
Experimental Results on Process Mining Based on
Regions of Languages

Robin Bergenthum, J̈org Desel, Christian K̈olbl, and Sebastian Mauser

Department of Applied Computer Science,
Catholic University of Eichsẗatt-Ingolstadt,

{firstname.lastname}@ku-eichstaett.de

Abstract. In [2] we presented a process mining method based on the principle
of separating behaviour recorded in an event log from not observedbehaviour by
so called regions of languages. This workshop paper describes an implementa-
tion of the method and shows experimental results. Furthermore some extensions
improving the basic process mining algorithm are explained, implemented and
analyzed by practical tests.

1 Introduction

In the past few years the analysis of business processes became more and more popular.
Many of today’s information systems record information about performed activities of
workflows in log files, so called event logs. Not only classical workflow management
systems and ERP systems, but also web services, middleware systems, embedded sys-
tems in high-tech equipment and many other information systems produce event logs.
Different methods have been suggested to parse event logs carrying information about
workflows to understand what is actually going on. Techniques extracting useful, struc-
tured information from the vast amount of information recorded in an event log are
subsumed under the termprocess mining. In this paper we focus on constructing a pro-
cess model, which matches the actual workflow of the recordedinformation system,
from an event log. This prevalent aspect of process mining isknown as process or con-
trol flow discovery. There are many process discovery techniques in literature (see e.g.
[8, 7]), often implemented in the ProM framework [5]. In the following we consider
process models given by Petri nets.

A typical event log records the executed activities of a workflow together with cases
(initiating process instances) the activities belong to. Each case in a log is composed of
activities ordered by their execution times. Thus, abstracting from further information,
an event log essentially consists of a set of recorded cases each defining a sequence
of activities. That means, a case can be seen as a word over thealphabet of activities
and an event log can be seen as a language. With this point of view process discovery
is similar to a well-known problem in Petri net theory, namely the reproduction of a
language by a Petri net – the so calledsynthesis problem up to language equivalence.

Concerning the synthesis problem, since the 1980s, a lot of results and methods
have been explored [1]. In a natural way well-known methods derived from thetheory
of regions of languages[1] can be applied to synthesize a Petri net from a language

given by an event log as shown in [2]. In this paper we present an implementation of the
most promising process discovery algorithm presented in [2]. This approach searches
for so called separating regions to exclude behaviour not observed in the event log from
recorded behaviour. Each separating region adds restrictions to a net so that it is still
able to reproduce the given language but certain unwanted behaviour, a so called wrong
continuation, is excluded. In detail this is done by first adding one transition for each
activity, and then adding places (and arcs) given by separating regions to restrict the
behaviour of the net step by step or let’s say place by place. The search for a separat-
ing region excluding a wrong continuation is a linear programming problem. We show
experimental results for this mining method in the paper.

On top of the implementation of this basic mining algorithm,we present, imple-
ment and test some extensions tuning the algorithm to practical needs. A long list of
such extensions has been proposed in [3]. Guided by practical experiences with our new
implementation of the new mining algorithm, we selected themost interesting ones of
this list to be studied in detail in this paper. The main problems tackled by these exten-
sions are overfitting, performance and ”spaghetti” processmodels. These problems are
in particular linked to the fact that the basic process discovery approach of this paper is
a precise one in the sense that it roughly speaking constructs a Petri net reproducing the
words of the event log and having minimal additional behaviour (in particular, if each
of the finitely many wrong continuations can be excluded by a separating region, then
the net exactly represents the log).

In contrast, many classical process discovery approaches are imprecise. In order to
be efficient in time and memory consumption and to keep the resulting process models
small, these process models allow for much more additional behaviour as necessary
– they overapproximate the given event log. Our precise approach overcomes many
of the limitations of such classical imprecise approaches.These have problems with
complex control flow structures such as non-free-choice constructs, unbalanced splits
and joins, nested loops, etc., although in reality processes often exhibit such features.
The second main problem of imprecise methods is their tendency to underfit the event
log, i.e. the resulting model allows for much more behaviourwithout any indication
to be reasonable real behaviour. These problems are resolved by the precise algorithm
presented in this paper.

On the other hand, precise methods are often criticized for their tendency to overfit
[7]. Of course a log is usually incomplete, i.e. there may be possible cases not occur-
ring in the log. On the first glance this argues against precise approaches. But without
additional information it is unclear, which possible casesare missing in the log. It is
hardly possible to extract information about such missing cases solely from the event
log. The overapproximation performed by most existing imprecise approaches seems
to be quite arbitrary in many cases, at least hardly controllable and predictable. In con-
trast, when using the precise approach as a basis, it is possible to specifically introduce
overapproximation in a targeted direction (on top of the precise solution) as shown in
[3]. This makes the overapproximation reliable and configurable to address different
needs of the user. These ideas are an interesting research field for us, but in this paper
we do only rudimentarily consider such extensions introducing overapproximation to
adequately deal with incomplete logs. Thus, the presented methods basically face the

problem of overfitting, but the tests shown exemplarily in this paper seem promising
anyway.

A particular problem with precise process mining methods is, that they may be
inefficient in time and memory consumption. Although our basic mining algorithm has
a polynomial runtime and memory consumption, this may not besufficient for practical
applications. Many existing imprecise methods are linear.But the experimental results
in this paper show that our method works well for quite large logs. Therefore, so far we
only worked on few extensions concerning the runtime of the mining procedure. But
we plan to integrate some further extensions improving the runtime, especially dealing
with modular aspects.

Lastly, the key drawback of a precise process discovery method is, that it usually
generates a quite large process model. The number of components of the model – in our
situation mainly the number of places and arcs of the Petri net – often has to be large in
order to potentiate an exact reproduction of the event log. This is the real problem aris-
ing from the overfitting of precise algorithms. The size of the model has to be in such
a range, that the model can easily be interpreted by the user.Practitioners and process
analysts in industry are usually interested in concise and controllable reference models.
”Spaghetti”-models that can only be evaluated with computer support are mostly not
satisfactory. The danger of mining ”spaghetti”-models is especially problematic in logs
of unstructured processes in less restrictive environments [7]. Most of the extension of
the basic mining algorithm presented in this paper deal withthis problem. Of course
there sometimes is a trade-off between simplifying the mined net and maintaining a
preferably precise model. But since our basic mining algorithm already yields quite
satisfactory nets as shown in this paper, we so far only implemented extensions pre-
serving the precise character of the procedure. Imprecise extensions are an interesting
field of further research. In order to get a compact model, also abstraction and visual-
ization techniques for the mined model are an interesting future research topic [7].

It remains to mention, that the approach of using regions of languages for process
mining was also picked up in a paper [9] that will be presentedat the main ATPN2008
conference. This paper combines the ideas with the concept of introducing causal de-
pendencies according to the alpha algorithm. In contrast tothe mere alpha algorithm,
through the region approach, it is guaranteed that the log isreproduced by the mined
net and the places of the net are optimized in some sense (by integer linear program-
ming methods). Although there are similarities to our approach, the two techniques are
guided by completely different techniques (alpha algorithm vs. separating regions). In
particular, the approach in [9] is still imprecise.

The paper is organized as follows. Section 2 provides the basic algorithm and its
implementation, all necessary definitions and all important aspects for the practical use
of the algorithm. In Section 3 we give an overview about the extensions we added to
the basic algorithm and discuss their complexity. Section 4shows experimental results.

2 Algorithm and Definitions

In this section we recall the mining method based onseparating regionsfrom [2] carried
by a running example.

An alphabetis a finite setA. The set of allstrings (words)over an alphabetA is
denoted byA∗. A subsetL ⊆ A∗ is calledlanguage overA. For a wordw ∈ A∗, |w|
denotes thelength ofw and |w|a denotes the number of occurrences ofa ∈ A in w.
Given two wordsv, w, we callv prefixof w if there exists a wordu such thatvu = w.

Definition 1 (Event log).LetT be a finite set ofactivitiesandC be a finite set ofcases.
Aneventis an element ofT × C. Anevent logis an element of(T × C)∗.

Given a casec ∈ C we define the functionpc : T × C → T by pc(t, c
′) = t if

c = c′ andpc(t, c
′) = λ else. Given an event logσ = e1 . . . en ∈ (T × C)∗ we define

theprocess languageL(σ) of σ byL(σ) = {pc(e1) . . . pc(ei) | i ≤ n, c ∈ C} ⊆ T ∗.

For better understanding we take the running example log from [2], where each
letter stands for an activity and the number of an event refers to the case the particular
activity belongs to (Example 1). Hereabbeis the word the case number1mirrors having
a, abandabbas prefixes. Since a log has to define a prefix-closed language the prefixes
also belong to the process language (every prefix is a series of activities that actually
happen during the case).

event log (activity,case):
(a,1) (b,1) (a,2) (b,1) (a,3) (d,3) (a,4) (c,2) (d,2) (e,1) (c,3) (b,4) (e,3) (e,2) (b,4) (e,4)
process language:
a ab abbabbeac acdacdead adcadce

Example 1.
The letters (activities)T occuring in the log build up the transition-set (of a Petri

net) without any restrictions. To restrict the behaviour ofthe transitions we have to add
places, that prohibit wrong words but still permit the wordsof the process language
L(σ) of the log. We call such placesfeasible places[2].

Definition 2 (Feasible place).Let (N,mp), N = ({p}, T, Fp,Wp) be a marked p/t-
net with only one placep (Fp, Wp, mp are defined according to the definition ofp). The
placep is calledfeasible (w.r.t.L(σ)), if L(σ) ⊆ L(N,mp), otherwisenon-feasible.

The aim is to add as many feasible places as necessary so that the given net rep-
resents the process language with minimal additional behaviour. Feasible places are
defined by so calledregionsof the language. A region can be seen as a tuple or vector
r of natural numbers, where the first entry represents the initial marking of the corre-
sponding place and the other entries define the consumption and production of tokens
by the transitions for this place. The set of feasible placesis given by the set of places
corresponding to regions [2].

Definition 3 (Region).DenotingT = {t1, . . . , tn} the activities of an event logσ, a
regionof L(σ) is a tupler = (r0, . . . , r2n) ∈ N

2n+1 satisfying for everywt ∈ L(σ)
(w ∈ L(σ), t ∈ T):

(∗) r0 +

n∑

i=1

(|w|ti
· ri − |wt|ti

· rn+i) ≥ 0.

Every regionr of L(σ) defines a placepr via m0(pr) := r0, W (ti, pr) := ri and
W (pr, ti) := rn+i for 1 6 i 6 n. The placepr is calledcorresponding place tor.

Now we know, that every place we add to the mined net (only feasible places) does
not restrict the process language in any way, and by the notion of regions it is possible to
translate the task of computing feasible places into the task of computing non-negative
integer solutions of a homogenous inequation systemAL(σ) · r ≥ 0 defined by the
(*)-inequations.

The inequation system of Example 1 would look like Table 1. With this inequation
system we ensure, that only feasible places are added w.r.t.the given process language.
As we can see, the inequations foracdeandadcecoincide so that the matrix actually
has one row less (for a wordwt only the Parikh image ofw is considered).

a r0 − r6 ≥ 0

ab r0 + r1 − r6 − r7 ≥ 0

abb r0 + r1 + r2 − r6 − 2r7 ≥ 0

abbe r0 + r1 + 2r2 − r6 − 2r7 − r10 ≥ 0

ac r0 + r1 − r6 − r8 ≥ 0

acd r0 + r1 + r3 − r6 − r8 − r9 ≥ 0

acde r0 + r1 + r3 + r4 − r6 − r8 − r9 − r10 ≥ 0

ad r0 + r1 − r6 − r9 ≥ 0

adc r0 + r1 + r4 − r6 − r9 − r8 ≥ 0

adce r0 + r1 + r4 + r3 − r6 − r9 − r8 − r10 ≥ 0

Table 1. In the first inequation,a consumesr6 tokens from the initial markingr0. At ”ab” we
have the initial markingr0, r1 tokens produced bya andr6 + r7 tokens consumed bya andb, ...

The next step we have to make is the prohibition of words, thatare not in the process
languageL(σ). For this we will ”invent” the wrong continuations. Wrong continuations
are kind of an opposite concept to feasible places.

Definition 4 (Wrong Continuation). Letw be a word of a process languageL(σ) and
t be an activity of the event logσ. A wordv = wt is a wrong continuation ifwt /∈ L(σ).

Although there are infinitely many words in the complement ofL(σ), we only have
to regard a finite set of them, the wrong continuations. This is because prohibiting a
wrong continuationwt every wordwtv is prohibited too (prefix closure). Using Def-
inition 4 we are able to build regions w.r.t. wrong continuationswt which prohibit all
wrong words (not occurring in the log)wtv. Such regions are calledseparating regions.

Definition 5 (Separating region).Let r be a region ofL(σ) and letwt be a wrong
continuation. The regionr is aseparating region (w.r.t.wt) if

(∗∗) r0 +

n∑

i=1

(|w|ti
· ri − |wt|ti

· rn+i) < 0.

Given a wrong continuationwt, we add one inequationbwt · r < 0 given by (**) to
the inequation systemAL(σ) ·r ≥ 0 and solve the resulting system. Each solution yields
a separating region w.r.t.wt defining a feasible place. Step by step, for each wrong
continuation, we compute one such place (if it exists) and add it to the constructed
net. That means, if there is a nonnegative integer solution of the inequation system
AL(σ) ·r ≥ 0, bwt ·r < 0, then a feasible place prohibiting the wrong continuationwt is

added (otherwise no place is added), and we have to check the next wrong continuation.
It is possible that a calculated place for a wrong continuation already blocks another or
even a lot of other wrong continuations. So before solving the inequation system in
a step of the algorithm, it is checked whether the consideredwrong continuation is
already prohibited by previously added places. In this casethe step is skipped.

As an example the inequationbwt · r < 0 for the wrong continuationabc in our
running example would be:

r0 + r1 + r2 − r6 − r7 − r8 < 0

With an implementation of the presented method we obtained the net in Figure 1 from
the log of Example 1.

Fig. 1. Mined net. The words under the places are the wrong continuations for which the places
were computed.

We implemented the algorithm within a diploma thesis at our Department of Ap-
plied Computer Science. The implementation comprehends a self coded version of the
Simplex algorithm[6] with two primal steps to solve the inequation systems. Since the
inequation systems are homogeneous we can use the standard Simplex searching for
rational solutions. These can be multiplied by the common denominator of the compo-
nents of the solution vector to get an integer solution. Furthermore we have an interface
to work with the MXML fileformat (used in the toolset ProM [5]).

The implemented algorithm is exponential in the worst case,because of the Simplex
algorithm. But there are also rational linear programming solvers, which have polyno-
mial runtime, such as the method of Karmarkar. Using such solver the whole mining
algorithm has polynomial time consumption, since there areat most|L(σ)| · |T | wrong
continuations, i.e. steps of the algorithm. But probabilistic and experimental results
show that the Simplex algorithm has a faster average runtime[6] than existing polyno-
mial solver. Thus, we decided to use the Simplex in our implementation, but neverthe-
less we say that our basic mining algorithm has polynomial runtime.

In [3] we gave an overview of heuristics and extensions that could be important for
the practical use of the implemented mining algorithm especially during the process-
ing phase to gain performance and better readable nets. Since this list was very long
we needed to decide which extensions and improvements couldbe the most important

ones. For this we played with some logs distributed with the ProM Framework [5] and
other small applied or artificial examples. We performed further tests in a collaborative
project with Prof. Dr. Andreas Harrer (Professorship of Computer Science at the KU-
Eichsẗatt). There we used the mining algorithm on logs recorded by e-learning systems.
Past these tests and applications we figured that the size of the developed nets and the
performance to develop was capable already for the basic mining algorithm. So we de-
cided to implement mainly precise extensions with the main focus on simplifying the
mined nets and avoiding too complicated structures.

3 Improvements

We distinguish in extensions which preserve the polynomialruntime of the basic algo-
rithm and extensions which require exponential runtime dueto the need of integer linear
programming methods. As an integer linear programming solver we used the lpsolve
5.5.0.12 Java package [4].

3.1 Polynomial extensions

Finding cyclesThe implemented method to find cycles is a simple one. It examines
each casec from an event logσ. We denotec = c1c2...cn. Within one casec the method
searches, if there occurs a sequencea of two activities more that once in the casec, i.e.
a = ci−1ci = cj−1cj , i 6= j. In this case the sequencea is assumed to be a candidate
to be part of a cycle. All sucha are stored, because to allow cycles thesea need not
be prohibited. That means, if for a wrong continuationwt /∈ L(σ), w ∈ L(σ), there
holdswt = w′a for one of the stored series of activitiesa, thenwt is not considered as
a wrong continuation, i.e. no place separatingwt is computed.

By not marking this cycle candidate as a wrong continuation we allow the respective
sequences, but we do not enforce the introduction of a cycle in the mined net. That
means, the cycle may be prohibited by another place, but thenthis is a hint, that there
actually is no cycle, and thus prohibiting the cycle in this way is a reasonable choice.
Order of the wrong continuationsThis heuristic is quite difficult to generalize in terms
of usage. Since the algorithm works step by step consideringone wrong continuation
in each step, it is dependant on an ordering of the wrong continuations. We tried to
improve the runtime of the algorithm and/or minimize the number of places by sorting
the wrong continuations in the most practical order. We use ordering principles that
are based on our experiences so far. One such principle is to consider at last wrong
continuations only consisting of one element. We also triedadvanced systematics like
testing several (sub-)orderings leading to different solution nets.
Deleting implicit places To reduce the number of places after the actual mining al-
gorithm, we implemented post-processing methods to deleteimplicit places. Implicit
places can be deleted without changing the behavior of the net. We implemented three
methods: A very simple and efficient one compares places pairwise to check if one place
is less restrictive than the other one. The less restrictiveplace is of course redundant.
A second method uses linear programming techniques to see ifa place is less restric-
tive than a linear combination of the other places. Such place is also implicit. A third

method checks all places in a certain order, if they are implicit. The third approach is
no more polynomial.
Objective function Since there are several possible solutions of an inequationsystem
defined by a wrong continuation, there are different possibilities which place is actually
added in a step of our algorithm. The choice of a concrete solution in one step can be
guided by an objective function. Since the Simplex algorithm is able to compute an
optimal solution of the inequation system w.r.t. a linear objective function, considering
such function in order to, e.g., minimize the arc weights andthe initial marking of the
resulting place does not significantly decrease the performance of the whole algorithm.
For example to minimize the sum of ingoing arc weights and theinitial marking of
the computed place, we can consider the linear programming problem !min

∑n

i=0 ri,
AL(σ) ·r ≥ 0, bwt ·r < 0. But by using the rational Simplex solver adding an objective
function to the linear programming problem is only a heuristic. The optimization of the
objective function by the rational solver means the calculation of the optimum by using
rational numbers. The solution is then multiplied by the common denominator to get an
integer solution of the homogeneous inequation system defining a separating region. So
this separating region must not necessarily persist as the actual optimum, but in practice
this heuristic often leads to a near optimal solution.

3.2 Exponential Extensions

Objective function An exact method is to use an integer solver with the branch and
bound technique to solve the inequations system equipped with a linear objective func-
tion. As this is not implemented in our algorithm we use lpsolve. With this way of
computing a separating region we get the exact optimal integer solution, but at the cost
of runtime, since the branch and bound technique needs exponential time consumption.
Classes of netsIn our case we implemented a method to build a net with no arc weights.
This can be done by adding the restrictionsri ≤ 1 for i = 1 . . . 2n to the inequation
system, such that the region vectors only consist of0 or 1 values. In this case we cannot
use a rational solver, because we are not able to multiply thesolutions by anything.
Well, we actually would be able, but it would not necessarilyresult in a solution of our
inequation system, because the inequation system is no longer homogenous. Therefore,
we here again use the integer solver of lpsolve.
Outlook Using integer linear programming, it is also possible to minimize the number
of places of the net or to compute a ”best solution” in the casethat only a fixed maxi-
mum number of places is allowed in the net. Such extensions reducing the number of
places are interesting, but may lead to problems in performance. We are also able to use
more complicated net classes, especially correctness properties for the mined nets can
be postulated, e.g. the claim that the net has to be empty after finishing a case (this is
part of the well-known soundness property).

4 Tests

We present practical tests to examine the quality of the mined nets and runtime tests.

4.1 Quality Tests

In the tests we tried to figure out, where the explained miningalgorithm does a bet-
ter job than well known algorithms like the alpha algorithm,or the alpha++ algorithm,
an extension of the alpha algorithm mining certain implicitdependencies (in particular
non-free choice constructs). Both algorithms are implemented in the ProM Framework
[5]. The log files used in the tests are mostly taken from the ProM distribution. In this
case we refer to the names of the logs. We also checked other algorithms mining Petri
nets, where in some cases the results were not satisfactory,e.g. the region miner imple-
mented in ProM, and in some cases it would be interesting to compare the algorithms
in detail, e.g. the genetic miner, heuristic miner or multiphase miner. We restrict us
to the alpha and alpha++ algorithm in this section because the alpha algorithm is the
best known mining algorithm. A second aim of the tests is to analyze the extensions
presented in the last section.

In a first test we examined a log file of a workflow with a mutual exclusion of two
subprocesses (pnex 02.xml). Thereby, the alpha algorithm builds a Petri net that deliv-
ers a deadlock after the second transition (Figure 2). The alpha++ algorithm modeled a
mutual exclusion, but it additionally introduced optionalloops of the sub-processes and
allows a direct termination of the main process without executing the sub-processes
(Figure 3). Thus, the actual workflow is not displayed. Our basic algorithm correctly
mined the mutual exclusion without unnecessary abstraction (Figure 4).

In an example of a log with non-free choice behaviour (swex 14.xml), both al-
pha algorithms delivered satisfactory solutions, and our method generated a similar
representation of the process. Next, we considered a log of aworkflow with optional
tasks (icex 01.xml), where transitions in the representing Petri Net are able to fire but
doesn’t have to. While this is not solvable by the other methods our basic mining ap-
proach gives us the correct solution as a net. Another testedworkflow log was a trigger
on expire task (swex 04.xml) that was embedded in a very difficult control flow. In this
workflow there exist tasks to prematuraly terminate activities. Also here our method re-
flects the real workflow better than the alpha algorithms. Similar to the optional tasks
are terminating tasks, where a process should be able to terminate in every state by exe-
cuting the terminating activity. So if there are cases likeABCD or ACBD thenABD
or ACD should also be able, whenD represents the termination of the process. This
problem was only well solved by our algorithm.

We now test the described extension to find cycles. As mentioned this means, that
we tell the basic algorithm that detected possible cycles are not wrong, but not that they
are explicitly desired. The calling for cycles as mandatorydesired behaviour would also
be possible (but it is not implemented so far) by simply adding corresponding homo-
geneous inequations to the inequation systems (similar to setting the arc weights to1).
The next considered workflows contained loops and we tried two different approaches
of our method: The one with the finding cycles expansion and the other without.

The first test case was a mutual exclusion inside a loop (pnex 11.xml). Both al-
gorithms solved the problem, while the second one counted the maximal number of
repetitions of the loop appearing in the log and set according arc weights (Figure 5).
The counting place p10 causes the net not to be sound. However, the first one was able
to find the cycle and represented it in the sound Petri net shown in Figure 6. The alpha

Fig. 2.Mutual exclusion of two sub-processes solved by the alpha algorithm

Fig. 3.Mutual exclusion of two sub-processes solved by the alpha++ algorithm

Fig. 4.Mutual exclusion of two sub-processes solved by our algorithm

and alpha++ algorithm couldn’t solve the problem (certainly also because of the mutual
exclusion).

Fig. 5. Mutual exclusion of two sub-processes in a loop solved by our algorithm without the
finding cycles expansion.

Fig. 6. Mutual exclusion of two sub-processes in a loop solved by our algorithm with the finding
cycles expansion.

A pure loop based test case was a workflow with a 2/3 loop (pnex 08.xml) (Figure
7, 8), where one has the alternative between a 2- or a 3-loop construct. This test case
was correctly solved by each algorithm.

A third setting with a loop is from the experiments with the e-learning logs, where
we had a self loop of an activity (actually an optional task) and a difficult cycle. The
alpha algorithm collapsed at both problems just as well as the alpha++ algorithm, while
the second one delivered a not so bad solution (Figure 9). Theaccurate solution found
by our algorithm can be seen in Figure 10. The net is not sound because we used no
inivisible task.

Another problem that cannot be solved by the alpha algorithms was a workflow
having a loop that had to be executed at least one time (swex 05.xml). Even with such
”at least one”-loop our mining algorithm has no problems.

After testing a lot of different loop constructions we are confident, that our approach
is able to very well handle loops in a workflow-log.

Since we are working with arc weights (which are often undesired), we wanted to
see what solutions we will get, if we are leaving arc weigths,i.e. demandingw ≤ 1. In
most examples considered so far our algorithm did not introduce arc weights anyway,
consequently, to see effects, for this approach we used our running example (Example

Fig. 7.2/3-loop solved by Alpha++ Algorithm.

Fig. 8.2/3-loop solved by our algorithm.

Fig. 9.Optional task and cycle solved not correctly by the alpha++ algorithm.

Fig. 10.Optional task and cycle solved correctly by our algorithm

1). The alpha algorithm produces a net, that allows an infinite firing of B in any state,
similar to the alpha++ algorithm (Figure 11). This is definitely not desired. With unre-
stricted arc weights our algorithm delivers a nice net as seen before (Figure 1). With the
w ≤ 1 restriction the mined net (Figure 12) is a bit problematic and not that readable
due to the fact that the desired behavior can hardly be represented without arc weights.
The net still reproduces the desired language, but unfortunately with some additional
behavior, but best as possible (also that more than one placeis initially marked may be
seen as problematic).

Fig. 11.Running example synthesized by the alpha algorithm.

Fig. 12.Running example solved by our algorithm withw ≤ 1.

We also implemented a heuristic to choose a good order of wrong continuations.
We ran a test with the log of the running example and we saved one place (Figure 13).

Fig. 13.Running example solved by sorting the wrong continuations in a practical order.

This place could also be deleted by postprocessing algorithms deleting implicit
places. But only the inefficient third method described in the last section is able to find

this implicit place. In general, the presented basic miningalgorithm only in rare cases
computes implicit places, in particular when choosing a practical order of the wrong
continuations. We never had to use one of the three implemented post-processing meth-
ods in one of the previous examples.

We also tested the extensions, where the choice of the introduced places is guided
by an objective function. Although it seems to be desirable to, e.g., minimize arcs con-
nected to places, in our examples these extensions only rarely yielded more compact
and better readable nets.

Finally, we can say that a practical order of wrong continuations and the heuristic
of the cycle calculation distinctly improved the basic algorithm. Usually, when we use
the finding cycles expansion, arc weights rarely occur, but if there are still arc weights,
then from our experiences they bring a big simplification in the sense that a mined net
without arc weights is very clumsy and unclear or incorrect.Thus, in our opinion, arc
weights may be helpful. An objective function only brought use in few cases. Therefore,
in the standard setting of our mining algorithm no objectivefunction is used, arc weights
and the calculations of cycles are used just as well as the approved order (w.r.t. the size)
of the wrong continuations.

4.2 Runtime Tests

For the runtime tests we used the standard setting of our algorithm (w.r.t. the applied ex-
tensions). We realized the tests on some log-files distributed with the ProM Framework.
You can see the results in the table below. As a benchmark we used experimental results
presented for the algorithm in [9], because this algorithm is on the one hand similar to
our algorithm and on the other hand based on the alpha algorithm (see Introduction).

The important sizes in this table are ”# trans.” (transitions), as it determines the
number of variables per inequation system, and ”# constr.” as it defines the number of
inequations of the inequation system. With the quotient # events / # cases you get the
average length of a case. Since cases may generate equal words, we specify the number
of different cases by the column ”# words”.

Our algorithm is overall faster in calculation speed (pay attention that different com-
puters are used), and has a similar growth as the benchmark. Although the runtime of
our algorithm is a critical point, we think it works quite well, especially if consider-
ing that, until now, no performance oriented programming onthe implementation took
place (but it will be done in the future, e.g. using Dual Simplex). The complexity seems
approximately linear in the number of words (but this may notbe the case in general).
The dependency of the computation time from the number of transitions seems more
problematic. Altogether, we are able to solve a lot of problems, even bigger ones, if we
run the calculation over a longer period. Thus, also large log files may be mined, e.g.,
overnight.

5 Future Work

Our next steps will be the development, implementation and test of further extensions
discussed in [3] to our mining approach (see the Introduction). We intend to soon release
a mining tool freely available for personal use.

log # trans. # cases# events# words # constr. runtime1 benchmark time2

(hh:mm:ss.sss) (hh:mm:ss.sss)

a12f0n001 12 200 1236 5 19 0.046 0.406
a12f0n002 12 600 3696 5 19 0.047 0.922
a12f0n003 12 1000 6154 5 19 0.047 1.120
a12f0n004 12 1400 8666 5 19 0.049 1.201
a12f0n005 12 1800 11146 5 19 0.054 1.234
a22f0n001 22 100 1833 99 901 4.248 1:40.063
a22f0n002 22 300 5698 291 2091 12.360 5:07.344
a22f0n003 22 500 9463 476 2823 18.302 7:50.875
a22f0n004 22 700 13215 660 3488 20.459 10:24.219
a22f0n005 22 900 16952 836 4052 44.065 12:29.313
a32f0n001 32 100 2549 100 1633 19.624 32:14.047
a32f0n002 32 300 7657 300 3815 1:27.904 1:06:24.735
a32f0n003 32 500 12717 500 5368 2:11.207 1:46:34.469
a32f0n004 32 700 17977 700 6721 2:32.454 2:43:40.641
a32f0n005 32 900 23195 900 7854 1:57.218 2:54:01.765
a42f0n001 42 100 3269 100 2723 1:45.781 n/a
a42f0n002 42 300 9794 300 7443 8:17.308 n/a
a42f0n003 42 500 16369 500 11812 34:34.859 n/a
a42f0n004 42 700 22817 700 15704 45:51.791 n/a
a42f0n005 42 900 29169 900 19263 43:08.843 n/a

References

1. E. Badouel and P. Darondeau. Theory of Regions. InPetri Nets, LNCS 1491, pages 529–586,
1996.

2. R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Process Mining Based on Regions of
Languages. InBPM, LNCS 4714, pages 375–383, 2007.

3. R. Bergenthum, R. Lorenz, and S. Mauser. Towards Applicability ofLanguage Based Synthe-
sis for Process Mining. InAlgorithmen und Werkzeuge für Petrinetze (AWPN), pages 45–50,
2007.

4. Lp solve reference guide. http://lpsolve.sourceforge.net/5.5/.
5. Process mining group eindhoven technical university: Prom-homepage.

http://is.tm.tue.nl/ cgunther/dev/prom/.
6. A. Schrijver.Theory of Linear and Integer Programming.Wiley, 1986.
7. W. M. P. van der Aalst and C. W. G̈unther. Finding structure in unstructured processes: The

case for process mining. InACSD, IEEE Computer Society, pages 3–12, 2007.
8. W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and A. J.

M. M. Weijters. Workflow Mining: A Survey of Issues and Approaches.Data Knowl. Eng.,
47(2):237–267, 2003.

9. J. van der Werf, B. van Dongen, C. Hurkens, and A. Serebrenik. Process discovery using
integer linear programming. InICATPN, LNCS 5062, pages 368–387, 2008.

1 These calculations were performed on a 2.66GHz Core 2 Duo E6750 machine running Java
1.6 (no Threads used). The memory consumption never exceeded 256 MB. The program used
LpSolve 5.5.0.12.

2 These calculations were performed on a 3GHz Pentium 4 machine runningJava 1.5. The mem-
ory consumption never exceeded 256 MB. The program used LpSolve5.5.0.10.

