Experimental Results on Process Mining Based on
Regions of Languages

Robin Bergenthum,alg Desel, Christian Klbl, and Sebastian Mauser

Department of Applied Computer Science,
Catholic University of Eichsttt-Ingolstadt,
{firstnane. | ast nane}@u-ei chstaett. de

Abstract. In [2] we presented a process mining method based on the principle
of separating behaviour recorded in an event log from not obsérieaviour by

so called regions of languages. This workshop paper describes #amega-

tion of the method and shows experimental results. Furthermore sderes®ns
improving the basic process mining algorithm are explained, implementéd an
analyzed by practical tests.

1 Introduction

In the past few years the analysis of business processesmbenare and more popular.
Many of today’s information systems record information atjoerformed activities of
workflows in log files, so called event logs. Not only claskiwarkflow management
systems and ERP systems, but also web services, middleystesrs, embedded sys-
tems in high-tech equipment and many other informationesystproduce event logs.
Different methods have been suggested to parse event lagingainformation about
workflows to understand what is actually going on. Technsqeidracting useful, struc-
tured information from the vast amount of information retsx in an event log are
subsumed under the tenpnocess miningin this paper we focus on constructing a pro-
cess model, which matches the actual workflow of the recondfedmation system,
from an event log. This prevalent aspect of process minilkgdsvn as process or con-
trol flow discovery. There are many process discovery teghes in literature (see e.g.
[8,7]), often implemented in the ProM framework [5]. In thalléwing we consider
process models given by Petri nets.

A typical event log records the executed activities of a ilork together with cases
(initiating process instances) the activities belong tacttcase in a log is composed of
activities ordered by their execution times. Thus, abstigdrom further information,
an event log essentially consists of a set of recorded cas#sdefining a sequence
of activities. That means, a case can be seen as a word ovaiptebet of activities
and an event log can be seen as a language. With this poinewfpriocess discovery
is similar to a well-known problem in Petri net theory, nayngie reproduction of a
language by a Petri net — the so calfgahthesis problem up to language equivalence

Concerning the synthesis problem, since the 1980s, a lo¢saflts and methods
have been explored [1]. In a natural way well-known methcetsvdd from thetheory
of regions of languagefl] can be applied to synthesize a Petri net from a language

given by an event log as shown in [2]. In this paper we preseithalementation of the

most promising process discovery algorithm presented]inT[2Zis approach searches
for so called separating regions to exclude behaviour negivied in the event log from

recorded behaviour. Each separating region adds resirictd a net so that it is still

able to reproduce the given language but certain unwanteal/imur, a so called wrong

continuation, is excluded. In detail this is done by firstiaddne transition for each

activity, and then adding places (and arcs) given by seipgraggions to restrict the

behaviour of the net step by step or let's say place by plake.skarch for a separat-
ing region excluding a wrong continuation is a linear progmang problem. We show

experimental results for this mining method in the paper.

On top of the implementation of this basic mining algorithne present, imple-
ment and test some extensions tuning the algorithm to pedateeds. A long list of
such extensions has been proposed in [3]. Guided by prbetipariences with our new
implementation of the new mining algorithm, we selectedrttost interesting ones of
this list to be studied in detail in this paper. The main peot$ tackled by these exten-
sions are overfitting, performance and "spaghetti” procesdels. These problems are
in particular linked to the fact that the basic process discpapproach of this paper is
a precise one in the sense that it roughly speaking constaueetri net reproducing the
words of the event log and having minimal additional behawi@n particular, if each
of the finitely many wrong continuations can be excluded bgagating region, then
the net exactly represents the log).

In contrast, many classical process discovery approachdmarecise. In order to
be efficient in time and memory consumption and to keep thdtieg process models
small, these process models allow for much more additioabbbiour as necessary
— they overapproximate the given event log. Our preciseagmbr overcomes many
of the limitations of such classical imprecise approachiégse have problems with
complex control flow structures such as non-free-choicesiroats, unbalanced splits
and joins, nested loops, etc., although in reality processien exhibit such features.
The second main problem of imprecise methods is their tarydenunderfit the event
log, i.e. the resulting model allows for much more behavieithout any indication
to be reasonable real behaviour. These problems are rdsojvéne precise algorithm
presented in this paper.

On the other hand, precise methods are often criticizech&ir tendency to overfit
[7]. Of course a log is usually incomplete, i.e. there may bssfble cases not occur-
ring in the log. On the first glance this argues against peegfgproaches. But without
additional information it is unclear, which possible cases missing in the log. It is
hardly possible to extract information about such missiages solely from the event
log. The overapproximation performed by most existing iegse approaches seems
to be quite arbitrary in many cases, at least hardly comtiot#l and predictable. In con-
trast, when using the precise approach as a basis, it idp@ssispecifically introduce
overapproximation in a targeted direction (on top of thecize solution) as shown in
[3]. This makes the overapproximation reliable and confible to address different
needs of the user. These ideas are an interesting reseddcfofias, but in this paper
we do only rudimentarily consider such extensions intraglyioverapproximation to
adequately deal with incomplete logs. Thus, the presentttiods basically face the

problem of overfitting, but the tests shown exemplarily iis thaper seem promising
anyway.

A particular problem with precise process mining methodghat they may be
inefficient in time and memory consumption. Although ouribasining algorithm has
a polynomial runtime and memory consumption, this may natusgcient for practical
applications. Many existing imprecise methods are linBat.the experimental results
in this paper show that our method works well for quite laagsl Therefore, so far we
only worked on few extensions concerning the runtime of tleimg procedure. But
we plan to integrate some further extensions improving tiéime, especially dealing
with modular aspects.

Lastly, the key drawback of a precise process discovery odeiy that it usually
generates a quite large process model. The number of comisarfehe model — in our
situation mainly the number of places and arcs of the Petrioéten has to be large in
order to potentiate an exact reproduction of the event Ibds iE the real problem aris-
ing from the overfitting of precise algorithms. The size & thodel has to be in such
a range, that the model can easily be interpreted by the Rsatitioners and process
analysts in industry are usually interested in concise andtcollable reference models.
"Spaghetti"-models that can only be evaluated with compstgport are mostly not
satisfactory. The danger of mining "spaghetti”-modelssgexially problematic in logs
of unstructured processes in less restrictive environsn@iit Most of the extension of
the basic mining algorithm presented in this paper deal thith problem. Of course
there sometimes is a trade-off between simplifying the ohinet and maintaining a
preferably precise model. But since our basic mining atborialready yields quite
satisfactory nets as shown in this paper, we so far only imptged extensions pre-
serving the precise character of the procedure. Impregiemsions are an interesting
field of further research. In order to get a compact modet alsstraction and visual-
ization techniques for the mined model are an interestitgéresearch topic [7].

It remains to mention, that the approach of using regionsuadgliages for process
mining was also picked up in a paper [9] that will be preseatieithe main ATPN2008
conference. This paper combines the ideas with the condeptroducing causal de-
pendencies according to the alpha algorithm. In contragtg¢anere alpha algorithm,
through the region approach, it is guaranteed that the logpsoduced by the mined
net and the places of the net are optimized in some sense tégemlinear program-
ming methods). Although there are similarities to our applg the two techniques are
guided by completely different techniques (alpha alganiths. separating regions). In
particular, the approach in [9] is still imprecise.

The paper is organized as follows. Section 2 provides thes ladgorithm and its
implementation, all necessary definitions and all impdréampects for the practical use
of the algorithm. In Section 3 we give an overview about thieresions we added to
the basic algorithm and discuss their complexity. Sectishaws experimental results.

2 Algorithm and Definitions

In this section we recall the mining method basedeparating regionfrom [2] carried
by a running example.

An alphabetis a finite setA. The set of allstrings (words)over an alphabet! is
denoted byA*. A subsetL C A* is calledlanguage overA. For a wordw € A*, |w|
denotes thdength ofw and|w|, denotes the number of occurrencesiofE A in w.
Given two wordsw, w, we callv prefixof w if there exists a word: such thatu = w.

Definition 1 (Eventlog).LetT be a finite set odctivitiesandC' be a finite set ofases
Aneventis an element o' x C. Anevent logis an element of 7" x C)*.

Given a case: € C we define the functiop. : T x C — T by p.(t,c/) = t if
c=c andp.(t,¢') = X else. Given an eventlog=e; ...e, € (T x C)* we define
theprocess languagk(o) of o by L(o) = {pc(e1) ...pc(ei) | i <n,c€ C} CT*.

For better understanding we take the running example log fi2], where each
letter stands for an activity and the number of an event sefethe case the particular
activity belongs to (Example 1). Heabbeis the word the case numbEmirrors having
a, abandabbas prefixes. Since a log has to define a prefix-closed langbageéfixes
also belong to the process language (every prefix is a sdrigdtivities that actually
happen during the case).

event log (activity,case):
(a,1) (b,1) (a,2) (b,1) (a,3) (d,3) (a,4) (c,2) (d,2) (ed] (b,4) (e,3) (e,2) (b,4) (e,4)
process language:

a ab abkabbeac acdacdead adcadce

Example 1.

The letters (activitiesY' occuring in the log build up the transition-set (of a Petri
net) without any restrictions. To restrict the behaviouthaf transitions we have to add
places, that prohibit wrong words but still permit the wordghe process language
L(o) of the log. We call such placésasible placeg].

Definition 2 (Feasible place)Let (N, m,), N = ({p},T, F,, W,) be a marked p/t-
net with only one placg (¥,, W, m,, are defined according to the definitionf The
placep is calledfeasible (w.r.tL(o)), if L(c) C L(N,m,), otherwisenon-feasible

The aim is to add as many feasible places as necessary stéhgitven net rep-
resents the process language with minimal additional bebhaveasible places are
defined by so calledegionsof the language. A region can be seen as a tuple or vector
r of natural numbers, where the first entry represents thialimtarking of the corre-
sponding place and the other entries define the consumptdprduction of tokens
by the transitions for this place. The set of feasible plasggven by the set of places
corresponding to regions [2].

Definition 3 (Region).DenotingT = {t¢4,...,t,} the activities of an event log, a
regionof L(o) is a tupler = (r,...,r2,) € N?"*1 satisfying for everywt € L(o)
(we L(o),teT):

(*) ro+ Y (wle i = Jwtle, - ragi) > 0.
i=1

Every regionr of L(o) defines a place, via mg(p,) := 1o, W(t;, pr) := 7; @and
W (py,t;) := rpe; for 1 < i < n. The placep, is calledcorresponding place ta

Now we know, that every place we add to the mined net (onlyiliémaplaces) does
not restrict the process language in any way, and by themoficegions it is possible to
translate the task of computing feasible places into tHeahsomputing non-negative
integer solutions of a homogenous inequation system,) - r > 0 defined by the
(*)-inequations.

The inequation system of Example 1 would look like Table 1ththis inequation
system we ensure, that only feasible places are addedthergiven process language.
As we can see, the inequations frdeandadcecoincide so that the matrix actually
has one row less (for a wordt only the Parikh image ob is considered).

a TO — T6 >0
ab ro+7T1—7T6 — 177 >0
abb ro+ri+re—1re —2r7 >0
abbe ro 411+ 2re —re — 217 — 710 >0
ac rTo+7T1—7T6 —7T8 >0
acd ro+711+7r3—T6—T8 — 19 >0
acde ro+ri+r3s+rs—1r6 —7r8 —19 —110 >0
ad o+ 711 —T6—T9 >0
adc T+ T+ T4a—T6—T9—T8 >0
adce ro+ri+ra+r3—1r6 —79 —18 —1r10 >0

Table 1. In the first inequationg consumess tokens from the initial marking,. At "ab” we
have the initial marking, r1 tokens produced by andrs + r7 tokens consumed hyandb, ...

The next step we have to make is the prohibition of words,alanhot in the process
languagéel (o). For this we will "invent” the wrong continuations. Wrong donuations
are kind of an opposite concept to feasible places.

Definition 4 (Wrong Continuation). Letw be a word of a process languad€o) and
t be an activity of the event lag A wordv = wt is @ wrong continuation ifvt ¢ L(o).

Although there are infinitely many words in the complemenk ¢f), we only have
to regard a finite set of them, the wrong continuations. Thibdacause prohibiting a
wrong continuationut every wordwtw is prohibited too (prefix closure). Using Def-
inition 4 we are able to build regions w.r.t. wrong continiaas wt which prohibit all
wrong words (not occurring in the log)tv. Such regions are callesgparating regions

Definition 5 (Separating region).Letr be a region ofL(o) and letwt be a wrong
continuation. The region is aseparating region (w.r.tt) if

(%) ro + Z(|w|t <1y — |wtly, - Tpts) < 0.
i=1

Given a wrong continuationt, we add one inequatidn,,; - r < 0 given by (**) to
the inequation systed ;) -r > 0 and solve the resulting system. Each solution yields
a separating region w.r.twt defining a feasible place. Step by step, for each wrong
continuation, we compute one such place (if it exists) andl iado the constructed
net. That means, if there is a nonnegative integer solutfame inequation system
A)T >0,b, T <0, then afeasible place prohibiting the wrong continuatigiis

added (otherwise no place is added), and we have to checkthe/rong continuation.
It is possible that a calculated place for a wrong contiruneéilready blocks another or
even a lot of other wrong continuations. So before solvirgy ittequation system in
a step of the algorithm, it is checked whether the considenexhg continuation is
already prohibited by previously added places. In this tasatep is skipped.

As an example the inequatidn,; - r < 0 for the wrong continuatiombcin our
running example would be:

ro+ri+re—rg—1r7—1r8 <0

With an implementation of the presented method we obtaineadhét in Figure 1 from
the log of Example 1.

Finish

abd [} = abe
Fig. 1. Mined net. The words under the places are the wrong continuations fohwhie places
were computed.

We implemented the algorithm within a diploma thesis at osp&tment of Ap-
plied Computer Science. The implementation comprehendff acded version of the
Simplex algorithnj6] with two primal steps to solve the inequation systemac8ithe
inequation systems are homogeneous we can use the stanodgiiéxSsearching for
rational solutions. These can be multiplied by the commarodenator of the compo-
nents of the solution vector to get an integer solution.arrhore we have an interface
to work with the MXML fileformat (used in the toolset ProM [5])

The implemented algorithm is exponential in the worst ceseause of the Simplex
algorithm. But there are also rational linear programmiolgers, which have polyno-
mial runtime, such as the method of Karmarkar. Using suchesdhe whole mining
algorithm has polynomial time consumption, since thereaéreost|L(o)| - |T'| wrong
continuations, i.e. steps of the algorithm. But probatidigand experimental results
show that the Simplex algorithm has a faster average rurigifrtean existing polyno-
mial solver. Thus, we decided to use the Simplex in our imgletation, but neverthe-
less we say that our basic mining algorithm has polynomiatime.

In [3] we gave an overview of heuristics and extensions thatdcbe important for
the practical use of the implemented mining algorithm eglgaduring the process-
ing phase to gain performance and better readable netse 8iiwxlist was very long
we needed to decide which extensions and improvements beutlde most important

ones. For this we played with some logs distributed with tt@vPFramework [5] and
other small applied or artificial examples. We performedher tests in a collaborative
project with Prof. Dr. Andreas Harrer (Professorship of @ater Science at the KU-
Eichshtt). There we used the mining algorithm on logs recordedlegming systems.
Past these tests and applications we figured that the sibe afeveloped nets and the
performance to develop was capable already for the basimgiagorithm. So we de-
cided to implement mainly precise extensions with the maau$ on simplifying the
mined nets and avoiding too complicated structures.

3 Improvements

We distinguish in extensions which preserve the polynonuiatime of the basic algo-
rithm and extensions which require exponential runtimetduake need of integer linear
programming methods. As an integer linear programmingesaole used the Ipsolve
5.5.0.12 Java package [4].

3.1 Polynomial extensions

Finding cycles The implemented method to find cycles is a simple one. It exemi
each casefrom an event logr. We denote: = ¢;cs...c,,. Within one case the method
searches, if there occurs a sequemnoé two activities more that once in the case.e.

a = ci—1¢; = ¢j—1¢4,% # 7. In this case the sequenaas assumed to be a candidate
to be part of a cycle. All such are stored, because to allow cycles theseeed not
be prohibited. That means, if for a wrong continuatioh ¢ L(c), w € L(o), there
holdswt = w’a for one of the stored series of activitiesthenwt is not considered as
a wrong continuation, i.e. no place separatings computed.

By not marking this cycle candidate as a wrong continuatierallow the respective
sequences, but we do not enforce the introduction of a cycté mined net. That
means, the cycle may be prohibited by another place, buttthieis a hint, that there
actually is no cycle, and thus prohibiting the cycle in theswis a reasonable choice.
Order of the wrong continuations This heuristic is quite difficult to generalize in terms
of usage. Since the algorithm works step by step considemggwrong continuation
in each step, it is dependant on an ordering of the wrong roations. We tried to
improve the runtime of the algorithm and/or minimize the emof places by sorting
the wrong continuations in the most practical order. We usiering principles that
are based on our experiences so far. One such principle isnsider at last wrong
continuations only consisting of one element. We also taédanced systematics like
testing several (sub-)orderings leading to different sofunets.

Deleting implicit places To reduce the number of places after the actual mining al-
gorithm, we implemented post-processing methods to défgbécit places. Implicit
places can be deleted without changing the behavior of thaNeeimplemented three
methods: A very simple and efficient one compares placew/jsaito check if one place

is less restrictive than the other one. The less restrigtimee is of course redundant.
A second method uses linear programming techniques to seplifce is less restric-
tive than a linear combination of the other places. Suchepis@lso implicit. A third

method checks all places in a certain order, if they are icitplThe third approach is
no more polynomial.

Objective function Since there are several possible solutions of an inequayistem
defined by a wrong continuation, there are different polés which place is actually
added in a step of our algorithm. The choice of a concretetisalin one step can be
guided by an objective function. Since the Simplex algonitis able to compute an
optimal solution of the inequation system w.r.t. a linegjective function, considering
such function in order to, e.g., minimize the arc weights #radinitial marking of the
resulting place does not significantly decrease the pegoom of the whole algorithm.
For example to minimize the sum of ingoing arc weights anditiiteal marking of
the computed place, we can consider the linear programmivigjgm!min Y. 75,
A (o):r > 0,by - < 0.Butby using the rational Simplex solver adding an objectiv
function to the linear programming problem is only a heigisthe optimization of the
objective function by the rational solver means the calowteof the optimum by using
rational numbers. The solution is then multiplied by the omon denominator to get an
integer solution of the homogeneous inequation systemidgfanseparating region. So
this separating region must not necessarily persist axthalaptimum, but in practice
this heuristic often leads to a near optimal solution.

3.2 Exponential Extensions

Objective function An exact method is to use an integer solver with the branch and
bound technique to solve the inequations system equippdainear objective func-
tion. As this is not implemented in our algorithm we use IpsolWith this way of
computing a separating region we get the exact optimal émteglution, but at the cost
of runtime, since the branch and bound technique needs erpiahtime consumption.
Classes of net$n our case we implemented a method to build a net with no aighig
This can be done by adding the restrictions< 1 for i = 1...2n to the inequation
system, such that the region vectors only consistaf1 values. In this case we cannot
use a rational solver, because we are not able to multiplysdigions by anything.
Well, we actually would be able, but it would not necessandisult in a solution of our
inequation system, because the inequation system is neddtvognogenous. Therefore,
we here again use the integer solver of Ipsolve.

Outlook Using integer linear programming, it is also possible toimime the number
of places of the net or to compute a "best solution” in the ¢haeonly a fixed maxi-
mum number of places is allowed in the net. Such extensiahscieg the number of
places are interesting, but may lead to problems in perfocea/NVe are also able to use
more complicated net classes, especially correctneseiepfor the mined nets can
be postulated, e.g. the claim that the net has to be emptyfadighing a case (this is
part of the well-known soundness property).

4 Tests

We present practical tests to examine the quality of the chitegs and runtime tests.

4.1 Quality Tests

In the tests we tried to figure out, where the explained mirmilggprithm does a bet-
ter job than well known algorithms like the alpha algorittonthe alpha++ algorithm,
an extension of the alpha algorithm mining certain impligpendencies (in particular
non-free choice constructs). Both algorithms are implaet:m the ProM Framework
[5]. The log files used in the tests are mostly taken from tlevPdistribution. In this
case we refer to the names of the logs. We also checked otfwitaims mining Petri
nets, where in some cases the results were not satisfaetgryhe region miner imple-
mented in ProM, and in some cases it would be interesting rigpaoe the algorithms
in detail, e.g. the genetic miner, heuristic miner or midpe miner. We restrict us
to the alpha and alpha++ algorithm in this section becausalipha algorithm is the
best known mining algorithm. A second aim of the tests is talyme the extensions
presented in the last section.

In a first test we examined a log file of a workflow with a mutuatlegion of two
subprocesses (pex 02.xml). Thereby, the alpha algorithm builds a Petri net thediv-
ers a deadlock after the second transition (Figure 2). Titeeal+ algorithm modeled a
mutual exclusion, but it additionally introduced optiot@dps of the sub-processes and
allows a direct termination of the main process without exieg the sub-processes
(Figure 3). Thus, the actual workflow is not displayed. Owibalgorithm correctly
mined the mutual exclusion without unnecessary abstmackmure 4).

In an example of a log with non-free choice behaviour_éswl4.xml), both al-
pha algorithms delivered satisfactory solutions, and oethawd generated a similar
representation of the process. Next, we considered a lognafrkflow with optional
tasks (icex 01.xml), where transitions in the representing Petri Netadile to fire but
doesn’t have to. While this is not solvable by the other methmat basic mining ap-
proach gives us the correct solution as a net. Another tegbekflow log was a trigger
on expire task (svex 04.xml) that was embedded in a very difficult control flow. tist
workflow there exist tasks to prematuraly terminate adéigitAlso here our method re-
flects the real workflow better than the alpha algorithms.il@mto the optional tasks
are terminating tasks, where a process should be able tongmin every state by exe-
cuting the terminating activity. So if there are cases lik8C' D or ACBD thenABD
or AC'D should also be able, wheld represents the termination of the process. This
problem was only well solved by our algorithm.

We now test the described extension to find cycles. As meatidhis means, that
we tell the basic algorithm that detected possible cyclesat wrong, but not that they
are explicitly desired. The calling for cycles as mandattegired behaviour would also
be possible (but it is not implemented so far) by simply addiorresponding homo-
geneous inequations to the inequation systems (similasttmg the arc weights tb).
The next considered workflows contained loops and we trieddifferent approaches
of our method: The one with the finding cycles expansion aadther without.

The first test case was a mutual exclusion inside a loopefphl.xml). Both al-
gorithms solved the problem, while the second one countedrtaximal number of
repetitions of the loop appearing in the log and set accgrdic weights (Figure 5).
The counting place p10 causes the net not to be sound. Howkedirst one was able
to find the cycle and represented it in the sound Petri net shiowigure 6. The alpha

O !
Dl i .
[P

Fig. 2. Mutual exclusion of two sub-processes solved by the alpha algorithm

Ce Be
narmal normal

O ; O :
normal normal

Fig. 3. Mutual exclusion of two sub-processes solved by the alpha++ algorithm

Bs_unknawn

Cs_unknown

7 ks B 28 D_unknown ps T_unknown p11

Fig. 4. Mutual exclusion of two sub-processes solved by our algorithm

and alpha++ algorithm couldn’t solve the problem (certaaiso because of the mutual
exclusion).

Fig. 5. Mutual exclusion of two sub-processes in a loop solved by our algorititiout the
finding cycles expansion.

g B_schedule 2 B pe

Fig. 6. Mutual exclusion of two sub-processes in a loop solved by our algoritiimtie finding
cycles expansion.

A pure loop based test case was a workflow with a 2/3 loopefpf8.xml) (Figure
7, 8), where one has the alternative between a 2- or a 3-loagtremt. This test case
was correctly solved by each algorithm.

A third setting with a loop is from the experiments with théearning logs, where
we had a self loop of an activity (actually an optional taskdl a difficult cycle. The
alpha algorithm collapsed at both problems just as well aalpha++ algorithm, while
the second one delivered a not so bad solution (Figure 9)atberate solution found
by our algorithm can be seen in Figure 10. The net is not soecduse we used no
inivisible task.

Another problem that cannot be solved by the alpha algostwas a workflow
having a loop that had to be executed at least one timeefs@b.xml). Even with such
"at least one”-loop our mining algorithm has no problems.

After testing a lot of different loop constructions we ar@fident, that our approach
is able to very well handle loops in a workflow-log.

Since we are working with arc weights (which are often un@elj we wanted to
see what solutions we will get, if we are leaving arc weigtles,demandingy < 1. In
most examples considered so far our algorithm did not intcedarc weights anyway,
consequently, to see effects, for this approach we useduounirng example (Example

(o}
normal
D
normal

A
normal

narmal

N e

Fig. 7.2/3-loop solved by Alpha++ Algorithm.

1 1
E_unknown p1 F_unknown
1

1

A_unknown n? D_unknovin pd

B_unknown

Fig. 8. 2/3-loop solved by our algorithm.

|
complete

Fig. 10.Optional task and cycle solved correctly by our algorithm

1). The alpha algorithm produces a net, that allows an iefiiiiing of B in any state,

similar to the alpha++ algorithm (Figure 11). This is de&tytnot desired. With unre-
stricted arc weights our algorithm delivers a nice net aa be¢ore (Figure 1). With the
w < 1 restriction the mined net (Figure 12) is a bit problematid aot that readable
due to the fact that the desired behavior can hardly be repted without arc weights.
The net still reproduces the desired language, but unfatélyywith some additional
behavior, but best as possible (also that more than one jglagéally marked may be
seen as problematic).

B
complete

Fig. 12.Running example solved by our algorithm with< 1.

We also implemented a heuristic to choose a good order of gvcontinuations.
We ran a test with the log of the running example and we savegtate (Figure 13).

Fig. 13.Running example solved by sorting the wrong continuations in a practidat.or

This place could also be deleted by postprocessing algaesitteleting implicit
places. But only the inefficient third method described m st section is able to find

this implicit place. In general, the presented basic mirfygprithm only in rare cases
computes implicit places, in particular when choosing afical order of the wrong
continuations. We never had to use one of the three impledust-processing meth-
ods in one of the previous examples.

We also tested the extensions, where the choice of the inteatiplaces is guided
by an objective function. Although it seems to be desirab)etg., minimize arcs con-
nected to places, in our examples these extensions onlly raedded more compact
and better readable nets.

Finally, we can say that a practical order of wrong contirorest and the heuristic
of the cycle calculation distinctly improved the basic altfon. Usually, when we use
the finding cycles expansion, arc weights rarely occur, faihieire are still arc weights,
then from our experiences they bring a big simplificationhe $ense that a mined net
without arc weights is very clumsy and unclear or incorr&tius, in our opinion, arc
weights may be helpful. An objective function only brougkéun few cases. Therefore,
in the standard setting of our mining algorithm no objectivection is used, arc weights
and the calculations of cycles are used just as well as theeggborder (w.r.t. the size)
of the wrong continuations.

4.2 Runtime Tests

For the runtime tests we used the standard setting of ouriidgo(w.r.t. the applied ex-
tensions). We realized the tests on some log-files dist&ibwith the ProM Framework.
You can see the results in the table below. As a benchmark egeaxperimental results
presented for the algorithm in [9], because this algoriteran the one hand similar to
our algorithm and on the other hand based on the alpha digo(gee Introduction).

The important sizes in this table are "# trans.” (transkigras it determines the
number of variables per inequation system, and "# congrit defines the number of
inequations of the inequation system. With the quotientehey/ # cases you get the
average length of a case. Since cases may generate equal werspecify the number
of different cases by the column "# words”.

Our algorithm is overall faster in calculation speed (pagraton that different com-
puters are used), and has a similar growth as the benchménlough the runtime of
our algorithm is a critical point, we think it works quite Wweéspecially if consider-
ing that, until now, no performance oriented programmingdheimplementation took
place (but it will be done in the future, e.g. using Dual Siex)l The complexity seems
approximately linear in the number of words (but this may bethe case in general).
The dependency of the computation time from the number ofitians seems more
problematic. Altogether, we are able to solve a lot of proideeven bigger ones, if we
run the calculation over a longer period. Thus, also largefiles may be mined, e.g.,
overnight.

5 Future Work

Our next steps will be the development, implementation astdf further extensions
discussed in [3] to our mining approach (see the Introdatid/e intend to soon release
a mining tool freely available for personal use.

log # trans.[# casel# events# words]# constr]| runtime?® benchmark timg
(hh:mm:ss.sssk (hh:mm:ss.sss

alzfonoQl| 12 200 | 1236 5 19 0.046 0.406
al2fon0Q2| 12 600 | 3696 5 19 0.047 0.922
al2fon0Q3| 12 | 1000 | 6154 5 19 0.047 1.120
al2fOn0Q4| 12 | 1400 | 8666 5 19 0.049 1.201
al2fOn0Q5/ 12 | 1800 | 11146 5 19 0.054 1.234
a22fon0Q1| 22 100 | 1833 99 901 4.248 1:40.063
a22fon0Q2| 22 300 | 5698 | 291 2091 12.360 5:07.344
a22fon0Q3| 22 500 | 9463 | 476 2823 18.302 7:50.875
a22fon0Q4| 22 700 | 13215| 660 | 3488 20.459 10:24.219
a22fon0Q5| 22 900 | 16952| 836 | 4052 44.065 12:29.313
a32fon0Q1| 32 100 | 2549 | 100 1633 19.624 32:14.047
a32f0n0Q2| 32 300 | 7657 | 300 | 3815 1:27.904 1:06:24.735
a32fon0Q3| 32 500 | 12717| 500 | 5368 2:11.207 1:46:34.469
a32fon0Q4| 32 700 | 17977| 700 6721 2:32.454 2:43:40.641
a32fOn0Q5| 32 900 | 23195| 900 7854 1:57.218 2:54:01.765
a42fon0Q1| 42 100 | 3269 | 100 2723 1:45.781 n/a
a42fOon0Q2| 42 300 | 9794 | 300 7443 8:17.308 n/a
a42fon0Q3| 42 500 | 16369| 500 | 11812 34:34.859 n/a
a42fon0Q4| 42 700 | 22817 700 | 15704 45:51.791 n/a
a42fOon0Q5| 42 900 | 29169| 900 | 19263 43:08.843 n/a

References

1. E. Badouel and P. Darondeau. Theory of Region®elini Nets, LNCS 149pages 529-586,
1996.

2. R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Processgvased on Regions of
Languages. IBPM, LNCS 4714pages 375-383, 2007.

3. R. Bergenthum, R. Lorenz, and S. Mauser. Towards Applicabilibaofjuage Based Synthe-
sis for Process Mining. IAlgorithmen und WerkzeugérfPetrinetze (AWPN)ages 45-50,
2007.

4. Lp solve reference guide. http://Ipsolve.sourceforge.net/5.5/.

5. Process mining group eindhoven technical university: Prom-page
http://is.tm.tue.nl/ cgunther/dev/prom/.

6. A. Schrijver.Theory of Linear and Integer Programming/iley, 1986.

7. W. M. P. van der Aalst and C. W.l@ther. Finding structure in unstructured processes: The
case for process mining. KCSD, IEEE Computer Sociefyages 3—-12, 2007.

8. W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Marusters&imm, and A. J.
M. M. Weijters. Workflow Mining: A Survey of Issues and Approach&ata Knowl. Eng,
47(2):237-267, 2003.

9. J. van der Werf, B. van Dongen, C. Hurkens, and A. SerebreRilocess discovery using
integer linear programming. CATPN, LNCS 5062%ages 368-387, 2008.

! These calculations were performed on a 2.66GHz Core 2 Duo E6760imearunning Java
1.6 (no Threads used). The memory consumption never exce&@ddB. The program used
LpSolve 5.5.0.12.

2 These calculations were performed on a 3GHz Pentium 4 machine ruiaiag.5. The mem-
ory consumption never exceeded 256 MB. The program used LpSdive 10.

