
Comparison of Different Algorithms to Synthesize a
Petri Net from a Partial Language

Robin Bergenthum and Sebastian Mauser

Department of Applied Computer Science,
Catholic University of Eichstätt-Ingolstadt,

firstname.lastname@ku-eichstaett.de

Abstract. In this paper we present two new algorithms that effectively synthe-
size a finite place/transition Petri net (p/t-net) from a finite set of labeled partial
orders (a finite partial language). Either the synthesized p/t-net has exactly the
non-sequential behavior specified by the partial language, or there is no such p/t-
net. The first algorithm is an improved version of a synthesis algorithm presented
in [11], which uses the classical theory of regions applied to the set of step se-
quences generated by the given partial language. Instead of computing all step
sequences, the new algorithm directly works on appropriate prefixes specified
in the partial language. The second algorithm is based on the theory of token
flow regions for partial languages developed in [13, 12, 11]. While in [12, 11]
a so called basis representation is applied, the new algorithm for the first time
combines the concept of separation representation with the idea of token flows.
We implemented both synthesis algorithms in our framework VipTool. The im-
plementations are used to compare the two new algorithms (also with the two
algorithms presented in [11]). The paper provides experimental results.

1 Introduction

Synthesis of Petri nets from behavioral descriptions has been a successful line of re-
search since the 1990s. There is a rich body of nontrivial theoretical results, and there
are important applications in industry, in particular in hardware system design [4, 9],
and recently also in workflow design [16]. Moreover, there are several synthesis tools
that are based on the theoretical results. The most prominent one is Petrify [3].

Originally, synthesis meant algorithmic construction of an unlabeled Petri net from
sequential observations. It can be applied to various classes of Petri nets, including
elementary nets [6] and place/transition nets (p/t-nets) [1]. Synthesis can start with a
transition system representing the sequential behavior of a system or with a step transi-
tion system which additionally represents steps of concurrent events [1]. Synthesis can
also be based on a language (originally a set of occurrence sequences or step sequences
[5]). The synthesis problem is to decide whether, for a given behavioral specification,
there exists an unlabeled Petri net of the respective class such that the behavior of this
net coincides with the specified behavior.

In [11] we developed two algorithms to solve the synthesis problem for p/t-nets
where the behavior is given in terms of a finite partial language L, i.e. as a finite set
of labeled partial orders (LPOs – also known as partial words [7] or pomsets [15]).

Partial order behavior of Petri nets truly represents the concurrency of events and is
often considered the most appropriate representation of behavior of Petri net models.
Both algorithms apply the so called theory of regions in the setting of partial languages.
A region defines a possible place of the synthesized net structurally w.r.t the given
specification.

All approaches to Petri net synthesis based on regions roughly follow the same idea:

– Instead of solving the synthesis problem (is there a net with the specified behavior?)
and then – in the positive case – synthesizing the net, first a net is constructed from
the given specification.

– The construction starts with the transitions taken from the behavioral specification.
– Its behavior will be restricted by the addition of places and according initial mark-

ings and arcs.
– Each region yields a corresponding place in the constructed net. A region is defined

in such a way that the behavior of the net with its corresponding place still includes
the specified behavior.

– When all, or sufficiently many, regions are identified, all places of the synthesized
net are constructed.

– If the behavior of the synthesized net coincides with the specified behavior, then
the synthesis problem has a positive solution; otherwise there is no Petri net with
the specified behavior and therefore the synthesis problem has a negative solution.

Each region yields a feasible place. The crucial point is that the set of all regions
is mostly infinite, whereas in most cases a finite set of regions suffices to represent all
relevant dependencies. In region theory there are basically two different approaches to
calculate such a finite set of regions, called basis representation and separation repre-
sentation. Both methods can be adapted to various region definitions as described in
[14].

The two algorithms to synthesize a p/t-net from a finite partial language presented in
[11] use the following principles: The first one (Alg. I) uses a region definition based on
a translation of the given partial language into a language of step sequences, namely so
called transition regions of the set of step sequences generated by the partial language
are applied. This approach is combined with the principle of separation representa-
tion. The second algorithm (Alg. II) used a region definition defined directly on the
partial language, so called token flow regions, combined with the basis representation
approach. We implemented both algorithms and compared their runtime with different
examples. The first algorithm Alg. I using the transition regions is faster than Alg. II in
examples which do not contain a lot of concurrency. The separation representation used
in this algorithm leads to solutions containing far less places than the second approach
using the basis representation. In examples containing a lot of concurrency the trans-
lation of the partial language into a language of step sequences is too costly. In these
examples Alg. II, defining regions directly on the given partial language, is superior to
Alg. I, but using the basis representation approach seems to worsen the overall runtime.
Computing the complete basis seems to be inefficient.

The aim of this paper is to deduce two new algorithms from the experiences of
the results in [11]. The first one is an advanced version of Alg. I using so called LPO

transition regions. LPO transition regions are very similar to the transition regions of
Alg. I, but it is not necessary to translate the given partial language into a language
of step sequences. Instead appropriate prefixes of the partial language are considered.
Therefore, this new algorithm performs better then Alg I and this leads to a very fast
algorithm solving the synthesis problem given a partial language containing not too
much concurrency. But if there is a lot of concurrency, the number of prefixes is very
high making this algorithm problematic in runtime. The second new algorithm uses
the token flow regions as Alg II. The difference is that we use an adapted separation
representation, which is superior to the basis representation in practical use. This leads
to an algorithm which performs a lot faster than Alg. II in any example. This new
algorithm is a very fast algorithm solving the synthesis problem given a partial language
containing much concurrency, since the performance of the algorithm is better if the
partial language exhibits much concurrency.

We implemented both algorithms and performed runtime tests. As explained, each
of the two new algorithms is superior to one of the algorithms presented in [11]. Thus
they are the most promising algorithms to synthesize a p/t-net from a finite partial lan-
guage developed so far. To examine their relation in detail, we present experimental
results comparing the two new algorithms in this paper.

The remainder of the paper is organized as follows: we start with a brief introduc-
tion to p/t-nets, LPOs, partial languages and enabled LPOs in Section 2. In Section
3 we consider the problem of synthesizing a p/t-net from a given partial language. In
Section 4 we first describe transition regions as developed in [11] and second improve
those transition regions to a new advanced region definition of so called LPO transition
regions. The definition of LPO transition regions leads to a new advanced algorithm
solving the synthesis problem. In Section 5 we recall the definitions and main results
from [13]. We develop a second algorithm to solve the synthesis problem using token
flow regions as described in [12], but use a better adapted approach to calculate a finite
set of places. Finally, we provide experimental results on the time consumption of both
new synthesis algorithms.

2 Preliminaries

In this section we first introduce the definitions of place/transition nets (p/t-nets), la-
beled partial orders (LPOs), partial languages and LPOs enabled w.r.t. p/t-nets. We
start with basic mathematical notations: by N we denote the nonnegative integers. N+

denotes the positive integers. The set of all multi-sets over a set A is the set NA of all
functions f : A → N. Addition + on multi-sets is defined as usual by (m + m′)(a) =
m(a) + m′(a). We also write

∑
a∈A m(a)a to denote a multi-set m over A and a ∈ m

to denote m(a) > 0.

Definition 1 (Place/transition net). A place/transition-net (p/t-net) N is a quadruple
(P, T, F,W), where P is a (possibly infinite) set of places, T is a finite set of transitions
satisfying P ∩ T = ∅, F ⊆ (P × T) ∪ (T × P) is the flow relation and W : F → N+

is a weight function.

We extend the weight function W to pairs of net elements (x, y) ∈ (P×T)∪(T×P)
with (x, y) 6∈ F by W (x, y) = 0. A marking of a p/t-net N = (P, T, F,W) is a multi-

set m : P → N assigning m(p) tokens to a place p ∈ P . A marked p/t-net is a
pair (N, m0), where N is a p/t-net, and m0 is a marking of N , called initial marking.
Figure 1 shows a marked p/t-net (N, m0). Places are drawn as circles including tokens
representing the initial marking, transitions as rectangles and the flow relation as arcs
annotated by the values of the weight function (the weight 1 is not shown).

a b
2p1

p2 p3

Fig. 1. A marked p/t-net (N, m0).

A multi-set of transitions τ ∈ NT is called a step (of transitions). A step τ is enabled
to occur (concurrently) in a marking m if and only if m(p) ≥ ∑

t∈τ τ(t)W (p, t) for
each place p ∈ P . In this case, its occurrence leads to the marking m′(p) = m(p) +∑

t∈τ τ(t)(W (t, p)−W (p, t)). We write m
τ−→ m′ to denote that τ is enabled to occur

in m and that its occurrence leads to m′. A finite sequence of steps σ = τ1 . . . τn, n ∈
N, is called a step occurrence sequence enabled in a marking m and leading to mn,
denoted by m

σ−→ mn, if there exists a sequence of markings m1, . . . , mn such that
m

τ1−→ m1
τ2−→ . . .

τn−→ mn. In the marked p/t-net (N, m0) from Figure 1 only the
steps a and b are enabled to occur in the initial marking. In the marking reached after
the occurrence of a, the step a + b is enabled to occur.

We use partial orders with nodes (called events) labeled by transition names to
specify scenarios describing the behavior of Petri nets.

Definition 2 (Labeled Partial order). A labeled partial order (LPO) is a triple lpo =
(V, <, l), where V is a finite set of nodes, <⊆ V × V is an irreflexive and transitive
relation over V , called the set of edges and l : V → T is a labeling function with set
of labels T .

Two nodes v, v′ ∈ V of an LPO (V,<, l) are called independent if v 6< v′ and
v′ 6< v. By co ⊆ V × V we denote the set of all pairs of independent nodes of V . A
co-set is a subset C ⊆ V fulfilling: ∀x, y ∈ C : x co y. A cut is a maximal co-set. For a
co-set C of an LPO (V, <, l) and a node v ∈ V \C we write v < (>) C, if v < (>) s for
an element s ∈ C and v co C, if v co s for all elements s ∈ C. A partial order (V ′, <′, l′)
is a prefix of another partial order (V, <, l) if V ′ ⊆ V , (v′ ∈ V ′∧v < v′) =⇒ (v ∈ V ′)
and <′=< ∩V ′ × V ′.

A partial order po = (V, <) is called stepwise linear if co is transitive. Given LPOs
po1 = (V, <1, l) and po2 = (V, <2, l), po2 is a sequentialization of po1 if <1⊆<2. If
po2 is stepwise linear, it is called step linearization of po1.

In this paper we consider LPOs only up to isomorphism. Two LPOs (V, <, l) and
(V ′, <′, l′) are called isomorphic, if there is a bijective mapping ψ : V → V ′ such that
l(v) = l′(ψ(v)) for v ∈ V , and v < w ⇐⇒ ψ(v) <′ ψ(w) for v, w ∈ V .

Definition 3 (Partial language). Let T be a finite set. A set L ⊆ {lpo | lpo is an LPO
with set of labels T} is called partial language over T .

We always assume that each label from T occurs in a partial language over T . Figure
2 shows a partial language given by the set of LPOs L = {lpo1, lpo2}, which we will
use as a running example.

b
a

b a

L

lpo1 lpo2

Fig. 2. A partial language.

There are two equivalent formal notions of runs of p/t-nets defining non-sequential
semantics based on [10, 17]. We only give the notion of enabled LPOs here: an LPO
is enabled w.r.t. a marked p/t-net, if for each cut of the LPO the marking reached by
firing all transitions corresponding to events smaller than the cut enables the step (of
transitions) given by the cut.

Definition 4 (Enabled LPO). Let (N,m0) be a marked p/t-net, N = (P, T, F, W).
An LPO lpo = (V, <, l) with l : V → T is called enabled (to occur) in (N,m0) if
m0(p) +

∑
v∈V ∧v<C(W (l(v), p) − W (p, l(v))) ≥ ∑

v∈C W (p, l(v)) for every cut
C of lpo and every p ∈ P . Its occurrence leads to the final marking m′ given by
m′(p) = m0(p) +

∑
v∈V (W (l(v), p)−W (p, l(v))).

Enabled LPOs are also called runs. The set of all LPOs enabled in (N,m0) is
Lpo(N,m0). Lpo(N,m0) is called the partial language of runs of (N, m0).

There is an equivalent characterization of enabledness using step sequences and
their correspondence to stepwise linear LPOs: a stepwise linear LPO lpo′ = (V, <′, l)
can be represented by the step sequence σlpo′ = τ1 . . . τn defined by V = V1∪ . . .∪Vn,
<′=

⋃
i<j Vi × Vj and τi(t) = |{v ∈ Vi | l(v) = t}|. An LPO lpo = (V, <, l) is

enabled in (N, m0) if and only if, for each step linearization lpo′ = (V, <′, l) of lpo,
the step sequence σlpo′ is enabled in (N, m0).

Observe that Lpo(N, m0) is always sequentialization and prefix closed, i.e. every
sequentialization and every prefix of an enabled LPO is again enabled w.r.t. (N, m0).
Moreover, the set of labels of Lpo(N, m0) is always finite. Therefore, when specifying
the non-sequential behavior of a searched p/t-net by a partial language, this partial lan-
guage must necessarily be sequentialization and prefix closed and must have a finite set
of labels. Usually, we specify the non-sequential behavior by a set of concrete LPOs L
which is not sequentialization and prefix closed and then consider the partial languageL
which emerges by adding all prefixes of sequentializations of LPOs in L. In this sense,
the partial language L in Figure 2 specifies the non-sequential behavior of a searched
p/t-net by extending it to its prefix and sequentialization closure L = {lpo | lpo is a
prefix of a sequentialization of an LPO in L} = Lpo(N,m0). Both LPOs shown in this

Figure are enabled w.r.t. the marked p/t-net (N, m0) shown in Figure 1. Thus, (N, m0)
solves the synthesis problem w.r.t. L.

3 Synthesis of P/T-Nets

We consider the problem of synthesizing a p/t-net from a partial language specifying
its non-sequential behavior. We develop two different algorithms to compute a marked
p/t-net (N, m0) from a given set of LPOs L such that its prefix and sequentialization
closure L satisfies L = Lpo(N,m0) (if such a net exists). The idea to construct such a
net (N, m0) is as follows: the set of transitions of the searched net is given by the finite
set of labels of L. Then each LPO in L is enabled w.r.t. the marked p/t-net consisting
only of these transitions (having an empty set of places). We restrict the behavior of this
net by adding places. Each place is defined by its initial marking and the weights on the
arcs connecting it to each transition (Figure 3).

a b
?

?
?

?

?

Fig. 3. An unknown place of a p/t-net.

a b
2

a b

Fig. 4. Left: a feasible place. Right: a place which is
not feasible.

Since the specified behavior given by the partial language L should be included in
Lpo(N,m0), we only add places which do not exclude specified behavior. Thus we
distinguish two kinds of places: in the case that there is an LPO in L which is not a run
of the corresponding ”one place”-net, this place restricts the behavior too much. Such a
place is non-feasible. In the other case, the considered place is feasible.

Definition 5 (Feasible place). Let L be a partial language over the finite set of labels
T and let (N, mp), N = ({p}, T, Fp,Wp) be a marked p/t-net with only one place
p. (N, mp) is called associated to p. The place p is called feasible (w.r.t. L), if L ⊆
Lpo(N,mp), otherwise non-feasible (w.r.t. L).

Figure 4 shows on the left side a place which is feasible w.r.t. the partial language
L in Figure 2. This is because, after the occurrence of a, the place is marked by two
tokens. In this marking the step a + b is enabled to occur (as specified by lpo2). The
place shown on the right side is non-feasible, because, after the occurrence of a, the
place is again marked by only one token. In this marking the step a + b is not enabled
to occur. Thus lpo2 is not enabled w.r.t. the one-place-net shown on the right side.

Adding only feasible places to the set of transitions given by the labels of a partial
language L results in a p/t-net (N, m0) for which holds L ⊆ Lpo(N, m0). If (N, m0)
includes any non-feasible place, L = Lpo(N,m0) is not possible. Adding places re-
duces Lpo(N, m0). Therefore, adding all feasible places leads to a p/t-net which is a
solution of the synthesis problem or there is no solution. The first problem is to iden-
tify feasible places. Feasible places can be found through so called regions. A region is

a function defined on the structure of the language fulfilling certain properties. Every
region corresponds to a feasible place. In this paper we will discuss two different def-
initions of regions of partial languages and discuss their algorithmic applicability. The
second problem is that there are always infinitely many feasible places. One possibility
to tackle this problem in region theory is a so called separation representation [14]. The
idea is to represent non-specified behavior through a finite set of so called wrong con-
tinuations of L. This set of wrong continuations has the property that if we exclude this
behavior from a p/t-net (N, m0) it holds Lpo(N, m0) ⊆ L. If there exists a solution of
the synthesis problem, it is possible to exclude all wrong continuations through a finite
set of feasible places. In this case the resulting net is a solution of the synthesis problem.

4 LPO Transition Regions

A naive approach to synthesize a p/t-net from a finite partial language L is to consider
the set of step sequences SL generated by the LPOs in L (see Figure 5). Following ideas
in [8], where regions of trace languages are defined, it is possible to define regions of
languages of step sequences [11].

a

b c

a a
a(b+c)aa

acaba

acbaa

abcaa

abaca

a(b+c)aa

acaba

acbaa

abcaa

abaca

a(b+c)(a+a)

acb(a+a)

abc(a+a)

ac(a+b)a

ab(a+c)a

a(b+c)(a+a)

acb(a+a)

abc(a+a)

ac(a+b)a

ab(a+c)a

Fig. 5. Set of maximal step sequences generated by an LPO.

A region of a language of step sequences L′ is simply a tuple of natural numbers
which represents the initial marking of a place and the number of tokens each transition
consumes respectively produces in that place, satisfying some property which ensures
that no step sequence of the given language L′ is prohibited by this place. The set of
regions of L′ defines the set of feasible places of L′ [11]. Such regions, which are
directly given by the parameters of a place, are called transition regions [14].

Definition 6 (Transition region). Denoting T = {t1, . . . , tm} the transitions occur-
ring in L′, a transition region of L′ is a tuple r = (r0, . . . , r2m) ∈ N2m+1 satisfying
for every σ = τ1 . . . τn ∈ L′ and every j ∈ {1, . . . , n} :

(i) r0 +
m∑

i=1

((τ1 + . . . + τj−1)(ti) · ri − (τ1 + . . . + τj)(ti) · rm+i) ≥ 0.

Every transition region r of L′ defines a place pr via m0(pr) := r0, W (ti, pr) := ri

and W (pr, ti) := rm+i for 1 6 i 6 m. The place pr is called the corresponding place
to r.

In this paper for an algorithmic application we use an advanced approach. Calcu-
lating all step sequences from a given LPO is very costly. Furthermore the transition
region definition leads to many needless inequations. Many of them are equal and or
less restrictive then others. In particular, given a step sequence σ = τ1 . . . τn, a differ-
ent partitioning of the steps τ1 . . . τ(n−1) does not change the corresponding inequation
(i). Thus, it is sufficient to only count the number of transition occurrences in the steps
τ1 . . . τ(n−1) to formulate the corresponding inequation. Given a step sequence τ1 . . . τn

the sum π =
∑n−1

i=1 τ(i) we call a prefix step. Furthermore given a fixed prefix step π,
it is sufficient to consider the occurrence of maximal steps τn after π as given by the
partial language, since maximal steps form more restrictive inequations. Given a partial
language L we compute the set of all possible prefix steps as the set of all parikh vectors
corresponding to prefixes of L.

Definition 7 (Prefix step, maximal right continuation). Given a prefix and sequen-
tialization closed partial language L with the set of labels T . The set ΠL = {π ∈ NT |
∃ lpo = (V, <, l) ∈ L : ∀t ∈ T π(t) = |{v ∈ V | l(v) = t}|} contains all multi-sets
corresponding to the number of transition occurrences in each LPO in L. π ∈ ΠL is
called a prefix step of L.

Given a prefix step π, a multi-set τ ∈ NT is called a step after π, if there exists an
lpo = (V, <, l) ∈ L and a co-set C ⊆ V for which holds: ∀ t ∈ T (τ(t) = |{v ∈
C| l(v) = t}| ∧ π(t) = |{v ∈ V | ∃ c ∈ C : v < c, l(v) = t}|). If C is a cut, then τ
is called cut after π.

Denote the set of all prefix steps of L together with all cuts after these prefix steps as
LΠ = {(π, τ)| π ∈ ΠL, τ a cut after π}. The set LΠ

max = {(π, τ) ∈ LΠ | ∀(π′, τ ′) ∈
LΠ : π′ = π ⇒ τ ′ 6≥ τ} is the set of all prefix steps together with its maximal cuts
after these prefixes. (π, τ) ∈ LΠ

max is called a maximal right continuation of L.

Each cut of an LPO in L should be enabled after the occurrence of its prefix. Each
cut together with its prefix is a candidate to be a maximal right continuation. For every
prefix step π all maximal cuts after π are easy to calculate defining the set of maximal
right continuations. Following these ideas leads to the definition of an LPO transition
regions.

Definition 8 (LPO transition region). Let L representL and denote T = {t1, . . . , tm}
the transitions occurring in L. A LPO transition region of L is a tuple r = (r0, . . . , r2m)
∈ N2m+1 satisfying for every maximal right continuation (π, τ) of L:

(ii) r0 +
∑

t∈T

((π)(t) · ri − (π + τ)(t) · rm+i) ≥ 0.

Like transition regions every LPO transition region r of L defines a place pr via
m0(pr) := r0, W (ti, pr) := ri and W (pr, ti) := rm+i for 1 6 i 6 m. Again, the
place pr is called the corresponding place to r.

Theorem 1. Given a partial language L, each LPO transition regions defines a feasible
place and each feasible place is defined by an LPO transition region.

Proof. Let L be a partial language and T the transitions occuring in L.
Given an LPO transition region r and pr its corresponding place. For each lpo =

(V, <, l) ∈ L and each cut C of lpo there exists a maximal right continuation (π, τ) of
L fulfilling ∀ t ∈ T (τ(t) ≥ |{v ∈ C| l(v) = t}| ∧ π(t) = |{v ∈ V | ∃ c ∈ C :
v < c, l(v) = t}|). It holds: r0 +

∑
t∈T ((π)(t) · ri − (π + τ)(t) · rm+i) ≥ 0 and

r0 +
∑

t∈T ((π)(t) ·ri− (π+τ)(t) ·rm+i) = m0(pr)+
∑

t∈T ((π)(t) ·W (t, pr)− (π+
τ)(t) · W (pr, t) ≤ m0(pr) +

∑
v∈V ∧v<C W (l(v), pr) −

∑
v∈V ∧v<C W (pr, l(v)) −∑

v∈C W (pr, l(v)) such that m0(pr) +
∑

v∈V ∧v<C W (l(v), pr)−
∑

v∈V ∧v<C W (pr

, l(v)) ≥ ∑
v∈C W (pr, l(v)). Thus lpo is enabled w.r.t pr. pr is feasible w.r.t. L.

Given a feasible place p, define a tuple r by r0 := m0(p), ri := W (ti, p) and
rm+i := W (p, ti) for 1 ≤ i ≤ m. For each maximal right continuation (π, τ) there
exists a lpo ∈ L and a Cut C of lpo fulfilling ∀ t ∈ T (τ(t) = |{v ∈ C| l(v) = t}| ∧
π(t) = |{v ∈ V | ∃ c ∈ C : v < c, l(v) = t}|). Since each lpo is enabled w.r.t. the
one place net containing only the place p, it holds: m0(p) +

∑
v∈V ∧v<C W (l(v), p)−∑

v∈V ∧v<C W (p, l(v))−∑
v∈C W (p, l(v)) ≥ 0 and m0(p)+

∑
v∈V ∧v<C W (l(v), p)−∑

v∈V ∧v<C W (p, l(v))−∑
v∈C W (p, l(v)) = r0+

∑
t∈T ((π)(t)·ri−(π+τ)(t)·rm+i)

such that r0 +
∑

t∈T ((π)(t) · ri− (π + τ)(t) · rm+i) ≥ 0. r is an LPO transition region
defining p.

The set of LPO transition regions of L (resp. transition regions of L′) can be charac-
terized as the set of non-negative integral solutions of a homogenous linear inequation
system A(ii)

L · r ≥ 0 (resp. A(i)
L · r ≥ 0.). Every inequation (ii) (resp. (i)) as given

by Definition 8 (resp. Definition 6) defines a row of the inequation system. By this ap-
proach the set of all feasible places is computable. This is shown in Theorem 1 (resp. in
[11]).

The ideas in [1, 5] to get an effective synthesis algorithm is to prohibit non-specified
behavior by feasible places. In the original algorithm based on Definition 6 we try to
calculate a region for each step sequence not specified in L′ such that the corresponding
place guarantees that this step sequence is not enabled. If τ1 . . . τn is not enabled then
also τ1 . . . τnτn+1 and τ1 . . . τ ′n with τn ≤ τ ′n are not enabled. Therefore, it is sufficient
to consider so called wrong continuations as defined in [11] instead of the set of all step
sequences not in L′. The same principle holds, if we consider prefix steps and steps
after prefix steps of a given partial language. Therefore, we only have to consider all
possible prefix steps π and all minimal steps not being a step after π. We call this a
wrong continuation:

Definition 9 (Wrong continuation). Denote LΠ
co = {(π, τ) | π a prefix step of L, τ a

step after π}. The set of wrong continuations of L is defined by Lwrong = {(π, τ ′) /∈
LΠ

co | ∃(π, τ) ∈ LΠ
co, t ∈ T : τ ′ = τ + t}.

In order to compute a feasible place which prohibits a wrong continuation (π, τ) of
L, one defines so called separating LPO transition regions defining such places:

Definition 10 (Separating LPO transition region). Let (π, τ) be a wrong continua-
tion of L. An LPO transition region r of L is a separating LPO transition region w.r.t.
(π, τ) if

(iii) r0 +
m∑

i=1

(π(ti) · ri − (π + τ)(ti) · rm+i) < 0.

A separating region r w.r.t. (π, τ) can be calculated (if it exists) as a non-negative
integer solution of a homogenous linear inequation system with integer coefficients of
the form

A(ii)
L · r ≥ 0

b(iii)
πτ · r < 0.

The vector b(iii)
πτ is defined in such a way that bπτ · r < 0 ⇔ (iii).

If there exists no non-negative integer solution of the system A(ii)
L ·r ≥ 0,bπτ ·r <

0, there exists no separating region w.r.t. (π, τ) and thus no feasible place prohibiting
(π, τ). If there exists a non-negative integer solution of the system, any such solution
defines a feasible place prohibiting (π, τ). If we choose one arbitrary separating region
rπτ for each wrong continuation (π, τ) for which such a region exist, then we call the
finite set of all these regions a separation representation (of the set of all regions). A
place corresponding to each separating region of the separation representation is added
to the synthesized net (N, m). Algorithmically, the places are introduced step by step
according to a fixed ordering of the wrong continuations. If a wrong continuation is
already prohibited by previously introduced places, it is not searched for a respective
separating region.

If we denote the synthesized net by (N, m), it holds the following theorem:

Theorem 2. There is a solution of the synthesis problem for the partial language L
(defined by L) if and only if Lpo(N, m) = L.

Proof. It is only necessary to prove the only if-part. Assume there is a solution (N ′,m′)
of the synthesis problem for the partial language L (defined by L) and Lpo(N, m) 6= L.
This implies Lpo(N,m)) L, because we know Lpo(N, m) ⊇ L (Theorem 1).

We can distinguish two cases: either the set of maximal right continuations of the
set of LPOs enabled in (N,m) coincides with LΠ

max or not. If the set of maximal right
continuations of the set of LPOs enabled in (N,m) does not coincide with LΠ

max, then
for some wrong continuation (π, τ) ∈ Lwrong there does not exist a separating region.
In this case (π, τ) is given by an LPO not specified by L, which is enabled in (N ′,m′).
Otherwise, (N ′,m′) would have a place prohibiting this LPO, and this place would
correspond to a separating region. This is a contradiction.

Let the set of maximal right continuations of the set of LPOs enabled in (N,m)
coincide with LΠ

max and let lpo /∈ L be enabled in (N, m). This means each right
continuations (π, τ) given by lpo is enabled in (N, m) (firing all transitions in π enables
step τ). Since the set of enabled maximal right continuations of (N, m) coincides with
LΠ

max, we conclude there exists (π, τ ′)LΠ
max with τ ≤ τ ′. Thus all right continuations

of lpo are also enabled in (N ′,m′). Therefore also lpo /∈ L is enabled in (N ′, m′) and
thus Lpo(N ′,m′) 6= L. This is a contradiction.

We newly implemented the advanced algorithm to synthesize a p/t-net from a partial
language using LPO transition regions in our tool Viptool [2] and compared the runtime
to the version computing step sequences and using transition regions of step sequences
as described in [11] (optimized by also only considering Parikh images of τ1 . . . τn−1

in the inequation system A(i)
L · r ≥ 0.). As expected the method using directly LPO

transition regions was superior to the approach generating step sequences first and then
using transition regions.

5 LPO Transition Regions vs. Token Flow regions

The main problem of considering LPO transition regions is the possible exponential
number of cuts of a partial language compared to the number of events. Loosely speak-
ing, the more parallelism in a given partial language, the worse is the runtime of the
synthesis algorithm using LPO transition regions. To tackle this problem, we devolved
another notion of regions so called token flow regions [13, 12, 11]. Again every token
flow region corresponds to a feasible place. The idea of defining token flow regions of
a given partial language L is as follows: assign to every edge (x, y) of an LPO in L
a natural number representing the number of tokens which are produced by the occur-
rence of l(x) and consumed by the occurrence of l(y) in the place to be defined. Then
the number of tokens consumed overall by a transition l(y) in this place is given as the
sum of the natural numbers assigned to ingoing edges of y. This number can then be
interpreted as the weight of the arc connecting the new place with the transition l(y).
Similarly, the number of tokens produced overall by a transition l(x) in this place is
given as the sum of the natural numbers assigned to outgoing edges of x, and this num-
ber can then be interpreted as the weight of the arc connecting the transition l(x) with
the new place. Moreover, transitions can also consume tokens from the initial marking
of the new place: In order to specify the number of such tokens, we extend an LPO
by an initial event v0 representing a transition producing the initial marking. The sum
of the natural numbers assigned to outgoing edges (v0, y) of the initial event v0 can
be interpreted as the initial marking of the new place. Transitions can produce tokens
in the new place which remain in the final marking. In order to specify the number of
such tokens, we extend an LPO by a final event vmax representing a transition consum-
ing the final marking. Such an extended LPO by an initial and a final event we call a
?-extension of an LPO.

According to the above explanation, we can define a token flow region r by assign-
ing in each LPO a natural number r(x, y) to each edge (x, y) of all ?-extension of LPOs
in L.

– The sum of the natural numbers assigned to ingoing edges of a node y we call the
in-token flow of y.

– The sum of the natural numbers assigned to outgoing edges of a node x we call the
out-token flow of x.

– The sum of the natural numbers assigned to outgoing edges of the initial node of
an LPO lpo we call the initial token flow of lpo.

The value r(x, y) we call the token flow between x and y. Since equally labeled nodes
formalize occurrences of the same transition, this is well-defined only if equally labeled
events have equal in-token flow (property IN) and equal out-token flow (property OUT).
In particular all LPOs must have the same initial token flow (property INIT). Each such
function r fulfilling (IN), (OUT) and (INIT) on L defines a feasible place pr. We call
pr corresponding place of r.

Definition 11 (Token Flow Region). Let L be a partial language and E?
L the set of

edges of the ?-extensions of all LPOs in L. A token flow region of L is a function
r : E?

L → N fulfilling (IN), (OUT) and (INIT) on L.

It was shown in [13] that the set of places corresponding to token flow regions of a
partial language equals the set of feasible places w.r.t. this partial language.

Theorem 3. Given a partial language L. Each token flow region defines a feasible
place and each feasible place is defined by a token flow region.

The set of token flow regions can be computed as the set of non-negative integer
solutions of a homogenous linear equation system with integer coefficients AL ·x = 0.
To compute a token flow region r, we need to assign a value r(x, y) to every edge
e = (x, y) in the finite set of edges of the ?-extensions of the LPOs in the given partial
language L. The vector x contains a variable xi for each edge ei ∈ E?

L representing
r(ei). We encode the properties (IN), (OUT) and (INIT) in the sense that r fulfills (IN),
(OUT) and (INIT) on L if and only if AL ·x = 0. This can be done by defining for pairs
of equally labeled nodes a row of AL counting the token flow on ingoing edges of one
node positively and of the other node negatively. Similarly, another row of AL counts
the token flow on outgoing edges of one node positively and of the other node negatively
can be defined. It is enough for each label t to ensure that the intoken (outtoken) flow of
the first and second node with label t are equal that the intoken (outtoken) flow of the
second and third node with label t are equal, and so on. The property (INIT) is assured
just like the property (OUT), but considering the initial nodes of the LPOs in L.

By the above considerations the set of token flow regions r is in one-to-one corre-
spondence to the set of non-negative integer solutions x = (x1, . . . , xn) of AL · x = 0
via r(ei) = xi. This means, every feasible place can be computed by such a solution.
The place corresponding to a solution x we denote by px. Note that the number of
rows of AL linearly depends on the number of nodes of the LPOs [12]. The number of
columns of AL is equal to the number of edges E?

L.
To calculate a p/t-net which is a solution of our synthesis problem (if such a net

exists) we use the wrong continuations given in the previous section. Again for each
wrong continuation (π, τ) ∈ Lwrong we calculate a feasible place px as a non-negative
integer solution of AL · x = 0 which prohibits (π, τ). Therefore we need to translate
the separating inequation (iii) into the new notion of token flow regions. For every tran-
sition ti of the given language L we choose an example node x labeled by ti. The set
of all ingoing (outgoing) edges corresponds directly to the weight of the arc W (t, px)
(W (px, t)). Given a fixed numbering of the edges of the LPOs in L and given a fixed
example node xti for each label ti, we define sets T in

i containing the numbers of ingo-
ing edges into xti and the sets T out

i containing the numbers of outgoing edges of xti .
The set T init contains the numbers of outgoing edges of the initial example node.

Definition 12 (Separating token flow region). Let (π, τ) be a wrong continuation of a
given partial language L. A token flow region r of L is a separating region w.r.t. (π, τ)
if

(iv)
∑

j∈T init

r(ej) +
m∑

i=1

(
∑

j∈T out
i

π(ti) · r(ej)−
∑

j∈T in
i

(π + τ)(ti) · r(ej)) < 0.

A separating token flow region r w.r.t. (π, τ) can be calculated (if it exists) as a
non-negative integer solution of a homogenous linear inequation system with integer
coefficients of the form

AL · x = 0

b(iv)
πτ · x < 0.

The vector b(iv)
πτ is defined in such a way that b(iv)

πτ · x < 0 ⇔ (iv).
Calculating for each wrong continuation a separating token flow region leads to

the second algorithm described in this paper. As in the last section, feasible places
corresponding to separating token flow regions are introduced step by step. If a wrong
continuation is already prohibited by a previously added place, it is not searched for a
respective separating region. If we denote the synthesized net by (N,m) and following
the same arguments used in Theorem 2 it holds:

Theorem 4. There is a solution of the synthesis problem for the partial language L
(defined by L) if and only if Lpo(N, m) = L.

Again we implement this algorithm in our tool VipTool. As indicated by our expe-
riences in [11], tests showed that the algorithm is much faster than the algorithm using
a basis representation of token flow regions presented in [12].

The implementation of the new algorithm using separating token flow regions is
used to compare the method with the algorithm using LPO transition regions. We ran
three test series. A first one increasing the number of considered LPOs (e1, e2, e3) (see
Figure 6), a second one increasing the number of nodes in three concurrent sequences
of nodes in one LPO (abcn) (see Figure 7) and a third one increasing the number of
sequential nodes in three LPOs (an, bn, cn) (see Figure 7).

The table shows the results of the tests. The first column describes the partial lan-
guage given in each test. The columns 2-4 contain overall runtime, number of calculated
places and the runtime for the calculation of one separating region for the algorithm us-
ing LPO transition regions. The columns 5-7 contain the same for the algorithm using
token flow regions. The last column contains the runtime used to calculate the wrong
continuations of the given language which is equal in both algorithms. In the first test
series, given in the first three rows of the table, the algorithm using token flow regions
performs slightly better than the algorithm using LPO transition regions. The languages
represented by the LPOs contain a lot of concurrency. That means the number of arcs is
relatively small and the number of possible prefixes is relatively high. This results in a
small number of columns in the inequation systems solved by the algorithm using token
flow regions (the number of rows is always linear in the number of nodes), and a huge
number of rows in the inequation systems solved by the algorithm using LPO transition
region (the number of columns is always linear in the number of transitions). The same
but more distinctive holds for the second test series. In the third series it is the other way
round. There is no concurrency allowed by the given languages. The algorithm using
LPO transition regions is much faster than the algorithm using token flow regions.

a

b b

e

a

c

b

d

c

e1 e2 e3

d

d

a

f

b

d

f

d

d

Fig. 6. Example LPOs (e1, e2, e3).

a

a

cb

b c

abcn

a

a

…

b

b

…

c

c

…

an bn

n

cn

… … …n

Fig. 7. Example LPOs. Left: One LPO modelling three concurrent sequences (abcn). Right: Three
LPOs modelling three alternative sequences (an, bn, cn).

Language Synthesis Synthesis
LPO transition regions Token flow regions

complete number runtime per complete number runtime per building
runtime of equation runtime of equation wrong

(ms) places system (ms) places system continuations
{e1} 46 3 1.8 43 4 0.6 40

{e1, e2} 90 11 3.4 62 11 0.8 53
{e1, e2, e3} 250 14 13.4 129 14 4.8 62
{abc2} 77 6 5.7 46 6 0.6 43
{abc3} 529 6 79 60 6 1 53
{abc4} 7166 6 1183 76 6 1 65

{a5, b5, c5} 62 4 2.3 92 10 3.9 53
{a6, b6, c6} 66 4 2.7 159 10 10.4 55
{a7, b7, c7} 73 4 3 264 10 20.3 61

6 Conclusion

Both presented algorithms performed better then their previous versions described in
[11]. The first algorithm using LPO transition regions does not have to translate the
given partial language into a language of step sequences any more. The second al-
gorithm using token flow regions benefits from using the adapted wrong continuation
representation approach. The two algorithms developed in this paper use the two most
promising combinations of a region definition together with a finite representation ap-
proach for the set of all feasible places. The algorithm using token flow regions performs
fast if there is a lot of concurrency given in the partial language, the algorithm using
LPO transition regions performs fast in the converse case.

References
1. E. Badouel and P. Darondeau. On the synthesis of general petri nets. Technical Report 3025,

Inria, 1996.
2. R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Viptool-homepage., 2008.

http://www.informatik.ku-eichstaett.de/projekte/vip/.
3. J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Petrify: A tool

for manipulating concurrent specifications and synthesis of asynchronous controllers. IEICE
Trans. of Informations and Systems, E80-D(3):315–325, 1997.

4. J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Hardware and
petri nets: Application to asynchronous circuit design. In ICATPN, LNCS 1825, pages 1–15,
2000.

5. P. Darondeau. Deriving unbounded petri nets from formal languages. In CONCUR, LNCS
1466, pages 533–548, 1998.

6. A. Ehrenfeucht and G. Rozenberg. Partial (set) 2-structures. part i: Basic notions and the
representation problem. part ii: State spaces of concurrent systems. Acta Inf., 27(4):315–
368, 1989.

7. J. Grabowski. On partial languages. Fundamenta Informaticae, 4(2):428–498, 1981.
8. P. Hoogers, H. Kleijn, and P. Thiagarajan. A trace semantics for petri nets. Information and

Computation, 117(1):98–114, 1995.
9. M. B. Josephs and D. P. Furey. A Programming Approach to the Design of Asynchronous

Logic Blocks. In Concurrency and Hardware Design, LNCS 2549, pages 34–60, 2002.
10. A. Kiehn. On the interrelation between synchronized and non-synchronized behaviour of

petri nets. Elektronische Informationsverarbeitung und Kybernetik, 24(1/2):3–18, 1988.
11. R. Lorenz, R. Bergenthum, J. Desel, and S. Mauser. Synthesis of Petri Nets from finite partial

languages. Fundamenta Informaticae, to appear, 2009.
12. R. Lorenz, R. Bergenthum, S. Mauser, and J. Desel. Synthesis of petri nets from finite partial

languages. In Proceedings of ACSD 2007, 2007.
13. R. Lorenz and G. Juhás. Towards synthesis of petri nets from scenarios. In ICATPN, LNCS

4024, pages 302–321, 2006.
14. R. Lorenz, G. Juhás, and S. Mauser. How to Synthesize Nets from Languages - a Survey. In

Proceedings of the Wintersimulation Conference (WSC), 2007.
15. V. Pratt. Modelling concurrency with partial orders. Int. Journal of Parallel Programming,

15:33–71, 1986.
16. W. M. P. van der Aalst, T. Weijters, and L. Maruster. Workflow mining: Discovering process

models from event logs. IEEE Trans. Knowl. Data Eng., 16(9):1128–1142, 2004.
17. W. Vogler. Modular Construction and Partial Order Semantics of Petri Nets., volume 625 of

Lecture Notes in Computer Science. Springer, 1992.

