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Abstract. In the first part of this paper we extend the semantical fraonkyeroposed in [22] for
process and causality semantics of Petri nets by an adaliteom, firstly mentioned in the habil-
itation thesis [15]. The aim states that causality semard@duced from process nets should be
completew.r.t. step semantics of a Petri net in the sensedhahcausality structure which ien-
abledw.r.t. step semantics corresponds to some process net.

In the second part of this paper we examine several processies of different Petri net classes

w.r.t. this aim. While it is well known that it is satisfied blye process semantics of place/transition
Petri nets (p/t-nets), we show in particular that the presesnantics of p/t-nets with weighted in-

hibitor arcs (PTI-nets) proposed in [22] does not satisfy &im. We develop a modified process
semantics of PTI-nets fulfilling the aim of completeness als® all remaining axioms of the se-

mantical framework. Finally, we sketch results in literategoncerning the aim of completeness for
process definitions of various further Petri net classes.

The paper is a revised and extended version of the confepapes [18].
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1. Introduction

The study of concurrency as a phenomenon of system behdiractad much attention in recent years.
There is an increasing number of distributed systems, prattessor systems and communication net-
works, which are concurrent in their nature. An importargeggch field is the definition of non-
sequential semantics of concurrent system models to éescancurrency, synchronicity and causal
dependency among events in system executions. Eventsraigered to beoncurrentin a certain state

of the system if they can occur at the same time and in arpitnater in this state. They asynchronous

in a certain state if they only can occur at the same time. d&muential semantics can be given as the set
of executions of the system, where executions are repexsdayt appropriate causal structures relating
events. Therefore, such non-sequential semantics isallsol causal semantic3Vhether a given causal
structure is an execution of a given system or not can be @elditom the so calledtep semanticef

the system model.

For the definition of step semantics it is stated which astitan occur in a certain state of the system
at the same timeand how the system state is changed by their occurrendeifgehe step occurrence
rule). Such actions form step (of actions)Given an initial state of a system, from the step occurrence
rule sequences of steps which can occur in this state caly éascomputed. The set of all possible
suchstep sequenceagefines the step semantics of a concurrent system model.pAsstpience can be
interpreted as a possibt#bservationof the systems behavior, where the action occurrences irsteipe
are observed at the same time and the action occurrencdtenedi steps are observed in the order given
by the step sequence.

Causal semantics aim at representing arbitrary concyrramong action occurrences (or events).
Since step sequences can only describe a very restricteslafl@oncurrency, a causal structure usually
allows (generates) several different observations indh@ fof step sequences. In particular, the occur-
rence of events, which are concurrent in a causal structare be observed synchronously or also in
arbitrary order. Therefore, a given causal structure ogfyesents behavior of the system if it is consis-
tent with the step semantics in the sense that all of its géeiobservations belong to the step semantics
of the system. Here, only "full” observations are consideig. observations which contain all events of
a causal structure. Such causal structures are catigbled (w.r.t. step semantics)f causality is added
to an enabled causal structure, resulting in a so cabeensiorof the causal structure, the extension is
again enabled, since it generates fewer observations. thikee way round, if causality is removed from
an enabled causal structure, the resulting causal steuoted not be again enabled, since it generates
more observations. If removing causality always leads tsabkstructures which are not enabled, an en-
abled causal structure is calladnimally enabledMinimally enabled causal structures expraggimal
causal dependencies among events.

Figure 1 shows examples of enabled, minimally enabled aheémabled causal structures w.r.t. a
given step semantics. Part (a) shows a set of step sequeraethe action names andc. The same
action may occur several times at the same time. Thus a stepecBbrmally given as a multi-set over
the set of actionga,c}. Actions in one step are considered to be synchronous. @b#eat prefixes
are not considered in the shown set of step sequences. Sienestep semantics is prefix-closed, e.g.
for Petri nets, this set may be interpreted as a fragmentroésgiep semantics. In the example a causal

LIf step semantics of place/transition Petri nets (p/thistsonsidered, causal structures are given by labeleiapartiers
(LPOs) (also called pomsets [28] or partial words [11]). 20]; enabled LPOsw.r.t. the step semantics of p/t-nets were
defined.
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(a) step semantics: (2a)c, a(a+c), aac, aca

(b) enabled LPOs: (c) not enabled LPO:

ale [e)a 2l ef+eja

e ]

minimal enabled corresponding to  (2a)c generates caa

Figure 1. Causal structures which are enabled, minimalbkd and not enabled, given by labeled partial
orders.

structure is given by a partial order between the evenis, andes labeled by the action names
andc, a so called_PO (labeled partial order) LPOs may or may not benabledw.r.t. the given step
semantics. They model an "earlier than”-relation betweants, expressed by solid arcs. Unordered
events are considered to be concurrent. Note that in LP©®adtipossible to distinguish concurrent from
synchronous behavior. Therefore, synchronous transit@murrences in step sequences correspond to
concurrent transition occurrences in partial orders. Thlet LPO in part(b) corresponds to the step
sequenced2a)c. It is enabled, but not minimally enabled, since removing &nc betweer; andes
gives the left LPO in part (b), which is also enabled. Thi$ I&#O cannot be expressed through a step
sequence. It isninimally enablecand generates all shown step sequences in (a). The LPO i(cpést

not enabled because it generates the step sequeac®t belonging to the step semantics given in part

(a).

(a) step semantics: (a+b+c), (a+b)c, b(a+c), (a+c)b, a(b+c), (b+c)a, abc, bac,
bca, cba, acb

(b) enabled LSOs: (c) not enabled LSO:

b b

2[e,] 2[ e

es]e &

minimal enabled corresponding to a(b+c) generates cab

Figure 2. Causal structures which are enabled, minimaldbksd and not enabled, given by labeled stratified
order structures.

Figure 2 shows further examples of enabled, minimally ezthlaind not enabled causal structures
w.r.t. a given step semantics. Here, a causal structurges @iy a stratified order structure (so-structure)
over the set of event$ey, eo, e3} labeled by action names, b and ¢, a so calledLSO (labeled so-
structure) LSOs generalize LPOs. They model an "earlier than”-retafjsolid arcs) and a "not later
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than”-relation between events (dashed arcs). Two "not then"-ordered events can be observed in the
respective order or also synchronously, but not in the severder. Synchronicity can be expressed by
cyclic "not later than”-relations. The right LSO in part (lBpresents the step sequen¢g + c), where

e andeg can only occur synchronously, but not sequentially. It isk#ed, but not minimally enabled,
since removing the dashed arc fremto e; and the solid arc frona; to es gives the left LSO in part
(b), which is also enabled. This left LSO in part (b) cannoekpressed through a step sequence. Itis
minimally enabled.

Causal semantics consisting only of enabled causal stagctue callsound (w.r.t. step semantics)
On the other handall enabled causal structures represent valid behavior ofy$tera. Among the set
of all enabled causal structures, the minimally enabledalastructures give full information on causal
dependencies and concurrency. Causal semantics whichim®atll minimally enabled causal struc-
tures we calcomplete (w.r.t. step semantics}iven a complete causal semantics, each enabled causal
structure is extension of some minimally enabled causattire in the causal semantics. An impor-
tant aim for the definition of causal semantics of particédamalisms describing concurrent systems is
soundness and completeness w.r.t. step semantics.

(a) step semantics: (a+b+c), (a+b)c, b(a+c), (a+c)b, a(b+c), (b+c)a, abc, bac,
bca, cba, acb

(b) sound, (c) sound, weak complete,
complete not complete

Figure 3. Causal semantics, which are complete and not eeapl

Figure 3 shows examples of causal semantics which are ctsrguhel not complete w.r.t. a given
step semantics. Both causal semantics are representecebgfansinimally enabled LSOs. The smaller
set shown in (c) is not complete, since it does not includariemally enabled LSO on the left side.
But it satisfies a weaker form of completeness wewalthk completenesgre: The LSOs in the smaller
set still generatall step sequences shown in part (a). The bigger set shown ia ¢pjmplete, i.e. there
is no other enabled LSO which is not an extension of one ofltbe/s LSOs.

The completeness aim can be carried over to any non-segueathantics (of concurrent system
models) which define causal semantics. In this paper we @@nsoundness and completeness for pro-
cess semantics and causal semantics of Petri nets. Pstaneedbne of the most prominent formalisms
for understanding the concurrency phenomenon and for nmgdef real concurrent systems in many
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application areas [14]. The most important and well-knoanoept of non-sequential semantics of Petri
nets is process semantics [9, 10]. Process semantics & lgyvsets of process nets, which are Petri
nets representing transition occurrences by events fticars of process nets) with explicit pre-, post-
and side-conditions (places of process nets). These comglitepresent token occurrences (in places of
the original net) and other causal dependencies (for exangitext arcs).

Process semantics were first developed for place/trang@iri nets (p/t-nets) [9, 10]. For such nets,
a process net can be translated to a partial order betweawsitiva occurrences (events labeled by tran-
sition names) by removing all conditions and keeping théigdasrder (given by the flow relation of the
process net) for the events. Suclabeled partial order (LPOJs calledrun associated to the process
In a run, unordered events are considered to be concurranbudh the definition of runs, the process
semantics yields a causal semantics: A run describes \alisbt behavior of the p/t-net. It was shown in
[20] that an LPO is enabled if and only if it is a (partial ordektension of a run (see also [34, 35, 15]).
This implies, that each run is enabled and that the set ofinahsdes all minimally enabled LPOs, i.e.
process semantics from [9, 10] and induced causal semagities by runs are sound and complete.
Thus, the process net based causality semantics of p/sag$fies strong consistency properties w.r.t.
step semantics. Moreover, they have an intuitive graphegaiesentation, can be efficiently constructed
and only reflect causal dependencies among transition recme which are existent in the rfefhese
are the essential properties of p/t-net processes jusgdifiieir success as non-sequential semantics de-
scribing system behavior.

Since the basic developments of Petri nets, more and mdexatif Petri net classegor various
applications have been proposed, extending their modé&iatres by additional structural elements
which modify the step occurrence rule. It turned out to beeasty to define process semantics (and
related causality semantics in the form of runs), havinghelladvantages of p/t-net processes, for such
net classes. Especially the completeness aim is very hgmtbt@ already in the most simple case of
p/t-nets (see [20, 34, 35, 15], whether completeness holdp/t-net processes was an open question
for many years). For several of the process semantics pedpss far for certain Petri net classes,
completeness is still an open problem (for details see @ed).

An important p/t-net extension is that by inhibitor arcspwsed in several variants. As stated in
[27], "Petri nets with inhibitor arcs are intuitively the stodirect approach to increasing the modeling
power of Petri nets”. Moreover, inhibitor nets have beemtbappropriate in various application areas
[1, 8]. Accordingly, for these net classes various authoop@sed process definitions regarding different
interpretations of the occurrence rule of inhibitor nets[22] a-priori processes for PTI-nets (the most
general class of p/t-nets with inhibitor arcs) are definedhk case of inhibitor nets under the so-called
a-priori semantics [12], so calldthbeled) so-structures (LSOpresent the causal semantics (Figures
2, 3). Recently, we could show in [18] that the a-priori psg@lefinition of [22] is not complete by
identifying a minimally enabled LSO of a PTI-net not beingia of the net. We developed an alternative
complete process definition which fulfills also all other serical consistency properties stated in [22].

In order to provide a common scheme for the definition of pgec@mantics of Petri nets, in [22] (in
the context of defining respective semantics for inhibitetsha semantical framework aiming at a sys-
tematic presentation of process and causality semantiiffefent Petri net models was developed. Any
process semantics should fulfill the reasonable aims stgtéae framework. These aims are reduced to

2In contrast, in enabled LPOs transition occurrences mayrtbered which are not causally dependent in the net, since als
extensions of runs are enabled LPOs
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several properties that have to be checked in a particuéatipal setting. The most important of these
aims is the soundness of process semantics and causalignsesnw.r.t. step semantics as described
above. But this general framework does not regard the destaim of completeness. Instead another
aim of the framework from [22] requires a kind wieak completenessaying that each step sequence
in the step semantics should be generated by some procggsguee 3). We extend this framework by
adding the described completeness aim.

The paper is structured as follows. In Section 2 we recallsgraantical framework from [22] in
a new terminology, formally add the property of completsnasd illustrate the modified framework
by a small example concerning process semantics of p/t-ietSection 3 we consider the modified
framework for PTI-nets w.r.t. the a-priori semantics. Afiteroducing step semantics of such nets, we
introduce causal semantics in form of enabled LSOs. Thenhwee $hat the process semantics from
[22] is not complete and develop a new complete process samahis process semantics is then
shown to fulfil the whole semantical framework from SectionRE2nally, in Section 4 further Petri net
classes are discussed in the context of the presented seah&naimework focusing on the new property
of completeness.
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2. The Semantical Framework

In [22] a general framework for dealing with process sentari Petri nets was proposed (see Figure 4,
left part). It aims at a support for a systematic, consistientlopment of process and causality semantics
for various Petri net classes using a common scheme. Indbi®a we restate this framework proposing
a new terminology and formally add the aim of completenesteasribed in the introduction.

In Figure 4 the nodes represent different semantics of angiadri net model. The arrows indicate
functions that define and relate the different semanticgyTapresent the consistency requirements for
process semantics according to this framework. The atdifens mean the following:

e N € PN represents &etri net modebf a given Petri net clasBN together with an operational
step occurrence rule.

e £X is the set of executions generated by a Nee PA in form of enabled step sequencizs
accordance to its step occurrence ruléN) = £X assigns to a ney its set of executions.

o LAN defines (axiomatically) thprocess semantiaxf a netN ¢ PN given by process nets. Pro-
cess nets are labeled acyclic occurrence nets which haigmedsan operational step occurrence
rule. Labels of places and transitions of an occurrenceefet to places and transitions of.
a(N) = LAN assigns to a neV its set of process nets.

e LEX is the set oflabeled step sequencegenerated by process nebs € LAN in accordance
to their step occurrence rule. For an occurrence(hex(O) is the set ofabeled step sequences
generated by), which contain all events af. That meansCEX = (Jpc 4 A(O). In labeled
step sequences frof€ X, actions refer to event names of a process net, whereas laitattions
refer to transitions ofV € PA. Observe thah is generally defined for occurrence nets, not only
for process nets.

e RUN defines the set alunsassociated to process netsdmM A describing net behavior through
causality relations between events. For an occurrenc®nefO) is the labeled causal structure
associated t®. That meanRUN = {x(O) | O € LAN}. Observe thak is generally defined
for occurrence nets, not only for process nets.

e The mappingp abstracts from action names in a labeled step sequenceigimgda step sequence
over the set of its labels. Observe titats defined for arbitrary labeled step sequences, not only
for labeled step sequences4g X

e For a labeled causal structurg ¢(R) defines the set dabeled step sequencgenerated by?,
which contain all events ok. Observe thap is generally defined for labeled causal structures,
not only for runs.

e . defines a method to construct a labeled causal structure drsgt of labeled step sequences
having the same set of actions with the same labeling.

e 7 defines a method to construct a set of process nets from atedrsibp sequence. Note that
not only depends 06X but also onV € PN.
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NO2a NOea
w —? w —?
a a
£aAN £AN
Tt K 1
A / A
EX 0] “— ¢ RUN £X C o) € RUN
LEX LEX
o (e
ELCS
(a) Semantical framework (b) ...extended by the
of Kleijn/Koutny... completeness aim

Figure 4. Adding the completeness aim to the semanticaldvaork of [22].

The framework in [22] is condensed to five properties thathavbe checked in each particular
setting:

e The mappings in Figure 4 (a) returning sets (namely, A, ¢, 7) do not return the empty set.
e The mappings in Figure 4 (a) are total.
e The mappings in Figure 4 (a) commute (caltamhsistencyn [22]), i.e.

— Consistency of runs and processg®) € LAN : A\(O) = ¢(k(0O)) (calledfitting in [22]).
— SoundnessvR € RUN : ¢(e(R)) C EX.
— Weak completenes&X’ C |Jpcryn P(e(RR)).

Note that weak completeness implies foe EX thatS € pcryn ¢(€(R)). If £(O) = R, then
from the consistency of runs and processes we getf@a = e(R), i.e. S € Upeq(n) 2(A(O)).
The other way round, fof € ¢(\(O)) we getS € ¢(¢(R)) for R = k(O) from the consistency
of runs and processes. From soundness this implies€X'. Altogether, the above consistency
properties imply

U ¢(A0) =x =w(PN).

O€ea(N)

e Runs are reconstructible from step sequenté® € RUN : 1(e(R)) = R (calledrepresentation
in [22]).

e Construction of processes from step sequenefssc EX : 7(S) = {0 € LAN | S € ¢(A\(O))}
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On the one handsoundnesg&nsures that each run is consistent with the step semantibe sense
defined by o e. On the other handgachlabeled causal structure, which is consistent with the step
semantics in this sense, represents valid behavior of tlem dietri net model. But there is no property
in the framework of [22] requiring that such causal struesuare modeled by the process semantics. In
the following, we call such causal structumsabled

Definition 2.1. (Enabled labeled causal structure)

A labeled causal structur® is calledenabled (w.r.t. step semantid§)y(e(R)) C £X. The mapping
assigns to a set of step sequenSethie set of labeled causal structuded | ¢(e(R)) C S}. ELCS =
d(EX) defines the set of enabled labeled causal structures.

With this new terminology, soundness means that each rumeisled. Each labeled causal structure
which hasmore causality than a ruis enabled, too. Formally, we define the relation of "havingren
causality” among labeled causal structures within the &aork as follows:

Definition 2.2. (Extension of a labeled causal structure)

A labeled causal structur® hasmore causality thana labeled causal structu® if ¢(e(R)) C
#(e(R')). In this case,R is calledextension ofR’. If ¢(e(R)) C ¢(e(R')) then R is called strict
extension of’. For a labeled causal structul® ¢)( R) denotes the set of all extensionsf

It follows by definition that extensions of enabled causal&tires are enabled.

Definition 2.3. (Minimally enabled labeled causal structue)
An enabled labeled causal structuReis minimally enabledf it is not a (strict) extension of another
enabled labeled causal structure.

It holds by construction that a process semantics is souaddfonly if all extensions of runs are
enabled, i.e.

(YR € RUN : ¢(e(R)) CEX) <= (5(EX) =€LCS2 ] ¢(R)).
RERUN

But there still may be enabled causal structures which arexiensions of a run. This is the case if
and only if there is a minimally enabled causal structuresiwis not extension of a run, since extensions
of enabled causal structures are enabled. Completeness ntlegt there are no such minimally enabled
causal structures.

Definition 2.4. (Aim of completeness)
Process semantics is calledmplete (w.r.t. step semantiéB)(EX) = ELCS C Uperun V(R).

Note that completeness implies weak completeness, sintestep sequence of the net corresponds
to a step sequence generated by an enabled causal struCheeaims of completeness, weak com-
pleteness and soundness can be considered as properthes s&tRi/N. Together with soundness,
completeness can also be characterized through minimadlyled causal structures:

Theorem 2.1. Let RUN be sound. TheRUN is complete if and only if the set of minimally enabled
causal structures coincides with the set of minimal Rins.

3A run isminimalif it is not extension of another run.
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Thus, if a process semantics is sound and complete, therbitnaay valid causal behavior of the net,
there are runs and processes which express this behaviothénwords, minimal causal dependencies
in a net are reflected in the process semantics.

To integrate the aim of completeness into the semanticaldveork, we add new relations labeled by
0 andy and the new nod€LCS to Figure 4 (right part). The absence of the aim of completenme the
framework of [22] (Figure 4 left part) allows process defonits that do not necessarily represent minimal
causal behavior. According to [22] a process definition #tatals the operational step semantics ("pro-
cesses are step sequences”) is a valid process semantiagséet is sound and weakly complete (but
not complete). But the set of step sequences would be a @asgorocess semantics only if it reflects
minimal causal dependencies. Generally, process definitiot producing minimal causalities are less
expressive and do not give all possible system runs. In #nses the property of weak completeness,
only requiring that each step sequence is modeled in theegsatefinition, is not enough. Therefore in
our new version of the semantical framework (Figure 4 rigirt)gthe aim of completeness is introduced
solving this problem.

Remark 2.1. There is the following equivalent formalization of the cdetpness aim, which avoids the
notion of enabled causal structures:

Process semantics is called complete (w.r.t. step sensiftieach labeled causal structutewith
$(e(S)) € EX, which is minimal with this property, is a run.

This formulation is more compact and could be illustratedhi@ framework by an arc frol§ X
to RUN. On the other side, it does not conform with the historicaledtgpment of non-sequential
semantics of Petri nets. Namely, in the case of p/t-netsndiien of enabled LPOs as a description of
non-sequential behavior [28, 11, 20] was introduced inddgrtly from occurrence nets and process nets
[9, 10]. Enabled LPOs have the advantage that they providrisat semantics which is complete "by
construction”. The exact relation between enabled LPOsransl underlying process nets was unclear
for several years. Finally, it could be shown that an LPO isstension of a run if and only if it is
enabled [20]. This result corresponds to the notion of cetepless we chose. Altogether, the concepts
of runs and enabled LPOs as a description of non-sequewti\vior existed independently from each
other and we decided to follow this terminology in this papeiparticular, we did not want to disregard
the research on enabled causal structures.

We finish this section with a small example discussing pmsesnantics for p/t-nets.

Example 2.1. (p/t-nets)

For p/t-nets the completeness aim is fulfilled (as mentipnedure 5 shows an example of the semantics
of a p/t-net as occurring in the framework of Figure 4 righttpia this figure, we neglect "prefixes”, i.e.
always considering processes, runs, enabled causalstscnd (labeled) step sequences of maximal
length. The mappings, o andé define the semantidX, LAN and€LCS as shown. The mapping
assigns to each process nefid N a run inRUN by omitting the places in the process net and keeping
the order between transition occurrence given by the floaticed. It holdsx(O;) = R; fori = 1,2. The
mapping\ assigns labeled step sequences of th&€&et to a process net i AN through considering

a process net as a marked elementary net (initially the tondj which are minimal w.r.t. the flow
relation, are marked) and applying the step occurrenceouksuch nets. The mappinrgassigns the set
of all labeled step sequences (frafd X’) to an LPO inRUN, which add causality to the LPO (events
in one step are considered to be concurrent). The event niawgieate which labeled step sequences



G. Juhas, R. Lorenz, M. Mauser / Complete Process Semanftretri Nets 11

Ol O
VO OO

EX:
(at+b)c, a(b+c), b(a+c), abc, bac, acb, bca

LEX:

(e;tey)e, ey(e,1e;), €,6,€5, €818, €,656,,
(e,+e5)€q, €5(€4+€¢), €858, 856486, €5C6E,,

I(e,)=I(e,)=a, I(e,)=I(e5)=b, I(e;)=I(e5)=c

RUN: ELCS:

ab a es|b ab aba
ey egle e e
R

R, R, 1 R,

Figure 5. Different semantics of a p/t-net.

are generated by which process net resp. run. The mappegigns an LPO to a set of labeled step
sequence¥ (with set of eventd” and labeling functiord) in LEX by «(X) = (V,{(v,v) € V x V|
Vo=m..1 €X: (I <j: vemnv er)}l). According to Szpilrajn’s theorem [32] there
holds:(e(R1)) = Ry andu(e(R2)) = Rs. The mappingp simply abstracts from the individuality of
events in a labeled step sequenceCétY, for examplep((e; + e2)es) = (a + b)c. The mappingy
assigns to an LPO iRUN the set of its extensions. For examplg; is an extension of?, via the
additional arc(ey, eg). It is easy to observe thdt; and R» are the only two minimally enabled LPOs
of the shown p/t-net (as defined by. ThusELCS is given by the set of all extensions &f or Rs.
Finally, 7 is an algorithm for the construction of a set of process ets fa step sequence. Namely, for
a step sequence all process nets generating the given gteggnse are computed. It holds, for example,
m(a(b+c¢)) ={01} andn((a + b)c) = {O1,02}.
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3. PTl-nets

In this section we recall the formal definitionsT I-netsand their step semantics w.tthe a-priori step
occurrence rule We introduceenabled labeled causal structuresrresponding to these step semantics.
These are given by so calléabeled so-structures (LSQOsJhen we show thgbrocess nets of PTI-nets
w.r.t. the a-priori semantics according to [22] are not clatgpand develop a new complete process
semantics. Finally, we prove that this new process senwatso fulfils all other requirements of the
framework presented in the last section. Altogether, caostb#o [22], we redefine the mappingsand
7 and the set AN and consequentlRI/ N, and introduce new mappingsand and the new set
ELCS in order to extend the framework of [22] as mentioned in tis¢ $&ction for PTI-nets.

Given a sefX we will denote the set of all subsets Bfby 2% and the set of all multi-sets ovéf by
N¥ (N denotes the non-negative integers). A set can always besdiaw a multi-set: with m < 1 and
correspondingly a multi-set. < 1 can always be viewed as a set. We further denote the ideal#iian
over X byidy, the reflexive, transitive closure of a binary relatiBal C X x X by Rel*, the transitive
closure ofRel by Rel™ and the composition of two binary relatiod&!, Rel’ over X by Rel o Rel’.
Two elements, y € X are calledRel-independent ifz, y), (y, x) ¢ Rel, the set of allRel-independent
pairs of elements is denoted lypr.,; C X x X. A binary relationRel C X x X is a partial order if
Ve e X : (z,2) € Rel (Rel is irreflexive) andvz,y,z € X : (z,y), (y,2) € Rel = (z,2) € Rel
(Rel is transitive). IfRel is a partial order, we also say th@t’, Rel) is a partial order.

3.1. Basic Definitions

In this subsection we introduce PTI-nets together withrthepriori step semantics. That means, we
specify the sef X and the mapping of the presented semantical framework.

Inhibitor nets are an extension of classical place/traorsibets (p/t-nets) enhanced with inhibitor
arcs. In their simplest version inhibitor arcs test whetheface is empty in the current marking (zero-
testing) as an enabling condition for transitions. In theshgeneral version of PTI-nets, inhibitor arcs
test if a place containat mosta certain number of tokens given by weights of the inhibitasdinstead
of zero-testing).

A plt-netis a triple N = (P, T, W), whereP is a finite set of places is a finite set of transitions
andW : (P x T)U (T x P) — N is the weight function representing the flow relation. The-pr
and post-multi-set of a transition € 7' are the multi-sets of places given By(p) = W (p,t) and
t* (p) = W(t,p) forall p € P. This notation can be extendedloc N” by *U(p) = >, U(t)- *t(p)
andU* (p) = >,y U(t) - t* (p) for all p € P. Analogously we can define pre- and post-multi-sets of
multi-sets of places as multi-sets of transitions. We asstirat each transition has non-empty pre- and
post-multi-set. Eachn € N¥ is called amarkingof N and eachl/ € N7 is called a step ofV. U
is enabled to occuin m if and only if m > °U. In this case, its occurrence leads to the marking
m =m— *U+U°.

Definition 3.1. (PTI-net)

A markedPTI-netis a quadrupleNV I = (P, T, W, I,mg), whereUnd(NI) = (P, T, W) is a p/t-net (the
underlying neof NI), mg theinitial markingof N7 and/ : P x T'— N U {oo} is theinhibitor (weight)
function(we assumec > n for everyn € N). For a transitiort the negative contextt € (NU {oc})”
is given by ~t(p) = I(p,t) for all p € P. For a step of transitions, ~U € (NU {co})" is given by
“U(p) = min({ "t(p) | t € U}). A placep with ~¢(p) # oo is calledinhibitor placeof ¢.
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Note that/(p,t) = k € N implies thatt can only occur ifp does not contain more thantokens;
k = 0 coincides with zero-testing. Accordingl(p,t) = oo means that the occurrence pfs not
restricted through the presence of tokeng.iifhus a p/t-net can always be interpreted as a PTI-net with
I = ~o. In graphical illustrations, inhibitor arcs are drawn waihcles as arrowheads and annotated with
their weights (Figure 6). Inhibitor arcs with weighkt are completely omitted and the inhibitor weight
0 is not shown in diagrams. In the a-priori semantics, thangsif inhibitor restrictions precedes the
occurrence of (steps of) transitions.

Definition 3.2. (Step semanticss(PN) = £X)
A step of transitiond’ is (synchronously) enabled to occiir a markingm if and only if it is enabled
to occur in the underlying p/t-néind(/N 1) and in additionm < ~U. The occurrence d¥ leads to the
markingm’ = m — *U + U* . This is denoted byn —2 m’.

Afinite sequence of steps of transitions= U; ... U,, n € N, is called sstep (occurrence) sequence

enabled in a markingn and leading ton,,, denoted byn —— m,,, if there exists a sequence of markings

U U U7L
mi, ..., my such thatn — m; = ... =% m,,.

By w(NI) = EX n; we denote the set of all enabled step sequences of a marketePY1I.

3.2. Enabled Labeled Causal Structures

In this subsection we introduce enabled labeled causaitates for PTIl-nets. That means, we define
the set€ LCS and the mapping§, ¢, ¢, ¢ andi from the framework presented in the last section.

(a) PTl-net: (b) Enabled LSO:

Figure 6. A PTI-netVI and an enabled LSO w.rv I.

Figure 6 (a) shows a PTI-net, where the transitibasdv test a place to be empty and transition
tests a place to hold at most one token. As explained in [1222]1 "earlier than"-causality expressed
by partial orders is not enough to describe causal semarftiesI-nets w.r.t. the a-priori semantics. In
Figure 6 this phenomenon is depicted: In the a-priori seitsttie testing for absence of tokens (through
inhibitor arcs) precedes the execution of a transition.sFteannot occur later tham, because after the
occurrence of: the place connected withby an inhibitor arc (with weight O representing zero-tegfin
is marked. Consequently the occurrence isfprohibited by this inhibitor arc. Therefoteandu cannot
occur concurrently or sequentially in order— t. But they still can occur sequentially in order— u
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or even synchronously, because of the occurrence ruldritebefore execution”. This is exactly the
behavior described byt ™ot later thanu”. After firing ¢ and« we reach the marking in which every
non-bottom and non-top place of the Mgt contains one token. With the same arguments as above
the transitionsy andw can occur in this marking synchronously but not sequetiallany order. The
relationship between andw can consequently be expressed by a symmetric "not latef-tieéation
between the respective events - none may occur later thaottltbe

Such causal relationships between events can be descytmudalled so-structures. So-structures
are, loosely speaking, combinations of two binary relation a set of events, where one is a partial order
representing an “earlier than -relation and the otheresgnts a "not later than’-relation as described
above. Figure 6 (b) illustrates the above explained caesationships in form of an so-structure. The
solid arcs represent a (common) "earlier than”-relationoge events can only occur in the expressed or-
der but not synchronously or inversely. Dashed arcs ddpeéctriot later than”-relation explained above.
Partial orders can only model the "earlier than”-relatibat it is not possible to describe relationships
as in the example betweerand« as well as between andw, where synchronous occurrence is pos-
sible but concurrency is not existent. Thus, so-structdesribe finer causalities than partial orders.
Formally, so-structures are relational structures satigfcertain properties.

A relational structure(rel-structurg is a tripleS = (V, <, C), whereV is a finite set (okvent}, and
< CV xVandC CV x V are binary relations off. A rel-structureS’ = (V, <’, ') is said to be an
extension(or sequentialization) of another rel-struct@e= (V, <, C), writtenS C &', if < € <" and
Cccc.

Definition 3.3. (Stratified order structure)
Arel-structureS = (V, <, C) is calledstratified order structuréso-structurg if the following conditions
are satisfied for all,, v, w € V:

(CHu iZ u. CHuCvCwAu#w=— ul w.

(C2Ju <v=uLC . CHuCv<wVu<vLCw= u=<w.

In figures,< is graphically expressed by solid arcs anty dashed arcs. According to (C2) a dashed
arc is omitted if there is already a solid arc. Moreover, wat@mts which can be deduced by (C3) and
(C4). Itis shown in [12] thatV, <) is a partial order (thus a partial order can always be inétegras an
so-structure with = <). Therefore, so-structures are a generalization of pamtikers.

Similar to the notion of the transitive closure of a binarlatien the{>-closureS® of a rel-structure
S = (V,=,C) is defined byS® = (V, <g0,Cg0) = (V, (R ULC)* o <o (RUD)* (K ULC)*"\ idy).

A rel-structureS is called<>-acyclicif < is irreflexive. Thed-closureS¢ of a rel-structureS is an
so-structure if and only i§ is {-acyclic (for this and further results on teclosure see [12]).

For our purposes we will only considi&beled so-structuref. SO3. Events of an LSO represent
transition occurrences of a Petri net. Formally LSOs arstageturesS = (V, <, C) together with eset
of labelsT and alabeling function/ : V' — T'. The labeling functiori is lifted to a subseY” of V' in the
following way: [(Y) is the multi-set ovefl” given byl(Y)(¢) = |I=1(t) N Y| for everyt € T. We use
the notations defined for so-structures also for LSOs. Itiquéar:

Definition 3.4. (The mapping))
The mappingy) assigns to each LSQV, <, , 1) the set of all LSOV, <’, =/, 1) such thatV, <’, )
is an extension ofV, <, C).
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For the definition of enabled LSOs according to the preses#zdantical framework, we need to
define a mapping assigning to each LSO the set of labeled step sequences&gettieby this LSO and
a mappingp assigning a step sequence to a labeled step sequernabeldd step sequence over a finite
setV is a pair(o,l) whereo = U ... U, is a sequence of disjoint subséfs C V with | J;", U; =V
andl : V — T'is a labeling function from/ to a set of label§’. A labeled step sequencés, () can
be identified with special LSQS,.;). (o,l) is generated by an LSO if S, is an extension of.
A labeled step sequenc#; ... U,,!) corresponds to the step sequeidé,)...l(U, ), wherel(U;) is
defined as a multi-set.

Definition 3.5. (The mappingse and ¢)
Let (0,1) be alabeled step sequence oVewith o = U ... U,. DefineSy, 1y = (V, < (0,1); (o), 1) DY
(o) = Ui<j U; x Uj andtw) = ((U?:l U; x U;) \ idy) U <(0,)-

Foran LSQS = (V, <, C, 1), we denote(S) = {(0,1) | S, is an extension of }.

For a labeled step sequenge!) overV witho = U; ... U, we denotep((o,1)) = 1(U1) ... 1(Uy).

The step sequences ¢ite(S)) can be considered as observationsSofvhere events within a step
are observed at the same time (synchronously), and stepreccas are observed in the order given by
the step sequence.

An LSO S is consistent with the step semanti&” of a given PTI-net if each such observation of
S is a step occurrence sequence of the PTI-ngtAh Such LSOs we caknabled(w.r.t. the given
PTI-net).

Definition 3.6. (Enabled LSO)
An LSO S is enabled w.r.t. a marked PTI-n&tl if ¢(e(S)) € EXnr. ELCSNT = 0(EX NT) is the set
of all enabled LSOs.

With this definition one can easily check that the LSO in Fgg@ris enabled. It generates the step
sequencesu(v + w) and(t + u)(v + w), which are both enabled.

Finally, we define the mappingfor the reconstruction of an LSO from the set of labeled step s
guences generated by the LSO. The reconstruction worksghrimtersection of causal relations.

Definition 3.7. (The mapping:)
Let 3 be a set of labeled step sequences over a/sefith labeling functionl. We define.(3) =

V:Nopes <@ Nopes T

In [29, 22] it was shown (by a generalization of Szpilrajhisdrem to so-structures) thét(S)) = S
for arbitrary LSOSsS.

3.3. Process Semantics of [22] is not Complete

In this subsection we introduce the process semantics fbnefs (given by the sef AN and the map-
ping « of the semantical framework) as presented in [22]. Moreowerdefine the seRU N and the
mappingsx and \ relating process semantics to step semantics. We show( that as defined in this
subsection is not complete, i.e. does not fllff X') C |Jpcryny Y (R).

The problem of defining process nets for PTI-nets is that bsem@ce of tokens in a place — this is
tested by inhibitor arcs — cannot be directly representeghimccurrence net. This is solved by intro-
ducing local extra conditions and read arcs — also calledadot arcs — connected to these conditions.
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These extra conditions are introduced "on demand” to direepresent dependencies of events caused
by the presence of an inhibitor arc in the net. The conditemesartificial conditions without a reference
to inhibitor weights or places of the net. They only focus lo& tlependencies that result from inhibitor
tests. Thus, activator arcs represent local informatiganging the lack of tokens in a place.

The process definition of [22] is based on the usual notiorncofioence nets extended by activator
arcs. Occurrence nets are (labeled) acyclic nets with manehing places (conditions) whose underlying
causal relationship between events is described by LSOthelifollowing definition B represents the
finite set ofconditions E the finite set oevents R the flow relation andAct the set of activator arcs of
the occurrence net.

Definition 3.8. (Activator occurrence net)
A labeled activator occurrence néio-net) is a five-tupleAON = (B, E, R, Act, 1) satisfying:

e B andFE are finite disjoint sets,
e RC(BxFE)U(E x B)andAct C B x E,
e [°D], [b*| < 1foreveryb € B,

e the relational structur6(AON) = (E, <o, Cioes U E) = (E, (Ro R)|pxp U (Ro Act), (Act~t o
R) \ idg,l|g) is {-acyclic,

e [is alabeling forB U F.

Forr ¢ BUFandX C BorX C Fwedenote®z = {y | (y,z) € R}, 2* ={y | (z,y) € R},
*X =U,ex *randX® =J,.y2*. Forz € EandX C E we denoter * = {y | (y,z) € Act} and

The LSO generated b§ON is k(AON) = (E, <a0N, Caon, I|g) = S(AON)©.

The relations<;,. and;,,.. represent the local information about causal relatiorsshgiween events.
Figure 7 shows their construction rule(AON) captures all (not only local) causal relations between
the events (see also Figure 6). Note that Definition 3.8 ima@wative extension of standard occurrence
nets by read arcs.

[(FO-U O] [-O—-L
iy g g
O—0 O—0 OO

Figure 7. Generation of the ordeks,. and,. in ao-nets.

There are the notions of weak and strong configurations @&esdbrao-nets. We formally introduce
only weak configurations and slices, since strong configuratand slices are only used when referring
to [22]. A set of eventd) C E is called aveak configuratiorof AON, if e € D and f(<joc U Troe) e
implies f € D. A weak sliceof AON is a maximal (w.r.t. set inclusion) set of conditiofisC B which
are Ro (=<0 UC0)* o R-independentWSL(AON) denotes the set of all weak slices. Thel@N son
of all conditions without incoming flow arcs (the minimal abtions w.r.t. R) and the seMA X on Of
all conditions without outgoing flow arcs (the maximal cdraiis w.r.t. R) are weak slices. For a weak
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configurationC, the marking reached from the initial marking after the $iians occurrences fro@

is represented by the weak sliSe: = (C* U MINaon) \ *C. In[22] it is shown that the set of weak
slices S of AON equals the set of weak slicég- for weak configurationg’. In Figure 8, the weak

configurations of the ao-néd;, are{e;}, {e1,e2}, {e1,e3} and{ey, e2, e3}. Each defines a weak slice.
The set{es } is not a weak configuration, sineg(<jec U Cioc) Tea.

An activator occurrence net generates a set of labeled stperces describing its dynamics using
the standard a-priori occurrence rule of elementary netis meiad arcs [22], where such labeled step
sequences are required to contain all events of the ocaerneet. Formally, this set is defined by the
mappingA. The set of slices is the union of the sets of weak and stroogss|

Definition 3.9. (The mapping\)

Let AON = (B, E, R, Act, ) be anao-net. A sliceS enablesa stepof <;gc-independent eventsC F

if *7 U7+ C S. Theoccurrenceof 7 yields the sliceS” = (S'\ *7) Ur®. We write S — S’
A(AON) is the set of all labeled finite sequences of stepsipf-independent events . .. 7, 1),

such that there is a sequence of weak slifgs .., .S, with Sy = MINaon, S, = MAXson and

T T2 T
So s TS

Note that a slice5' is a weak slice if and only if there is a finite sequence of stéps;” -independent
eventsr; ..., With S = S; = ... % MAXA0ON.

Now we are prepared to define processes of PTI-nets as inTB2]mentioned artificial conditions in
such processes are labeled by the special symbdhey are introduced in situations, when a transition
t € T tests a place in the pre- or post-multi-set of another ttiansiv € T for absence of tokens, i.e.
whenI(p,t) # oo and *w(p) + w*® (p) # 0 for somep € P. Such situations are abbreviateddy—o ¢.

If w —o t holds, then any two occurrencgsof w ande of ¢ in a process are adjacent to a common
A-condition representing a causal dependency afde. That means there existsialabeled condition

b such that(b,e) € Act andb € (*f U f*). This is abbreviated by —e e (see requirement (Cond6) in
Definition 3.10). The axiomatic process definition in [22a&sfollows:

Definition 3.10. (Activator process) N
An activator procesga-process) ofV I is anao-netAON = (B W B, E, R, Act, () satisfying:

(Condl) I(B) C P,I(E) C T andl(B) = {A}.

(Cond2) B={b|3ec E: (be) € Act}.

(Cond3) mg = [((MINsoN N B).

(Cond4) Foralle € E, *l(e) = I(*e N B) andi(e)* = i(e* N B).

(Conds) For allb € B, there are unique, h € E such that®b Ub* = {g}, (b,h) € Act andi(g) —o
l(h).

(Cond6) Foralle, f € E,if I(f) — I(e) then there is exactly onec B such thatf —e e throughc.
(Cond7) Foralle € E andall strong slices, if *eU{b € B | (b,e) € Act} C Sthenl(SNB) < ~l(e).

The set of a-processes dfI is denoted byC AN n; = a(NI). ForAON € a(NI) the LSOx(AON)
is called arun (associated t&\ON). RUN n denotes the set of all runs.
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The requirements (Condl), (Cond3), (Cond4) in DefinitidtDZepresent common features of pro-
cesses well-known from p/t-nets. They ensure that a-psesesonstitute a conservative generalization
of common p/t-net processes. That means, the set of pracesEmd(/N ) coincides with the set of
processes resulting from(/N 1) by omitting the A -labeled conditions (omitting the -conditions from
an a-procesaON leads to the so called underlying proc€sSON of AON). If N1 has no inhibitor arcs
(thusNI = Und(N1)), a-processes coincide with common processes. Thus, D@&iiBi10 can also be
used to define processes of p/t-nets. The properties (Camd2)Cond5) together with the rule (Cond6)
— describing whenk -conditions have to be inserted — constitute the structtitbeoi -conditions. The
requirement (Cond7) expresses that in the strong slicédsOdf the inhibitor constraints of the PTI-net
have to be properly reflected. That means, for events enabledertain slice oAON the respective
transitions are also enabled in the respective markingarPthl-net/V /.

NI:
LX: LEX:
(a+b+c), (a+b)c, a(b+c), (erteyte,), (€11€))e,, €1(€,1€,), (€117€5)€,, €,6,€5, €164€,,
(a+c)b, abc, ach, (e5+€5)€4, €5€484r €6€5E
(b+C)a, bca, Cba, es(e7+eg), €58,
b(a+c), bac (I(e))=a, I(e,)=b, I(e3)=c)

R,

R, R;

Figure 8. Different semantics of PTI-nets.

Example 3.1. Figure 8 shows an example of the semantics of a PTI-net asrougin the framework
of Figure 4 (b); in this figure, we neglect "prefixes”, i.e. alyg considering processes, runs, enabled
causal structures and (labeled) step sequences of maenuhl

The mappingv defines the step semanti€&’. Transitiona can fire within a step if and only if there
are0 or 1 tokens in the place connectedd®ia an inhibitor arc. That means, it is not possible to éiié
¢ has occurred before, btithas not occurred before. In other words, the only step seggenhich are
not valid arecab andc(a + b).
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The mappingx defines the process semanti€gl " according to Definition 3.10. In Figure 8 only
processes with underlying minimal runs are shown. Nambéy,processes wheteconsumes a token
produced byc are omitted. Sincé — a andc — a, each of the process nets AN has two.i-
conditions. There are four possible combinations to intoedthese twol -conditions, since both can
belong to the pre-set or the post-set of theesp. c-labeled event. Only the possibility shown in the
occurrence ne, is not a process net, since it contradicts property (Condfig strong configuration
C = {ei12} yields a sliceSx which enableg;( but satisfie3(S¢c N B) £ ~a.

The mappings assigns to each process netdd A\ a run inRUN through omitting the places in
the process net and keeping the causal relations betweendhts (transition occurrences) according to
Figure 7. It holds<(O;) = R; fori =1,2,3,4.

The mapping\ assigns labeled step sequences of th€&et to a process net if AN according to
Definition 3.9. The mapping assigns the set of all labeled step sequencésif’ to an LSO inRUN,
which add causality to the LSO (events in one step are camgide be synchronous). The event names
indicate which labeled step sequences are generated bi witicess resp. run.

The mapping assigns an LSO to a set of labeled step sequencesth set of eventd” and labeling
function() as shown in Definition 3.7. There holdg(R;)) = R; fori = 1,2, 3.

The mappingy simply abstracts from the individuality of events in a lazbktep sequence K€ X,
for exampleg((e1 + e2)es) = (a + b)c.

Finally, 7 is an algorithm for the construction of a set of process mets fa step sequence. Namely,
for a step sequence all process nets generating the giversstgience are computed. It holds, for
examplesr((a+b+¢)) = {01}, 7((b + ¢)a) = {0} andr(bac) = {Os}.

In [22], it is proven that the a-process definition given irfiDidon 3.10 fulfills all properties of the
semantical framework of Figure 4, left part. That means tioegss semantics for PTI-nets given in [22]
is in particular sound and weakly complete. But it is not ctetgas shown in the next theorem.

Theorem 3.1. The process semantics defined in Definition 3.10 is not camaple

Proof:
Figure 9 gives an example of a PTI-n€t and an LSQS satisfying:

(i) Sisenabled w.r.tNI (¢(e(S)) C £X): This is an easy computation using the step semaétics
of NI shown in Figure 8 (remember that ordyb andc(a + b) are not in€ X).

(i) Sis not an extension of a ruB(¢Z |Jzcryn ¥ (1R)): This can easily be verified by checking all
minimal runs of NI (shown in Figure 8). The reason that the enabled LSI® not extension of
a run follows from the considerations in Example 3.1 on thestwiction ofA-conditions. There
are two problems, each being sufficient to produce a comwmtiadi First, according to (Cond6),
it is necessary to introduce two-conditions connecting to thie anda-labeled events resp. the
c- anda-labeled events. Therefore, theanda-labeled event resp. the anda-labeled event
labeled event cannot be concurrent in some process neth@&ebe only possibility to establish a
"not later than”-relation betweehmandc is through ai-condition connecting th& andc-labeled
event. Such a condition cannot be introduced according ¢ad6), since /o c.

Altogether,S € ELCS \ Upcrun Y(R). O
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Figure 9. Example contradicting the completeness of thege®definition from [22].

3.4. Complete Process Semantics

In this subsection we propose a new definition of a-prioricpes nets for PTI-nets and show that the
resulting process semantics is complete. Formally, wegdhdme definition oty and thusC. AN in the
semantical framework (while this also changes the/Zet\" all other notations remain the same). The
new definition is based on a maodification of the propertiesn{®, (Cond6) and (Cond7) of Definition
3.10. Briefly, following to the arguments in the proof of Them 3.1, (Cond5’) allows for additional
A-conditions and according to (Cond6’) adding .ofconditions is more flexible. (Cond7’) covers a
technical difficulty after modifying (Cond5) and (Cond®6).

Definition 3.11. (Complete activator process) N
A complete activator procegsa-proces$)of N1 is anao-netAON = (Bw B, E, R, Act, 1) satisfying:

(Cond1) I(B) C P,I(E) C T andl(B) = {A}.

(Cond2) B={b|3ec E: (b,e) € Act}.

(Cond3) my = I[(MINson N B).

(Cond4) Foralle € E, ®i(e) =1(®en B) andi(e)® =1(e®* N B).

(Cond5’) For all b € B, there are uniqug,h € E such that®b Ub* = {g}, (b,h) € Act and
l(g) — I(h) orb* = {g}, (b,h) € Act and additionally®/(h) Ni(g)® N ~z # (0 for somez € T

(Cond6”) Foralle, f € E,if f —e e then there is exactly onee B such thatf —e e throughc.

(Cond7’) Foralle € E andS € WSL(AON), if *cU {b € B | (b,e) € Act} C S thenl(SN B) <
~l(e).

The set of ca-processes dfI is denoted by’ (NT). For AON € o/(NT) the generated so-structure

x(AON) is called a run (associated fdON).

Example 3.2. Figure 10 illustrates the complete process semantics ¢pyea-processes of the marked
p/t-net shown in Figure 8. Theo-netO; is a ca-process (given hy) but no a-process (given hy) as
explained in the context of Figure 8.

“Note that in [22] the ternaa-processs used for processes of a restricted class of PTI-nets, Iggufienets withcomplemented
inhibitor places.
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The A-condition establishing,5 —e e14 can be introduced according to (Cond5’), sirfden ¢® N
“a # 0.

Observe that the slicd/I Naon enables the step;s. Since{eis} is a strong but not weak con-
figuration, the occurrence eaf;; leads to the strong but not weak slisg, ;. Si,;; enablese;3, but
[(Ste 5y N B) does not obey the inhibitor restrictions fo(i.e. does not enablg). That means)s gen-
erates a labeled step sequence (hamgly;3) which defines a step sequence gignamelyac) which
is not enabled, but this sequence cannot be completed oySuch situation is possible, because an
inhibitor restriction of a transition occurrence (the even in the example) need not longer be directly
reflected by relating.-conditions to such a transition occurrence.

Nevertheless, property (Cond?’) is satisfied, since thexeansidered only weak slices (in (Cond7)
strong slices are considered). Starting in the respectaing of a weak slice, all events 8fON not
occurred yet can still be executed. With (Cond7’), we onlydelsuch behavior by a process mgdN,
in which every event oAON actually occurs, i.e. the labeled step sequenge;; is not regarded.

The LSOKj is the run associated 105. Note thatKk’; equalsS from Figure 9. This illustrates that
the process semantics given by Definition 3.11 is complatéhoconsidered example PTI-ntl.

Note that the requirements (Condl), (Cond3), (Cond4) ofriitefin 3.10 are preserved in Definition
3.11, and thus also ca-processes constitute a consergaiaralization of common p/t-net processes.
Omitting the A -conditions from a ca-procegsON leads to the so called underlying proc&ssl(AON)
of AON, which is a process dfnd(NI).

LAN: ELCS:

Figure 10. Completeness of the ca-process definition.

The main ideas of the modifications (in Definition 3.11 in cast to Definition 3.10) can be deduced
from the proof of Theorem 3.1. The first observation in thisgbiis that, according to (Cond6), each-
relation must be reflected by acondition. Since through this requirement possibly to@mcausality
is added, it is weakened in (Cond6’) to the possibility ofdaliucing a (unique).-condition. The second
observation was that there are situations additional toa@5} in which the introduction of -conditions
should be possible. Considering the example shown in Figutieis is the case, if a transition, testing
some place via an inhibitor arc, occurs concurrently toditeoons consuming and producing tokens
in this place. Then these transition occurrences must eaytbe ordered via a -condition. Such
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A-conditions are intended to ensure that tokens in the cereiidplace are consumed not later than
produced in order to restrict the maximal number of tokentb@place according to the inhibitor weight.
This is formally reflected in (Cond5").

These modifications can lead to situations, where a straog shables an event, but the marking
corresponding to this slice does not obey the corresporidhibitor restrictions (violating (Cond7), see
Example 3.2). This problem is resolved by considering ondakvslices in (Cond7’) instead of strong
slices. Since each weak slice is also a strong slice, (Cpme¥akens (Cond7). As already mentioned,
from weak slices always the slicel AXson can be reached. That means, starting in the respective
marking of a weak slice, all events ADON not occurred yet can still be executed. This is not the case fo
strong slices. With (Cond7’), we only model such behavioalprocess neAON, in which every event
of AON actually occurs. Altogether, @-process may generate a labeled step sequence which does not
define an enabled step sequencegjidut in such sequences never all events of the process can occ
(Figure 10). According to the definition of such sequences do not belongdé.X'.

Altogether (Cond6’) does not any more require certaiconditions, (Cond5’) allows.-conditions
additional to (Cond5), and (Cond7’) is only formulated foeak slices (instead of strong slices). Thus
(Cond5"), (Cond6”) and (Cond7’) are weaker requiremengntfCond5), (Cond6) and (Cond7) Conse-
quently every a-process is a ca-process,a(@&' 1) C o/ (NI).

We show the main result of the paper, stating that actuaflydkprocess definition in general fulfills
the aim of completeness. As a preparation we need the ndtjorefixes of LSOs and a specific relation
between prefixes of an LSO and prefixes of labeled step sequences(#). Prefixes are defined by
subsets of nodes which are downward closed w.r.tCthelation:

Definition 3.12. (Prefix)

LetS = (V,=<,C,l) bean LSO and let” C V be a set of events such thdte V', u C v/ = u e V.
ThenV’ defines aprefix S’ w.rt. Sby &' = (V. < |yixy, T |vixvr,lvr). A prefix 8’ enabling
uwe V\V'is aprefix w.r.tS satisfying(v < u = v € V’).

Lemma 3.1. Let V' define a prefixS’ (enablingu € V) w.r.t. S. Then there existéry ... 7,,1) € €(S)
such thatl”’ = Ule 7; (andu € 75,41) for somek.

Proof:
T1...Tocanbeconstructed by = {v € V' |V e V' v Lo}, ={veV'\n |VW eV '\ 7 :
v A v} and so on. In general, we defing C V' as the set of nodefy € V' \ (Uj;ll ;) | Yo' €
V/\ (U] ) : v/ 4 v} which are minimal w.r.t. the restriction ef onto the node sét” \ (U’ ),
until V/\ (U}, 7;) = 0 for somek.

Then we continue with the same procedurelon V! = V \ (U;‘?:l 7;), 1.e. Ty = {v € V'\

(Ui ) | W' € V\ (UL, 7) : v/ 4 v} and so on. By constructioti’ = J;_, 7 andu € 71, O

Theorem 3.2. For every enabled LS& = (E,<,,[) of a PTI-net NI there exists a ca-process
AON € o/(NT) such thatS is an extension of the rua(AON).

Proof:

We construct a ca-procegdON, which satisfies the statement. First we defd@N. Then we prove
that AON fulfills all formulated requirements. For illustration dfe proof, we provide an example in
Figure 11 and Figure 12.
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"Construction of AON”: Since the inhibitor relatiod of NI restricts the behaviour of the under-
lying p/t-netUnd(N1I), it a fortiori holds thatS is enabled w.r.tUnd(NT). Note here that in a p/t-net
transitions that can be executed as one step can also beexkénarbitrary order. Furthermore, every
C \ <-relation between two events in the so-structSrallows the occurrence of these events in one
step. Therefore, the enabledness w.r.t. the p/tthet(/NI) is preserved omitting the -relation. That
means, the LPGogs = (F, <, 1) underlyingS is enabled w.r.tUnd(/NI). Since the enabledness notion
for so-structures applied to LPOs coincides with the usnabkedness notion for LPOs, we can use the
usual notion here.

Now we can apply the LPO-analogon to this theorem proved O [3incelpog is enabled w.r.t.
Und(NT), there exists a proce$8AON = (B, E, R’,1’) of Und(NT) fulfilling that Ipog sequentializes
the runx(UAON) (for the definition of the p/t-net proce$8AON and the mapping we can use Defi-
nition 3.10 as well as the usual process definition for pit-ive[20], because they coincide for p/t-nets).
Note thatUAON is not unique here, but this causes no troubles.

The basic idea is now to construct@rnet AON from UAON by adding allx -conditions totUAON
which can be added according to the properties (Cond 5)’ @whd 6)' and do not produce causal
dependencies contradicti®y We claim that thisio-net AON = (B W B,E, R, Act, l) is the desired
ca-process.

Formally, first for each pair of event§ e € E with f < e we insert ai-condition intoUAON
generating this causality according to Figure 7, if thislisveed according to (Cond 5)’ and (Cond 6)’
in Definition 3.11. Analogously, for each pair of everfts: € E with f C e we insert ai-condition
to UAON generating this causality according to Figure 7, if thisligvéed according to (Cond 5)" and
(Cond 6)’ in Definition 3.11. Note that the order of addingconditions is irrelevant, since adding a
possiblei-condition does not prohibit another possiblecondition in this construction. To verify this,
(Cond 6)" has to be regarded (all other requirements forrapldiconditions are independent from other
A-conditions): The only possibility to get twa-conditions generating —e ¢ is f < e ande C f, but
this is not possible in an so-structure. Next we prove 1@ fulfills the desired properties.

"Obvious properties of AON”: Most requirements formulated in the statement of the thearan
easily be observed. By construction it is clear that

e AON is anao-net: We have to verify thaf(AON) is {-acyclic, which is obvious, sincé is an
so-structure and consequentig yonye C < is irreflexive.

e S extends<(AON).
e AON fulfills the conditions (Cond 1) - (Cond 4), (Cond 5)’ and (Gd8)’ of Definition 3.11.

"(Cond 7) for AON™: It only remains to show thakON meets condition (Cond 7)’ of Definition
3.11: Givene € E andS € WSL(AON) with *e U {b € B | (b,e) € Act} C S we have to show
I(SN B) < ~l(e). Inthe following we denotd/ AR(C') = I(S¢c N B) for a configuration”' of AON.
According to [22] (see section 3) there exists a weak corditum C' of AON with S = S¢. Therefore,
if we show thatl(e) is enabled (w.r.t. the inhibitor relation) in the PTI-n¥t after the occurrence of
the transitions corresponding to events’inthe theorem is proven. The proof for this proceeds in steps
and in each step we consider new sets of evehits € {1, 2,3}, and prove intermediate properties. We
start by showing that a set of events denoted’hy. fulfills MAR(C),.) < ~l(e). Then this set will
be stepwise modified using the séfsand we will show that the above property is preserved for the
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modified sets. The last modified set of events will equgiroving (Cond 7)’, i.e. MAR(C) < ~l(e).
More precisely, we will proceed as follows:

e We defineC,,. and show that(e) is enabled in the PTI-ne€V I after the occurrence of the transi-
tions corresponding to events @), i.e. MAR(Cp,.) < ~l(e).

e We defineC, Cy andC3 and showC' = ((Cpre \ C1) \ C2) U Cs.

e We show that’y,. \ C; fulfills MAR(C),. \ C1) < ~l(e).

e We show thatC,. \ C1) \ Cs fulfills MAR((Cpre \ C1) \ C2) < ~l(e).

e We show that' = ((Cpy. \ C1) \ C2) U C3 fulfills MAR(((Cpre \ C1) \ C2) UC3) < ~l(e).

"Inequality MAR(C)ye) < ~l(e)”: We denoteC's = {c € C | e T ¢} (these events cannot belong
to an enabling prefix of in S), Cy = C'\ C5 (these events will belong 10,,,.) andC,,. = Cy U {c €
E|3d € Co,cC d}U{e € E| e < e}. Cpe defines an enabling prefix efin S which contains
a maximal number of events from the gétand is minimal with this property. By Lemma 3.1 there
iS (11 ...7n,1) € €(S) such thatC,. = Ule 7, ande € 7,1 for somek. BecauseS is enabled,
I(11)...l(m,) represents an enabled synchronous step sequer¢é. arhis implies that(e) is enabled
in the marking given by the slic8c,,., i.e. MAR(Cpre) < ~l(e).

"Equality C' = ((Cpre \ C1) \ C2) U C3™: There are the following events ifi,,. \ C: c € C; =
{c € Cpre \Co | ¢ A e} andc € Cy = {c € Cpe \ Cp | ¢ < e}, i.e. we consider the partition
Cpre = CowC1 Wy, LetC equal the set of events\ Cp,.., consequently’ = ((Cpre \C1)\ C2)UCs.
First we consider the most complicated case of the threeummen modifications of’,,... This first
inequality is proven by means of several preliminary result

"Inequality MAR(Cp,. \ C1) < ~l(e)”: Recalling the definition o€,,. = Co U{c € E | 3¢ €
Co,cC d}U{e € E| € < e}, anevent € Cy N Cpe is obviously neither in the first sét, nor in the
third set{e’ € FE | ¢’ < e} of the respective union. Thus it is in the second ¢ae E | 3¢ € Cy,c C
¢’} meaning that there exists € Cy with ¢ ¢ (and¢’ £ e because of (C4) in Definition 3.3). We first
show that if we omit all events’ € {¢ € C, | 3¢’ € C, : ¢’ C ¢} additionally toC; from C),.. we get
again a prefix enabling. We defineC\y,,.e; = C1 U{cd € Cy | 3¢" € C1,¢" C ¢} and prove:

" Cpre \ Ceancer defines a prefix ofS enabling e”: We show first that,,. \ Ceancer defines a prefix
of S,i.e. ford € E,c € Cpre \ Ceancel, ¢ T c there holds? € Cpye \ Ceancer. SinceCy,. defines a
prefix, we know that! € C),.. Assume now that' € C_,,.;, then according to the definition 6f,;,;
there are two possibilities:

(i) ¢ € Cy: In this case eithee € Cy, which implies thaic € {¢ € Cy | 3" € C," C '} C
Ceancels O ¢ € Cpre \ Cp, Which implies thatt € C7 C Ceaneer, SiNCec £ e. This contradicts
& ¢ Ccancel-

(i) ¢ € Copsuchthatic” € C; : ¢’ = d: Inthiscased” C ¢ C ¢, ie. ¢’ © corcd = ¢ (by
(C3)). The latter implies € C; C Cegneer cOntradictinge ¢ Cianeer- The case’” C ¢ leads to (i)
(considering”” instead of), i.e. a contradiction.

This givesc’ & Clancer and thusCy,.e \ Cance defines a prefix of.
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Furthermore’),,.. \ Ceancer €vEN defines a prefix enablirgi.e. {¢' € E | ¢/ < e} C Cpre \ Ceancel-
This can be shown as follows: First, by definitioh,. includes{¢’ € E | ¢/ < e}. Second, inn order
to ShowCirypeer N {€/ € E | € < e} = ), we have to verifyC; N {¢’ € E | ¢ < e} = 0 and
{deCy|AeC,l'Cdin{e eE|e <e} =0. Thestatement i N{e' € E|e <e} =0
directly follows from the definition o’ = {c € Cp,. \ Co | ¢ £ e}. Assuming thafd’ € Cy | 3¢ €
Ci,d'Cdin{e e Ele <e} #0,thereisanevent < eandanevent” € Cp,c” C . Then by
(C4) we have’” < e, which contradicts the definition @f; = {c € Cp,. \ Cy | ¢ £ e}.

"Preliminary inequality MAR(Cpre \ Ceancer) < “l(e)”: Of courseCy,¢ \ Ceancer @lso defines
a prefix of the prefix defined bg),... Consequently, without loss of generality, by Lemma 3.1 we ¢
assume tha€y,c \ Ceaneer = Ué.:l 7; for somei < k (the above requirements for; ... 7,,[) allow
choosing suchr; ...7,,1)) andi(e) is enabled after the occurrencei¢f,)...i(r;) (as well as after
I(m1)...l(m) as explained above). As fd¥,,., this implies thai(e) is enabled in the marking given by
the sliceSc,, \C.pneerr 146 MAR(Cpre \ Ceancer) < ~l(e).

"Cpre \ C1 is a weak configuration”: Since we are interested ifi,,. \ C;, we first verify that
Cpre \ C1 is aweak configuration cAON (it need not define a prefix &). SinceC,,. defines a prefix
of S andS extendsx(AON), it is a weak configuration dAON. Assuming thaC),. \ C; is no weak
configuration, there i8' € C1, ¢ € Cy,. \ C1, such that the relatiod <;,. c or ¢’ Ty, ¢ is generated by
some condition iMON (according to Figure 7). We distinguish two possibiliti€stherc € C, then by
definition of weak configurations, we havee C (C is a weak configuration). This is a contradiction,
because® N C; = (. Orc ¢ C, thenc € Cy, i.e. ¢ < e. By (C4) we have’ < e contradicting the
definition of C;.

“Inhibitor constraint MAR(C,,.\ C1) < ~l(e)”: Now we check whether the inhibitor constraints
of I(e) are respected in the marking resulting from the executidghe@gvents irC,,. \ C;. Assume the
opposite: Lep € P with MAR(Cpre \ C1)(p) > ~l(e)(p). We know thalMAR (Cpye)(p) < ~l(e)(p)
and MAR(Cpre \ Ceancer)(p) < ~l(e)(p). There must be a transitidifc) corresponding to an event
¢ € C}, that consumes tokens from sinceMAR(Cy,. \ C1)(p) > ~l(e)(p) = MAR(Cpre)(p).
Similarly, there must be a transitidiic) corresponding to an eveat € C.q,c; \ C1, that produces
tokens inp, SiNCEMAR(Cpye \ Ceancer)(p) < ~l(e)(p) < MAR(Cpre \ C1)(p). Thus the set€? =
{c e Cy | W(l(e),p) < W(p,l(c))} andC¥t = {c € Crancer \ C1 | W(l(c),p) > W(p,l(c))} are not
empty. Now we distinguish two cases:

(i) 3¢ € C?,3c € CL : ¢  c: Inthis case, by construction there exist a&condition inAON with a
read arc ta’ and a flow arc ta, because this.-condition matches the requirements of (Cond 5)’
in Definition 3.11 and reflects thé C ¢ relation. Since: € Cegpeer \ C1 € Cy € C andd & C
(¢ € CyandCy N C = ), this is a contradiction to the definition of weak configioas.

(i) V¢ € CV.Ve € C¥ : ¢ 7 ¢ In this case we claim thak = (Cpre \ Ceancer) U CE U {d €
Chrancel | 3¢ € CE ¢ T ¢} is an enabling prefix of w.r.t. S with MAR(X)(p) > ~l(e)(p) —
what is a contradiction to the enabledness of

Clearly{¢’ € E | ¢ < e} C X becaus&,.\ Ccancer € X. Moreover,X is C-downward closed:
For an event/ C ¢, ¢ € C? (which is inC-relation to an event € C?) there are two cases.

Eitherd’ € Cruncer, thend € {¢ € Cegpeer | Ic € CF ¢ C ¢} C X;

Orcd ¢ Crancer, thend € Cpre \ Ceancer € X, since by definition oC? and Cgp,cer, We have
c € Cy C Cpre andCy, is a prefix ofS (which impliesc’ € Cp,..).
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Thus, X is an enabling prefix of in S. SinceX N C? = () we finally computeMAR(X)(p) >
MAR((X\C1)U(Ceancet \C1))(p) = MAR(Cpre \C1)(p) > ~l(e)(p). Here, the first--relation
in this inequation follows, sinc& does not contain any events 6f, and therefore by erasing
C: from X no events consuming tokens jnare erased; similarly, sinc& already contains all
CP-events, by adding’......; \ C1 no events producing tokens jnare added.

Altogether the assumption has lead to a contradiction amslitholdsMAR(C),. \ C1) < ~I(e). Now
we prove the remaining two inequalities:

"Inequality MAR((Cpre \ C1) \ C2) < ~l(e)": We again first show thdiC),. \ C1) \ C2 = C is
a weak configuration. Sina€,,. \ C; is a weak configuration, if we assume tida is not, then there
isc € Cy,c € Cy such that the relatio <, cor ¢ ;. cis generated by some condition XON
(according to Figure 7). Sineec C, by definition of weak configurations, we haec C (C'is a weak
configuration). This is a contradiction, becadse) Co, = ().

Letc € Cs. Sincec ¢ C there cannot exist a-condition with a read arc te and an ingoing flow
arc frome (otherwise thisk -condition is in the weak slic& according to the preliminaries of (Cond 7)’
of Definition 3.11 and thereforeis in the weak configuration’). This impliesi(c) /o I(e) (otherwise
a A-condition as described above is present by constructidahsequently, the transition&), ¢ € C,
do not produce or consume tokens in places witle) < oo and consequently can be omitted from the
inequationMAR (Cy,. \ C1) < ~i(e) preserving the<-relation: MAR((Cpre \ C1) \ C2) < “l(e).

"Inequality MAR(((Cpre \C1)\C2)UC3) < ~lI(e)": By construction(Cpre \ C1)\C2)UC3 = C
is a weak configuration.

Letc € C3. Thene C ¢ but sincec € C ande ¢ C there is noA-condition having a read arc to
e and a flow arc ta:. Thusi(c) /o I(e), otherwise such a-condition exists by construction GfON.
Consequently, as in the case@f, C's has no relevance for the marking of places with{e) < oo and
can therefore be added in the inequation as follaWI&R (((Cpre \ C1) \ C2) U C3) < ~l(e). 0

Figure 11. Left: Example PTI-néY I (place names are neglected). Right: Example LSénhabled w.r.tN 1.

Example 3.3. The following example illustrates the proof of Theorem 3Qonsidering the neiv I
on the left of Figure 11 and the enabled LS3shown on the right of Figure 11, the ca-procés3aN
constructed according to this proof is depicted in Figure 12

In the unique maximal process NEAON of the underlying p/t-netind(NI), all transition occur-
rences are concurrent. For each of the "earlier than”- amd fater than”-relations between events in
S, a A-condition is introduced, if this is possible according @(d 5)’ and (Cond 6)’. For example, a
A-condition establishes; "earlier than”eg. This A-condition can be added since— f. Note that it
is not possible to add a-condition producing:; "not later than’es since the transitiong andc are not
related via inhibitor arcs.
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Figure 12. Ca-processON constructed according to the proof of Theorem 3.2 from th@ ISSshown in Figure
11 (labels of the conditions are neglected).

To illustrate the main part of the proof, the verification ohdition (Cond 7)’, we consider the weak
slice S given by the grey conditions and the eveptlabeled bye. The respective weak configuration
C = {eg, e3,e6} comprises the grey events. For this example, the sets ofsegensidered in the proof
areCy = {62,63}, = {61}, Cy = {64}, Cpm =CoCLw(Cy = {61,62,63,64}, C3 = {66} and
Ccancel - {617 63}-

3.5. The Whole Framework

The last theorem showed that the newly developed processngiesfor PTI-nets defined in Definition
3.11is complete. In the following we briefly explain that thtber properties of the presented semantical
framework are still fulfilled by the new process definitioedd-igure 4). Therefore, this definition is an
adequate generalization of Definition 3.10.

3.5.1. Runs Are Reconstructible from Step Sequences

Each run is the intersection of all observations it generdte. . o e reconstructs a run. This relation
holds because of the generalization of Szpilrajn’s thedeso-structures as described in Subsection 3.2
(note that in this context nothing is changed with respe{22¢).

3.5.2. Weak Completeness

Any executiono € £X = w(NI) of a PTI-netN1 is generated from a ca-process, i.e. there exists a
ca-process\ON € o/ (NI) with o € ¢(A(AON)) (w(NI) € Uponear(v1) P(A(AON))). This holds

for ca-processes, because the aim of completeness is aligataon of the weak completeness property
as already mentioned.

3.5.3. Consistency of Runs and Processes

Consistency of runs and processes requires that procaesdesres generate the same labeled step se-
quences, i.e. iIAON € o/(NT), thene(k(AON)) = A(AON) (that means the rules for constructing
causal relationships between events from processes ag $iéigure 7 are correct). This relation holds
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for ca-processes, because in Proposition 5.19 of {R2]JAON)) = A(AON) was shown for arbitrary
ao-netsAON. Note here that the construction rules of the involved magpl, ~ ande have not changed
with respect to [22], only the process definition constitgtthe starting point of this relation is changed.

3.5.4. Soundness

According to Proposition 5.19 of [22] (Subsection 3.5.D),show¢(e(k(AON))) C w(NI) for all

AON € o/(NI), it suffices to prove that(A(AON)) C w(NI) for AON € o/(NI). Recalling
the definition ofA(AON) in Definition 3.9, this relation is clear by (Cond3), (Condd)d (Cond7’) of
Definition 3.11: (Cond3) and (Cond4) ensure that ¢(\(AON)) is enabled irUnd(N1T) and (Cond7’)
guarantees that respects the inhibitor constraints &fI. This shows that every run @¥ I is enabled
w.r.t. NI

3.5.5. Construction of Processes from Step Sequences

There is no obvious way to generalize the constructive defimiof = from [22] (a-processes) to ca-
processes, because especially the new requirement (QarfdBefinition 3.11 is problematic: Now it
is no more mandatory but optional to introduceconditions between certain transitions (the transition
candidates can be identified with (Cond5’)) and one has takchédhether (Cond7’) holds ((Cond?7)
holds by construction). There is the following construetprocess definition that is based directly on
the axiomatic definition. Given an enabled step sequeneel; ... U,, of N1, a ca-processeSON =
(BW B, E, R, Act,1) of NI can be generated from such thatr € ¢(A(AON)), as follows:

() Construct a usual p/t-net proceBAAON = (B, E, R,l) of Und(NI) (based on an occurrence
net) starting frome = U;...U, (e.g. as shown in Definition 6.2 in [22]), such that =
EiY...WE, X=(E;...E,,l)isalabeled step sequence generated APN andi(E;) = U;
fori e {1,...,n},i.e.0 € (A(UAON)). Initialize B = () and Act = 0.

(1) Initialize two relations<{,on={(e, f) e EX E |e € E;, f € E;,i < jAl(e) — I(f)} and
Coaon=1(e, /) EExE|ecE,f€E;i <jN(I(f)—olle)V(FzeT: " le)ni(f)* N
~z # 0))} (depending ofJAON) specifying possibler-labeled conditions in accordance with
(Cond5") and (Condé6’) of Definition 3.11 and (not contradicting the causal relations given by
).

(II) Choose arbitrary subsetg*C <oy aNdC*CC(Aon-

(IV) Introduce A-labeled conditions corresponding-tg* and—* to AON as follows: For(e, f) e<*
create exactly one conditidne B, setl(b) = A and add two arcge,b) € R and(b, f) € Act.
For (e, f) eC* create exactly one conditidne B, setl(b) = A and add two arcéb,e) € Act
and (b, f) € R. Delete the considered subsets respectivelyc* from the relations<{;,ox
respectively— {5 on: <{raon PECOMES< {5 oy \ <* and{i, o becomes={, on \ T

(V) If <5aon=Caon= ¥ the construction is finished antiON is returned, else (Cond7’) of Defi-
nition 3.11 is checked foAON. If AON fulfils (Cond7’) the construction is finished aiddN is
returned, else the next step is performed.
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(V1) Choose arbitrary subsets*C<{;,on and C*CC {550, Such that<*# () or =*# 0. Then
proceed with step (1V).

Note that this algorithm is non-deterministic. First thexstouction ofUAON in step (I) UAON
is not unique) as well as the choice Bf = (F; ... E,,[) are non-deterministic. Second choosing
subsets of possible-labeled conditions in step (1) and step (V1) is non-detaristic. Nevertheless the
algorithm always terminates in finite time, since step (firimates [22], and the sets(;,onC E X E
andC{;,onC F x E specifying possiblet-labeled conditions are finite. It remains to be shown that
the computed nedON is actually a ca-process, independently from the choicdseimon-deterministic
algorithm. There are two termination criteria in step (V):

(1) <$aon=Ctaon= 0.
(2) AON fulfils (Cond7").

For both, we have to prove that the resulting A€IN = (B ¥ B,E, R, Act, l) is a ca-process aV 1.
Lemma 3.2. AON € o/(NI) = LAN for the netAON constructed with the above algorithm.

Proof:

First we have to show thalON is anao-net. The only defining property afo-nets, which is not
obvious, is thatS(AON) = (FE, <o, Cioe, U|E) is $-acyclic. This follows by construction from
(e<ioef = ec B, f € Ej i< j)and eCioef = e € By, f € By, i < j).

SinceUAON is a process net éfnd(NI), by construction (Cond1), (Cond2), (Cond3) and (Cond4)
in Definition 3.11 are satisfied bYON (compare Definition 6.2 in [22]). The definition ef;, o and
C{iaon Quarantees (Conds’) in Definition 3.11.

To prove the uniqueness in (Cond6’) ("exactly one”), asstiméthere are twa.-labeled conditions
e, d € B such thatf —e e throughc andc’. The only possibility for this is that is introduced cor-
responding td f,e) €<{;,on and¢ is introduced corresponding {e, f) €C{j,on- In this case the
definition of <{ o @NAC {5 4o IMplies thate € E; and f € E; for j < i Ad < j. A contradiction.

Concerning the termination criterion (2), it is obviousttida) V fulfills (Cond7’) in Definition 3.11.
ForAON = (B W B,E,R, Act, 1) resulting from the algorithm terminating with criterion)(property
(Cond7’) can be proven as shown in the proof of Propositidnr9[22]: Givene € E, S € WSL(AON),
such that*e U {b € B | (b,e) € Act} C S, we have to show(S N B) < ~I(e). Lete € E;.

By constructionC' = Fy U ... U E;_ is a weak configuration defining a weak sliSg. Sinceo is
enabled inVI, we getl(Sc N B) < ~l(e) (use (Cond4) in Definition 3.11). Thus it is enough to show
(SN B)(p) < I(Scn B)(p) forall p € P fulfilling ~i(e)(p) < co. If we assume the opposite, then
there ish € S\ Sc andp € P fulfilling ~I(e)(p) < oo andi(b) = p. We distinguish the following cases
each leading to a contradiction:

(i) *b=0b* = : This impliesb € Sc.

(i) 3f € Ej, j <i:b* ={f}: Thisimpliesi(f) — I(e). That meangf,e) €<{;,on- Therefore,
there exists: with *c = {f} such thatf —e e throughe. It follows c € S,i.e.b ¢ S.

(i) 3f € Ej,j >i: *b={f}: Thisimpliesi(f) — i(e), i.e. (e, f) €C{ison- Therefore, there
existsc with ¢®* = {f} such thatf —e e throughc. It follows c € S,i.e.b ¢ S.
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(iv) (b=0)A(3fe€Ej,j>i:b* ={f}): Thisimpliesb € Sc.
(V) 3fe€eE;,j<i: *b={f})A(b* =0): Thisimpliesb € Sc.

(Vi) 3f € Ej, g€ Ep, j<i<k: *b={f}ANb* ={g}: Thisimpliesb € Sc.
0

Denote the set of ca-processes constructible with the iedénon-deterministic) algorithm from
an enabled step sequenge= U, ... U, of NI by 7/(c). The processes in’(c) are exactly the ca-
processes oN I havingo (provided with respective labels) as an execution. Thidlfirgnows the aim
of the construction of processes from step sequences.

Lemma 3.3. 7/(c) = {AON € LAN | 0 € $(A\(AON))}.

Proof:
Leto = U ...U,. We first prover’(c) C {AON € LAN | o € ¢(A(AON))}. We already showed
7'(0) C LAN = o/ (NI). It remains to show € ¢(A(AON)) for AON € #/(o). For this it is enough
to show that (in the notation given in step (1)) the labelepsequenc®& = (F; ... E,,[) is generated
by AON, i.e. ¥ € A(AON). This is guaranteed by € A(UAON) and the definition of<{},y and
CUAON- B

Second we prove’(c) O {AON € LAN | o € $(A\(AON))}. LetAON = (BWB, E, R, Act,l) €
LAN fulfil o € ¢(A(AON)) and let¥X = (E;...E,,l) be a labeled step sequence generated by
AON andi(E;) = U, fori € {1,...,n}, E = E1l§...l1 E,,. SinceX is also generated by the
procesd/nd(AON) underlyingAON, there is a non-deterministic choice in step (1) leading flON =
Und(AON) and the labeled step sequerie All -labeled conditions3 in AON are in accordance
with (Cond5’) and (Cond6’) of Definition 3.11 arid. ThusB corresponds to two subsets* C<{},ox
andC*CC {5, oy i the sense that choosing non-deterministicatly and = in step (lll), the set of
A-labeled conditions introduced in step (IV) coincides with Therefore, there is a non-deterministic
choice in step (lll) leading t&AON in step (IV). SinceAON fulfills (Cond7’), AON is returned as the
constructed ca-process in step (V), XON € 7/(o). O

With the presented construction algorithm the requiresharierrelated with the mapping in the
semantical framework of Figure 4 are fulfilled for ca-prasssin a similar manner as for a-processes or
processes of p/t-nets. In these two casésalso defined by a non-deterministic algorithm constnggti
process nets [22]. Although it is not explicitly mentionedhe semantical framework, the performance
of such a construction algorithm is important for the pieatapplicability of a process definition. In our
case, the number of possibleconditions specified by {;,,n @andC{;,ox IS @t most quadratic in the
number of eventg’, which means that the number of repetitions of the steps<I¥)l) of the algorithm
is polynomial. As shown in [22], step (I) of the algorithm sum linear time. Thus, only checking
(Cond7’) in step (V) may be not efficient, since there existegponential number of (weak) slices in
the number of events. But current research results on assitojpic summarized in [24] show that there
exists an algorithm polynomial in time solving this probleim [24] we present a polynomial algorithm
(based on flow theory) which tests whether an LSO is enabled &.given PTI-net. If» denotes the
number of nodes of the considered LSO, this algorithm rurg3(im®) time. According to the following
lemma, we can apply this algorithm in step (V).
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Lemma 3.4. AON fulfills (Cond7’) if and only if the LSOx(AON) is enabled.

Proof:

Let x(AON) be enabled, lef be a weak slice and letbe a node with*e U {b € B | (b,e) € Act} C

S. Let C be the weak configuration with = S¢, i.e let S represent the marking reached after the

occurrence of all transitions correspondingtoThere is a labeled step sequeinte- (E; ... E,,l) €

€(k(AON)) such thalC' = FEy U...U Ej ande € Ej, for somek. Sincex(AON) is enabled, the step

sequencé(Ey)...l(E,) is an enabled step occurrence sequence. Since the markicieckafter the

occurrence of the prefiX £1) ... [(£},) equald (S N B) and enable§(Ey 1), we getl (SN B) < ~l(e).
Leti(S N B) < ~l(e) for all weak slicesS and all eventg with *e U {b € B | (b,e) € Act} C S

and let¥ = (E;... E,, 1) € ¢(k(AON)). Assume that, for some > 0, the prefix((E,) ... l[(Ey) is

an enabled step occurrence sequencek(fer 0 the prefix is empty). The séty, = F1 U ... U FEy is

a weak configuration oAON. For anye € Ej; there holds®c U {b € B | (b,e) € Act} C Sc,.

Sincel(Sc, N B) < ~l(e) for all suche, alsol(E) ...l(Ex+1) is an enabled step occurrence sequence

(this argumentation also holds for the empty prefix and th&inveak configuration\// N (AON)). We

deduce thak(AON) is enabled. 0

Altogether, we can check (Cond7’) fefON through checking enabledness (ffAON) in poly-
nomial time. Therefore, the whole presented algorithm ha®lgnomial time consumption. More
precisely, each deterministic execution of the non-det@stic algorithm returns in polynomial time a
ca-process ofVI having a given step sequencesas an execution. Moreover, each such ca-process
of NT is constructed by some deterministic execution of the é@lgor There may be exponentially
many possible deterministic executions of the non-detastic algorithm. This is also the case for the
non-deterministic construction algorithms for a-proessand processes of p/t-nets. But one determin-
istic execution in these cases constructs a process irr limea [22]. The linear time bound is reached
through certain structural properties in the process digfivs. For example in the non-deterministic al-
gorithm constructing a-processes, (Cond7) of Definitid©3s fulfilled by construction, since all in an
appropriate sense possiblelabeled conditions are required by (Cond6) of Definitioh(3. Since the
ca-process definition is more complex than the a-processitiadi, it seems very difficult to exploit sim-
ilar structural properties to get an algorithm construgtia-processes in linear time. This is a topic of
further research. Nevertheless it is possible to apply dinstcuction algorithm for a-processes presented
in [22] to construct certain ca-processes, since everyagss Iis a ca-process.
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4. Other Net Classes

In the last part of this paper we shortly discuss severalratkisting process definitions for Petri nets
in the context of the semantical framework of Figure 4, wheee considered list of Petri net classes
and process definitions is not exhaustive. In particular @ee$ on the new completeness requirement,
which turns out to be fulfilled by many of the existing acknedded process semantics. This is a further
justification that the developed framework including thenpteteness aim is reasonable.

Note that there are two different step semantics of Pets, mete based on concurrent steps and one
based on synchronous steps. For example, step semantitsetspis defined through concurrent steps
and step semantics of PTI-nets is defined through synchsosteps in this paper. As already mentioned,
the term of enabled LPOs can be equivalently defined throagbwrent steps and through synchronous
steps. As discussed in [17], enabled LSOs can be equivaldefined through synchronous steps or
concurrent steps of synchronous steps. Altogether, thastral framework does not depend on the
considered step semantics.

4.1. Plt-nets

As already mentioned in the introduction, it is well knowratthhe classical Goltz-Reisig processes
[9, 10] for p/t-nets fulfill all requirements of the semaiafidramework in Figure 4. All aims of the
framework except for the completeness aim can easily bersiisee e.g. [20, 34, 35]). Whether the
Goltz-Reisig process definition is complete or not was umkmfor several years. In [20], completeness
was finally shown for Goltz-Reisig processes. As mentiomefB4], the proof in [20] is quite compli-
cated. In [34, 35] an alternative proof based on a versioh@htarriage theorem from graph theory is
presented. In [15] a third variant of the proof is shown. Td8ff contained variant is based on the so
called token flow property.

4.2. Elementary Nets with Extensions

Concerning process definitions of elementary nets, as de@irge in [30], and extensions of elementary
nets by context arcs [26, 12], the completeness aim is thé coagplicated aim of the framework. The
other aims of the semantical framework are either straogiveird observations or proven in the respective
papers [30, 26, 12]. Our considerations about algebraig ing5, 6, 15, 16] prove the completeness
of processes of elementary nets [5, 15], of elementary nétsimhibitor arcs, read arcs and mixed
context each equipped with the so called a-posteriori stéosaff, 15], as well as of elementary nets
with inhibitor arcs equipped with the a-priori semantic$,[16]. Namely, in these papers we deduce
causal semantics from algebraic semantics. By constrydiids causal semantics is exactly the set of
enabled causal structures of a given net. As a main resulshaw that the set of minimally enabled
causal structures equals the set of minimal runs as defin@ 26, 12].

4.3. Plt-nets with Capacities

An extension of p/t-nets are capacities restricting theimaknumber of tokens in places. Basically
there are two different interpretations of capacities sinealled weak and the so called strong capacities
as discussed in [7, 15]. In [7] it is shown, that given a p/twigh capacities with an initial marking,
both for the strong and weak enabling rule there exists afwamation into a marked p/t-net with the
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same number of transitions, such that the step sequenclks pét with capacities and the transformed
net without capacities are equal. For strong capacitiestradmsformation is analogous to the mentioned
concept of complementation, while for weak capacities thasformation is more complicated. The
processes and runs of the transformed net provide then tisalcgemantics of the p/t-net with capacities.
Since the transformed net has equal step semantics asgeabriet, the relationships between enabled
LPOs and runs of a p/t-net without capacities hold also fonefs with capacities. That means p/t-nets
with capacities fulfill the presented semantical framewoadtuding the completeness aim. Note here
that the weak capacity semantics can be generalized bydewimg] LSOs instead of LPOs. For this
semantics no process definition exists.

4.4. P/t-nets with Inhibitor Arcs

For an inhibitor net class, which is a special case of thes@&®TI-nets, the ca-process definition of this
paper provides a sound and complete process semantics ftButloere are more simple process defi-
nitions for such sub-classes: In [21, 22] the technique afgementation, used to define processes of
elementary nets with inhibitor arcs in [12], is extended éfirte processes of bounded p/t-nets with un-
weighted inhibitor arcs (a-priori semantics) [21] as wslpaocesses of complemented PTI-nets (a-priori
semantics), where every place already has a unique complgataee [22]. All aims of the semantical
framework of [22] are shown in the respective papers. Siheegeneral idea of generating causali-
ties is the same as in the elementary net case, we assumbdbatgrocess definitions also fulfill the
completeness aim.

While the technique of complementation is very useful femetntary nets and bounded nets, it
cannot be applied to unbounded p/t-nets with inhibitor .afeigstly we consider unweighted inhibitor
arcs. Here we have a process definition in [2, 3, 4] for thesigumri case and in [21] for the a-priori
case. The a-priori process definition in [21] is based on Bedta-conditions, which lead to non-standard
occurrence nets with branching conditions. For this dédimiall aims of the semantical framework of
[22] are proven. Completeness, postulating that the psesesan model minimal causalities, seems to
be also valid, since the z-conditions directly model theethelgncies arising from inhibitor arcs. More
precisely, a z-conditions is an explicit "record” that aqads empty. An inhibitor test is then modeled
by a read arc to the respective event from the most recentdeddhe respective inhibitor place being
empty. This technique benefits from the fact that, if an iitbitplace is empty, modeled by a z-condition,
then some transition producing tokens in the inhibitor plaas to occur earlier than some transition
consuming tokens in the place. Since this cannot directlyrdresferred from zero-testing to weighted
inhibitor arcs, the technique of z-conditions is not usedHAdI-nets. Therefore in [22] the a-process
semantics (of Definition 3.10) was introduced for this cad& have already copiously discussed that
these processes fulfill the presented semantical framesa#pt for the completeness aim. It is shown
in [22] that for a restricted net class of the so called PTBisnincluding standard unweighted inhibitor
nets, the a-processes definition meets the completenesdrai®, 3, 4] process and causal semantics
are introduced for so called contextual p/t-nets, extangiittnets by read arcs and unweighted inhibitor
arcs, w.r.t. the a-posteriori case. The definition of preesds based on so called enriched occurrence
nets, which contain read arcs and two types of inhibitor producing different causal relations between
events. The different inhibitor arcs distinguish the cageen an event, testing a condition via an inhibitor
arc, occurs after an event consuming this condition, froenddise, when an event, testing a condition
via an inhibitor arc, occurs before an event producing thisd@ion. The relation of process semantics,
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causal semantics and step semantics is studied in [3, 4]reTihis shown that the presented process
semantics is sound and weakly complete and how processaretsecconstructed from step sequences.
Also completeness seems to be valid: From the nature of gmezl inhibitor arcs it is necessary to
introduce either an after- or an before-relation betweesntvas described above, i.e. the causalities
introduced in process nets cannot be omitted.

4 5. P/t-nets with Read Arcs

A concept, which is very similar to inhibitor arcs are readsatWhile inhibitor arcs test for the absence
of tokens, read arcs test for the presence of tokens in plddest of the approaches sketched in the
last paragraph for inhibitor nets are also developed foraorlme carried over to read arcs. In particular
one also distinguishes between a-priori and a-posteriodgss semantics. For safe nets with read arcs,
in [36] an additional intermediate process semantics isida@ned. This semantics regards time inter-
vals. The causal relationships are based on special causaluses, so called spc-structures. For these
structures there is not yet introduced a notion of enabkexiaad therefore completeness is of course not
examined yet (but some requirements of the presented siealdrdmework are checked in [36]).

4.6. High-level Petri Nets

Lastly, it is interesting to discuss the presented fram&vior high level Petri nets. There are several
process semantics for various variants of high-level neth @s basic high-level nets [31], coloured
Petri nets [23, 13] or M-nets [19]. Mostly the high-level pess semantics is analogous to the process
semantics given by the expansion of the high-level net tonaldéwel p/t-net. In this case, the results
for processes of p/t-nets carry over to high-level nets, the high-level process definition fulfills the
presented semantical framework. But as mentioned in [1]9028 has to pay attention here, that in the
case the colour (or element) set of the high-level net isitefithe p/t-net expansion is infinite. In [33] a
process definition of the special high-level net class oéciapets is given.
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5. Conclusion

In this paper we have developed a general semantical frarkethat supports the definition of process
semantics and respective causal semantics for arbitrdryreeclasses. The framework is based on the
semantical framework from [22] additionally requiring thmocess semantics should be complete w.r.t.
step semantics: Each causal structure which is consigietép semantics — such causal structures we
call enabled — should be generated from a process net. Sintleef description of causal net behavior
of PTI-nets under the a-priori semantics labeled so-sirastare applied, the notion of enabled so-
structures has been introduced. We were able to show thatdlcess definition for PTI-nets from [22]

is not complete w.r.t. step semantics and to identify a sirat generalization of this process definition
which is complete (while still satisfying all the other réguments of the framework of [22]).

Possible further applications of the results of this paperoa the one hand the usage of the seman-
tical framework on further Petri net classes in order to khedsting process semantics and to evolve
new process semantics. Concerning existing process sesahPetri net classes, the considerations in
the last section indicate that most aims of [22] are checkethe bigger part of the process definitions.
Moreover, a lot of existing process semantics seem to gahsf aim of completeness and at least for
some process definitions there are formal proofs. On the btred, the ca-processes of this paper con-
stitute a process definition for PTI-nets under the a-pgemantics expressing minimal causalities and
can thus be useful e.g. as a first step to model checking #igwibased on unfoldings of PTI-nets.
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