
Fundamenta Informaticae XX (2007) 1–44 1

IOS Press

Causal Semantics of Algebraic Petri Nets distinguishing Concurrency
and Synchronicity

Gabriel Juhás
Faculty of Electrical Engineering and Information Technology

Slovak University of Technology Bratislava

gabriel.juhas@stuba.sk

Robert Lorenz
Department of Applied Computer Science

Catholic University of Eichstätt-Ingolstadt

robert.lorenz@ku-eichstaett.de

Sebastian Mauser
Department of Applied Computer Science

Catholic University of Eichstätt-Ingolstadt

sebastian.mauser@ku-eichstaett.de

Abstract. In this paper, we show how to obtain causal semantics distinguishing ”earlier than” and
”not later than” causality between events from algebraic semantics of Petri nets.

Janicki and Koutny introduced so called stratified order structures (so-structures) to describe such
causal semantics. To obtain algebraic semantics, we redefine our own algebraic approach generat-
ing rewrite terms via partial operations of synchronous composition, concurrent composition and
sequential composition. These terms are used to produce so-structures which define causal behavior
consistent with the (operational) step semantics. For concrete Petri net classes with causal semantics
derived from processes minimal so-structures obtained from rewrite terms coincide with minimal
so-structures given by processes. This is demonstrated for elementary nets with inhibitor arcs.

Keywords: theory of concurrency, algebraic Petri nets, causal semantics, process terms, inhibitor
arcs, synchronicity

Address for correspondence: Sebastian Mauser, Department of Applied Computer Science, Catholic University of Eichstätt-
Ingolstadt, sebastian.mauser@ku-eichstaett.de



2 G. Juhás, R. Lorenz, S. Mauser / Causal Semantics of Algebraic Petri Nets

1. Introduction

Since the basic developments of Petri nets more and more different Petri net classes for various applica-
tions have been proposed. Causal semantics of such special Petri net classes are often constructed in a
complicated ad-hoc way, defining process nets which generate causal structures (see e.g. [20, 10, 15, 16]).

Naturally there are also several approaches to unify the different classes in order to be able to define
non-sequential semantics in a systematic way using algebraic descriptions [25, 3, 1, 8, 23, 21, 22] (see
[24] for an overview). Most of these approaches are based on the paper [19], where non-sequential
runs of nets are described by equivalence classes of rewrite process terms. These process terms are
generated from elementary terms (transitions and markings) by concurrent and sequential composition.
Unfortunately, none of these works provides a method how to obtain causal semantics from the algebraic
semantics.

This paper extends the unifying approach of algebraic Petri nets as proposed in Part II of [11]. With
the approach from [11] non-sequential semantics can be derived on an abstract level for Petri nets with
restricted occurrence rule (encoded by partiality of concurrent composition) like place/transition nets
(p/t-nets) with capacities, elementary nets with mixed context equipped with the a-posteriori semantics,
etc. In addition to other works, and in particular to [8], in [11] it is shown how to obtain causal semantics
based on an ”earlier than” causality between events (formally given as labelled partial orders (LPOs))
from process terms. It is proven in [11] for many concrete net classes that the minimal LPOs obtained
from process terms coincide with minimal LPOs given by standard process semantics.
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Figure 1. An elementary net with inhibitor arcs (p3, f), (p6, h) and (p7, g) (part (a)), a process of the net (part
(b)) and the associated run (part (c)).

As explained in [10], ”earlier than” causality expressed by LPOs is not enough to describe causal
semantics for some Petri net classes, as for example the a-priori semantics of elementary nets with
inhibitor arcs.1 In Figure 1 (which serves as our running example) this phenomenon is depicted: In the
a-priori semantics the testing for absence of tokens (through inhibitor arcs) precedes the execution of a

1Note that there are also other semantics for elementary nets with inhibitor arcs [5, 26].
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transition. Thus f cannot occur later than e, because after the occurrence of e the place p3 is marked
and consequently the occurrence of f is prohibited by the inhibitor arc (p3, f). Therefore e and f cannot
occur concurrently or sequentially in the order e → f . But they still can occur synchronously (because
of the occurrence rule ”testing before execution”) or sequentially in order f → e. This is exactly the
behavior described by ”f not later than e” (see section 2 for details on the occurrence rule). After the
respective firing of f and e we reach the marking {p3, p4, p5}. Now with the same arguments as above
the transitions g and h can occur synchronously but not sequentially in any order. This relationship can
be expressed by a symmetric ”not later than” relation between the respective events (none may occur
later than the other). The described causal behavior (between events) of the net is illustrated in part
(c) of Figure 1. The solid arcs represent a (common) ”earlier than” relation, i.e. the events can only
occur in the expressed order but not synchronously or inversely. Dashed arcs depict the ”not later than”
relation explained above. Partial orders only model the ”earlier than” relation but they do not permit to
describe relationships, where synchronous occurrence is possible but concurrency is not. Examples are
the relationships between e and f as well as g and h in Figure 1. The net in part (b) of Figure 1 depicts
a process corresponding to the run in part (c) (details on processes and runs are explained in section 2).
Altogether there exist net classes, including inhibitor nets admired by practitioners, where synchronous
and concurrent behaviour have to be distinguished.2 In [10] causal semantics based on stratified order
structures (so-structures, see section 2) consisting of a combination of an ”earlier than” and a ”not later
than” relation between events were proposed to cover such cases. The run in Figure 1 illustrates such an
so-structure describing the causalities explained in this paragraph.

In order to describe such situations at the algebraic level, in [13] we extended the algebraic Petri nets
from [8] by a synchronous composition operation which allows distinguishing between concurrent and
synchronous occurrences of events. In such an algebraic approach, a transition t is understood to be an
elementary rewrite term allowing to replace the (initial) marking pre(t) by the (final) marking post(t).
Moreover, any marking m is understood to be an elementary term, rewriting m by m itself. A single
occurrence of a transition t leading from a marking m to a marking m′ can be understood as a concurrent
composition of the elementary term t and the elementary term corresponding to the marking x, satisfying
m = x + pre(t) and m′ = x + post(t), where + denotes a suitable operation on markings (see Figure
2). The non-sequential behaviour of a net is given by a set of process terms constructed from elementary
terms as follows: Firstly transitions can be synchronously composed to synchronous step terms using
an operator ⊕ for synchronous composition (in particular every transition itself is a synchronous step
term). Secondly markings and synchronous step terms can be sequentially and concurrently composed
to (general) process terms using operators for sequential and for concurrent composition, denoted by ;
and ‖, respectively.

As described in the running example, transitions t and t′ cannot necessarily occur synchronously resp.
concurrently at the marking pre(t) + pre(t′). Such restrictions of the occurrence rule will be encoded
by a restriction of synchronous and concurrent composition. That means if the marking pre(t) + pre(t′)
does not enable two transitions t and t′ synchronously (concurrently), then t and t′ are not allowed to
be composed by ⊕ (‖). To describe such a restriction, we use an abstract set I of information elements,
together with two symmetric independence relations on I for synchronous and concurrent composition.
Every marking x as well as every transition t has an attached information element. Several transitions

2Further examples of such net classes are nets with read arcs (a-priori semantics), nets with capacities (”first consume then
produce” semantics), nets with priorities, nets with reset arcs, nets with signal arcs, etc.
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Figure 2. Firing of a transition t from a marking m to a marking m′ and its interpretation as a concurrent rewriting
of the transition t and the marking x.

can be composed synchronously (to synchronous step terms) if and only if their respective informa-
tion elements are (synchronously) independent. For synchronously independent information elements
we define an operation for the synchronous composition of information elements. This operation has
the meaning that the information of the composed synchronous step term is the composition of the in-
formation elements of its components. A marking x and a synchronous step term s can be composed
concurrently if and only if their respective information elements are (concurrently) independent. We also
define an operation for the concurrent composition of information elements with the intended meaning
that the information of the composed term is the (concurrent) composition of the information elements
of its components. Since the operations of synchronous and concurrent composition between elementary
terms and information elements are defined only partially, i.e. partial algebra is employed, such nets are
also called Petri nets over partial algebra [8].

As elementary terms, each process term has an associated initial marking, final marking and an
information set consisting of all information elements of elementary terms from which it is generated.
Initial and final markings are necessary for sequential composition: Two process terms can be composed
sequentially only if the final marking of the first process term coincides with the initial marking of the
second one. Then the initial marking of the resulting process term is the initial marking of the first term
and the final marking of the resulting term is the final marking of the second term. The set of information
associated to the resulting process term is given by the union of the sets of information associated to the
two composed terms. Concurrent composition of two process terms is defined only if each element of the
associated information set of the first process term is independent from each element of the information
set of the second term. Then the initial and final marking of the resulting term are given by the sum (+)
of the initial and final markings of the two terms. The set of information of the resulting process term
contains the concurrent composition of each element of the information set of the first term with each
element of the information set of the second. Synchronous composition is only defined for transitions
but not for arbitrary process terms.

Altogether, an algebraic Petri net consists of a set of transitions and a set of markings (equipped with
an operation for the addition of markings). Each transition is assigned an initial and a final marking
and each marking and each transition is assigned an information element from a partial algebra of in-
formation. Its behaviour is given by process terms. Process terms are built inductively by synchronous
composition of transitions to synchronous step terms, and sequential and concurrent composition of
synchronous step terms and markings. All composition operations are partial. In this approach, the
cardinality of the sets of information associated to concurrently composed process terms growths expo-
nentially. For deriving a more compact information one can use any equivalence ∼=∈ 2I × 2I that is a
congruence with respect to the operations concurrent composition and union for sequential composition
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(the synchronous composition operation is not considered since it is not defined for arbitrary process
terms). If this congruence preserves the independence relation, i.e. A ∼= B and A is independent from
C (that means each element of A is independent from each element of C) implies that B is independent
from C, then the congruence is called a closed congruence. Equivalence classes of the greatest closed
congruence represent the minimal information assigned to process terms necessary for concurrent com-
position. Thus, instead of sets of information we associate to process terms equivalence classes w.r.t. the
greatest closed congruence.
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Figure 3. Deriving an exemplary process term of the net from Figure 1 (part (a)). In the middle of an arc there are
drawn the respective sub-process terms with associated information (information elements for elementary process
terms and information sets for non-elementary process terms) in the line below in grey colour. At the beginning of
an arrow we illustrated pre and at the arrowhead post is depicted.

Figure 3 shows an example for the construction of a process term to describe a run of the net shown in
Figure 1, part (a). In the initial marking {p1, p2, p5} the transitions e and f can occur synchronously. This
is described by the process term (e⊕ f) ‖ {p5}. After the occurrence of e and f the marking {p3, p4, p5}
is reached. In this marking, the transitions g and h can occur synchronously yielding the process term
(g⊕h) ‖ {p3}. The resulting term is ((e⊕ f) ‖ {p5}); ((g⊕h) ‖ {p3}). For the construction of such
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a process term one has to verify that the mentioned synchronous and concurrent compositions of sub-
terms are defined. This is done by assigning information elements from an appropriate partial algebra
of information to markings and transitions as described above (see Section 6 and Example 3.1 for the
formal definition of such a partial algebra of information for elementary nets with inhibitor arcs).

Using the described algebraic approach, a great variety of additional concrete net classes can be cov-
ered compared to [11]. Unfortunately, the paper [13] does not provide a general method for constructing
so-structure based causal semantics from the algebraic semantics. Therefore in [13] a correspondence
of the algebraic semantics to non-sequential a-priori process semantics of elementary nets with inhibitor
arcs was proven in a complicated ad hoc way not comparing causal semantics.

As the main result of this paper we fill this gap. Namely, we show how to obtain a causal semantics
based on so-structures from process terms and, as an example, derive their correspondence to causal
semantics produced from processes for elementary nets with inhibitor arcs equipped with the a-priori
semantics.

Causal semantics can be obtained from process terms as follows: First each process term α defines
an so-structure (whose events are labelled by transition occurrences) in an obvious way:

• an event e1 occurs earlier than another event e2 if the process term α contains a subterm α1; α2

such that e1 occurs in α1 and e2 occurs in α2.

• events of one synchronous step term are in symmetric not later than relation.

For example, the process term ((e⊕ f) ‖ {p5}); ((g⊕h) ‖ {p3}) generates the left most so-structure
shown in Figure 4.
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Figure 4. So-structures generated from process terms describing possible behaviour of the net from Figure 1 (part
(a)).

Unfortunately not all reasonable so-structures can be generated in this way. For example, consider
the so-structure shown in Figure 1, part (c). It is easy to show by induction on the structure of process
terms that this so-structure cannot be generated by any process term. However, this so-structure can be
constructed from the so-structures shown in Figure 4 (by intersection of the respective ”earlier than” and
”not later than” relations) which are all generated by process terms.

Formally, process terms are used to produce so called enabled so-structures defining causal semantics
from algebraic semantics of Petri nets. These causal semantics are consistent with the algebraic step
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semantics in the sense that an so-structure is enabled if and only if every of its step sequentializations is
generated by an appropriate process term (Figure 4 shows all step sequentializations of the so-structure
in Figure 1, part (c)). Of course, this causal semantics should coincide with causal semantics of concrete
Petri net classes derived from processes (for such Petri net classes which have defined process semantics).
That means, the minimal enabled so-structures obtained from process terms should be exactly minimal
so-structures given by processes. This property must be shown extra for each concrete Petri net class.
In order to prepare the possibility of a systematic proof at such a concrete level, we derive results at the
abstract algebraic level relating process terms and enabled so-structures in more detail. Firstly it is shown
that so-structures generated by process terms are enabled. Secondly, we will define an equivalence of
process terms which are intended to represent the same commutative process (in commutative processes
one abstracts from the individuality of tokens, for details and examples see [11] and [2])3. Then it can be
proven that two process terms, whose generated so-structures extend (add causality to) the same enabled
so-structure, are equivalent.

Abstracting from technical details the framework for non-sequential semantics described in this paper
is visualized in Figure 5. Analogous relations were developed in [11] for the partial order case without
a synchronous composition operator. Here we elaborate the relations in this more general situation,
where our main focus is the causal level. Note that the right side (the filled arcs) of the graph - deriving
runs using the algebraic framework - can be schematically applied to nearly any net class with restricted
occurrence rule. The left side (non-filled arcs) of the framework is obviously strongly connected to the
concrete process definitions which are often, as already mentioned, non uniform ad-hoc definitions. Con-
sequently to demonstrate the respective relations we have to discuss a concrete net class implementation
as it is shown in section 6. But our approach is not dependent on such process semantics and we are able
to define runs for a wide variety of net classes in a uniform way (filled arcs): The framework directly
provides non-sequential algebraic semantics (process terms) and based on these causal semantics (runs
in the form of so-structures).

Formally, the algebraic semantics of a concrete Petri net is given as follows: We say that an alge-
braic Petri net corresponds to a concrete Petri net, if both nets have the same (algebraic respectively
operational) step semantics. Given a concrete Petri net, first a corresponding algebraic net has to be
determined. For this we have to fix an appropriate partial algebra of information and assign informa-
tion elements to markings and transitions. Then process terms can be generated from which (minimal)
enabled so-structures can be deduced in a systematic way. The resulting semantics are algebraically
established, are consistent with operational step semantics, and exactly match acknowledged classical
semantics in all elaborated examples. The advantage over classical non-sequential semantics is the uni-
form, systematic and mathematically founded definition.

The paper is structured as follows: First we generalize our own algebraic approach from [13] gener-
ating process terms via the partial operations of synchronous composition, concurrent composition and
sequential composition (section 3). These terms are used to produce so called enabled so-structures
defining causal semantics of algebraic nets. We derive several general results establishing the detailed
relationship between process terms and enabled so-structures at this abstract algebraic level (section 4).
Given a Petri net of a concrete Petri net class, we define the corresponding algebraic net in section 5. This
leads to a systematic and uniform way to construct causal semantics of Petri nets. This causal semantics

3Note that for elementary nets (with inhibitor arcs) we do not have to distinguish between collective and individual token
semantics (see [11]) and thus commutative processes and classical processes coincide.
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net class

process terms

runs

(synchronous, concurrent, sequential)

(„earlier than“, „not later than“)

process nets

Figure 5. The semantical framework of this paper which sketches the relations between concrete Petri net classes
(possibly distinguishing synchronous and concurrent behaviour), classical process definitions based on occurrence
nets, algebraic process terms with the partial operations of synchronous, concurrent and sequential composition
and in the end runs expressed as labelled so-structures.

coincides with classical causal semantics derived from process semantics. Exemplarily we will show
this result in a systematic way (which is based on the general results developed in section 4 and can be
adapted to further net classes) for elementary nets with inhibitor arcs (section 6).4 This generalizes the
main result of [13].

Altogether this work is a self-contained, elaborated and consolidated version of [12]. For better
readability we only sketched the technically laborious proofs in the main text of the paper but we included
detailed proofs in the Appendix. If we do not explicitly mention that a result was already proven in
another publication, then the result is firstly shown in this paper. The same holds for the conceptual
definitions.

2. Preliminaries

In this section we recall the basic definitions of stratified order structures, elementary nets with inhibitor
arcs (equipped with the a-priori semantics) and partial algebras.

Given a set X we will denote the set of all subsets of X by 2X , the set of all multisets over X by
NX , the identity relation over X by idX , the reflexive transitive closure of a binary relation R over X by
R∗ and the composition of two binary relations R, R′ over X by R ◦R′.

We start with some basic notions to prepare the ground for the definition of stratified order structures
(so-structures). A directed graph is a pair (V,→), where V is a finite set of nodes and →⊆ V × V is
a binary relation over V called the set of arcs. As usual, given a binary relation →, we write a → b to

4This net class has the advantage that it is already completely analyzed in the concept of ad-hoc process definitions (in contrast
to p/t-nets with weighted or unweighted inhibitor arcs [15, 16]). Therefore we are able to check the consistency of the ad-hoc
concept to our general algebraic concept. Note that the existing process semantics for general p/t-nets with weighted inhibitor
arcs [16] do not produce minimal causal behaviour.
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denote (a, b) ∈→. Two nodes a, b ∈ V are called independent w.r.t. the binary relation → if a 6→ b
and b 6→ a. We denote the set of all pairs of nodes independent w.r.t. → by co→ ⊆ V × V . A
partial order is a directed graph po = (V, <), where < is an irreflexive and transitive binary relation
on V . If co< = idV then (V, <) is called total. A co-set of a partial order (V, <) is a set C satisfying
C × C ⊆ co<. Given two partial orders po 1 = (V,<1) and po 2 = (V, <2), we say that po 2 is a
sequentialization (or extension) of po 1 if <1⊆<2.

So-structures [10] are, loosely speaking, combinations of two binary relations on a set of events
where one is a partial order representing an ”earlier than” relation and the other represents a ”not later
than” relation. Thus so-structures describe finer causalities than partial orders. Formally, so-structures
are relational structures satisfying certain properties. A relational structure (rel-structure) is a triple
S = (X,≺, @), where X is a finite set (of events), and≺⊆ X×X and @⊆ X×X are binary relations
on X . A rel-structure S ′ = (X,≺′, @′) is said to be an extension of another rel-structure S = (X,≺, @),
written S ⊆ S ′, if ≺⊆≺′ and @⊆@′.

Definition 2.1. (Stratified order structure)
A rel-structure S = (X,≺, @) is called stratified order structure (so-structure) if the following condi-
tions are satisfied for all x, y, z ∈ X:
(C1) x 6@ x
(C2) x ≺ y =⇒ x @ y
(C3) x @ y @ z ∧ x 6= z =⇒ x @ z
(C4) x @ y ≺ z ∨ x ≺ y @ z =⇒ x ≺ z ©

In figures≺ is graphically expressed by solid arcs and @ by dashed arcs. According to (C2) a dashed
arc is omitted if there is already a solid arc. Moreover, we omit arcs which can be deduced by (C3)
and (C4). It is shown in [10] that (X,≺) is a partial order ((X, @) is a strict preorder). Therefore so-
structures are a generalization of partial orders. So-structures turned out to be adequate to model the
causal relations between events of complex systems exhibiting sequential, concurrent and synchronous
behavior. In this context ≺ represents the ordinary ”earlier than” relation (as in partial order based
systems) while @ models a ”not later than” relation (examples are depicted in Figure 1, part (c), and
Figure 4). According to [10] for nodes x, y ∈ X there is an extension S ′ = (X,≺′, @′) of S with x ≺′ y
if and only if y 6@ x and x 6= y. Moreover, for all x, y ∈ X , there holds x ≺ y =⇒ y 6@ x. These
properties justify the described interpretation of ≺ and @.

Similar to the notion of the transitive closure of a binary relation the ♦-closure S♦ [10] of a rel-
structure S = (X,≺, @) is defined by

S♦ = (X,≺S♦ ,@S♦)
= (X, (≺ ∪ @)∗◦ ≺ ◦(≺ ∪ @)∗, (≺ ∪ @)∗ \ idX).

A rel-structure S is called ♦-acyclic if ≺S♦ is irreflexive. The ♦-closure S♦ of a rel-structure S is an
so-structure if and only if S is ♦-acyclic (for this and further results on the ♦-closure see [10]).

Finally, we introduce two subclasses of so-structures which turn out to be associated to (specific
subclasses of) process terms of algebraic Petri nets.

Definition 2.2. Let S = (X,≺, @) be an so-structure, then S is called synchronous closed if co≺ =
co@ ∪ (@ \ ≺) and S is called total linear if co≺ = (@ \ ≺) ∪ idX . ©
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In other words, a synchronous closed so-structure can be regarded as an so-structure that does not
include asymmetric @-relations (for instance the so-structure in Figure 1, part (c), is not synchronous
closed, because f @ e but e 6@ f ). Total linear so-structures are maximally sequentialized in the sense
that no further ≺- or @- relations can be added maintaining the requirements of so-structures according
to Definition 2.1 (for examples see Figure 4).

The set of all total linear extensions (or linearizations) of an so-structure S is denoted by stratsos(S).
Now we will summarize some results about these two classes of so-structures. The following result
proven in [15]5 shows that every so-structure can be reconstructed from its linearizations:

Proposition 2.1. Let S be an so-structure. Then

S = (X,
⋂

(X,≺,@)∈stratsos(S)

≺,
⋂

(X,≺,@)∈stratsos(S)

@)

This means any so-structure equals the intersection of its linearizations (as an example, the so-
structure in Figure 1, part (c), equals the intersection of those in Figure 4).

Each total linear so-structure is synchronous closed because according to (C2) co≺ = (@ \ ≺)∪idX

implies co@ = idX . Using the results from [10] about augmenting so-structures one can conclude that
every so-structure is extendable to a total linear so-structure.

The crucial property of synchronous closed so-structures is the fact that every synchronous closed
so-structure can be embedded into a partial order. To show this we need the following lemma which is
fundamental to transforming special equivalence classes of nodes of a synchronous closed so-structure
into the nodes of a partial order:

Lemma 2.1. Let S = (X,≺, @) be an so-structure. Then S is synchronous closed if and only if
(@ \ ≺) ∪ idX is an equivalence relation.

Proof:
”=⇒”: The reflexivity of (@ \ ≺) ∪ idX is obvious. From co≺ = co@ ∪ (@ \ ≺) we deduce that
(@ \ ≺) is symmetric, since co≺ and co@ are symmetric and co@ ∩ (@ \ ≺) = ∅. Consequently,
(@ \ ≺)∪ idX is symmetric. Denote∼= (@ \ ≺)∪ idX . According to (C3), @ ∪ idX is transitive. The
transitivity of ∼ can be proven as follows: Assuming x ∼ y ∼ z and x 6∼ z then implies x ≺ z. This
contradicts the symmetry of ∼, since x ≺ z =⇒ z 6@ x.

”⇐=”: Since (@ \ ≺) ∪ idX is symmetric, also (@ \ ≺) is symmetric. Therefore, x co≺y implies
that either x co@ y or x (@ \ ≺) y and y (@ \ ≺) x. On the other hand, we get co@ ⊆ co≺ directly from
(C2) and (@ \ ≺) ⊆ co≺ since (@ \ ≺) is symmetric. ut

For a synchronous closed so-structure S = (X,≺, @) we denote

• ∼S= (@ \ ≺) ∪ idX (which according to Lemma 2.1 defines an equivalence relation),

• [x]S = {y ∈ X | x ∼S y}, and

• X|S = {[x]S | x ∈ X}.

5formulated in other notations using the notion strat(S)
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The elements of X|S are called synchronous classes of S. The partial order ≺ carries over to X|S as
follows: For [x]S , [y]S ∈ X|S define

[x]S <S [y]S ⇐⇒ x ≺ y.

By (C4) this is well-defined. Then poS = (X|S , <S) defines a partial order, because (X,≺) is a partial
order. poS is called associated to S. The partial orders associated to the total linear so-structures in
Figure 4 are the total orders expressed by the following sequences (from left to right): {e, f} → {g, h},
{f} → {e} → {g, h}, {f} → {e, g, h} and {f} → {g, h} → {e} (this also illustrates the second
statement in the subsequent Lemma 2.2). We have the following results for associated partial orders:

Lemma 2.2. Let S,S ′ be synchronous closed so-structures satisfying S ⊆ S ′. Then k′ ∈ X|S′ has the
form k′ = k1 ∪ . . . ∪ kn with k1, . . . , kn ∈ X|S for some n ∈ N.

Moreover, a synchronous closed so-structure S is total linear if and only if its associated partial order
poS is total.

Proof:
From the above definitions we directly deduce∼S⊆∼S′ . This implies the first statement of the Lemma.

For the second statement we have to discuss two directions:
Let S be total linear, i.e. co≺ = (@ \ ≺) ∪ idX =∼S . This implies x co≺y ⇐⇒ [x]S = [y]S

(x, y ∈ X). This gives co< = idX|S because x co≺y ⇐⇒ [x]S co<[y]S by definition.
Let on the other hand poS be total, i.e. co< = idX|S . From x co≺y ⇐⇒ [x]S co<[y]S we deduce

x co≺y ⇐⇒ [x]S = [y]S , i.e. co≺ =∼S= (@ \ ≺) ∪ idX . ut
We will often use labelled so-structures in the following. These are so-structures S = (X,≺, @)

together with a set of labels M and a labelling function l : X → M . We use the above notations defined
for so-structures also for labelled so-structures. Moreover for labelled so-structures we define: Two
labelled so-structures (V1,≺1, @1, l1), (V2,≺2,@2, l2) are isomorphic if and only if there is a bijection
γ : V1 → V2 preserving the order relations and the labelling function, i.e. ∀v1, v2 ∈ V1 : v1 ≺1 v2 ⇐⇒
γ(v1) ≺2 γ(v2) ∧ v1 @1 v2 ⇐⇒ γ(v1) @2 γ(v2) ∧ l(v1) = l(γ(v1)).

Next we present the net class which will be used to illustrate the main concepts and results developed
in this paper. An elementary net is a net N = (P, T, F ), where P is a finite set of places, T is a finite
set of transitions (P ∩ T = ∅) and F ⊆ (P × T ) ∪ (T × P ) is the flow relation. For x ∈ P ∪ T we
denote •x = {y ∈ P ∪ T | (y, x) ∈ F} (preset of x) and x• = {y ∈ P ∪ T | (x, y) ∈ F} (postset of
x). This notation can be extended to X ⊆ P or X ⊆ T by •X =

⋃
x∈X

•x and X• =
⋃

x∈X x• . Each
set m ⊆ P is called a marking. A transition t ∈ T is enabled to occur in a marking m of N if and only
if •t ⊆ m ∧ (m \ •t) ∩ t• = ∅. In this case, its occurrence leads to the marking m′ = (m \ •t) ∪ t• .
Two transitions t1, t2 ∈ T, t1 6= t2, are in conflict if and only if ( •t1 ∪ t•1 ) ∩ ( •t2 ∪ t•2 ) 6= ∅.

Definition 2.3. (Elementary net with inhibitor arcs (a-priori))
An elementary net with inhibitor arcs is a quadruple ENI = (P, T, F, C−), where (P, T, F ) is an
elementary net and C− ⊆ P × T is the negative context relation (or inhibitor relation) satisfying (F ∪
F−1) ∩ C− = ∅. For a transition t, −t = {p ∈ P | (p, t) ∈ C−} is the negative context of t.

A transition t is enabled to occur in a marking m if and only if it is enabled to occur in the underlying
elementary net (P, T, F ) and if −t ∩ m = ∅. The occurrence of an enabled transition t leads to the
marking m′ = (m \ •t) ∪ t• .
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Two transitions t1, t2 ∈ T, t1 6= t2, are in synchronous conflict (in the a-priori semantics) if they are
in conflict in the underlying elementary net or if ( •ti) ∩ (−tj) 6= ∅ (for i, j ∈ {1, 2}, i 6= j). A set
of transitions s ⊆ T , called synchronous step, is enabled to occur in a marking m of ENI if and only
if every t ∈ s is enabled to occur in m and no two transitions t1, t2 ∈ s, t1 6= t2, are in synchronous
conflict. In this case, its occurrence leads to the marking m′ = (m \ •s) ∪ s• . We write m

s−→ m′ to
denote that s is enabled to occur in m and that its occurrence leads to m′. ©

In the example net of Figure 1 (part (a)) the negative context relation is depicted through so called
inhibitor arcs with circles as arrowheads (the standard arcs represent the usual flow relation). An example
for the occurrence rule of elementary nets with inhibitor arcs equipped with the a-priori semantics by
means of this example net is described in the introduction.

Now we introduce the ”classical” process semantics for ENI as presented in [10]. Remember that
since the absence of a token in a place cannot be directly represented in an occurrence net, every inhibitor
arc is replaced by a read arc to a complement place. Moreover, such complement places remove possible
contact situations. These are situations, when the enabledness of a transition is prohibited by tokens
in the postset of the transition. It is shown in [20] that ENI can be transformed via complementation
into a contact-free elementary net with positive context (i.e. with read arcs depicted through arcs with
dots as arrowheads) exhibiting the same behavior. The set of complement places6 will be denoted by
P ′ and the complementation-bijection from P to P ′ will be denoted by c. The processes of ENI are
defined endowing processes of ”ordinary” elementary nets (defined as usual by occurrence nets using
complementation) with read arcs (also called activator arcs in [10, 15, 16]).

Definition 2.4. (Labelled occurrence net)
An occurrence net is a net O = (B, E, R) satisfying:

(i) | •b|, |b• | ≤ 1 for every b ∈ B (places are unbranched).

(ii) O is acyclic, i.e. the transitive closure R+ of R is a partial order.

Places of an occurrence net are called conditions and transitions of an occurrence net are called events.
The set of conditions of an occurrence net O = (B, E, R) which are minimal (maximal) according

to R+ are denoted by Min(O) (Max(O)).
A labelled occurrence net is a tuple (O, l) where O is an occurrence net and l is a labelling function

on B ∪ E. ©
Definition 2.5. (Process of an elementary net)
Let N = (P, T, F ) be an elementary net and m0 be a marking. A process of N w.r.t. m0 is a labelled
occurrence net O = (B, E,R, l) such that the following conditions are satisfied:

(i) No isolated place of O is mapped by l to a complement place p ∈ P ′ (a place is isolated if it has
an empty preset and postset).

(ii) l|D is injective for every maximal co-set D of (B ∪ E, R+).

(iii) l(Min(O)) ∩ P = m0 ∧ l(Min(O)) ⊆ m0 ∪ {p′ ∈ P ′ | c−1(p′) 6∈ m0}.

6The concept of complement places can often be simplified (omitting complement places or using existing places as complement
places); such principles are applied in graphical representations, e.g. see Figure 1, part (b).
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(iv) ∀e ∈ E : l(•e) = •l(e) ∪ {p′ ∈ P ′ | c−1(p′) ∈ l(e)• } ∧ l(e•) = l(e)• ∪ {p′ ∈ P ′ | c−1(p′) ∈
•l(e)}.

©

Definition 2.6. (Activator process)
A labelled activator occurrence net (ao-net) is a five-tuple AON = (B, E, R,Act, l) satisfying:
(B, E,R, l) is a labelled occurrence net, Act ⊆ P × T is the positive context relation satisfying (R ∪
R−1) ∩Act = ∅, and the relational structure

S(AON) = (E,≺, @)
= (E, (R ◦R)|E×E ∪ (R ◦Act), (Act−1 ◦R) \ idE)

is ♦-acyclic. An ao-net AON is an activator process of ENI = (P, T, F, C−) w.r.t. a marking m0 if
and only if:

• O = (B, E, R, l) is a process of the elementary net N = (P, T, F ) w.r.t. m0, and

• (∀b ∈ B,∀e ∈ E : (b, e) ∈ Act =⇒ (c−1(l(b)), l(e)) ∈ C−) and (∀e ∈ E : (p, l(e)) ∈ C− =⇒
|{b ∈ B | c−1(l(b)) = p, (b, e) ∈ Act}| = 1).

In this case the labelled so-structure (S(AON)♦, l) is called a run of ENI w.r.t. m0. Denote by
Run(ENI, m0) the set of all runs of ENI w.r.t. m0. ©

e f e f e f

(a) (b) (c)

Figure 6. The nets in (a) and (b) generate the order e ≺ f , the net in (c) the order e @ f .

An example of an activator process and an associated run is depicted in Figure 1 (parts (b) and (c)).
The construction rule of S(AON) is illustrated in Figure 6. For a more detailed definition of activator
processes and a discussion of related results see the series of papers [10, 15, 16].

The central idea behind the modelling of restricted occurrence rules as in the case of inhibitor nets on
the algebraic level is the utilization of partial algebras [4] in the context of partial composition rules for
process terms. A partial algebra is a set called carrier together with a set of (partial) operations (with
possibly different arity) on the carrier. A partial algebra with one binary operation is a partial groupoid,
i.e. an ordered tuple I = (I, domu, u), where I is the carrier of I, domu ⊆ I × I is the domain of u,
and u : domu → I is the partial operation of I.

Definition 2.7. (Partial closed commutative monoid)
A partial groupoid I = (I, domu, u) is called a partial closed commutative monoid if the following
conditions are satisfied:

• If a u b is defined then also b u a is defined with a u b = b u a (closed commutativity).
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• If (a u b) u c is defined then also a u (b u c) is defined with (a u b) u c = a u (b u c) (closed
associativity).

• There is a (unique) neutral element i ∈ I such that a u i is defined for all a ∈ I with a u i = a
(existence of a (total) neutral element).

©
We shortly recall the concept of closed congruences on partial algebras. Given a partial algebra with

carrier X , an equivalence relation ∼ on X is called congruence if for each n-ary operation op on X
with domain domop: a1 ∼ b1, . . . , an ∼ bn, (a1, . . . , an) ∈ domop and (b1, . . . , bn) ∈ domop implies
op(a1, . . . , an) ∼ op(b1, . . . , bn). A congruence ∼ is called closed if for each n-ary operation op on X
with domain domop: a1 ∼ b1, . . . , an ∼ bn and (a1, . . . , an) ∈ domop implies (b1, . . . , bn) ∈ domop.
Thus, a congruence is an equivalence which preserves all operations of a partial algebra. A closed
congruence moreover preserves the domains of operations. Therefore the operations of a partial algebra
X with carrier X can be carried over to the set of equivalence classes of a closed congruence ∼ as
follows: Denote

• [x]∼ = {y ∈ X | x ∼ y},

• X/∼ = {[x]∼ | x ∈ X},

• domop/∼ = {([a1]∼, . . . , [an]∼) | (a1, . . . , an) ∈ domop}, and

• op/∼([a1]∼, . . . , [an]∼) = [op(a1, . . . , an)]∼ for each n-ary operation op : domop → X of X
(this is well defined for closed congruences).

This defines a partial algebra X/∼ with carrier X/∼ and operations op/∼. X/∼ is called factor algebra
of X w.r.t. ∼. A possibility to generate (closed) congruences on partial algebras is through so called
(closed) homomorphisms [4]. The most important result of [4] for this paper is that there always exists
a unique greatest closed congruence on a given partial algebra. For more details on partial algebras see
e.g. [4].

3. Algebraic (M, I)-nets

“Petri nets are monoids” is the title and the central idea of the paper [19]. It provides an algebraic
approach to define both nets and their processes as terms. A crucial assumption for this concept is that
arbitrary concurrent composition of processes is defined, which holds true for place/transition Petri nets
where places can hold arbitrarily many tokens. But for Petri nets with restricted occurrence rules like
inhibitor nets or even simple elementary nets there exist transitions that cannot occur concurrently or
synchronously. Therefore the respective algebraic operations will here be defined partially. Note that the
synchronous composition operator was not considered in [19].

As a starting point a general algebraic Petri net is defined similarly as in [19] to be a quadruple
A = (M, T, pre : T → M, post : T → M), where M is the set of markings and T is the set of
transitions. Formally, the set of markings M is equipped with an operation + such that M = (M, +) is
a (total) commutative monoid with neutral element 0. The two mappings pre : T → M, post : T → M
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assign presets and postsets to each transition. The behaviour of general algebraic Petri nets is given by
so called process terms which are defined inductively: Each transition t is an elementary process term
representing a transformation from the marking pre(t) into the marking post(t). Also each marking
m is an elementary process term representing a ”transformation” from the marking pre(m) = m into
the marking post(m) = m. To construct more complex process terms we introduce concurrency and
synchronicity as well as a sequential firing rule: Firstly transitions can be synchronously composed to
synchronous step terms, and secondly markings and synchronous step terms can be sequentially and
concurrently composed to (general) process terms. For example, if a transition t and a marking m can
be composed concurrently to the term t ‖m, this term changes the marking pre(t) + m to post(t) + m.
The restricted concurrent and synchronous occurrence rule is encoded in the partiality of the respective
composition operators. This partiality is modelled by equipping process terms with information elements
from a partial algebra of information using the results about partial algebras from section 2. The general
approach of process terms that not only ought to model the occurrence rules but also arbitrary processes
is developed in the following.

Each process term α has assigned an initial marking pre(α) ∈ M and a final marking post(α) ∈ M ,
written α : pre(α) → post(α). Two process terms can be sequentially composed, if the final marking of
the first process term equals the initial marking of the second process term. Moreover, each marking and
each transition has assigned an information element used for determining the synchronous composability
of transitions and the concurrent composability of process terms. Thus, a set of information elements I
is equipped with the partial operations ‖̇ : dom‖̇ → I and ⊕̇ : dom⊕̇ → I for the concurrent and syn-

chronous composition of information elements, resulting in a partial algebra I = (I, dom‖̇, ‖̇, dom⊕̇, ⊕̇).
The relations dom‖̇, dom⊕̇ ⊆ I × I specify the pairs of (concurrently resp. synchronously) independent

information elements. The groupoids (I, dom‖̇, ‖̇) and (I, dom⊕̇, ⊕̇) are assumed to be partial closed
commutative monoids with neutral elements i0 and j0. Such an I is called an synchronous-concurrent
partial algebra (sc-partial algebra).

Definition 3.1. (Algebraic (M, I)-net)
Let I = (I, dom‖̇, ‖̇, dom⊕̇, ⊕̇) be an sc-partial algebra, M = (M, +) be a total commutative monoid,
A = (M, T, pre : T → M,post : T → M) be a general algebraic Petri net, and inf : M ∪ T → I be a
mapping. Then (A, inf ) is called an algebraic (M, I)-net. ©

Two transitions can be synchronously composed, if their associated information elements can be
synchronously composed. Their synchronous composition yields a synchronous step term, which has
associated as information element the synchronous composition of the information elements of the two
transitions. This procedure can be iterated leading to synchronous step terms consisting of more than
two transitions. Thus, in general the synchronous step terms of an algebraic (M, I)-net are defined
inductively as follows.

Definition 3.2. (Synchronous step terms)
Let (A, inf ) be an algebraic (M, I)-net. Its elementary synchronous step terms are its transitions t ∈ T .
If s and s′ are synchronous step terms which satisfy (inf (s), inf (s′)) ∈ dom⊕̇, then their synchronous
composition yields the synchronous step term s⊕ s′ with initial marking pre(s⊕ s′) = pre(s)+pre(s′),
final marking post(s⊕ s′) = post(s) + post(s′) and assigned information element inf (s⊕ s′) =
inf (s) ⊕̇ inf (s′). The set of all synchronous step terms of (A, inf ) is denoted by Step(A,inf ). ©
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Observe that this definition extends the mappings pre, post and inf to synchronous step terms. Each
s ∈ Step(A,inf ) has the form s = v1⊕ . . .⊕ vn for transitions v1, . . . , vn ∈ T . We denote t ∈ s if
∃i ∈ {1, . . . , n}: t = vi, and we define |s| ∈ NT by |s|(t) = |{i ∈ {1, . . . , n} | t = vi}|.

Next we define the process term semantics of algebraic (M, I)-nets through sequential and con-
current composition of markings and synchronous step terms. Each process term has assigned a set of
information elements (information set). For markings and synchronous step terms, the associated in-
formation set will contain only the information element assigned by the mapping inf . The sequential
composition of two process terms has assigned the union of their respective information sets because the
information elements of both terms have to be regarded for possible further concurrent composition oper-
ations. The concurrent composition of two process terms has assigned the set of concurrent compositions
of the information elements in their respective information sets. Note that the sequential composition ;
as well as the concurrent composition ‖ are partial: For sequential composability the final marking of
the first process term has to coincide with the initial marking of the second process term. For concurrent
composability the information sets of the two process terms have to be (concurrently) independent. Two
information sets X and Y are called (concurrently) independent if each information element in X is
(concurrently) independent from each information element in Y .

Since in general information sets instead of information elements are needed to decide the concur-
rent composability of process terms the sc-partial algebra I = (I, dom‖̇, ‖̇, dom⊕̇, ⊕̇) of information

elements is lifted to the partial algebra of information sets X = (2I , dom{‖̇}, {‖̇}, 2I × 2I ,∪) defined by

dom{‖̇} = {(X, Y ) ∈ 2I × 2I | X × Y ⊆ dom‖̇} and X{‖̇}Y = {x ‖̇ y | x ∈ X ∧ y ∈ Y }. Since only

transitions will be synchronously composed, contrariwise to ‖̇ it is not necessary to consider the opera-
tion ⊕̇ for general process terms here. For the sequential composition we have to add the total operation
∪ (union) on 2I (∪ is total because the sequential composition is not restricted through information sets
but through pre- and postsets). It is easy to verify that X is also a partial closed commutative monoid
[11]. Two information sets A and B can carry the same ”information” in the sense that each information
set C is either independent from both A and B or not independent from both A and B. Such sets need
not be distinguished and can be technically identified through a closed congruence on 2I . Therefore
we distinguish information sets only up to the greatest closed congruence ∼=∈ 2I × 2I on X whose
equivalence classes in our case will represent the minimal information which can be assigned to process
terms. Based on these preparations process terms of an algebraic (M, I)-net (A, inf ) which represent
all abstract computations of (A, inf ) are defined inductively as follows:

Definition 3.3. (Process terms)
Let (A, inf ) be an algebraic (M, I)-net. Its elementary process terms are of the form ida : a −→ a with
Inf (ida) = [{inf (a)}]∼= for a ∈ M (mostly we denote ida simply by a) and s : pre(s) −→ post(s)
with Inf (s) = [{inf (s)}]∼= for s ∈ Step(A,inf ).

If α : a1 −→ a2 and β : b1 −→ b2 are process terms satisfying (Inf (α), Inf (β)) ∈ dom{‖̇}/∼= , their
concurrent composition yields the process term

α ‖β : a1 + b1 −→ a2 + b2

with Inf (α ‖β) = Inf (α) {‖̇}/∼= Inf (β).
If α : a1 −→ a2 and β : b1 −→ b2 are process terms satisfying a2 = b1, their sequential composition
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yields the process term
α;β : a1 −→ b2

with Inf (α; β) = Inf (α) ∪/∼= Inf (β).
The partial algebra of all process terms with the partial operations of synchronous, concurrent and

sequential composition will be denoted by P(A, inf ). ©

Note that the mappings pre and post are extensions of the previously defined mappings. For a
process term α we denote by Bα the set of synchronous step terms α is composed from (using some
markings and the operations ‖ and ;). The synchronous step terms in Bα are called basic step terms of
α. The basic step terms of the process term from Figure 3 are e⊕ f and g⊕h. For a process term α and
t ∈ T we denote t ∈ α ⇐⇒ (∃s ∈ Bα : t ∈ s).

As an example of algebraic (M, I)-nets and process term semantics we show now how to instantiate
elementary nets with inhibitor arcs as (M, I)-nets. This way algebraic process term semantics can be
defined for elementary nets with inhibitor arcs.

Example 3.1. (Elementary nets with inhibitor arcs)
To instantiate an elementary net with inhibitor arcs ENI = (P, T, F, C−) (see section 2) as an algebraic
(M, I)-net, we have to appropriately fix the total commutative monoid of markings M = (M, +), an
sc-partial algebra I = (I, dom‖̇, ‖̇, dom⊕̇, ⊕̇) of information and the mappings pre, post and inf . This
instantiation will be consistent with the operational step semantics. That means, a set of transitions s is
concurrently enabled in ENI at a marking m if and only if s is a defined synchronous step term of the
algebraic net and there is a marking x with pre(s) + x = m such that s ‖x is a defined proces term of
the algebraic net (this relationship will be formalized on a general level in section 5). Denote [11]:

• M = (M, +) = (2P ,∪), pre(t) = •t and post(t) = t•, since elementary nets have sets of places
as markings.

• I = 2P × 2P × 2P , , inf (t) = (•t, t•, −t) (t ∈ T ) and inf (m) = (m, m, ∅) (m ∈ M ), i.e.
the assigned information distinguishes preset, postset and context information of transitions and
markings in information triples. The components of such information triples we call pre-, post-
and context-part.

That means any information necessary for the occurrence rule is implemented in the information ele-
ments (see section 2). For the example net from Figure 1 (part (a)) we have inf (e) = ({p1}, {p3}, ∅),
inf (f) = ({p2}, {p4}, {p3}), inf (g) = ({p5}, {p6}, {p7}), inf (h) = ({p4}, {p7}, {p6}). It is now im-
portant which information triples can be composed synchronously respectively concurrently, and which
information triples result from such a composition. Completely coincident with the occurrence rule of
elementary nets with inhibitor arcs equipped with the a-priori semantics (see section 6 for the proofs),
two information elements i1 = (a, b, c), i2 = (d, e, f) ∈ I can be composed

• concurrently if and only if the pre- and post-part of i1 is disjoint from all parts of i2 and vice versa:
(a ∪ b) ∩ (d ∪ e) = (a ∪ b) ∩ f = c ∩ (d ∪ e) = ∅. That means dom‖̇ = {((a, b, c), (d, e, f)) |
(a ∪ b) ∩ (d ∪ e) = (a ∪ b) ∩ f = c ∩ (d ∪ e) = ∅}. Their concurrent composition yields
(a, b, c) ‖̇(d, e, f) = (a ∪ d, b ∪ e, c ∪ f).
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• synchronously if and only if the pre- and post-parts of i1 and i2 are disjoint and the pre-part of i1
is disjoint from the context-part of i2 and vice versa: (a ∪ b) ∩ (d ∪ e) = a ∩ f = d ∩ c = ∅. That
means dom⊕̇ = {((a, b, c), (d, e, f)) | (a∪ b)∩ (d∪ e) = a∩ f = d∩ c = ∅}. Their synchronous
composition yields (a, b, c) ⊕̇(d, e, f) = (a ∪ d, b ∪ e, (c ∪ f) \ (b ∪ e)).

In in our running example the only pair of transitions that cannot be composed synchronously is f
with h. Note that e and f as well as g and h can be composed synchronously with inf (e⊕ f) =
({p1, p2}, {p3, p4}, ∅) and inf (g⊕h) = ({p4, p5}, {p6, p7}, ∅). The illustrated principle of synchronous
composition can be iterated. In this way also e⊕ f ⊕ g and e⊕ g⊕h are defined synchronous step terms.

A possible more complex process term is ((e⊕ f) ‖{p5}); ((g⊕h) ‖{p3}) (see also Figure 3). The
intention of this process term is to describe the behaviour of firstly firing e and f synchronously and
then firing g and h synchronously. This leads directly to the left graphic of Figure 7 because ⊕ repre-
sents synchronicity and ; a sequential ordering (as shown above and discussed in the introduction, the
respective transitions can be composed synchronously). When constructing the process term, the prob-
lem is that pre(e⊕ f) = {p1, p2} does not match the initial marking {p1, p2, p5} of the net and that
post(e⊕ f) = {p3, p4} is not equal to the initial marking of the follower step pre(g⊕h) = {p4, p5}.
This problem is solved by adding (concurrent) markings comprising of the places missing in each case.
These markings are added via concurrent composition leading to the next graphic in Figure 7 represent-
ing the final process term. On the right side of Figure 7 the discussed causal behaviour is developed in the
form of an so-structure: First the two synchronous steps of transitions are constructed with symmetric
”not later than” relations and then the two steps are arranged sequentially with an ”earlier than” relation.
The formal relationships of process terms to so-structures will be developed in the next section.

e f

g h

e⊕f

g⊕h

;

(e⊕f)||{p5}

(g⊕h)||{p3}

;

e f

g h

Figure 7. Informal development of a process term and an so-structure modeling the same behaviour.

Compared to [13] and [11], the definition of algebraic (M, I)-nets in this section is as general as
possible. In order to derive conclusions about process term semantics on the algebraic level similar
as in [11] it is necessary to require certain properties for the mapping inf of an algebraic (M, I)-net
(A, inf ), relating the sets (I, dom‖̇, ‖̇), (I, dom⊕̇, ⊕̇) and M = (M, +). All properties have a simple
intuitive interpretation. For all common net classes (with so-structure based semantics) it is easy to show
that they are fulfilled. In contrast to [13] where no results are obtained on the abstract level we have
to introduce more specific properties for inf . We did not include them into the algebraic (M, I)-net
definition. Instead, for each stated result we will explicitly mention which properties are required. These
properties are for x, y, m, m1,m2 ∈ M and s, s1, s2 ∈ Step(A,inf ):

(Con1) (inf (x), inf (y)) ∈ dom‖̇ =⇒ inf (x + y) = inf (x) ‖̇ inf (y) (consistency of markings)
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(Con2) inf (0) = i0 (consistency of neutral elements)

(Con3) {inf (s)} ∼= {inf (s), inf (pre(s)), inf (post(s))} (consistency of steps and initial/final marking)

(Con4) (inf (s1), inf (s2)) ∈ dom⊕̇ =⇒ {inf (s1⊕ s2)} ∼= {inf (s1⊕ s2), inf (s1), inf (s2)} (consis-
tency of steps)

(Con5) (inf (s1), inf (s2)) ∈ dom⊕̇, (inf (s1) ⊕̇ inf (s2), inf (m)), (inf (s1), inf (m1)), (inf (s2), inf
(m2)) ∈ dom‖̇, pre(s1) + pre(s2) + m = pre(s1) + m1, post(s1) + m1 = pre(s2) + m2

=⇒ (inf (pre(s2)+m), inf (s1)), (inf (post(s1)+m), inf (s2)) ∈ dom‖̇ (synchronous-sequential
consistency)

(Con6) (inf (s1), inf (s2)) ∈ dom‖̇ =⇒ (inf (s1), inf (s2)) ∈ dom⊕̇ and {inf (s1) ‖̇ inf (s2)} ∼=
{inf (s1) ‖̇ inf (s2), inf (s1) ⊕̇ inf (s2)} (synchronous consistency)

(Det) (inf (s), inf (x)), (inf (s), inf (y))∈ dom‖̇, pre(s)+x = pre(s)+y =⇒ post(s)+x = post(s)+y

(determinism)

The first two consistency properties (Con1) and (Con2) are self explanatory. Property (Con3) states
that the information (about concurrent composability) attached to a synchronous step s includes informa-
tion about pre(s) and post(s) and (Con4) tells that it also includes information about sub-steps of s. The
synchronous-sequential consistency (Con5) can be interpreted as follows: if two synchronous step terms
s1, s2 can occur synchronously and sequentially in the order s1 −→ s2 in the same initial marking, then
the occurrence of s2 does not depend on the final marking of the occurrence of s1 and the occurrence of
s1 does not depend on the initial marking of the occurrence of s2. The next condition (Con6) determines
that two synchronous step terms, which can occur concurrently, can also occur synchronously and that
the information associated to their concurrent composition includes the information associated to their
synchronous composition. For net classes we are interested in, the occurrence of a step s in a marking
m is deterministic in the sense that the follower marking m′ is unique (Det).

We conclude this section with a technical notion concerning the greatest closed congruence∼= on the
partial algebra of information sets X . For an information set A ∈ 2I we abbreviate [A] = [A]∼=. It is
convenient to carry the subset relation ⊆ on 2I over to 2I/∼=, thus defining when a congruence class [A]
represents less information than a congruence class [B] in the following sense: if [B] can be composed
concurrently (using {‖̇}/∼= ) with a congruence class [C] then also [A] (representing less information) can
be composed concurrently with [C]. Therefore we define the respective relation ⊆/∼= as follows:

Definition 3.4. For a, b ∈ 2I/∼= we write a ⊆/∼= b if and only if there exist A, B ∈ 2I with A ⊆ B,
a = [A] and b = [B]. ©
Simple technical computations yield the following properties of ⊆/∼= :

Lemma 3.1. Let a, b, a′, b′ ∈ 2I/∼=:
(i) ⊆/∼= is a weak partial order, i.e. ⊆/∼= is reflexive, transitive and antisymmetric.
(ii) a ⊆/∼= a′, b ⊆/∼= b′, a′ {‖̇}/∼= b′ defined =⇒ a {‖̇}/∼= b defined.
(iii) a ⊆/∼= a′, b ⊆/∼= b′ =⇒ (a ∪/∼= b) ⊆/∼= (a′ ∪/∼= b′) and (a {‖̇}/∼= b) ⊆/∼= (a′ {‖̇}/∼= b′) (if defined).
(iv) a ⊆/∼= (a ∪/∼= b) and a ⊆/∼= (a {‖̇}/∼= b) (if defined).
(v) a ⊆/∼= c, b ⊆/∼= c =⇒ (a ∪/∼= b) ⊆/∼= c.
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Proof:
[Sketch of the proof] Technical argumentation using the definition of the greatest closed congruence. See
the Appendix for a detailed proof. ut

These results directly carry over to the composability of process terms and the information attached
to composed process terms. In particular, we deduce that sub-terms of a process term have associated
less information than the process term, where sub-terms are as usual defined inductively following the
inductive definition of process terms. The properties of ⊆/∼= summarized above will be fundamentally
used in the proofs of this paper without explicitly mentioning them anymore.

4. Causal semantics of algebraic (M, I)-nets

In this section we explain the filled arc from process terms to runs in Figure 5 and establish results
forming the basis for the coincidence of runs from process nets and runs from process terms as it is
illustrated in Figure 5. First we define explicit causal semantics of algebraic (M, I)-nets by associating
so-structures to process terms.

Definition 4.1. (So-structures of process terms)
We define inductively labelled so-structures Sα = (V,≺α, @α, lα) of (or associated to) a process term α:
Sm = (∅, ∅, ∅, ∅) for m ∈ M , St = ({v}, ∅, ∅, l) with l(v) = t for t ∈ T , and Ss1⊕ s2 = (V1 ∪ V2, ∅,@1

∪ @2 ∪(V1×V2)∪(V2×V1), l1∪ l2) for synchronous step terms s1, s2 ∈ Step(A,inf ) with associated so-
structures S1 = (V1, ∅, @1, l1) and S2 = (V2, ∅, @2, l2), where the sets of nodes V1 and V2 are assumed
to be disjoint (what can be achieved by appropriate renaming of nodes).

Finally, given process terms α1 and α2 with associated so-structures S1 = (V1,≺1, @1, l1) and
S2 = (V2,≺2, @2, l2), we define

• Sα1 ‖α2
= (V1 ∪ V2,≺1 ∪ ≺2,@1 ∪ @2, l1 ∪ l2),

• Sα1;α2 = (V1 ∪ V2,≺1 ∪ ≺2 ∪(V1 × V2), @1 ∪ @2 ∪(V1 × V2), l1 ∪ l2),

where the sets of nodes V1 and V2 are again assumed to be disjoint. ©
Observe that Sα = (V,≺α, @α, lα) as constructed in Definition 4.1 is indeed an so-structure. Since

all labelled so-structures associated to a given process term α are isomorphic (and arbitrary labelled so-
structures isomorphic to Sα are also associated to α) we mostly distinguish labelled so-structures only
up to isomorphism. It is easy to verify (by an inductive proof) that a labelled so-structure Sα of a process
term α is synchronous closed.

In the context of Figure 7 we have exemplarily discussed how to evolve a process term describing a
special causal behaviour. It was also mentioned that such causal behaviour can be represented by an so-
structure. Now conversely every process term defines a causal behaviour that of course can be encoded
by a labelled so-structure. In the example of Figure 7 we disregarded the markings of the process term
because we are only interested in the causal relationships of events (states are not explicitly regarded).
Therefore we have to handle the three different parts of the process term sketched in the left graphic of
Figure 7: e⊕ f , g⊕h and the ;-connection of the first synchronous step term to the second one. As
depicted in the two right graphics of Figure 7 we introduce an event for every occurrence of a transition
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in the process term, i.e. we draw nodes labelled by e, f , g and h. To express the synchronous steps
e⊕ f and g⊕h symmetric dashed ”not later than” arcs are inserted between the respective events e and
f as well as g and h. As explained in the Introduction this exactly expresses a synchronous occurrence
of the transitions given by the labels. At last the sequential ;-ordering of the two synchronous steps is
expressed by a solid ”earlier than” arc from the step consisting of e and f to that of g and h. Note that
in the right illustration only one such arc (from f to h) is explicitly drawn because all the other ”earlier
than” relations can be deduced by (C4) of Definition 2.1. The described procedure followed Definition
4.1. We started ignoring the markings and introducing events for transitions according to the definitions
of Sm and St in Definition 4.1. Then we inserted @-relations according to the definition of Ss1⊕ s2 and
finally proceeded with ≺-relations as defined for Sα1;α2 in Definition 4.1.

In Figure 4 more examples of so-structures associated to process terms are shown. With the first
structure (from left to right) we just demonstrated the underlying principle in detail. Note that there
cannot exist a process term to which the run from Figure 1 (part (c)) is associated because this so-
structure is not synchronous closed. That is why we considered its linearizations (which are always
synchronous closed) in Figure 4. The fact that in this example it is actually possible to find such process
terms for all of these linearizations leads to the next essential idea of Definition 4.2.

We want to deduce so-structure based semantics of algebraic (M, I)-nets from their process term
semantics. Easy examples show that single so-structures associated to process terms in general cannot
describe each run of a Petri net (e.g. as explained the run from Figure 1, part (c), is not associated
to a process term; other examples which are also valid for the partial order case include so called N-
forms [11]). Consequently the set of so-structures of process terms is not expressive enough in order
to directly describe the complete causal semantics of algebraic (M, I)-nets. But we can derive the
complete causal behaviour from the set of so-structures of process terms in a similar way as in [11]
for the partial order based semantics case. This complete causal behaviour will be represented by the
set of so called enabled labelled so-structures. For their definition we denote process terms α of the
form α = (s1 ‖m1); . . . ; (sn ‖mn) (s1, . . . , sn ∈ Step(A,inf ), m1, . . . , mn ∈ M ) as synchronous step
sequence terms. The set of all synchronous step sequence terms with initial marking m is denoted by
Stepseq(A,inf ,m). It is easy to observe that so-structures associated to synchronous step sequence terms
are total linear.

Definition 4.2. (Enabled labelled so-structure)
A labelled so-structure S is enabled to occur in a marking m w.r.t. an algebraic (M, I)-net (A, inf ),
if every S ′ ∈ stratsos(S) is associated to some β ∈ Stepseq(A,inf ,m) (Definition 4.1). Denote by
Enabled(A, inf , m) the set of labelled so-structures enabled to occur in m w.r.t. (A, inf ). ©

In this definition enabled labelled so-structures are introduced using linearizations. Figure 4 gives
an example how to check if an so-structure is enabled. It shows that the run from Figure 1 (part (c)) is
enabled w.r.t. the marked net in the same figure. We will show in Theorem 4.1, that so-structures of
process terms are enabled in the initial marking of the process term. Obviously, every extension of an
so-structure enabled in m is also enabled in m, because extensions have less linearizations.

A labelled so-structure S enabled in m is said to be minimal, if there exists no labelled so-structure
S ′ 6= S enabled in m, where S is an extension of S ′. We denote by MinEnabled(A, inf ,m) the set of
all such minimal enabled labelled so-structures. For example, one can check (intuitively and technically)
that the run from Figure 1 (part (c)) is in MinEnabled(A, inf ,m).
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In the next definition process terms are identified through an equivalence relation. The basic idea
is to identify two enabled so-structures if one is an extension of the other. Carrying over this principle
to process terms we will show in Theorem 4.2 that two process terms are equivalent if their associated
so-structures can be identified in the above sense. In this context the process terms in Figure 4 should
all be equivalent. For algebraic (M, I)-nets representing concrete Petri nets equivalent process terms
will represent the same commutative process of the Petri net (for details and examples to commutative
processes see [11] and [2]) in the sense that process terms are shown to be equivalent if and only if their
associated so-structures are extensions of the same unique commutative run7. In the example all process
terms in Figure 4 represent the (commutative) process in Figure 1, part (b). Note that for elementary nets
(with inhibitor arcs) we do not have to distinguish between collective and individual token semantics
(see [11]) and thus commutative processes and classical processes coincide.

The Theorems 4.1 and 4.2 (stated in the following of this section) on the general algebraic level
are central for establishing the results illustrated in Figure 5 for concrete net classes. According to this
graphic, the relation between classical process semantics and uniform algebraic process term semantics
is given indirectly via associated so-structures. While the connection between processes and their asso-
ciated so-structures is well known for concrete net classes, we here establish detailed results about the
connection between process terms and their associated so-structures on the general level. These results
form the basis for deriving the correspondence of causal semantics derived from processes and from
process terms for concrete net classes.

Definition 4.3. (The congruence ∼)
The relation ∼ on the set of all process terms of an algebraic (M, I)-net is the least congruence of the
partial algebra of all process terms with the partial operations ⊕, ‖ and ;8, which includes the relation
given by the following axioms for process terms α, β, α1, α2, α3, α4 and markings m,n:
(1) α ‖β ∼ β ‖α
(2) (α ‖β) ‖ γ ∼ α ‖(β ‖ γ)
(3) (α; β); γ ∼ α; (β; γ)
(4) α = ((α1 ‖α2); (α3 ‖α4)) ∼ β = ((α1; α3) ‖(α2;α4))
(5) α⊕β ∼ β⊕α
(6) (α⊕β)⊕ γ ∼ α⊕(β⊕ γ)
(7) (α⊕β) ∼ (α ‖ pre(β)); (post(α) ‖β)
(8) (α; post(α)) ∼ α ∼ (pre(α);α)
(9) id(m+n) ∼ idm ‖ idn

(10) pre(α) + m = pre(α) + n, post(α) + m = post(α) + n =⇒ (α ‖ idm) ∼ (α ‖ idn)
(11) (α ‖ id0) ∼ α
if the terms on both sides of ∼ are defined process terms. ©

After some explanations to this last central definition of the section the technical part of the paper
will follow. The results of this technical part will complete the development of the semantics of algebraic
(M, I)-nets.

As discussed before the first two process terms in Figure 4 represent the same process and should
consequently be equivalent (this will be proven in Theorem 4.2). Exemplarily this is shown with the
7A commutative run is an equivalence class of so-structures associated to a commutative process. An extension is an so-structure
that extends one so-structure of the equivalence class.
8According to [4] this least congruence exists uniquely.
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following transformation:

((e⊕ f) ‖{p5}); ((g⊕h) ‖{p3}) (7)∼
(((f ‖{p1}); (e ‖{p4})) ‖{p5}); ((g⊕h) ‖{p3}) (8)∼
(((f ‖{p1}); (e ‖{p4})) ‖({p5}; {p5})); ((g⊕h)‖{p3}) (4)∼
((f ‖{p1} ‖{p5}); (e ‖{p4} ‖{p5})); ((g⊕h) ‖{p3}) (9)∼
((f ‖{p1, p5}); (e ‖{p4, p5})); ((g⊕h) ‖{p3})
(note that all occurring process terms are defined w.r.t. the rules from section 3).

Given two ∼-equivalent process terms α and β, there holds pre(α) = pre(β) and post(α) =
post(β). The so-structures associated to process terms are changed only through the axioms (4) and
(7).

Regarding (4) we get that Sα is an extension of Sβ with additional ≺-ordering between events of
α1 and α4 as well as between events of α2 and α3. Figure 8, left box, shows an example of (4) for the
special case of two concurrent events g and e. A concrete example for such a situation are the concurrent
transitions g and e in the running example (Figure 1). Of course such concurrent transitions can occur se-
quentially in any order and thus in particular in the order g → e. Consequently the process term g ‖ e rep-
resenting the concurrent occurrence of g and h as well as the process term (g ‖ pre(e)); (e ‖ post(g)) rep-
resenting the sequential occurrence in the order g → e are defined. The latter process term together with
the respective so-structure is depicted in the right part of the box. Adding some irrelevant markings using
axiom (8) the concurrent composition g ‖ e can also be represented by the term (g; post(g)) ‖(pre(e); e).
This term together with the associated so-structure representing the concurrency of g and e is illustrated
in the left part of the box. Now axiom (4) states that, if both terms are defined, they are equivalent. This
is in accord with our previous considerations because the second so-structure is an extension of the first
one. That means in particular that the first so-structure is extended by both so-structures (illustrated with
the ⊇-symbol in the broad arc pointing at a copy of the first so-structure in the line below). Moreover
this so-structure is obviously enabled. This justifies the equivalence of the two terms. A run represented
by the respective equivalence class of process terms is in this example given by the so-structure below
the broad arc representing the concurrent occurrence of g and e. Note that in order to formally represent
a run of the net from Figure 1, part (a), the initial markings of the process terms have to coincide with
the initial marking of the net. Thus by adding concurrently the marking {p2} to both terms, they truly
represent the concurrent occurrence of g and e in this net.

Regarding (7) none of the so-structures associated to the two equivalent terms is an extension of the
other one. The right box in Figure 8 shows the respective terms e⊕ f and (f ‖ pre(e)); (post(f) ‖ e)
as well as the associated so-structures. The first term represents the synchronous occurrence of e and f
while the second one represents the occurrence sequence f → e. Considering the net from Figure 1,
part (a), both terms are defined. An enabled so-structure extended by both so-structures associated to the
process terms is given in the line below the broad arc. It describes the relationship f ”not later than”
e. The existence of such enabled so-structure again justifies the equivalence of the two terms. In this
example this enabled so-structure is the run represented by the respective equivalence class of process
terms. In order to show the general principle we have, as in the example for (4), neglected to concurrently
compose the residual marking {p5} to the two terms.

Further observations concerning the relationship between the above axioms, the properties (Con1)-
(Con6) and (Det), and the information associated to process terms are summarized in the following: In
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Figure 8. Illustration of the key axioms (4) and (7) from Definition 4.3.

the axioms (1), (2), (3), (5), (6), (8) one side of ∼ is a defined process term if and only if also the other
side is. In the axioms (4) and (9) the left side is defined if the right side is defined (but not vice versa). In
(11) the right side is defined if the left side is defined (and with (Con2) we have the reverse implication,
too). In (7) and (10) we can derive no similar relation. In the axioms (1), (2), (3), (5) and (6) both sides
have the same associated information. In (4) we have Inf (α) ⊆/∼= Inf (β). For (7) and (10) we get no
similar result. In some axioms the information of both sides is equal if adequate conditions are satisfied:
In (8) we need to require (Con3) and (Con1), in (9) solely (Con1) and (Con2) in (11).

In the examples of Figure 8, we discussed the specially interesting equivalence transformations (4)
and (7). The explained principles can in particular be used for sequentialization and synchronization
of concurrently composed process terms. More precisely, concurrent events can occur synchronously
and sequentially in any order. At the process term level this means that concurrently composed process
terms can equivalently be transformed into a synchronous (only in the case of synchronous step terms)
and a sequential composition of the terms. These two important transformations need a more detailed
technical consideration. In order to sequentialize concurrently composed process terms we use axiom
(4) with α3 = post(α1) and α2 = pre(α4) (similar as in the example of Figure 8). To transform con-
currently composed step terms into synchronously composed step terms we additionally need axiom (7)
(considering the example of Figure 8, one can first use axiom (4) and then (7) to derive a synchronous
composition from a concurrent composition, if all terms are defined). For these two kinds of transforma-
tions one has to regard also axiom (8) and adequate consistency conditions. We are especially interested
in the following two special cases:

• With (Con3) and (Con1) we deduce (α ‖β) ∼ (α ‖ pre(β)); (β ‖ post(α)) and
Inf ((α ‖ pre(β)); (β ‖ post(α))) ⊆/∼= Inf (α ‖β).

• If additionally (Con6) is fulfilled we get α ‖β ∼ α⊕β and Inf (α⊕β) ⊆/∼= Inf (α ‖β)).

These results will be used in equivalence transformations in the proofs of the main results mostly
without mentioning them explicitly. If the associated information and so-structures stay the same we
often even do not distinguish between equivalent terms anymore. In particular, we write that a process
term has without loss of generality a special form if the process term can be equivalently transformed
into that special form by such easy equivalence transformations.
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In order to simplify the identification of transitions of a process term and nodes (events) of an asso-
ciated so-structure it would be helpful to assume that the labelling function of an so-structure Sα of α is
the id-function. In such a case a transition would occur only once in a process term and consequently a
basic step term would also occur only once in a process term. Moreover, the basic step terms of process
terms could be identified with the synchronous classes of the synchronous closed so-structure Sα since
{|s| | s ∈ Bα} = V |Sα (see section 2 for the definition of V |Sα). The synchronous class corresponding
to s ∈ Bα is denoted by ks ∈ V |Sα . To achieve this simplification for a given process term, we will
identify copies of transitions of the process term with events of the associated so-structure, i.e. we define
a copy net, where the set of transitions (the copies of the original transitions) equals the set of events of
the so-structure. A copy-net may be understood as an unfolding of an algebraic net.

Definition 4.4. ((V, l)-copy net)
Let (A, inf ) be an algebraic (M, I)-net with A = (M,T, pre, post), V be a set and l : V → T be
a surjective labelling function. Denote by (A(V,l), inf (V,l)) the algebraic (M, I)-net given by A(V,l) =
(M,V, pre(V,l), post(V,l)) and inf (V,l) : M ∪ V → I , where pre(V,l)(v) = pre(l(v)), post(V,l)(v) =
post(l(v)), inf (V,l)|M = inf |M and inf (V,l)(v) = inf (l(v)) for every v ∈ V . (A(V,l), inf (V,l)) is called
(V, l)-copy net of (A, inf ). ©

The following definition is only a technicality used in the proof of Theorem 4.1 and the precursory
Lemma 4.1 and Corollary 4.1. It defines the substitution of basic step terms in a given process term α.
For an arbitrary set X , a set C ⊆ Bα and a mapping su : C → X we define inductively the substituted
term αsu of α w.r.t. su: If α = m ∈ M , then αsu = m. If α ∈ Step(A,inf ), then αsu = α if α 6∈ C
and αsu = su(α) if α ∈ C. Finally, for process terms α, β, γ: If α = β; γ, then αsu = βsu; γsu and if
α = β ‖ γ, then αsu = βsu ‖ γsu. In the following we will be interested in the case that basic step terms
are substituted by their postsets.

In the next lemma this technique is applied to a process term α with associated so-structure Sα =
(V,≺, @, id) (i.e. the labelling function of the so-structure is id). That means the statement of the next
lemma is formulated for process terms in which every transition occurs only once and consequently every
basic step term occurs only once. Therefore the lemma is strongly connected to the technique of copy
nets. It states that in such process terms minimal basic step terms can be detached to a concurrent step of
these basic step terms using an equivalence transformation. Figure 9 depicts an example of this proce-
dure: On the left side the process term α = (((t1⊕ t2) ‖m1); (t3 ‖m2)) ‖((t4 ‖m3); ((t5⊕ t6) ‖m4)) is
given. This process term represents the typical situation for an application of the lemma. Two sequences
of synchronous step terms are concurrently composed. The respective so-structure and the associated
partial order is depicted in the box below α. With the partial order we can identify the minimal basic
step terms {t1⊕ t2, t4} of α by searching for minimal nodes (synchronous classes) in the partial order.
Now choosing C = {t1⊕ t2, t4} as the whole set of minimal basic step terms, we intend to detach these
basic step terms concurrently at the beginning of the process term. That means the process term is equiv-
alently transformed to the term αC = ((‖s∈C s) ‖mC);αsu = ((t1⊕ t2 ‖ t4) ‖mC);αsu on the right
side of Figure 9. The first part of αC is the concurrent composition of the synchronous step terms in C
together with some concurrently composed marking. A second residual part determined by the principle
of substitution is sequentially composed after this first part. The effect on the associated so-structure
and partial order is depicted in the box below αC in Figure 9. The minimal events respectively basic
step terms of C now have an ”earlier than” ordering to all events respectively basic step terms not in C.
That means sequential ”earlier than” orderings separating C from the other synchronous step terms are
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added while the concurrency between the synchronous step terms in C is preserved. Since the resulting
process term αC has a stronger ordering than the original term α, it can be shown that αC has attached
less information than α in the sense defined by ⊆/∼= . In Corollary 4.1 it is shown that analogously
to the next lemma the minimal basic step terms C can be detached to a synchronous step instead of a
concurrent step.

(((t1⊕t2)||m1);(t3||m2))||((t4||m3);((t5⊕t6)||m4))=α ∼∼∼∼Lemma 4.1
αC=(((t1⊕t2)||t4)||mC);αsu=

(((t1⊕t2)||t4)||mC);(((post(t1⊕t2)||m1);(t3||m2))||
((post(t4)||m3);((t5⊕t6)||m4)))=
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t3

t4

t5⊕t6

(((t1⊕t2)||t4)||mC);((m1‘;(t3||m2))||(m2‘;((t5⊕t6)||m4)))

Figure 9. Illustration of (the simplest typical case of) Lemma 4.1 with C = {t1⊕ t2, t4}.

Lemma 4.1. Let α be a process term of an algebraic (M, I)-net (A, inf ) which fulfills (Con1)-(Con3),
such that α has no sub-term of the form m; α′ with m ∈ M . Let further Sα = (V,≺, @, id) be a labelled
so-structure of α with associated partial order poSα = (X|Sα , <Sα) and C ⊆ Bα be a set of minimal
basic step terms of α (i.e. ks is minimal w.r.t. <Sα for every s ∈ C)9. Finally let su : C → M be given
by su(β) = post(β) for β ∈ C.

Then there exists a marking mC , such that αC = ((‖s∈C s) ‖mC);αsu is a defined process term of
(A, inf )10 satisfying:

(I) αC ∼ α.
9Corresponding synchronous classes ks of basic step terms s are defined because the labelling function of Sα is id.
10Note: αsu is the substituted term of α w.r.t. su.
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(II) Inf (αC) ⊆/∼= Inf (α).

Proof:
[Sketch of the proof] Straightforward following the inductive definition of process terms (see the Ap-
pendix for a detailed proof). ut

Applying the explained principles for synchronization of concurrency in process terms, αC from
Lemma 4.1 can equivalently be transformed to αSy in Corollary 4.1 (note: mSy = mC). Consequently
the following corollary holds:

Corollary 4.1. Assume the same preconditions as in Lemma 4.1 and additionally that (A, inf ) fulfills
(Con6).

Then there exists a marking mSy, such that αSy = ((⊕s∈C s) ‖mSy);αsu is a defined process term
satisfying:

(I) αSy ∼ α.

(II) Inf (αSy) ⊆/∼= Inf (α).

Now we are prepared to prove the first important theorem which shows that so-structures of process
terms are enabled in the initial marking of the process term.

Theorem 4.1. Let α be a process term of an algebraic (M, I)-net (A, inf ) which fulfills (Con1)-(Con3)
and (Con6). Then Sα ∈ Enabled(A, inf ,m) with m = pre(α). In particular, every S ′ ∈ stratsos(Sα)
is associated to some β ∈ Stepseq(A,inf ,m) satisfying α ∼ β.

Proof:
[Sketch of the proof] It is enough to construct a process term β ∈ Stepseq(A,inf ,m) which has associated
a given S ′ ∈ stratsos(Sα) and satisfies α ∼ β. Such β can be constructed by an iterative application of
Corollary 4.1. See the Appendix for a detailed proof. ut

An enabled so-structure S is uniquely determined by the set of process terms whose associated so-
structures extend S. As we have already seen in the running example the run (an enabled so-structure)
from Figure 1 (part (c)) can be reconstructed from the linearizations from Figure 4 which are all associ-
ated to certain process terms.

Definition 4.5. Let S = (V,≺, @, l) ∈ Enabled(A, inf ,m). Then the set Υcan
S of all process terms α

of (A(V,l), inf (V,l)) with pre(α) = m whose associated so-structures extend (V,≺, @, id) is called the
canonical set of S . ©

Remark 4.1. Let S = (V,≺, @, l) ∈ Enabled(A, inf ,m) and Sα = (V,≺α, @α, id) for α ∈ Υcan
S .

Then S = (V,
⋂

α∈Υcan
S

≺α,
⋂

α∈Υcan
S

@α, l) by Proposition 2.1.
According to Definition 4.5 the set Υcan

S is maximal with the above property in the sense that for
any set Υ of process terms of (A(V,l), inf (V,l)) with initial marking m which also fulfills S = (V,

⋂
α∈Υ

≺α,
⋂

α∈Υ @α, l) there holds Υ ⊆ Υcan
S .
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The following lemma states that process terms with the same initial marking, whose associated so-
structures are total linear and are all extensions of one enabled so-structure, are ∼-equivalent. In the
subsequent theorem we can generalize this result omitting the presumption of total linear so-structures.

Lemma 4.2. Let (A, inf ) be an algebraic (M, I)-net fulfilling (Det) and (Con1)-(Con5). Let S ′ and S ′′
be total linear labelled so-structures of process terms α and β with initial marking m. If S ′ and S ′′ are
extensions of S ∈ Enabled(A, inf ,m), then there holds α ∼ β.

Proof:
[Sketch of the Proof] We show that both α and β can be equivalently transformed to one synchronous
step sequence terms (which only depends on S). Namely, it is shown that the minimal events of S can be
equivalently permuted to the first position of a synchronous step sequence term and that this procedure
can be iterated for the following events of S. See the Appendix for a detailed proof. ut

Theorem 4.2. Let (A, inf ) be an algebraic (M, I)-net with the same preconditions as in Lemma 4.2.
Let S ′ and S ′′ be labelled so-structures of process terms α and β with initial marking m. If S ′ and S ′′
are extensions of S ∈ Enabled(A, inf , m), then there holds α ∼ β.

Proof:
There exist total linear so-structures S ′E respectively S ′′E which are extensions of S ′ respectively S ′′.
According to Theorem 4.1 there exist synchronous step sequence terms α′ resp. β′ with associated so-
structures S ′E resp. S ′′E with α′ ∼ α and β′ ∼ β. Clearly, S ′E and S ′′E are also extensions of S . Thus,
according to Lemma 4.2, we get α′ ∼ β′. Consequently we have α ∼ β. ut

With this theorem we can identify minimal enabled so-structures through their canonical sets (use
Remark 4.1).

Corollary 4.2. Let (A, inf ) be an algebraic (M, I)-net with the same preconditions as in Theorem 4.2
and let S ∈ Enabled(A, inf ,m). Then Υcan

S ⊆ [α]∼ for some process term α of (A(V,l), inf (V,l)). If
Υcan
S = [α]∼, then S ∈ MinEnabled(A, inf ,m).

Proof:
The first statement follows directly from Theorem 4.2, so we only prove the additional statement. For
an so-structure S ′ enabled in m such that S is an extension of S ′ we deduce Υcan

S ⊆ Υcan
S′ by definition.

From Υcan
S = [α]∼ it follows that Υcan

S′ = [α]∼ = Υcan
S . Consequently S = S ′ by Remark 4.1. ut

Now we have collected all results that we need on the general level of algebraic (M, I)-nets. For
concrete net classes we use these results to show the relations in Figure 5. An especially interesting
issue in this context is the construction principle of runs within the algebraic approach. Concluding the
section this principle can be informally sketched in our running example as follows: Translate the given
Petri net - here the one from Figure 1 (part (a)) - into an algebraic (M, I)-net. The only problem in this
step is defining an appropriate I, i.e. I should encode the non-sequential occurrence rule as sketched
in the previous section. Next deduce process terms: in the example we have deduced the four process
terms in Figure 4. As in Figure 4 we associate so-structures to process terms. On the algebraic level
we now have to identify equivalence classes according to Definition 4.3 leading to ”algebraic” runs (the
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four equivalent process terms in Figure 4 represent the run from Figure 1, part (c)). On the causal level
we have to intersect adequate so-structures of process terms in order to generate Enabled(A, inf ,m).
Intersecting the so-structures in Figure 4 results in the run from Figure 1 (part (c)).

Before discussing in detail the concrete example of elementary nets with inhibitor arcs in section 6
we introduce the general framework for the instantiation of net classes as general algebraic nets in the
next section.

5. The corresponding algebraic (M, I)-net

In this section we present a truly general approach to construct algebraic process term semantics and
subsequently causal semantics of Petri nets with restricted occurrence rule. This approach is based on
the notion of algebraic (M, I)-nets corresponding to concrete Petri nets.

Despite the differences between different classes of Petri nets, there are some common features
shared by almost all net classes, such as the notions of marking (state), transition, and occurrence rule
(see [6]). Thus, in the next definition we suppose a Petri net be given by a set of markings, a set of
transitions and an occurrence rule determining whether a synchronous step (a multi-set) of transitions is
enabled to occur in a given marking and if yes determining the follower marking. Note that for the net
classes we will consider their concurrent behaviour can be obtained from the sequential and synchronous
behaviour as follows: A multi-set of synchronous steps S ∈ NNT

is enabled to occur concurrently in a
marking m if and only if S can occur synchronously and sequentially in any order in the marking m. The
occurrence rule of a Petri net with a set of transitions T and a set of markings M can always be described
by a transition system. Accordingly, we suppose that a Petri net is given in the form of a transition system
(M,E,NT ) with nodes m ∈ M , labelled arcs e ∈ E ⊆ M × NT × M and labels s ∈ NT , where s
is interpreted as a synchronous step of transitions. The notation m

s−→ m′ for (m, s, m′) ∈ E means
that s can occur in m with follower marking m′. The notation m0

s1...sn−→ mn means that there exist
m1, . . . , mn−1 ∈ M , such that m0

s1−→ m1, . . . , mn−1
sn−→ mn.

Definition 5.1. (Corresponding net)
Let N = (M,E,NT ) be a Petri net in the form of a transition system. An algebraic (M, I)-net
((M,T, pre : T → M,post : T → M), inf ) = (A, inf ) is called a corresponding net to N if the
occurrence rule for synchronous steps is preserved: if for every pair of markings m, m′ ∈ M and ev-
ery synchronous step s ∈ NT there holds m

s−→ m′ if and only if there exists s̃ ∈ Step(A,inf ) with
|s̃| = s and a marking m̃ ∈ M such that α = s̃ ‖ m̃ is a defined process term fulfilling pre(α) = m and
post(α) = m′. ©

From the definitions we conclude: (m s1...sn−→ m′) ⇐⇒ (there exists α : m → m′ ∈ Stepseq(A,inf ,m)

of the form α = s̃1 ‖ m̃1; . . . ; s̃n ‖ m̃n), where m̃i ∈ M and s̃i ∈ Step(A,inf ) with |s̃i| = si for every
i ∈ {1, . . . , n}. Such α is called corresponding to m

s1...sn−→ m′. Moreover, an so-structure associated to
α is called associated to m

s1...sn−→ m′. Altogether this describes the consistency of the algebraic approach
to operational step semantics.

The construction of a corresponding algebraic (M, I)-nets provides a general framework to derive
causal semantics for a wide range of concrete net classes (compare the filled arcs in Figure 5). This is
illustrated in section 6 for the example of elementary nets with inhibitor arcs equipped with the a-priori
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semantics (the respective ideas were already developed in the previous sections) using the following
general scenario:

(1) Give the classical definition of a Petri net class including their synchronous step occurrence rule.

(2) Given a net N of the considered class, construct a corresponding algebraic (M, I)-net (A, inf )
through defining M, I, pre, post, inf . Then deduce the partial algebra of information sets X , the
respective greatest closed congruence ∼= as well as a partial algebra of information isomorphic to
X/∼=.

(3) Show that (A, inf ) satisfies the stated properties of the mapping inf (thus ensuring the validity of
the theorems of section 4).

(4) Now one can derive algebraic semantics of (A, inf ) through process terms and thus causal seman-
tics of N through MinEnabled(A, inf ,m).

From the considerations of this section we can conclude that the causal semantics of N derived with
this scheme are consistent with the operational semantics of N , because obviously (using theorem 4.1): S
is associated to m

s1...sn−→ m′ ⇐⇒ S ∈ stratsos(S ′) for some S ′ ∈ MinEnabled(A, inf , m). Moreover
so-structures which are not enabled never fulfill such a property and thus minimal enabled so-structures
are the so-structures with the least causalities guaranteing consistency to the operational occurrence rule.
These characteristics ensure that the derived causal semantics are reasonable. Consequently, if there
exist non-sequential semantics of the considered Petri net class based on processes and occurrence nets,
it should always be possible to show that the set of (minimal) runs representing (minimal) processes
coincides with MinEnabled(A, inf ,m). Moreover if there are no non-sequential semantics based on
processes for a given Petri net class, they can be straightforwardly given (following the scenario above)
by MinEnabled(A, inf ,m). Taking a closer look on the algebraic semantics, the equivalence rules of
Definition 4.3 ought to ensure the following correspondence between process terms and classical process
nets: An equivalence class of process terms exactly coincides with a commutative process (given a fixed
initial marking).

Altogether, the latter comments describe the respective relations of Figure 5 in more detail so that
the complete framework sketched in this illustration is now revealed in all respects. All relationships
that have to be implemented for concrete net classes and can only be prepared on the abstract level
were already proven for many different net classes in the special case not distinguishing concurrent and
synchronous behaviour in [11]. An exemplary procedure to show the consistencies of our approach
to classical process semantics is presented in the next section for elementary nets with inhibitor arcs
equipped with the a-priori semantics (extending the approach of [11] which is not suitable for this net
class).

6. Elementary nets with inhibitor arcs

In this section we will now apply the techniques developed in the previous sections to the concrete net
class of elementary nets with inhibitor arcs equipped with the a-priori semantics. Some of the main ideas,
e.g. the definition of a corresponding algebraic (M, I)-net, were already partially discussed on the basis
of the running example net in Figure 1 (part (a)). Note that the content of this section is based on the
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process semantics introduced by Janicki and Koutny (see section 2). Similar results as in this section have
been derived in [13]. But in [13] there was only shown a one to one correspondence between the process
term semantics and the process semantics in a complicated lengthy ad-hoc way without regarding causal
behaviour. Here we additionally get the complete consistency of the causal behaviour derived from
process terms and the causality of activator processes.

Given an elementary net with inhibitor arcs ENI = (P, T, F, C−) (see section 2) we construct a
corresponding algebraic (M, I)-net analogously as in [11] by (see also section 3)

• M = (2P ,∪), I = 2P × 2P × 2P , pre(t) = •t, post(t) = t•, inf (t) = (•t, t•, −t) (t ∈ T ) and
inf (m) = (m,m, ∅) (m ∈ M )

distinguishing preset, postset and context information (of transitions) in information triples. Therefore
we can encode the occurrence rule by the following partial operations:

• dom⊕̇ = {((a, b, c), (d, e, f)) ∈ I × I | (a ∪ b) ∩ (d ∪ e) = a ∩ f = d ∩ c = ∅} with
(a, b, c) ⊕̇(d, e, f) = (a ∪ d, b ∪ e, (c ∪ f) \ (b ∪ e)).

• dom‖̇ = {((a, b, c), (d, e, f)) ∈ I × I | (a ∪ b) ∩ (d ∪ e) = (a ∪ b) ∩ f = c ∩ (d ∪ e) = ∅} with

(a, b, c) ‖̇(d, e, f) = (a ∪ d, b ∪ e, c ∪ f).

Finally we have to evolve the information needed for the concurrent composition. For the concurrent
occurrence rule it only has to be distinguished between places used for token flow and context places that
are no flow places. This leads to the following support mapping for the definition of the greatest closed
congruence:

• supp : 2I → 2P × 2P , supp (A) = (s1(A), s2(A) \ s1(A)) where s1(A) =
⋃

(a,b,c)∈A(a∪ b) and
s2(A) =

⋃
(a,b,c)∈A c.

• ∼=⊆ 2I × 2I , A ∼= B ⇐⇒ supp(A) = supp(B).

In [11] it was shown that ∼= actually is the greatest closed congruence onX = (2I , {‖̇}, dom{‖̇}, 2
I×

2I ,∪):

Lemma 6.1. Denote J = {(x, y) ∈ 2P × 2P | x ∩ y = ∅}. Let ◦ be the binary operation on J defined
by (w, c) ◦ (w′, c′) = (w∪w′, (c∪ c′) \ (w∪w′)), dom‖ = {((w, c), (v, f)) ∈ J ×J | w∩ v = c∩ v =

w ∩ f = ∅} and ‖ = ◦|dom‖ . Then it holds:

(a) The mapping supp : (2I , {‖̇}, dom{‖̇},∪) → (J, ‖, dom‖, ◦) is a surjective closed homomorphism.

(b) The closed congruence ∼=⊆ 2I × 2I defined by A ∼= B ⇐⇒ supp(A) = supp(B) is the greatest
closed congruence on X = (2I , {‖̇}, dom{‖̇},∪).

Proof:
[Sketch of the proof] Part (a): Checks of the three parts of the statement: homomorphism, closeness
and surjectivity. Part (b): Any congruence ≈ greater than ∼= is shown to be not closed. To show this
we consider information sets A,A′ ∈ 2I such that A ≈ A′ but A 6∼= A′ and construct an information
set C ∈ 2I fulfilling (A,C) ∈ dom{‖̇} but (A′, C) /∈ dom{‖̇} (by distinguishing two cases). See the
Appendix for a detailed proof. ut
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The partial algebra (J, ‖, dom‖, ◦) is isomorphic with the greatest closed congruence on X . There-
fore, by the construction of process terms (using concurrent and sequential composition) it is enough to
save just the set of flow places (occurring as pre-set or post-set places of transitions in the process term)
and the set of inhibiting places which are no flow places. This information suffices for deciding whether
process terms are (concurrently) independent.

Moreover the following theorem from [11] reveals that the chosen implementation is correct:

Theorem 6.1. The algebraic (M, I)-net (A, inf ) = ((2P , T, pre, post), inf ) withM, I, pre, post, inf
as developed in this section corresponds to ENI (according to Definition 5.1).

Proof:
[Sketch of the proof] The two implications of the equivalence from Definition 5.1 are checked using the
definition of I. That means it is checked that the partial algebra of information I correctly encodes the
occurrence rule for synchronous steps in ENI defined in Definition 2.3. See the Appendix for a detailed
proof. ut

In order to apply the general results of section 4 unrestrictedly, we check that the algebraic (M, I)-
net implementation of this section fulfills all formulated properties of the mapping inf .

Lemma 6.2. The algebraic (M, I)-net (A, inf ) = ((2P , T, pre, post), inf ) with M, I, pre, post, inf
as developed in this section fulfills (Con1) - (Con6) and (Det).

Proof:
[Sketch of the proof] Straightforward checks. See the Appendix for a detailed proof. ut

To prove the consistency of the algebraic approach with the process based concept we can use an
important result about activator processes. Corollary 2 in [15] (considering the more general case of
p/t-nets with inhibitor arcs) reads in our terminology:

Theorem 6.2. {Sα | α ∈ Stepseq(A,inf ,m)} =
⋃

r∈Run(ENI,m) stratsos(r).

As a consequence we directly get that Run(ENI, m) ⊆ Enabled(A, inf ,m). In order to prove
the main result Run(ENI, m) = MinEnabled(A, inf ,m), we fundamentally need the following
lemma.

Lemma 6.3. Let S1 = (V,≺1,@1, id) and S2 = (V,≺2, @2, id) be so-structures of ∼-equivalent pro-
cess terms α : m → m′ and β : m → m′ of (A, inf ). If S = (V,≺,@, id) ∈ Run(ENI, m) satisfies
S ⊆ S2, then S ⊆ S1.

Proof:
[Sketch of the proof] It is enough to consider the cases where α is derived from β through one of the
equivalent transformation axioms (1)-(11) (Definition 4.3). Because for axioms preserving associated
so-structures the statement is trivial we will only consider the axioms (4) and (7). We will prove the
statement by contradiction. Namely, assuming that S1 does not extend S contradicts that α is a defined
process term. This can in each case be computed by reducing the proof to one of the three situations
shown in Figure 6. See the Appendix for a detailed argumentation. ut
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As a corollary we get that for each run r ∈ Run(ENI,m) there is α with Υcan
r = [α]∼. That means

Run(ENI, m) ⊆ MinEnabled(A, inf ,m) (Corollary 4.2). For the reverse statement observe that for
S ∈ Enabled(A, inf ,m) every so-structure S ′ ∈ stratsos(S) is associated to α ∈ Stepseq(A,inf ,m).
All these process terms α are ∼-equivalent (Theorem 4.2) and all elements of stratsos(S) are exten-
sions of one run r ∈ Run(ENI,m) (Theorem 6.2, Lemma 6.3). Using the representation of S from
Proposition 2.1, we get that S itself is an extension of r. This gives altogether

Theorem 6.3. Given ENI and (A, inf ) as defined above, there holds

Run(ENI,m) = MinEnabled(A, inf , m)

.

Furthermore, we deduce that every∼-equivalence class of process terms of the copy net is the canon-
ical set of a unique run (Theorem 4.1, Remark 4.1). Consequently there holds the following one-to-one
relationship, which is an enhancement of the main result of [13] (proven in another manner).

Theorem 6.4. Let ENI and (A, inf ) as defined above, and let the mapping ψ : Run(ENI, m) →
{[α]∼ | pre(α) = m} be defined by ψ(r) = [α]∼ for some α such that Sα is an extension of r. Then ψ
is well-defined and bijective.

Finally, this especially implies that every S ∈ Enabled(A, inf ,m) is an extension of exactly one
r ∈ Run(ENI, m). This result is strongly connected to the well-known result obtained for elementary
nets (without context), which says that each occurrence sequence of an elementary net is a linearization
of exactly one run of the net.

7. Conclusion

In this paper we have presented a very flexible and general unifying approach regarding causal semantics
(sketched in Figure 5). While in other approaches of unifying Petri nets (see e.g. [23, 21, 22, 14]) the
occurrence rule is never a parameter. Therefore the definitions in [21] and [14] both capture elementary
nets but let open more complicated restrictions of enabling conditions in the occurrence rule, such as
inhibitor arcs or capacities.

We demonstrated the applicability of our schematic framework with the example of elementary nets
with inhibitor arcs equipped with the a-priori semantics. The following table shows further net classes
for which we developed an algebraic implementation (i.e. process terms) and references to the respective
works (column ”algebraic impl.”). The algebraic implementation in particular includes the development
of an appropriate partial algebra of information and the identification of the greatest closed congruence
(the remaining parts of the instantiation of the filled arcs in Figure 5 are straightforward). The instantia-
tion of the non-filled arcs in Figure 5 requires the existence of process semantics for the considered net
class: The column ”ad-hoc corr.” references to works, in which a correspondence of the algebraic pro-
cess term semantics and existing classical process semantics of the net class is shown in an ad-hoc way.
That means a correspondence between equivalence classes of process terms and process nets is proven
neglecting causal semantics. The column ”causal corr.” references to works, in which a correspondence
of respective causal semantics is shown. An example for such an approach is section 6 in this paper.
Such an approach leads to more general results than the results in the column ”ad-hoc corr.”.
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net class algebraic ad-hoc causal
impl. corr. corr.

elementary nets [7, 11] [7] [11]

elementary nets with inhibitor arcs (a-posteriori) [8, 11] [8] [11]

elementary nets with read arcs (a-posteriori) [8, 11] [8] [11]

elementary nets with mixed context (a-posteriori) [8, 11] [8] [11]

p/t-nets [8, 11] – [11]

p/t-nets with inhibitor arcs (a-posteriori) [8, 11] – –

p/t-nets with weak capacities [8, 11] – –

p/t-nets with strong capacities [8, 11] – –

elementary nets with inhibitor arcs (a-priori) [13, 12] [13] [12]

elementary nets with read arcs (a-priori) [18] – –

elementary nets with mixed context (a-priori) [18] – –

p/t-nets with inhibitor arcs (a-priori) [18] – –

elementary nets (synchronous semantics) [18] – –

p/t-nets with weak capacities (synchronous semantics) [18] – –

The general algebraic part of the paper showed the extension of the basic approach from [11] to
so-structure based semantics. It would be an interesting and promising project of further research to
additionally extend the approach of algebraic Petri nets in order to include new net classes of a different
fundamental structure or with different semantical notions. For an example besides so-structures there is
another generalization of partial orders that allow interval orders as a model of system runs [26]. This
would lead to another extension of the algebraic framework distinguishing the start and the end of events.
But we also have more proximate and immediate research in this area. On the one hand we still have to
examine some net classes and/or compare the algebraic semantics to process semantics, as for example
elementary nets with read arcs and p/t-nets with inhibitor arcs each equipped with the a-priori semantics,
nets with priorities or nets with reset arcs. On the other hand it would be interesting to derive behavioural
results beyond the causal semantics on the abstract level. Because of the generality of the approach this
could result in a very powerful analyzing tool.
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Appendix: Proofs omitted from the main text and necessary technical
notions

Proof of Lemma 3.1

(i) : reflexive: a = b ∈ 2I/∼= implies that A ∈ 2I exists with a = [A] = b. With A ⊆ A follows the
statement.

transitive: a ⊆/∼= b ⊆/∼= c =⇒ ∃A,B, B′, C ∈ 2I with a = [A], b = [B] = [B′], c = [C] and
A ⊆ B, B′ ⊆ C. Then: c = [C] = [C ∪ B′] = [C] ∪/∼= [B′] = [C] ∪/∼= [B] = [C ∪ B]. With
A ⊆ C ∪B follows the statement.

antisymmetric: a ⊆/∼= b and b ⊆/∼= a =⇒ ∃A,A′, B, B′ ∈ 2I with a = [A] = [A′], b = [B] =
[B′] and A ⊆ B,B′ ⊆ A′. Then for arbitrary c there holds:

– a {‖̇}/∼= c defined ⇐⇒ b {‖̇}/∼= c defined.

– In the positive case: (a {‖̇}/∼= c) ⊆/∼= (b {‖̇}/∼= c) and (b {‖̇}/∼= c) ⊆/∼= (a {‖̇}/∼= c).

– (a ∪/∼= c) ⊆/∼= (b ∪/∼= c) and (b ∪/∼= c) ⊆/∼= (a ∪/∼= c).

Because ∼= is a closed congruence, one can observe, that the properties of a closed congruence
are maintained, if all equivalence classes a, b with a ⊆/∼= b and b ⊆/∼= a are identified in one
equivalence class. Since ∼= is the greatest closed congruence, there already holds a = b.

(ii) + (iii) : The preliminaries a ⊆/∼= a′, b ⊆/∼= b′ can be rewritten as follows: ∃A,A′, B, B′ ∈ 2I with
a = [A], a′ = [A′], b = [B], b′ = [B′] and A ⊆ A′, B ⊆ B′. We start with the first part of
(iii): a ∪/∼= b = [A] ∪/∼= [B] = [A ∪ B] and a′ ∪/∼= b′ = [A′] ∪/∼= [B′] = [A′ ∪ B′]. With
(A ∪ B) ⊆ (A′ ∪ B′) follows (a ∪/∼= b) ⊆/∼= (a′ ∪/∼= b′). Now we additionally assume that
a′ {‖̇}/∼= b′ is defined, i.e. A′{‖̇}B′ is defined. According to the definition of {‖̇} there results:
A{‖̇}B defined with A{‖̇}B ⊆ A′{‖̇}B′. Consequently a {‖̇}/∼= b is defined and we can calculate:
a {‖̇}/∼= b = [A] {‖̇}/∼= [B] = [A{‖̇}B] and a′ {‖̇}/∼= b′ = [A′] {‖̇}/∼= [B′] = [A′{‖̇}B′], conse-
quently (a {‖̇}/∼= b) ⊆/∼= (a′ {‖̇}/∼= b′). Therefore (ii) and the second statement of (iii) are proven.

(iv) : Let A,B ∈ 2I with a = [A], b = [B]. There holds a ∪/∼= b = [A] ∪/∼= [B] = [A ∪ B], which
leads to the first statement. Let now A, B ∈ 2I , whereas for any information element m ∈ A there
holds: ∃i ∈ I : m ‖̇ i ∈ B. Defining ∼=′ in such a manner, that for any such sets A, B the relation
B ∼=′ (A ∪ B) holds and otherwise ∼=′ coincides with ∼=, then ∼=′ is again a closed congruence
(simple observation using the definition of {‖̇}). Since ∼= is the greatest closed congruence, this
relation already holds for ∼=, i.e. ∼==∼=′. Consequently there are sets A,B ∈ 2I with a = [A] and
(a {‖̇}/∼= b) = [B], whereupon A and B have the above relation. Therefore the second statement
follows with [B] = [A ∪B].

(v) : The preliminaries imply: ∃A,B, C, C ′ ∈ 2I with a = [A], b = [B], c = [C] = [C ′] and
A ⊆ C,B ⊆ C ′. Similar to the latter argumentation we can verify with the properties of the
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greatest closed congruence that the relation c = [C ∪ C ′] holds (use c = [C] = [C ′]) which leads
to the statement.

Proof of Lemma 4.1

We prove the statement inductively according to the construction of process terms:
If α = m ∈ M , then C ⊆ Bα = ∅, αsu = m and mC = m, i.e. αC = m;m is a defined process

term obviously fulfilling (I) (axiom (8)) and (II).
If α ∈ Step(A,inf ) and C = ∅, then αsu = α and mC = pre(α), i.e. αC = pre(α);α is a defined

process term obviously fulfilling (I) (axiom (8)) and (II) (use (Con3)).
If α ∈ Step(A,inf ) and C = {α}, then αsu = post(α) and mC = 0, i.e. αC = (α ‖ 0); post(α)

is a defined process term (use (Con2)), obviously fulfilling (I) ((11) and (8)) and (II) (use (Con2) and
(Con3)).

Let α = β; γ for process terms β and γ which fulfill the statement. According to Definition 4.1 there
exist disjoint sets Vβ ⊆ V and Vγ ⊆ V with Vβ∪Vγ = V , such that Sβ = (Vβ,≺ ∩(Vβ×Vβ), @ ∩(Vβ×
Vβ), id) is a labelled so-structure of β, Sγ = (Vγ ,≺ ∩(Vγ × Vγ), @ ∩(Vγ × Vγ), id) is a labelled so-
structure of γ and v ≺ v′ for each v ∈ Vβ , v′ ∈ Vγ . Bβ and Bγ are disjoint sets satisfying Bβ∪Bγ = Bα

and consequently X|Sβ
⊆ X|Sα and X|Sγ ⊆ X|Sα are disjoint sets fulfilling X|Sβ

∪ X|Sγ = X|Sα .
Moreover, k <Sα k′ for each k ∈ X|Sβ

and k′ ∈ X|Sγ . Because α has no sub-term of the form m; α′ we
have Vβ 6= ∅ and thus Bβ 6= ∅ and X|Sβ

6= ∅. It easily follows C ⊆ Bβ (elements of Bγ are not minimal
in α). Obviously the elements of C are also minimal in β. Because also β has clearly no sub-term of the
form m;α′ and β fulfills the statement, there exists a marking mC , such that βC = ((‖s∈C s) ‖mC);βsu

is a defined process term fulfilling (I) and (II). Furthermore we have γsu = γ, because Bγ and C are
disjoint. Consequently αC = ((‖s∈C s) ‖mC);αsu = ((‖s∈C s) ‖mC);βsu; γsu = βC ; γ is a defined
process term (because post(βC) = post(β) = pre(γ)). From βC ∼ β we get (I) and from Inf (βC)
⊆/∼= Inf (β) we can conclude (II).

Let α = β ‖ γ for process terms β and γ which fulfill the statement. As in the previous paragraph
there exist disjoint sets Vβ ⊆ V and Vγ ⊆ V with Vβ ∪ Vγ = V , such that Sβ = (Vβ,≺ ∩(Vβ × Vβ), @
∩(Vβ × Vβ), id) is a labelled so-structure of β, Sγ = (Vγ ,≺ ∩(Vγ × Vγ), @ ∩(Vγ × Vγ), id) is a
labelled so-structure of γ and there holds v 6@ v′ as well as v′ 6@ v for each v ∈ Vβ , v′ ∈ Vγ . Again
Bβ and Bγ are disjoint sets satisfying Bβ ∪ Bγ = Bα, X|Sβ

⊆ X|Sα and X|Sγ ⊆ X|Sα are disjoint
sets fulfilling X|Sβ

∪ X|Sγ = X|Sα and k 6<Sα k′ and k′ 6<Sα k for each k ∈ X|Sβ
, k′ ∈ X|Sγ .

Define C1 = C ∩ Bβ and C2 = C ∩ Bγ . Then C1 and C2 are disjoint with C1 ∪ C2 = C. Obviously
C1 is a subset of minimal basic step terms of β and C2 is a subset of minimal basic step terms of
γ. Because β and γ have no sub-term of the form m; α′, there exist markings m1 and m2, such that
βC1 = ((‖s∈C1

s) ‖m1);βsu and γC2 = ((‖s∈C2
s) ‖m2); γsu are defined process terms fulfilling (I)

and (II). From Inf (βC1) ⊆/∼= Inf (β) and Inf (γC2) ⊆/∼= Inf (γ) we derive that βC1 ‖ γC2 is defined
with Inf (βC1 ‖ γC2) ⊆/∼= Inf (β ‖ γ) = Inf (α). For mC = m1 + m2 we get the following relation
using axiom (4) in the first equivalent transformation step and the axioms (1), (2) and (9) in the second
transformation step: βC1 ‖ γC2 = (((‖s∈C1

s) ‖m1);βsu) ‖ (((‖s∈C2
s) ‖m2); γsu) ∼ (((‖s∈C1

s) ‖m1)
‖ ((‖s∈C2

s) ‖m2)); (βsu ‖ γsu) ∼ ((‖s∈C s) ‖mC);αsu = αC . Consequently αC is a defined process
term. With (I) for βC1 and γC2 we get (I) for αC . From the used∼-axioms and (II) for βC1 and γC2 there
results Inf (αC) ⊆/∼= Inf (βC1 ‖ γC2) ⊆/∼= Inf (β ‖ γ) = Inf (α). Consequently (II) is fulfilled.
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Definition of copy terms

In order to formulate basic relations between process terms of a copy-net (A(V,l), inf (V,l)) and of
(A, inf ), we extend the labelling function l from Definition 4.4 to process terms α of (A(V,l), inf (V,l))
in the following way for markings m and process terms α1, α2: l(m) = m, l(α1⊕α2) = l(α1)⊕ l(α2),
l(α1 ‖α2) = l(α1) ‖ l(α2) and l(α1; α2) = l(α1); l(α2) (if defined, respectively). The extended la-
belling function l fulfills the following immediate properties for process terms α, β of (A(V,l), inf (V,l))
and α′ of (A, inf ):

• l(α) ∈ P(A, inf ).

• pre(α) = pre(l(α)), post(α) = post(l(α)) and Inf (α) = Inf (l(α)).

• α ∼ β =⇒ l(α) ∼ l(β).

• l : P(A(V,l), inf (V,l)) → P(A, inf ) is surjective.

• S = (V,≺,@, id) associated to α =⇒ S ′ = (V,≺, @, l) associated to l(α).

• S ′ = (V,≺, @, l) associated to α′ =⇒∃α with l(α) = α′ such that S = (V,≺, @, id) is associated
to α.

• S = (V,≺,@, id) and S ′ = (V,≺′, @′, id) associated to α =⇒ S = S ′.

Now we are prepared to define the technically important copy terms: Let S = (V,≺, @, l) be an
so-structure of a process term α of (A, inf ). A copy term of α (w.r.t. S) is a process term αS of the
(V, l)-copy net (A(V,l), inf (V,l)) with l(αS) = α such that (V,≺, @, id) is associated to αS .

Two copy terms of α w.r.t. S are always ∼-equivalent through commutativity and associativity
axioms. We will not further distinguish such copy terms.

Proof of Theorem 4.1

Denote S = Sα = (V,≺, @, l) and S ′ = (V,≺′, @′, l). We will equivalently transform αS into the
process term βS′ , i.e. βS′ has associated the so-structure (V,≺′, @′, id), then the process term β = l(βS′)
has associated the so-structure S ′ and satisfies α ∼ β. Consequently pre(β) = pre(α) = m and thus S
is enabled in m.

Let poS = (X|S , <S) be the partial order associated to S, let poS′ = (X|S′ , <S′) be the total order
associated to S ′ (see Lemma 2.2). Let X|S′ = {k′1, . . . , k′m} such that k′i <S′ k′j ⇐⇒ i < j. Then
k′1 is of the form k′1 = k1 ∪ . . . ∪ kn for (pairwise disjoint) k1, . . . , kn ∈ X|S , where k1, . . . , kn are all
minimal w.r.t. <S (see Lemma 2.2). Thus, the basic step terms b1, . . . , bn ∈ BαS of αS corresponding
to k1, . . . , kn are minimal.

Define C = {b1, b2, . . . , bn} and su = post|C . Without loss of generality we can suppose that αS

has no sub-term of the form m;α′. According to corollary 4.1 there exists a marking mSy such that αSC =
((⊕s∈C s) ‖mSy);αSsu = ((⊕v∈k′1 v) ‖mSy);αSsu is a defined process term fulfilling (I) and (II). Thus
we have detached k′1 from αS . Denote V ′ = V \{v | ∃s ∈ C with v ∈ s}, KC = X|S \{k1, . . . , kn} and
K ′

C = X|S′ \{k′1}. Directly from the construction of αSsu we get that SC = (V ′,≺ |V ′×V ′ , @ |V ′×V ′ , id)
is an so-structure of αSsu and poSC

= (KC , <S |KC×KC
) is the associated partial order.
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Observe now that S ′C = (V ′,≺′ |V ′×V ′ , @′ |V ′×V ′ , id) is a total linear extension of SC , k′2 ∈ X|S′ is
minimal in poS′C = (K ′

C , <S′ |K′
C×K′

C
). That means we can re-iterate the above procedure for k′2, αSsu,

SC and S ′C instead of k′1, α, S and S ′, and subsequently for all further k′3, . . . , k
′
m ∈ X|S′ . This results

in the searched process term β′ = ((⊕v∈k′1 v) ‖m1); . . . ; ((⊕v∈k′m v) ‖mk)(= βS′).

Determinism properties of ∼
We can conclude the following technical results (Det1) and (Det2) concerning the determinism of

markings.
(Det1) If (A, inf ) fulfills (Det), then there holds for s ∈ Step(A,inf ) and m1,m2 ∈ M : (s ‖m1 defined

∧ s ‖m2 defined ∧ pre(s ‖m1) = pre(s ‖m2)) =⇒ (post(s ‖m1) = post(s ‖m2) ∧ (s ‖m1) ∼
(s ‖m2)).

(Det2) If (A, inf ) fulfills (Det), (Con1) and (Con3)-(Con5), then there holds for s1, s2 ∈ Step(A,inf )

and m,m1,m2 ∈ M : ((s1⊕ s2) ‖m defined ∧ (s1 ‖m1); (s2 ‖m2) defined ∧ pre((s1⊕ s2) ‖m)
= pre((s1 ‖m1); (s2 ‖m2))) =⇒ (post((s1⊕ s2) ‖m) = post((s1 ‖m1); (s2 ‖m2)) ∧ (s1⊕ s2)
‖m ∼ (s1 ‖m1); (s2 ‖m2)).

The two statements can be proven as follows:

(Det1): The first implication concerning post directly results from (Det); the equivalence of the two
terms then yields from (10).

(Det2): The preliminaries exactly coincide with the preliminaries in the definition of (Con5). Therefore
s1 ‖(pre(s2) + m) and s2 ‖(post(s1) + m) are defined and thus also (s1 ‖(pre(s2) + m)); (s2 ‖
(post(s1) + m)) is defined. The initial marking of the first term s1 ‖(pre(s2) + m) coincides
with the initial marking of s1 ‖m1. Consequently (Det) implies, that the final markings are equal
and from (10) results s1 ‖(pre(s2) + m) ∼ s1 ‖m1. Because the final markings of these two
terms coincide, the initial markings of the next two terms s2 ‖(post(s1) + m) and s2 ‖m2 have
to be equal. With the same arguments there also results the coincidence of the final markings
and the ∼-equivalence. Note that with (Con4) and (Con3) pre(s2) ‖m and post(s1) ‖m are de-
fined. The following equivalence transformation finally yields the statement: (s1 ‖(pre(s2) +
m)); (s2 ‖(post(s1) + m)) ∼ (s1 ‖ pre(s2) ‖m); (s2 ‖ post(s1) ‖m) ∼ ((s1 ‖ pre(s2)); (s2 ‖
post(s1))) ‖m ∼ (s1⊕ s2) ‖m. Thereby firstly (9), then (4) and (8) and lastly (7) was applied.

(Det1) shows that s ‖m1 is equivalent to s ‖m2 if the initial markings of the two process terms
coincide. In particular we do not have to require m1 = m2. That means in this situation we do not have
to assume a uniqueness property for concurrently composed markings in order to get equivalent process
terms. (Det2) similarly shows that we do not have to make uniqueness assumptions on the concurrently
composed markings m1, m2,m when equivalently transforming a synchronous step term s1⊕ s2 into
a sequence of the sub terms s1 and s2. In particular we do not have to require m2 = m + post(s1)
or m1 = m + pre(s2). Again we only have to assume that the initial markings of the process terms
coincide.
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Proof of Lemma 4.2

Denote S = (V,≺,@, l), S ′ = (V,≺′, @′, l) and S ′′ = (V,≺′′, @′′, l). We show that both α and β
can be equivalently transformed to equivalent synchronous step sequence terms γα resp. γβ which only
depend on S. As usual this is done on the copy term level. We start with the process term α. Without
loss of generality αS′ is of the form αS′ = (s1 ‖m1); . . . ; (sn ‖mn) with si ∈ Step(A(V,l),inf (V,l))

and
mi ∈ M for i = 1, . . . , n. Let Vmin ⊆ V be the set of minimal events in S w.r.t. ≺. Without loss of
generality each step term si is of the form si = (smin

i ⊕ srest
i ), where smin

i , srest
i ∈ Step(A(V,l),inf (V,l))

with Vmin ∩ |si| = |smin
i |. Of course the terms smin

i and srest
i are also allowed to be empty. In the

following equivalence transformations smin
i and srest

i are always considered not to be empty, because in
the case that one term is empty there is always an obvious way to justify the given transformation.

First we equivalently sequentialize each si ‖mi into (smin
i ‖mmin

i ); (srest
i ‖mrest

i ). Obviously for
v ∈ smin

i , w ∈ srest
i we have v @′ w and w @′ v. Because w is not minimal in S and v is minimal

in S we conclude w 6@ v (use (C4)). Consequently if we remove for each i ∈ {1, . . . , n} and each
v ∈ smin

i , w ∈ srest
i the relation w @′ v from S ′ and add in exchange the relation v ≺′ w to S ′ the

result is a total linear so-structure S ′1 = (V,≺′1,@′
1, l) which extends S. Since S is enabled, there exists

a synchronous step sequence term α′1 with pre(α′1) = m and associated so-structure S ′1. Its copy term
(α′1)

S′1 has without loss of generality the form (α′1)
S′1 = (smin

1 ‖mmin
1 ); (srest

1 ‖mrest
1 ) ; . . . ; (smin

n ‖
mmin

n ) ; (srest
n ‖mrest

n ) satisfying (α′1)
S′1 ∼ αS′ (use (Det2) iteratively).

Next we iteratively equivalently permute synchronous step terms with minimal events (”min”-terms)
and synchronous step terms with not minimal events (”rest”-terms), starting from behind. Analogously
as above we conclude for each v ∈ smin

n , w ∈ srest
n−1 that w 6@ v. Consequently if we remove for each

v ∈ smin
n , w ∈ srest

n−1 the relation w ≺′1 v from S ′1 and add in exchange the relation v @′
1 w to S ′1 the result

is a total linear so-structure S ′2 = (V,≺′2, @′
2, l) which extends S. As above there is a synchronous step

sequence term α′2 with associated so-structure S ′2 and the copy term of α′2 w.r.t. S ′2 has without loss of
generality the form (smin

1 ‖mmin1
1 ); (srest

1 ‖mrest1
1 ) ; . . . ; ((smin

n ⊕ srest
n−1) ‖mminrest1

n−1 ); (srest
n ‖mrest1

n )
being equivalent to (α′1)

S′1 (using (Det1) and (Det2)) and consequently to αS′ . From S ′2 we now remove
each relation w @′

2 v and add in exchange v ≺′2 w for v ∈ smin
n , w ∈ srest

n−1 resulting in the total linear so-
structure S ′3 = (V,≺′3, @′

3, l) which also extends S. With the same arguments we get an accordant copy
term of the form (smin

1 ‖mmin2
1 ); (srest

1 ‖mrest2
1 ); . . . ; (smin

n ‖mmin2
n ) ; (srest

n−1 ‖mrest2
n−1 ); (srest

n ‖mrest2
n )

equivalent to αS′ . Altogether the terms smin
n and srest

n−1 have been permuted. With a similar argumentation
we can equivalently transform the sub-term (smin

n−1 ‖mmin2
n−1 );(smin

n ‖
mmin2

n ) into ((smin
n−1⊕ smin

n ) ‖mmin3).
Repeating this procedure, ”min”-terms are iteratively permutated with ”rest”-terms from the right to

the left and synchronously composed with other ”min”-terms to one collective ”min”-term. The result
is a synchronous step sequence term of the form (smin

1 ⊕ . . .⊕ smin
n ‖mmin′); (srest

1 ‖mrest′
1 ) ; . . . ;

(srest
n−1 ‖ mrest′

n−1 ) ; (srest
n ‖mrest′

n ) = ((⊕v∈Vmin v) ‖mmin′) ; (srest
1 ‖mrest′

1 ) ; . . . ; (srest
n−1 ‖mrest′

n−1 ) ;
(srest

n ‖mrest′
n ) equivalent to αS′ and with an associated so-structure S ′′′ extending S. Thus, we have

sorted the minimal events Vmin of S to one synchronous step at the beginning of the term. Considering
the so-structure S1 = (V \ Vmin,≺ |(V \Vmin)×(V \Vmin), @ |(V \Vmin)×(V \Vmin), l) restricting S to the set
of remaining events, we can collect in the same way the minimal events of S1 to one synchronous step
term at the second position of the synchronous step sequence term11. Now we re-iterate this procedure

11One must observe that the enabled property of S (and not of S1) has to be used.
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until Si constructed in this way is empty. Because every Si has minimal events the procedure terminates.
Altogether we get a synchronous step sequence term αS′Snat

equivalent to αS′ that is uniquely defined by S
up to concurrently composed markings and commutativity and associativity axioms12. The same can be
applied to the process term β resulting in a copy term βS′′Snat

equivalent to βS′′ . We deduce αS′Snat
∼ βS′′Snat

from pre(βS′′) = pre(αS′), αS′Snat
∼ αS′ and βS′′Snat

∼ βS′′ (use (Det1)), so there results αS′ ∼ βS′′ and
consequently α ∼ β.

Proof of Lemma 6.1

The operation ◦ is well-defined because for any x, y ∈ J , we have x ◦ y ∈ J by construction.

ad (a): First we show that supp is a homomorphism for the operations {‖̇} and ∪ on 2I , that is

supp (A{‖̇}A′) = supp (A)‖supp (A′)
supp (A ∪A′) = supp (A) ◦ supp (A′).

We compute supp (A {‖̇}A′) = supp ({(a ∪ d, b ∪ e, c ∪ f) | (a, b, c) ∈ A, (d, e, f) ∈ A′}) =
(
⋃

(a,b,c)∈A∪A′(a ∪ b),
⋃

(a,b,c)∈A∪A′ c \
⋃

(a,b,c)∈A∪A′(a ∪ b)) = (
⋃

(a,b,c)∈A(a ∪ b) ∪ ⋃
(a,b,c)∈A′(a ∪

b), (
⋃

(a,b,c)∈A c∪⋃
(a,b,c)∈A′ c)\(

⋃
(a,b,c)∈A(a∪b)∪⋃

(a,b,c)∈A′(a∪b))) = supp (A)‖supp (A′) (when-
ever both sides are defined). The equation supp (A ∪A′) = supp (A) ◦ supp (A′) follows directly from
the definitions.

Next we show the closedness of supp , that is

(A,A′) ∈ dom{‖̇} ⇐⇒ (supp (A), supp (A′)) ∈ dom‖

for any two A,A′ ⊆ I . Denote s1(A) = w, s2(A) \ s1(A) = c, s1(A′) = w′ and s2(A′) \ s1(A′) = c′.
Then it holds: (∀(a, b, c) ∈ A, ∀(a′, b′, c′) ∈ A′ : (a ∪ b) ∩ (a′ ∪ b′) = (a ∪ b) ∩ c′ = (a′ ∪ b′) ∩ c =
∅) ⇐⇒ (w ∩ w′ = w ∩ c′ = w′ ∩ c = ∅).

Finally, the mapping supp is surjective, because, for any (w, c) ∈ J , we have supp ({(w, ∅, c)}) =
(w, c).

ad (b): We will show that any congruence ≈ such that ∼= is a proper subset of ≈ is not closed. Assume
there are A, A′ ∈ 2I such that A ≈ A′ but A 6∼= A′. Then supp(A) 6= supp(A′).

We define a set C ∈ 2I such that (A, C) ∈ dom{‖̇} but (A′, C) /∈ dom{‖̇} or vice versa (which
implies that ≈ is not closed). If supp(A) = (w, c) and supp(A′) = (w′, c′), then w ∩ c = w′ ∩ c′ = ∅
(by definition) and c 6= c′ ∨ w 6= w′ (since supp(A) 6= supp(A′)).

Let w 6= w′. Without loss of generality we assume w′ \w 6= ∅. Set C = {(∅, ∅, c)} with c = w′ \w.
From c ∩ w = ∅, but c ∩ w′ 6= ∅ we conclude (A,C) ∈ dom{‖̇}, but (A′, C) /∈ dom{‖̇}.

Now let w = w′ and c 6= c′. Without loss of generality we assume c′ \ c 6= ∅. Set C = {(a, ∅, ∅)}
with a = (c′ \ c). From a ∩ w = a ∩ c = ∅, but a ∩ c′ 6= ∅ we again conclude (A,C) ∈ dom{‖̇}, but
(A′, C) /∈ dom{‖̇}.

12This can directly be derived from the construction rule.
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Proof of Theorem 6.1

Let s̃ ∈ Step(A,inf ). First we show (by contradiction) that |s| is a set, i.e. for each t ∈ T we
have if |s̃|(t) > 0 then |s̃|(t) = 1. Suppose that there is a t ∈ T which appears more than once
in s̃. Then (independent from the construction order of s̃) the construction of s̃ involves a sub-term
s′ ∈ Step(A,inf ) of s̃ and s1, s2 ∈ Step(A,inf ) such that s′ = s1⊕ s2 and t is a sub-term of s1 as well as
a sub-term of s2. Notice that we suppose nets with transitions having nonempty pre-set or post-set, i.e.
pre(t) ∪ post(t) 6= ∅. Denoting inf (s1) = (a, b, c) and inf (s2) = (d, e, f), we can conclude from the
definition of inf that pre(t) ⊆ a ∩ d and post(t) ⊆ b ∩ e. Therefore from the definition of dom⊕̇ the
process term s′ is not defined.

Now we show that for every step s ∈ 2T enabled to occur in ENI with m
s−→ m′ (m,m′ ∈ M )

there exists s̃ ∈ Step(A,inf ) with |s̃| = s. We prove this statement by induction on the number of
elements in the set s. If s = {t} (t ∈ T ), then obviously s̃ = t ∈ Step(A,inf ). Let s = {t1, . . . tk}
with k > 1 and ssub = s \ {tk}. Take the term s′ with |s′| = ssub. Then inf (s′) = (a, b, c) =
(∪t∈s′pre(t),∪t∈s′post(t), (∪t∈s′

−t) \ b). Now, we can easily show (by contradiction) that s̃ exists:
If not, then (inf (s′), inf (tk)) /∈ dom⊕̇, i.e. (a ∪ b) ∩ (pre(tk) ∪ post(tk)) 6= ∅ or a ∩ −tk 6= ∅ or
c ∩ pre(tk) 6= ∅. In each case tk is in synchronous conflict to some t ∈ s′. Thus t ∈ ssub and tk cannot
be in the enabled step s. A contradiction.

A transition t ∈ T enabled to occur in m fulfills (m \ pre(t)) ∩ post(t) = ∅. This implies (m \
pre(s̃)) ∩ post(s̃) = ∅. Consequently inf (s̃) = (pre(s̃), post(s̃), (∪t∈s̃

−t) \ post(s̃)) and inf (m \
pre(s̃)) = (m \ pre(s̃),m \ pre(s̃), ∅) fulfill (inf (s̃), inf (m \ pre(s̃)) ∈ dom‖̇ and thus α = s̃ ‖(m \
pre(s̃)) is defined, with pre(α) = m and post(α) = m′ (post(α) = m′ is a simple calculation). The
existence of such α gives the first part of the equivalence in Definition 5.1.

For the second part let α = s̃ ‖ m̃ : m → m′ (s̃ ∈ Step(A,inf ), m̃,m, m′ ∈ M ) be a defined
process term. Since by definition of dom‖̇ the sets pre(s̃) and m̃ are disjoint, pre(s̃) ∪ m̃ = m implies

m̃ = m \ pre(s̃). We show that the step |s̃| ∈ 2T is enabled to occur in m. If not, then either there
are transitions t1, t2 ∈ |s̃| which are in synchronous conflict or there is a transition t ∈ |s̃|, which is not
enabled to occur in m.

Suppose that t1, t2 ∈ |s̃| are in synchronous conflict. Then (independent from the construction order
of s̃) the construction of s̃ involves a sub-term s′ ∈ Step(A,inf ) of s̃ and s1, s2 ∈ Step(A,inf ) such
that s′ = s1⊕ s2 and t1 is a sub-term of s1 and t2 is a sub-term of s2. Denoting inf (s1) = (a, b, c)
and inf (s2) = (d, e, f) the synchronous conflict of t1 and t2 yields one of the following non-empty
intersections: (a∪ b)∩ (d∪ e) 6= ∅ or a∩ f 6= ∅ or c∩d 6= ∅. Consequently (inf (s1), inf (s2)) /∈ dom⊕̇
and thus the process term s′ is not defined. A contradiction.

It remains to show that every t ∈ |s̃| is enabled to occur in m. First we calculate •t = pre(t) ⊆
pre(s̃) ⊆ m. Second by definition of dom‖̇ we can conclude that t• ∩ m̃ = ∅. Moreover by definition
of dom⊕̇ we can conclude that t• ∩ •u = ∅ for u ∈ |s̃| \ {t} (an analogues argumentation as above
that the construction of s̃ involves a sub-term s′ ∈ Step(A,inf ) of s̃ and s1, s2 ∈ Step(A,inf ) such that
s′ = s1⊕ s2 and t is a sub-term of s1 and u is a sub-term of s2). Thus from pre(s̃) ∪ m̃ = m we have
(m \ •t) ∩ t• = ∅. Altogether, every t ∈ |s̃| is enabled to occur in m.

Consequently we have shown that the step |s̃| is enabled to occur in m. With m̃ = m \ pre(s̃) it is
easy to check that its occurrence leads to post(α) = m′.
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Proof of Lemma 6.2

(Con1): x, y ∈ M : (inf (x), inf (y)) ∈ dom‖̇ =⇒ inf (x) ‖̇ inf (y) = (x, x, ∅) ‖̇(y, y, ∅) =

(x ∪ y, x ∪ y, ∅) = inf (x ∪ y) = inf (x + y) (according to the definition of ‖̇, x and y even have to be
disjoint).

(Con2): Obviously ∅ is the neutral element of M and (∅, ∅, ∅) the neutral element of (I, dom‖̇, ‖̇)
and it holds inf (∅) = (∅, ∅, ∅).

(Con3): s ∈ Step(A,inf ) : supp({inf (s), inf (pre(s)), inf (post(s))}) = supp({(pre(s), post(s),
−s\post(s)), (pre(s), pre(s), ∅), (post(s), post(s), ∅)}) = (pre(s)∪post(s), −s\(pre(s)∪post(s)))
= supp({inf (s)}).

(Con4): s1, s2 ∈ Step(A,inf ) with (inf (s1), inf (s2)) ∈ dom⊕̇ : supp({inf (s1⊕ s2), inf (s1),
inf (s2)}) = (pre(s1)∪ pre(s2)∪ post(s1)∪ post(s2), (−s1 ∪ −s2) \ (pre(s1)∪ pre(s2)∪ post(s1)∪
post(s2))) = supp({inf (s1⊕ s2)}).

(Con5): s1, s2 ∈ Step(A,inf ),m, m1,m2 ∈ M : (inf (s1), inf (s2)) ∈ dom⊕̇, (inf (s1) ⊕̇ inf (s2),m)
∈ dom‖̇, (inf (s1), inf (m1)) ∈ dom‖̇, (inf (s2), inf (m2)) ∈ dom‖̇, post(s1)+m1 = pre(s2)+m2 and
pre(s1) + pre(s2) + m = pre(s1) + m1 =⇒ pre(s1) ∩ pre(s2) = pre(s1) ∩m = pre(s1) ∩m1 = ∅
(directly from the preliminaries w.r.t. dom⊕̇ and dom‖̇) =⇒ m1 = pre(s2)+m (directly from pre(s1)+
pre(s2) + m = pre(s1) + m1), consequently we get the first statement (inf (pre(s2) + m), inf (s1)) ∈
dom‖̇. Now post(s1) + m1 = pre(s2) + m2 implies pre(s2) + post(s1) + m = pre(s2) + m2. From
the preliminaries w.r.t. dom⊕̇ and dom‖̇ there onward results pre(s2) ∩ post(s1) = pre(s2) ∩ m =
pre(s2) ∩ m2 = ∅ and therefore m2 = post(s1) + m, consequently we get the second statement
(inf (post(s1) + m), inf (s2)) ∈ dom‖̇.

(Con6): s1, s2 ∈ Step(A,inf ) : (inf (s1), inf (s2)) ∈ dom‖̇ =⇒ (inf (s1), inf (s2)) ∈ dom⊕̇ (ac-

cording to the definition) and supp({inf (s1) ‖̇ inf (s2), inf (s1) ⊕̇ inf (s2)}) = (pre(s1) ∪ pre(s2) ∪
post(s1) ∪ post(s2), (−s1 ∪ −s2) \ (pre(s1) ∪ pre(s2) ∪ post(s1) ∪ post(s2))) = supp({inf (s1) ‖̇
inf (s2)}) (it even holds inf (s1) ‖̇ inf (s2) = inf (s1) ⊕̇ inf (s2)).

(Det): s ∈ Step(A,inf ), x, y ∈ M : (inf (s), inf (x)) ∈ dom‖̇, (inf (s), inf (y)) ∈ dom‖̇ and pre(s)+
x = pre(s) + y =⇒ pre(s) ∩ x = pre(s) ∩ y = ∅ (from the preliminaries w.r.t. dom‖̇) =⇒ x = y

(directly from pre(s) + x = pre(s) + y), therefore especially post(s) + x = post(s) + y.

Proof of Lemma 6.3

It is enough to consider the cases where α is derived from β through one of the equivalent trans-
formation axioms (1)-(11) (Definition 4.3). Because for axioms preserving associated so-structures the
statement is trivial we will only consider the axioms (4) and (7). We will prove the statement by contra-
diction. Let AON = (B, V,R, Act, l) (with l|V = id) be the process represented by the run S .

First we consider axiom (4). It is enough to consider the case α = (α1;α3) ‖(α2; α4) and β =
(α1 ‖α2); (α3 ‖α4) (since in this case S1 ⊆ S2 because in S2 orderings (≺ and @) between events in α1

and α4 as well as α2 and α3 are added compared to S1). Without loss of generality, suppose that in the
run an ordering between an event in α1 and an event in α4 exists (≺ or @-ordering). That means there
are events t ∈ α1, and s ∈ α4, and a condition c ∈ B such that one of the following three possibilities
holds (according to Figure 6): (a) (t, c) ∈ R and (c, s) ∈ R or (b) (t, c) ∈ R and (c, s) ∈ Act or (c)
(c, t) ∈ Act and (c, s) ∈ R.
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Consider case (a): If l(c) = x ∈ P (no complement place), then we have x ∈ t• , x ∈ •s and
therefore Inf (α1) = (w1, a1), Inf (α4) = (w4, a4) with x ∈ w1 ∩ w4. This contradicts the fact that
α = (α1;α3) ‖(α2; α4) is a defined process term. If l(c) = x′ ∈ P ′ then c−1(x′) ∈ •t and c−1(x′) ∈ s•

causes the same contradiction.
Consider case (b): We have l(c) = x′ ∈ P ′ (l(c) has to be a complement place, because c is in Act-

relation to an event), then c−1(x′) ∈ •t and c−1(x′) ∈ −s and therefore Inf (α1) = (w1, a1), Inf (α4) =
(w4, a4) with c−1(x′) ∈ w1 and c−1(x′) ∈ w4∪a4. This contradicts the fact that α = (α1;α3) ‖(α2; α4)
is a defined process term. Case (c) causes a contradiction analogously as in case (b).

Now we check axiom (7). For this axiom we have to discuss the equivalence transformation in
both directions. Let first α = (α1 ‖ pre(α2)); (α2 ‖ post(α1)) and β = α1⊕α2 (α1 and α2 have to be
synchronous step terms). Suppose that in the run an @- ordering between an event in α2 and an event
in α1 exists. That means there are events s ∈ α1, and t ∈ α2, and a condition c ∈ B such that the
following relation holds: (c, t) ∈ Act and (c, s) ∈ R. We have l(c) = x′ ∈ P ′, then c−1(x′) ∈ −t
and c−1(x′) ∈ s• ⊆ post(alpha1) and therefore inf (α2) = (a2, b2, c2), inf (post(α1)) = (a1, b1, c1)
with c−1(x′) ∈ b2 ∪ c2 and c−1(x′) ∈ a1 = b1. This contradicts the fact that α2 ‖ post(α1) is a defined
process term.

Let on the other hand β = (α1 ‖ pre(α2)) ; (α2 ‖ post(α1)) and α = α1⊕α2. Suppose that in the
run an ≺-ordering between an event in α1 and an event in α2 exists. It means there are events t ∈ α1,
and s ∈ α2, and a condition c ∈ B such that one of the following relation holds: (a) (t, c) ∈ R and
(c, s) ∈ R or (b) (t, c) ∈ R and (c, s) ∈ Act.

Consider case (a): If l(c) = x ∈ P , then we have x ∈ t• , x ∈ •s and therefore inf (α1) =
(a1, b1, c1), inf (α2) = (a2, b2, c2) with x ∈ b1 ∩ a2. This contradicts the fact that α = α1⊕α2 is
a defined process term. If l(c) = x′ ∈ P ′ then c−1(x′) ∈ •t and c−1(x′) ∈ s• causes the same
contradiction.

Consider case (b): We have l(c) = x′ ∈ P ′, then c−1(x′) ∈ •t and c−1(x′) ∈ −s and therefore
inf (α1) = (a1, b1, c1), inf (α2) = (a2, b2, c2) with c−1(x′) ∈ a1 and c−1(x′) ∈ c2∪b2. This contradicts
the fact that α = α1⊕α2 is a defined process term.


