fying tasks and resources of the process and then directigmiag the control-flow.
The validity of the model is afterwards checked by examintsgpehaviour in compar-
ison to the behaviour of the business process. Using syiathlg®rithms (as supported
by VipTool) the procedure changes [8]. The desired behawbthe model constitutes
the initial point. First scenarios (in some contexts aldtedause cases) of the business
process are collected. Then the process model is autorhaticeated. In this approach
the main task for the user is to design appropriate scenafithge process (exploiting
descriptions of known scenarios that have to be supportetthdyusiness process).
Usually, it is less complicated to develop and model singénarios of a process than
directly modelling the process as a whole. In particulacdntrast to a complete pro-
cess model, scenarios need not be designed by some mod={fiegt, but they may
also be designed independently by domain experts.

In Section 2 we survey the new architecture and the featdrépdool. In Section
3 the new synthesis functionalities are illustrated witlmak case study.

2 Architecture and Functional Features of VipTool

In this section we provide a detailed description of the fiomalities and the architec-
ture of VipTool. VipTool is a platform independent softwaoel developed in Java. Its
previous versions [9, 2] were standalone applicationsighog functionalities for the
analysis of partially ordered runs of Petri nets based updava Swing GUI. Due to
the growth of functionalities and to increase feature esitglity we redesigned Vip-
Tool as an open plug-in architecture. The focus is still @oathms concerned with
partially ordered runs. VipTool uses only standard Javatibs and a GUI developed
with the Java swing widget toolkit. It is implemented stgidiollowing advanced ob-
ject oriented paradigms. In the development of VipTool, wecainted for professional
standards such as design patterns, coding conventiong-trdmking system and an
extensive documentation. The following paragraph giveswenview of the new archi-
tecture of VipTool.

The VipTool core platform offers a flexible plug-in techngjo The so-called exten-
sion manager serves as the foundation for the integratigrugfins. More precisely,
it provides functions to load plug-ins into VipTool. Additially, the core platform pro-
vides definition and implementation of basic GUI element @tated actions, project
management functionalities, job scheduling organizagienvell as system-wide con-
figurations. Development of plug-ins is supported by theTdig SDK library. VipTool
SDK provides appropriate interfaces that can be implentebyeplug-ins as well as
interfaces arranging the connection to the VipTool coré&ten. VipTool SDK also in-
cludes some key support classes. Embedding of plug-inghet&UI of the core plat-
form is managed via xml-specifications supporting easynsidity and scalability.
That means, xml-files are used to configure the GUI of VipTgoatequately adding
and extending menus, buttons, etc. relating to respediixgips. The functional com-
ponents of VipTool are arranged in an open plug-in architectonnectable to the
core platform by the extension manager. Figure 2 depicssdtahitecture, where the
functional component plug-ins are bundled to packagesidtiey homogeneous func-
tionalities. Component dependencies are indicated byatro

Plug-Ins
ﬁygthesis Package Unfolding Package Executability

- Package

nTokenFlowBasis UnfoldingOccNetDepth
7]
%ﬁransitionSepar /\)QlidationofOchels }-

= i
%misticEquaIityTest } %oldingRunTokenFIrJ% MinExecutabilityTest

\(% PostProcessing
)@ph Package
I

v

%raph H PetriNet ‘ J/\LPartiaIOrder
>

-+ ProcessNet ‘ AcyclicLayout %neramayout

ExecutabilityTest J

| VipTool SDK |
VipTool Core Platform Extension
Project Job) . Manager
‘ Gul ‘ ‘ Management ‘ Scheduling ‘ ‘ Configurations

Fig. 2. Architecture of VipTool.

The key functionalities of previous VipTool versions haweh extracted and reim-
plemented in independent plug-ins. In Figure 2, new compnef VipTool are dis-
tinguished from reimplemented functionalities by a "nelabel. Since the number of
supported graph and Petri net classes grew, we decided tedgfiph classes as gen-
eral as possible in a special plug-in and to implement egldimd user interaction func-
tionalities for certain graph classes as additional phg(fGraph Package”). Plug-ins
providing algorithmic functionalities ("Synthesis Pagled, "Unfolding Package”, "Ex-
ecutability Package”) can be executed in different thragilsg the job system of the
core platform. Plug-ins may communicate with the core platf according to arbi-
trary communication patterns. The implementation of ussndard communication
patterns for algorithmic plug-ins such as status messggegress bars and logging
information is supported by special interfaces of VipTo@lkS Algorithms can ma-
nipulate data by using common datastructures defined in clagaes and interfaces
of certain plug-ins. To simplify integration of componed&seloped independently or
cooperatively by different teams, VipTool also supportsyedata exchange between
plug-ins and the core platform using xml-files, e.g. pnnédiin the case of Petri nets
(pnml is a widely acknowledged standard exchange forma®é&bri nets) and Ipo-files
in the case of partially ordered runs (Ipo is an xml-file fotinahe style of pnml). Thus,
common datastructures among plug-ins are not requireitifdéing extensibility, scal-
ability, composability and reusability of VipTool functialities. Respective xml-files
are arranged by the core platform in workspaces and projalitsving an arbitrary
subfolder structure. The core platform supports a projeet window to offer easy file
management. This is important for flexible and easy invocatif algorithms because
the various functionalities have different and partly céempnput and output types.

Short descriptions of the VipTool plug-ins shown in Figure 2
Graph Package
Graph: Provides basic graph classes and interfaces. This plugrinsfthe foundation
of the "PetriNet”, "LPartialOrder” and "ProcessNet” plug-
PetriNet: Includes Petri net visualization and editing functionatitas well as simple
interactive features such as playing the token game andisg@se- and post-sets.
LPartialOrder: Supports visualization and design of partially orderedsriom labelled
partial orders and offers some related functionalitiehsag computing the transitive
closure of a binary relation or the skeleton of a partial arde
ProcessNetProvides visualization functionalities for occurrencésne
Acyclic Layout:Offers automatic layout functionalities for directed daygraphs such
as labelled partial orders and occurrence nets (based @utfigama algorithm).
General LayoutOffers automatic layout functionalities for general graghch as Petri
nets (based on the spring embedder algorithm by FruchteaméfReingold).
Synthesis Package
SynTokenFlowBasismplements the constructive part of the synthesis algaoritar
place/transition Petri nets from a finite set of partialldered runs as described in [12,
4]. So called token flow regions and a finite representatiobdsys regions are applied
[13] (employing the algorithm of Chernikova). The resultloé algorithm is a net rep-
resenting a best upper approximation to the specified betavi
SynTransitionSepatmplements the constructive part of a synthesis algoritmplace/
transition Petri nets from a finite set of partially orderads using a translation to step
sequences (based on methods described in [1]). So callesitioa regions and a finite
representation by separating regions are applied [13]l@yimy the Simplex method).
The result of the algorithm is either a negative answer tosthrehesis problem com-
bined with a net, illustrating the reason for the negativenar, or a net representing a
best upper approximation to the specified behaviour. In tedase the computed net
is a good upper approximation but not necessarily a bestruggg@oximation to the
specified behaviour (although a best upper approximatimtsx
OptimisticEqualityTestimplements the optimistic equality test described in [12,4
using the newly developed unfolding plug-in "UnfoldingRukenFlow” (employs a
graph isomorphism test between single partially ordered hy a branch-and-bound
procedure optimized for partially ordered runs [4]). It glsaf the behaviour of a net
synthesized by the "SynTokenFlowBasis” or the "SynTraosBepar” plug-in matches
the specified behaviour. In the positive case the synthesidgm has a positive answer,
otherwise a negative answer.
PostProcessingContains a simple and very fast method to delete implicitggafrom
a net. This reduces the size of nets synthesized with theT&@senFlowBasis” or the
"SynTransitionSepar” plug-in. More advanced post-preggsmethods are planned.
Unfolding Package
UnfoldingOccNetDepthdnfolds a Petri net to its occurrence nets (following stadda
techniques). Occurrence nets are constructed on the flyaépth dirst order. Also con-
struction of the branching process including cut-off ciéés supported. See also [9].
ValidationOfOccNetsAllows to specify graphically certain properties of a Petet,
like specific forms of forbidden and desired behaviour. Téeod runs, computed by

the "UnfoldingOccNetDepth” plug-in, is divided into thesens, which fulfill the spec-
ifications, and runs, which do not fulfill at least one of theafications. See also [9].
UnfoldingRunTokenFlowmplements the unfolding algorithm to construct the setlof a
partially ordered runs of a Petri net described in [3]. Tlgoathm applies an innovative
unfolding concept based on token flows, which in the case oége place/transition-
nets is considerably superior to standard unfolding algors in time and memory con-
sumption. This is in particular important to improve the time of the "OptimisticE-
qualityTest”, which depends on an unfolding algorithm. Bihgorithm does not regard
cut-off criteria.

Executability Package

ExecutabilityTestSupports the polynomial test, whether a given partiallyeoed run

is executable in a given Petri net, explained in [2] (empigyinethods from the theory
of flow networks). The plug-in facilitates failure analysisd constructs an occurrence
net corresponding to a checked partially ordered run. See[2].
MinExecutabilityTestOffers an algorithm to compute whether a partially ordered r
executable in a Petri net, is minimal executable (based emplhg-in "Executabili-
tyTest”). See also [2].

3 Case Study

We briefly illustrate the new synthesis functionalities @i Vool by a simple case study.
We consider the workflow caused by a damage report in an insereompany, i.e.
how a claim is processed. The workflow is described by posgilernative) scenarios
of the business process represented by partially orderesl (note that it is enough
to consider maximal runs with minimal causality). A Petrt neodel of the business
process is automatically generated either by the "SynTelkevBasis” plug-in or the
"SynTransitionSepar” plug-in.

Figure 3 shows the partially ordered runs modelled in Vigd®oa the nets com-
puted with the synthesis plug-ins. There are three possdararios: All start with the
registration of the loss form submitted by the client (taRegister”), followed by two
concurrent tasks "Check Damage” and "Check Insurance” |atter models checking
validity of the clients insurance, the former representscg&ing of the damage itself.
Scenario 1 models the situation that both checks are eealyaisitively, meaning that
the damage is payed (task "Pay Damage”) after the two chéakse evaluation is neg-
ative, the company sends a refusal letter. Thus the taskd’8efusal Letter” is either
performed after a negative evaluation of the task "Check &gah (scenario 2) or after
a negative evaluation of the task "Check Insurance” (séer&r

Combining these three scenarios to a Petri net by synthigsistams yields the net
damageReportTF in the case of the "SynTokenFlowBasis"-pi@nd the "PostPro-
cessing” plug-in) and the net damageReportSSS in the célse 8ynTransitionSepar”
plug-in. Both nets faithfully represent the consideredibess process. The test by the
"OptimisticEquality Test” plug-in is positive in both caseéWhile the net damageRe-
portSSS is nearly the simplest Petri net implementatioh@tbnsidered business pro-
cess, the net damageReportTF is complicated. This showththéSynTokenFlowBa-
sis” plug-in requires advanced post-processing methadsdfiber readable results.

File Extensions

Thw

Exit

T workspace defauk: |

sceniod |

[scenario2 ‘

§) scenario3 |

-4 natsDamageReport
- [@ damageReportsss. pml
1@ damageReportTF prml
-2 scenariosDamageReport
1§ scenariol lpo
&) seenario2 dpo
&) seenariod bpo

Register,
Chesk Damage

Cheok Insurance

PayDamage

Register,

Check Damage

Send Refusal Letter

Cheek Insurance

Registar,

Cheek Damage

CheckInsurance

Send Refusal Letter

[&) dsmagsReportTF ‘

@ damageReportSss

Pay Damage

Send Refusal Letter

Cheek Damage

log message | 10b Monitor |

2007.Dez.14 15:58:20 MESSAGE |
2007.Dez.14 15:58:20 MESSAGE

2007.Dez. 14 15:58:20 MESSAGE —-

TipTaol session started. |

VipTool
File Extensions Draw Graph LPO

Tha BREZ 240N GG BB e B onm e

Ty Wrkspace defaut: |

) seenario2.po
- §) scenarioalpo
) seenariot.fpo
- §) scenarios.Ipo
) scenariot.po

CheckDamags CheokInsuiance Set Aside Resenves

Send Refusal Letter

Cheek Insurane

Send Refusal Letter

Set Aside Resaes

& scenario | 5 scenarioz 1§ scenario3
b insuranceE xample
%+ netsDamageReportComplex
- stenariosDamageReportComplex
Register i
Wscenzriot oo o Regist Ragister

CheckGamage SetAside Reserves

Send Refusal Letter

T senoror |

B scenarios |

%) scenarios |

Flegister,

GheckDamage Cheok Insurance et ASide Reserves

Send Acceptance Letter

Fay Damage

Régister,

Check Insuranes

Check Damage

Send Acceptance Letter

sk Additional Qyeriss

Pay Damage

Set Asifle Resarves

Register,

Set Aside Reserves

Cheek Insurance

Chask Damage

Send Acceptancs Letter

Ak Addition al Qusriss

sk Additional Queries

Pay Damage

Fig. 4. Screenshot of VipTool showing the user interface of theoeddr partially ordered runs.

Figure 4 depicts the scenarios of a more complex variant@atiove workflow.
The refusal letter can still be sent after the completionathkparallel "Check” tasks
if one is evaluated negatively (scenario 1). But if a negadivaluation of one "Check”
task already causes sending a refusal letter, while the t@eck” task has not been
performed yet, this second "Check” task has to be disabledif{idoes not occur in a
respective scenario), since it is no longer necessary gsiced and 3). If both "Check”
tasks are evaluated positively, an acceptance letterigsmmario 4-6). Then either the
damage is immediately payed (scenario 4) or additionaligsiéo improve estimation
of the loss are asked one (scenario 5) or two (scenario 6xtméore the damage is
payed. Additionally all six scenarios include the task "Aside Reserves”. This task is
performed after the "Register” task in a subprocess coeatito all other tasks except
for "Pay Damage”. Since the damage is payed from the respgaetserves, the reserves
have to be built up first. Reserves are set aside in any sityaince, in the case the
insurance company rejects paying, the reserves have to twvask of a lawsuit.

Figure 5 shows the net damageReportComplexSSS synthegtbetthe "SynTran-
sitionSepar” plug-in from the set of partially ordered rudepicted in Figure 4. The
net represents a very compact model of the described corbpkress process. The
"OptimisticEquality Test” yields a positive answer.

Toe EBREe 2 400N % #E o oom o

), Workspace default | @ damageReportComplexsss ‘

‘ 55,51
{1 scenariosDamageR eport Complex

Fig. 5. Screenshot of VipTool showing the user interface of theoeddr Petri nets.

The example gives an intuition for our assumption that diyedesigning a Petri
net model of a business process is often challenging, whildetling scenarios and
synthesizing a net is easy. Manually developing a compléx Ret such as the net
damageReportComplexSSS for the described business priscas error-prone task,

but the design of the six scenarios 1-6 is straightforwaiedding automatically a Petri
net by synthesis algorithms.

4 Conclusion

In this paper we surveyed the new synthesis package of Vi its applicability
in business process design. Discussion of the computationgplexity of the imple-

mented synthesis algorithms and experimental resultsvigigathe limitations of the
algorithms) can be found in [4] and in a journal version of][&2cepted for Funda-
menta Informaticae. The current version of VipTool can lfrdee downloaded from
"http://www.ku-eichstaett.de/Fakultaeten/MGF/Infatik/Projekte/Viptool”.

Next steps in the development of VipTool are the impleméonadf functionalities

tuning VipTool to better practical applicability. This ilicles methods to

improve the performance of the algorithms of the "Unfoldintynthesis” and
"Executability” package,

improve the "PostProcessing” plug-in,

include further synthesis variants,

further improve editing functionalities of the "Graph” page,

deal with high-level nets.

We acknowledge the work of all other members of the VipTookdgpment team:

Thomas Irgang, Leopold von Klenze, Andreas Klett, ChnisHalbl, Robin Loscher.

References

(0]

10.
11.

12.

13.

14.

15.

E. Badouel and P. Darondeau. Theory of RegionPeln Nets, LNCS 149bages 529-586,
1996.

. R.Bergenthum, J. Desel, G. Juhas, and R. Lorenz. Cancuiixdly Scenario in Your Net?

Viptool Tells You! InICATPN 2006, LNCS 4024ages 381-390, 2006.

. R.Bergenthum, R. Lorenz, and S. Mauser. Faster Unfoldfigeneral Petri Nets. IAWPN

2007 pages 63-68, 2007.

. R. Bergenthum and S. Mauser. Experimental Results onythth&sis of Petri Nets from

Partial Languages. IRetri Net Newslettevolume 73, pages 3-10, 2007.

. B. Caillaud. Synet. http://www.irisa.fr/s4/tools/®th
. J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagaad A. Yakovlev. Petrify: A Tool

for Manipulating Concurrent Specifications and Synthesisynchronous ControllerdE-
ICE Trans. of Informations and Syster&80-D(3):315-325, 1997.

. J. Desel. Model Validation - A Theoretical Issue? IGATPN 2002, LNCS 236@ages

23-43, 2002.

. J. Desel. From Human Knowledge to Process Model#clriepted for UNISCON2008.
. J. Desel, G. Juhas, R. Lorenz, and C. Neumair. Modellimh\alidation with Viptool. In

BPM 2003, LNCS 267%ages 380-389, 2003.

J. Desel and W. Reisig. The Synthesis Problem of Petsi.Meta Inf, 33(4):297-315, 1996.
A. Ehrenfeucht and G. Rozenberg. Partial (set) 2-Strest Part | + 11 Acta Inf, 27(4):315—
368, 1989.

R. Lorenz, R. Bergenthum, J. Desel, and S. Mauser. Ssistloé Petri Nets from Finite
Partial Languages. IACSD 2007 pages 157-166, IEEE Computer Society, 2007.

R. Lorenz, G. Juhas, and S. Mauser. How to Synthesizefieh Languages - a Survey. In
Proceedings of the Wintersimulation Conference (W3Q0)7.

C. Seybold, S. Meier, and M. Glinz. Scenario-Driven Modgand Validation of Require-
ments Models. 'SCESM 2006pages 83-89, ACM, 2006.

W. M. P. van der Aalst et al. ProM 4.0: Comprehensive Stiffporeal Process Analysis.
In ICATPN 2007, LNCS 454@ages 484—-494, 2007.

