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Abstract. In the first part of this paper we extend the semantical framework proposed in [22] for
process and causality semantics of Petri nets by an additional aim, firstly mentioned in the habil-
itation thesis [15]. The aim states that causality semantics deduced from process nets should be
completew.r.t. step semantics of a Petri net in the sense thateachcausality structure which isen-
abledw.r.t. step semantics corresponds to some process net.

In the second part of this paper we examine several process semantics of different Petri net classes
w.r.t. this aim. While it is well known that it is satisfied by the process semantics of place/transition
Petri nets (p/t-nets), we show in particular that the process semantics of p/t-nets with weighted in-
hibitor arcs (PTI-nets) proposed in [22] does not satisfy the aim. We develop a modified process
semantics of PTI-nets fulfilling the aim of completeness andalso all remaining axioms of the se-
mantical framework. Finally, we sketch results in literature concerning the aim of completeness for
process definitions of various further Petri net classes.

The paper is a revised and extended version of the conferencepaper [18].
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1. Introduction

The study of concurrency as a phenomenon of system behavior attracted much attention in recent years.
There is an increasing number of distributed systems, multiprocessor systems and communication net-
works, which are concurrent in their nature. An important research field is the definition of non-
sequential semantics of concurrent system models to describe concurrency, synchronicity and causal
dependency among events in system executions. Events are considered to beconcurrentin a certain state
of the system if they can occur at the same time and in arbitrary order in this state. They aresynchronous
in a certain state if they only can occur at the same time. Non-sequential semantics can be given as the set
of executions of the system, where executions are represented by appropriate causal structures relating
events. Therefore, such non-sequential semantics is also calledcausal semantics. Whether a given causal
structure is an execution of a given system or not can be deduced from the so calledstep semanticsof
the system model.

For the definition of step semantics it is stated which actions can occur in a certain state of the system
at the same time, and how the system state is changed by their occurrence (yielding the step occurrence
rule). Such actions form astep (of actions). Given an initial state of a system, from the step occurrence
rule sequences of steps which can occur in this state can easily be computed. The set of all possible
suchstep sequencesdefines the step semantics of a concurrent system model. A step sequence can be
interpreted as a possibleobservationof the systems behavior, where the action occurrences in onestep
are observed at the same time and the action occurrences in different steps are observed in the order given
by the step sequence.

Causal semantics aim at representing arbitrary concurrency among action occurrences (or events).
Since step sequences can only describe a very restricted class of concurrency, a causal structure usually
allows (generates) several different observations in the form of step sequences. In particular, the occur-
rence of events, which are concurrent in a causal structure,can be observed synchronously or also in
arbitrary order. Therefore, a given causal structure only represents behavior of the system if it is consis-
tent with the step semantics in the sense that all of its generated observations belong to the step semantics
of the system. Here, only ”full” observations are considered, i.e. observations which contain all events of
a causal structure. Such causal structures are calledenabled (w.r.t. step semantics).1 If causality is added
to an enabled causal structure, resulting in a so calledextensionof the causal structure, the extension is
again enabled, since it generates fewer observations. The other way round, if causality is removed from
an enabled causal structure, the resulting causal structure need not be again enabled, since it generates
more observations. If removing causality always leads to causal structures which are not enabled, an en-
abled causal structure is calledminimally enabled. Minimally enabled causal structures expressminimal
causal dependencies among events.

Figure 1 shows examples of enabled, minimally enabled and not enabled causal structures w.r.t. a
given step semantics. Part (a) shows a set of step sequences over the action namesa andc. The same
action may occur several times at the same time. Thus a step can be formally given as a multi-set over
the set of actions{a, c}. Actions in one step are considered to be synchronous. Observe that prefixes
are not considered in the shown set of step sequences. Since often step semantics is prefix-closed, e.g.
for Petri nets, this set may be interpreted as a fragment of some step semantics. In the example a causal

1If step semantics of place/transition Petri nets (p/t-nets) is considered, causal structures are given by labeled partial orders
(LPOs) (also called pomsets [28] or partial words [11]). In [20], enabled LPOsw.r.t. the step semantics of p/t-nets were
defined.
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Figure 1. Causal structures which are enabled, minimally enabled and not enabled, given by labeled partial
orders.

structure is given by a partial order between the eventse1, e2 and e3 labeled by the action namesa
andc, a so calledLPO (labeled partial order). LPOs may or may not beenabledw.r.t. the given step
semantics. They model an ”earlier than”-relation between events, expressed by solid arcs. Unordered
events are considered to be concurrent. Note that in LPOs it is not possible to distinguish concurrent from
synchronous behavior. Therefore, synchronous transitionoccurrences in step sequences correspond to
concurrent transition occurrences in partial orders. The right LPO in part(b) corresponds to the step
sequence(2a)c. It is enabled, but not minimally enabled, since removing the arc betweene1 ande3
gives the left LPO in part (b), which is also enabled. This left LPO cannot be expressed through a step
sequence. It isminimally enabledand generates all shown step sequences in (a). The LPO in part(c) is
not enabled because it generates the step sequencecaa not belonging to the step semantics given in part
(a).

(a)step semantics: (a+b+c), (a+b)c, b(a+c), (a+c)b, a(b+c), (b+c)a, abc, bac, 
bca, cba, acb
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Figure 2. Causal structures which are enabled, minimally enabled and not enabled, given by labeled stratified
order structures.

Figure 2 shows further examples of enabled, minimally enabled and not enabled causal structures
w.r.t. a given step semantics. Here, a causal structure is given by a stratified order structure (so-structure)
over the set of events{e1, e2, e3} labeled by action namesa, b and c, a so calledLSO (labeled so-
structure). LSOs generalize LPOs. They model an ”earlier than”-relation (solid arcs) and a ”not later
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than”-relation between events (dashed arcs). Two ”not later than”-ordered events can be observed in the
respective order or also synchronously, but not in the reverse order. Synchronicity can be expressed by
cyclic ”not later than”-relations. The right LSO in part (b)represents the step sequencea(b+ c), where
e2 ande3 can only occur synchronously, but not sequentially. It is enabled, but not minimally enabled,
since removing the dashed arc frome3 to e2 and the solid arc frome1 to e3 gives the left LSO in part
(b), which is also enabled. This left LSO in part (b) cannot beexpressed through a step sequence. It is
minimally enabled.

Causal semantics consisting only of enabled causal structures we callsound (w.r.t. step semantics).
On the other hand,all enabled causal structures represent valid behavior of the system. Among the set
of all enabled causal structures, the minimally enabled causal structures give full information on causal
dependencies and concurrency. Causal semantics which contains all minimally enabled causal struc-
tures we callcomplete (w.r.t. step semantics). Given a complete causal semantics, each enabled causal
structure is extension of some minimally enabled causal structure in the causal semantics. An impor-
tant aim for the definition of causal semantics of particularformalisms describing concurrent systems is
soundness and completeness w.r.t. step semantics.
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(a)step semantics: (a+b+c), (a+b)c, b(a+c), (a+c)b, a(b+c), (b+c)a, abc, bac, 
bca, cba, acb

Figure 3. Causal semantics, which are complete and not complete.

Figure 3 shows examples of causal semantics which are complete and not complete w.r.t. a given
step semantics. Both causal semantics are represented by a set of minimally enabled LSOs. The smaller
set shown in (c) is not complete, since it does not include theminimally enabled LSO on the left side.
But it satisfies a weaker form of completeness we callweak completenesshere: The LSOs in the smaller
set still generateall step sequences shown in part (a). The bigger set shown in (b) is complete, i.e. there
is no other enabled LSO which is not an extension of one of the shown LSOs.

The completeness aim can be carried over to any non-sequential semantics (of concurrent system
models) which define causal semantics. In this paper we consider soundness and completeness for pro-
cess semantics and causal semantics of Petri nets. Petri nets are one of the most prominent formalisms
for understanding the concurrency phenomenon and for modeling of real concurrent systems in many
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application areas [14]. The most important and well-known concept of non-sequential semantics of Petri
nets is process semantics [9, 10]. Process semantics are given by sets of process nets, which are Petri
nets representing transition occurrences by events (transitions of process nets) with explicit pre-, post-
and side-conditions (places of process nets). These conditions represent token occurrences (in places of
the original net) and other causal dependencies (for example context arcs).

Process semantics were first developed for place/transition Petri nets (p/t-nets) [9, 10]. For such nets,
a process net can be translated to a partial order between transition occurrences (events labeled by tran-
sition names) by removing all conditions and keeping the partial order (given by the flow relation of the
process net) for the events. Such alabeled partial order (LPO)is calledrun associated to the process.
In a run, unordered events are considered to be concurrent. Through the definition of runs, the process
semantics yields a causal semantics: A run describes valid causal behavior of the p/t-net. It was shown in
[20] that an LPO is enabled if and only if it is a (partial order) extension of a run (see also [34, 35, 15]).
This implies, that each run is enabled and that the set of runsincludes all minimally enabled LPOs, i.e.
process semantics from [9, 10] and induced causal semanticsgiven by runs are sound and complete.
Thus, the process net based causality semantics of p/t-netssatisfies strong consistency properties w.r.t.
step semantics. Moreover, they have an intuitive graphicalrepresentation, can be efficiently constructed
and only reflect causal dependencies among transition occurrence which are existent in the net.2 These
are the essential properties of p/t-net processes justifying their success as non-sequential semantics de-
scribing system behavior.

Since the basic developments of Petri nets, more and more different Petri net classesfor various
applications have been proposed, extending their modelingfeatures by additional structural elements
which modify the step occurrence rule. It turned out to be noteasy to define process semantics (and
related causality semantics in the form of runs), having allthe advantages of p/t-net processes, for such
net classes. Especially the completeness aim is very hard toprove already in the most simple case of
p/t-nets (see [20, 34, 35, 15], whether completeness holds for p/t-net processes was an open question
for many years). For several of the process semantics proposed so far for certain Petri net classes,
completeness is still an open problem (for details see Section 4).

An important p/t-net extension is that by inhibitor arcs, proposed in several variants. As stated in
[27], ”Petri nets with inhibitor arcs are intuitively the most direct approach to increasing the modeling
power of Petri nets”. Moreover, inhibitor nets have been found appropriate in various application areas
[1, 8]. Accordingly, for these net classes various authors proposed process definitions regarding different
interpretations of the occurrence rule of inhibitor nets. In [22] a-priori processes for PTI-nets (the most
general class of p/t-nets with inhibitor arcs) are defined. In the case of inhibitor nets under the so-called
a-priori semantics [12], so called(labeled) so-structures (LSOs)represent the causal semantics (Figures
2, 3). Recently, we could show in [18] that the a-priori process definition of [22] is not complete by
identifying a minimally enabled LSO of a PTI-net not being a run of the net. We developed an alternative
complete process definition which fulfills also all other semantical consistency properties stated in [22].

In order to provide a common scheme for the definition of process semantics of Petri nets, in [22] (in
the context of defining respective semantics for inhibitor nets) a semantical framework aiming at a sys-
tematic presentation of process and causality semantics ofdifferent Petri net models was developed. Any
process semantics should fulfill the reasonable aims statedby the framework. These aims are reduced to

2In contrast, in enabled LPOs transition occurrences may be ordered which are not causally dependent in the net, since also
extensions of runs are enabled LPOs
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several properties that have to be checked in a particular practical setting. The most important of these
aims is the soundness of process semantics and causality semantics w.r.t. step semantics as described
above. But this general framework does not regard the described aim of completeness. Instead another
aim of the framework from [22] requires a kind ofweak completeness, saying that each step sequence
in the step semantics should be generated by some process net(Figure 3). We extend this framework by
adding the described completeness aim.

The paper is structured as follows. In Section 2 we recall thesemantical framework from [22] in
a new terminology, formally add the property of completeness and illustrate the modified framework
by a small example concerning process semantics of p/t-nets. In Section 3 we consider the modified
framework for PTI-nets w.r.t. the a-priori semantics. After introducing step semantics of such nets, we
introduce causal semantics in form of enabled LSOs. Then we show that the process semantics from
[22] is not complete and develop a new complete process semantics. This process semantics is then
shown to fulfil the whole semantical framework from Section 2. Finally, in Section 4 further Petri net
classes are discussed in the context of the presented semantical framework focusing on the new property
of completeness.
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2. The Semantical Framework

In [22] a general framework for dealing with process semantics of Petri nets was proposed (see Figure 4,
left part). It aims at a support for a systematic, consistentdevelopment of process and causality semantics
for various Petri net classes using a common scheme. In this section we restate this framework proposing
a new terminology and formally add the aim of completeness asdescribed in the introduction.

In Figure 4 the nodes represent different semantics of a given Petri net model. The arrows indicate
functions that define and relate the different semantics. They represent the consistency requirements for
process semantics according to this framework. The abbreviations mean the following:

• N ∈ PN represents aPetri net modelof a given Petri net classPN together with an operational
step occurrence rule.

• EX is the set of executions generated by a netN ∈ PN in form of enabled step sequencesin
accordance to its step occurrence rule.ω(N) = EX assigns to a netN its set of executions.

• LAN defines (axiomatically) theprocess semanticsof a netN ∈ PN given by process nets. Pro-
cess nets are labeled acyclic occurrence nets which have assigned an operational step occurrence
rule. Labels of places and transitions of an occurrence net refer to places and transitions ofN .
α(N) = LAN assigns to a netN its set of process nets.

• LEX is the set oflabeled step sequencesgenerated by process netsO ∈ LAN in accordance
to their step occurrence rule. For an occurrence netO, λ(O) is the set oflabeled step sequences
generated byO, which contain all events ofO. That meansLEX =

⋃
O∈LAN λ(O). In labeled

step sequences fromLEX , actions refer to event names of a process net, whereas labels of actions
refer to transitions ofN ∈ PN . Observe thatλ is generally defined for occurrence nets, not only
for process nets.

• RUN defines the set ofrunsassociated to process nets inLAN describing net behavior through
causality relations between events. For an occurrence netO, κ(O) is the labeled causal structure
associated toO. That meansRUN = {κ(O) | O ∈ LAN}. Observe thatκ is generally defined
for occurrence nets, not only for process nets.

• The mappingφ abstracts from action names in a labeled step sequence, producing a step sequence
over the set of its labels. Observe thatφ is defined for arbitrary labeled step sequences, not only
for labeled step sequences inLEX .

• For a labeled causal structureR, ǫ(R) defines the set oflabeled step sequencesgenerated byR,
which contain all events ofR. Observe thatφ is generally defined for labeled causal structures,
not only for runs.

• ι defines a method to construct a labeled causal structure froma set of labeled step sequences
having the same set of actions with the same labeling.

• π defines a method to construct a set of process nets from an enabled step sequence. Note thatπ
not only depends onEX but also onN ∈ PN .
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Figure 4. Adding the completeness aim to the semantical framework of [22].

The framework in [22] is condensed to five properties that have to be checked in each particular
setting:

• The mappings in Figure 4 (a) returning sets (namelyω,α, λ, ǫ, π) do not return the empty set.

• The mappings in Figure 4 (a) are total.

• The mappings in Figure 4 (a) commute (calledconsistencyin [22]), i.e.

– Consistency of runs and processes: ∀O ∈ LAN : λ(O) = ǫ(κ(O)) (calledfitting in [22]).

– Soundness: ∀R ∈ RUN : φ(ǫ(R)) ⊆ EX .

– Weak completeness: EX ⊆
⋃

R∈RUN φ(ǫ(R)).

Note that weak completeness implies forS ∈ EX thatS ∈
⋃

R∈RUN φ(ǫ(R)). If κ(O) = R, then
from the consistency of runs and processes we get thatλ(O) = ǫ(R), i.e.S ∈

⋃
O∈α(N) φ(λ(O)).

The other way round, forS ∈ φ(λ(O)) we getS ∈ φ(ǫ(R)) for R = κ(O) from the consistency
of runs and processes. From soundness this impliesS ∈ EX . Altogether, the above consistency
properties imply ⋃

O∈α(N)

φ(λ(O)) = EX = ω(PN ).

• Runs are reconstructible from step sequences: ∀R ∈ RUN : ι(ǫ(R)) = R (calledrepresentation
in [22]).

• Construction of processes from step sequences: ∀S ∈ EX : π(S) = {O ∈ LAN | S ∈ φ(λ(O))}
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On the one hand,soundnessensures that each run is consistent with the step semantics in the sense
defined byφ ◦ ǫ. On the other hand,each labeled causal structure, which is consistent with the step
semantics in this sense, represents valid behavior of the given Petri net model. But there is no property
in the framework of [22] requiring that such causal structures are modeled by the process semantics. In
the following, we call such causal structuresenabled.

Definition 2.1. (Enabled labeled causal structure)
A labeled causal structureR is calledenabled (w.r.t. step semantics)if φ(ǫ(R)) ⊆ EX . The mappingδ
assigns to a set of step sequencesS the set of labeled causal structures{R | φ(ǫ(R)) ⊆ S}. ELCS =
δ(EX ) defines the set of enabled labeled causal structures.

With this new terminology, soundness means that each run is enabled. Each labeled causal structure
which hasmore causality than a runis enabled, too. Formally, we define the relation of ”having more
causality” among labeled causal structures within the framework as follows:

Definition 2.2. (Extension of a labeled causal structure)
A labeled causal structureR has more causality than a labeled causal structureR′ if φ(ǫ(R)) ⊆
φ(ǫ(R′)). In this case,R is calledextension ofR′. If φ(ǫ(R)) ( φ(ǫ(R′)) thenR is calledstrict
extension ofR′. For a labeled causal structureR, ψ(R) denotes the set of all extensions ofR.

It follows by definition that extensions of enabled causal structures are enabled.

Definition 2.3. (Minimally enabled labeled causal structure)
An enabled labeled causal structureR is minimally enabledif it is not a (strict) extension of another
enabled labeled causal structure.

It holds by construction that a process semantics is sound ifand only if all extensions of runs are
enabled, i.e.

(∀R ∈ RUN : φ(ǫ(R)) ⊆ EX ) ⇐⇒ (δ(EX ) = ELCS ⊇
⋃

R∈RUN

ψ(R)).

But there still may be enabled causal structures which are not extensions of a run. This is the case if
and only if there is a minimally enabled causal structures which is not extension of a run, since extensions
of enabled causal structures are enabled. Completeness means, that there are no such minimally enabled
causal structures.

Definition 2.4. (Aim of completeness)
Process semantics is calledcomplete (w.r.t. step semantics)if δ(EX ) = ELCS ⊆

⋃
R∈RUN ψ(R).

Note that completeness implies weak completeness, since each step sequence of the net corresponds
to a step sequence generated by an enabled causal structure.The aims of completeness, weak com-
pleteness and soundness can be considered as properties of the setRUN . Together with soundness,
completeness can also be characterized through minimally enabled causal structures:

Theorem 2.1. Let RUN be sound. ThenRUN is complete if and only if the set of minimally enabled
causal structures coincides with the set of minimal runs.3

3A run isminimal if it is not extension of another run.
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Thus, if a process semantics is sound and complete, then for arbitrary valid causal behavior of the net,
there are runs and processes which express this behavior. Inother words, minimal causal dependencies
in a net are reflected in the process semantics.

To integrate the aim of completeness into the semantical framework, we add new relations labeled by
δ andψ and the new nodeELCS to Figure 4 (right part). The absence of the aim of completeness in the
framework of [22] (Figure 4 left part) allows process definitions that do not necessarily represent minimal
causal behavior. According to [22] a process definition thatequals the operational step semantics (”pro-
cesses are step sequences”) is a valid process semantics, because it is sound and weakly complete (but
not complete). But the set of step sequences would be a reasonable process semantics only if it reflects
minimal causal dependencies. Generally, process definitions not producing minimal causalities are less
expressive and do not give all possible system runs. In this sense, the property of weak completeness,
only requiring that each step sequence is modeled in the process definition, is not enough. Therefore in
our new version of the semantical framework (Figure 4 right part) the aim of completeness is introduced
solving this problem.

Remark 2.1. There is the following equivalent formalization of the completeness aim, which avoids the
notion of enabled causal structures:

Process semantics is called complete (w.r.t. step semantics) if each labeled causal structureS with
φ(ǫ(S)) ⊆ EX , which is minimal with this property, is a run.

This formulation is more compact and could be illustrated inthe framework by an arc fromEX
to RUN . On the other side, it does not conform with the historical development of non-sequential
semantics of Petri nets. Namely, in the case of p/t-nets, thenotion of enabled LPOs as a description of
non-sequential behavior [28, 11, 20] was introduced independently from occurrence nets and process nets
[9, 10]. Enabled LPOs have the advantage that they provide a causal semantics which is complete ”by
construction”. The exact relation between enabled LPOs andruns underlying process nets was unclear
for several years. Finally, it could be shown that an LPO is anextension of a run if and only if it is
enabled [20]. This result corresponds to the notion of completeness we chose. Altogether, the concepts
of runs and enabled LPOs as a description of non-sequential behavior existed independently from each
other and we decided to follow this terminology in this paper. In particular, we did not want to disregard
the research on enabled causal structures.

We finish this section with a small example discussing process semantics for p/t-nets.

Example 2.1. (p/t-nets)
For p/t-nets the completeness aim is fulfilled (as mentioned). Figure 5 shows an example of the semantics
of a p/t-net as occurring in the framework of Figure 4 right part; in this figure, we neglect ”prefixes”, i.e.
always considering processes, runs, enabled causal structures and (labeled) step sequences of maximal
length. The mappingsω, α andδ define the semanticsEX , LAN andELCS as shown. The mappingκ
assigns to each process net inLAN a run inRUN by omitting the places in the process net and keeping
the order between transition occurrence given by the flow relation. It holdsκ(Oi) = Ri for i = 1, 2. The
mappingλ assigns labeled step sequences of the setLEX to a process net inLAN through considering
a process net as a marked elementary net (initially the conditions, which are minimal w.r.t. the flow
relation, are marked) and applying the step occurrence rulefor such nets. The mappingǫ assigns the set
of all labeled step sequences (fromLEX ) to an LPO inRUN , which add causality to the LPO (events
in one step are considered to be concurrent). The event namesindicate which labeled step sequences
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Figure 5. Different semantics of a p/t-net.

are generated by which process net resp. run. The mappingι assigns an LPO to a set of labeled step
sequencesΣ (with set of eventsV and labeling functionl) in LEX by ι(Σ) = (V, {(v, v′) ∈ V × V |
∀σ = τ1 . . . τn ∈ Σ : (∃i < j : v ∈ τi, v

′ ∈ τj)}, l). According to Szpilrajn’s theorem [32] there
holds ι(ǫ(R1)) = R1 and ι(ǫ(R2)) = R2. The mappingφ simply abstracts from the individuality of
events in a labeled step sequence ofLEX , for exampleφ((e1 + e2)e3) = (a + b)c. The mappingψ
assigns to an LPO inRUN the set of its extensions. For example,R3 is an extension ofR2 via the
additional arc(e4, e6). It is easy to observe thatR1 andR2 are the only two minimally enabled LPOs
of the shown p/t-net (as defined byδ). ThusELCS is given by the set of all extensions ofR1 or R2.
Finally, π is an algorithm for the construction of a set of process nets from a step sequence. Namely, for
a step sequence all process nets generating the given step sequence are computed. It holds, for example,
π(a(b+ c)) = {O1} andπ((a+ b)c) = {O1, O2}.
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3. PTI-nets

In this section we recall the formal definitions ofPTI-netsand their step semantics w.r.t.the a-priori step
occurrence rule. We introduceenabled labeled causal structurescorresponding to these step semantics.
These are given by so calledlabeled so-structures (LSOs). Then we show thatprocess nets of PTI-nets
w.r.t. the a-priori semantics according to [22] are not complete and develop a new complete process
semantics. Finally, we prove that this new process semantics also fulfils all other requirements of the
framework presented in the last section. Altogether, compared to [22], we redefine the mappingsα and
π and the setsLAN and consequentlyRUN , and introduce new mappingsδ andψ and the new set
ELCS in order to extend the framework of [22] as mentioned in the last section for PTI-nets.

Given a setX we will denote the set of all subsets ofX by 2X and the set of all multi-sets overX by
NX (N denotes the non-negative integers). A set can always be viewed as a multi-setm with m ≤ 1 and
correspondingly a multi-setm ≤ 1 can always be viewed as a set. We further denote the identity relation
overX by idX , the reflexive, transitive closure of a binary relationRel ⊆ X ×X byRel∗, the transitive
closure ofRel by Rel+ and the composition of two binary relationsRel,Rel′ overX by Rel ◦ Rel′.
Two elementsx, y ∈ X are calledRel-independent if(x, y), (y, x) 6∈ Rel, the set of allRel-independent
pairs of elements is denoted bycoRel ⊆ X ×X. A binary relationRel ⊆ X ×X is a partial order if
∀x ∈ X : (x, x) 6∈ Rel (Rel is irreflexive) and∀x, y, z ∈ X : (x, y), (y, z) ∈ Rel =⇒ (x, z) ∈ Rel
(Rel is transitive). IfRel is a partial order, we also say that(X,Rel) is a partial order.

3.1. Basic Definitions

In this subsection we introduce PTI-nets together with their a-priori step semantics. That means, we
specify the setEX and the mappingω of the presented semantical framework.

Inhibitor nets are an extension of classical place/transition nets (p/t-nets) enhanced with inhibitor
arcs. In their simplest version inhibitor arcs test whethera place is empty in the current marking (zero-
testing) as an enabling condition for transitions. In the most general version of PTI-nets, inhibitor arcs
test if a place containsat mosta certain number of tokens given by weights of the inhibitor arcs (instead
of zero-testing).

A p/t-net is a tripleN = (P, T,W ), whereP is a finite set of places,T is a finite set of transitions
andW : (P × T ) ∪ (T × P ) → N is the weight function representing the flow relation. The pre-
and post-multi-set of a transitiont ∈ T are the multi-sets of places given by•t(p) = W (p, t) and
t• (p) = W (t, p) for all p ∈ P . This notation can be extended toU ∈ NT by •U(p) =

∑
t∈U U(t)· •t(p)

andU• (p) =
∑

t∈U U(t) · t• (p) for all p ∈ P . Analogously we can define pre- and post-multi-sets of
multi-sets of places as multi-sets of transitions. We assume that each transition has non-empty pre- and
post-multi-set. Eachm ∈ NP is called amarkingof N and eachU ∈ NT is called a step ofN . U
is enabled to occurin m if and only if m ≥ •U . In this case, its occurrence leads to the marking
m′ = m− •U + U• .

Definition 3.1. (PTI-net)
A markedPTI-netis a quadrupleNI = (P, T,W, I,m0), whereUnd(NI) = (P, T,W ) is a p/t-net (the
underlying netof NI), m0 the initial markingof NI andI : P × T → N∪ {∞} is theinhibitor (weight)
function(we assume∞ > n for everyn ∈ N). For a transitiont the negative context−t ∈ (N∪ {∞})P

is given by −t(p) = I(p, t) for all p ∈ P . For a step of transitionsU , −U ∈ (N ∪ {∞})P is given by
−U(p) = min({−t(p) | t ∈ U}). A placep with −t(p) 6= ∞ is calledinhibitor placeof t.



G. Juhás, R. Lorenz, M. Mauser / Complete Process Semanticsof Petri Nets 13

Note thatI(p, t) = k ∈ N implies thatt can only occur ifp does not contain more thank tokens;
k = 0 coincides with zero-testing. AccordinglyI(p, t) = ∞ means that the occurrence oft is not
restricted through the presence of tokens inp. Thus a p/t-net can always be interpreted as a PTI-net with
I ≡ ∞. In graphical illustrations, inhibitor arcs are drawn withcircles as arrowheads and annotated with
their weights (Figure 6). Inhibitor arcs with weight∞ are completely omitted and the inhibitor weight
0 is not shown in diagrams. In the a-priori semantics, the testing of inhibitor restrictions precedes the
occurrence of (steps of) transitions.

Definition 3.2. (Step semanticsω(PN ) = EX )
A step of transitionsU is (synchronously) enabled to occurin a markingm if and only if it is enabled
to occur in the underlying p/t-netUnd(NI) and in additionm ≤ −U . The occurrence ofU leads to the

markingm′ = m− •U + U• . This is denoted bym
U

−→ m′.
A finite sequence of steps of transitionsσ = U1 . . . Un, n ∈ N, is called astep (occurrence) sequence

enabled in a markingm and leading tomn, denoted bym
σ

−→ mn, if there exists a sequence of markings

m1, . . . ,mn such thatm
U1−→ m1

U2−→ . . .
Un−→ mn.

By ω(NI) = EXNI we denote the set of all enabled step sequences of a marked PTI-netNI.

3.2. Enabled Labeled Causal Structures

In this subsection we introduce enabled labeled causal structures for PTI-nets. That means, we define
the setELCS and the mappingsδ, ǫ, ι, φ andψ from the framework presented in the last section.

t u

v w

2
1

(a) PTI-net: (b) Enabled LSO:

e1 e2

e4

t u

we3
v

Figure 6. A PTI-netNI and an enabled LSO w.r.t.NI.

Figure 6 (a) shows a PTI-net, where the transitionst andv test a place to be empty and transitionw
tests a place to hold at most one token. As explained in [12, 21, 22], ”earlier than”-causality expressed
by partial orders is not enough to describe causal semanticsof PTI-nets w.r.t. the a-priori semantics. In
Figure 6 this phenomenon is depicted: In the a-priori semantics the testing for absence of tokens (through
inhibitor arcs) precedes the execution of a transition. Thus t cannot occur later thanu, because after the
occurrence ofu the place connected witht by an inhibitor arc (with weight 0 representing zero-testing)
is marked. Consequently the occurrence oft is prohibited by this inhibitor arc. Thereforet andu cannot
occur concurrently or sequentially in orderu → t. But they still can occur sequentially in ordert → u
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or even synchronously, because of the occurrence rule ”testing before execution”. This is exactly the
behavior described by ”t not later thanu”. After firing t andu we reach the marking in which every
non-bottom and non-top place of the netNI contains one token. With the same arguments as above
the transitionsv andw can occur in this marking synchronously but not sequentially in any order. The
relationship betweenv andw can consequently be expressed by a symmetric ”not later than”-relation
between the respective events - none may occur later than theother.

Such causal relationships between events can be described by so called so-structures. So-structures
are, loosely speaking, combinations of two binary relations on a set of events, where one is a partial order
representing an ”earlier than”-relation and the other represents a ”not later than”-relation as described
above. Figure 6 (b) illustrates the above explained causal relationships in form of an so-structure. The
solid arcs represent a (common) ”earlier than”-relation. Those events can only occur in the expressed or-
der but not synchronously or inversely. Dashed arcs depict the ”not later than”-relation explained above.
Partial orders can only model the ”earlier than”-relation,but it is not possible to describe relationships
as in the example betweent andu as well as betweenv andw, where synchronous occurrence is pos-
sible but concurrency is not existent. Thus, so-structuresdescribe finer causalities than partial orders.
Formally, so-structures are relational structures satisfying certain properties.

A relational structure(rel-structure) is a tripleS = (V,≺,<), whereV is a finite set (ofevents), and
≺ ⊆ V × V and< ⊆ V × V are binary relations onV . A rel-structureS ′ = (V,≺′,<′) is said to be an
extension(or sequentialization) of another rel-structureS = (V,≺,<), writtenS ⊆ S ′, if ≺ ⊆ ≺′ and
< ⊆ <

′.

Definition 3.3. (Stratified order structure)
A rel-structureS = (V,≺,<) is calledstratified order structure(so-structure) if the following conditions
are satisfied for allu, v,w ∈ V :
(C1)u 6< u. (C3)u < v < w ∧ u 6= w =⇒ u < w.

(C2)u ≺ v =⇒ u < v. (C4)u < v ≺ w ∨ u ≺ v < w =⇒ u ≺ w.

In figures,≺ is graphically expressed by solid arcs and< by dashed arcs. According to (C2) a dashed
arc is omitted if there is already a solid arc. Moreover, we omit arcs which can be deduced by (C3) and
(C4). It is shown in [12] that(V,≺) is a partial order (thus a partial order can always be interpreted as an
so-structure with< = ≺). Therefore, so-structures are a generalization of partial orders.

Similar to the notion of the transitive closure of a binary relation the♦-closureS♦ of a rel-structure
S = (V,≺,<) is defined byS♦ = (V,≺S♦ ,<S♦) = (V, (≺ ∪ <)∗ ◦ ≺ ◦ (≺ ∪ <)∗, (≺ ∪ <)∗ \ idV ).
A rel-structureS is called♦-acyclic if ≺S♦ is irreflexive. The♦-closureS♦ of a rel-structureS is an
so-structure if and only ifS is ♦-acyclic (for this and further results on the♦-closure see [12]).

For our purposes we will only considerlabeled so-structures(LSOs). Events of an LSO represent
transition occurrences of a Petri net. Formally LSOs are so-structuresS = (V,≺,<) together with aset
of labelsT and alabeling functionl : V → T . The labeling functionl is lifted to a subsetY of V in the
following way: l(Y ) is the multi-set overT given byl(Y )(t) = |l−1(t) ∩ Y | for everyt ∈ T . We use
the notations defined for so-structures also for LSOs. In particular:

Definition 3.4. (The mappingψ)
The mappingψ assigns to each LSO(V,≺,<, l) the set of all LSOs(V,≺′,<′, l) such that(V,≺′,<′)
is an extension of(V,≺,<).
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For the definition of enabled LSOs according to the presentedsemantical framework, we need to
define a mappingǫ assigning to each LSO the set of labeled step sequences ”generated” by this LSO and
a mappingφ assigning a step sequence to a labeled step sequence. Alabeled step sequence over a finite
setV is a pair(σ, l) whereσ = U1 . . . Un is a sequence of disjoint subsetsUi ⊆ V with

⋃n
i=1 Ui = V

andl : V → T is a labeling function fromV to a set of labelsT . A labeled step sequences(σ, l) can
be identified with special LSOsS(σ,l). (σ, l) is generated by an LSOS if S(σ,l) is an extension ofS.
A labeled step sequence(U1 . . . Un, l) corresponds to the step sequencel(U1) . . . l(Un), wherel(Ui) is
defined as a multi-set.

Definition 3.5. (The mappingsǫ and φ)
Let (σ, l) be a labeled step sequence overV with σ = U1 . . . Un. DefineS(σ,l) = (V,≺(σ,l),<(σ,l), l) by
≺(σ,l) =

⋃
i<j Ui × Uj and<(σ,l) = ((

⋃n
i=1 Ui × Ui) \ idV ) ∪ ≺(σ,l).

For an LSOS = (V,≺,<, l), we denoteǫ(S) = {(σ, l) | S(σ,l) is an extension ofS}.
For a labeled step sequence(σ, l) overV with σ = U1 . . . Un, we denoteφ((σ, l)) = l(U1) . . . l(Un).

The step sequences inφ(ǫ(S)) can be considered as observations ofS, where events within a step
are observed at the same time (synchronously), and step occurrences are observed in the order given by
the step sequence.

An LSOS is consistent with the step semanticsEX of a given PTI-net if each such observation of
S is a step occurrence sequence of the PTI-net inEX . Such LSOs we callenabled(w.r.t. the given
PTI-net).

Definition 3.6. (Enabled LSO)
An LSOS is enabled w.r.t. a marked PTI-netNI if φ(ǫ(S)) ⊆ EXNI . ELCSNI = δ(EXNI) is the set
of all enabled LSOs.

With this definition one can easily check that the LSO in Figure 6 is enabled. It generates the step
sequencestu(v + w) and(t+ u)(v + w), which are both enabled.

Finally, we define the mappingι for the reconstruction of an LSO from the set of labeled step se-
quences generated by the LSO. The reconstruction works through intersection of causal relations.

Definition 3.7. (The mappingι)
Let Σ be a set of labeled step sequences over a setV with labeling functionl. We defineι(Σ) =
(V,

⋂
(σ,l)∈Σ ≺(σ,l),

⋂
(σ,l)∈Σ <(σ,l), l).

In [29, 22] it was shown (by a generalization of Szpilrajn’s theorem to so-structures) thatι(ǫ(S)) = S
for arbitrary LSOsS.

3.3. Process Semantics of [22] is not Complete

In this subsection we introduce the process semantics for PTI-nets (given by the setLAN and the map-
ping α of the semantical framework) as presented in [22]. Moreover, we define the setRUN and the
mappingsκ andλ relating process semantics to step semantics. We show, thatLAN as defined in this
subsection is not complete, i.e. does not fulfilδ(EX) ⊆

⋃
R∈RUN ψ(R).

The problem of defining process nets for PTI-nets is that the absence of tokens in a place – this is
tested by inhibitor arcs – cannot be directly represented inan occurrence net. This is solved by intro-
ducing local extra conditions and read arcs – also called activator arcs – connected to these conditions.
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These extra conditions are introduced ”on demand” to directly represent dependencies of events caused
by the presence of an inhibitor arc in the net. The conditionsare artificial conditions without a reference
to inhibitor weights or places of the net. They only focus on the dependencies that result from inhibitor
tests. Thus, activator arcs represent local information regarding the lack of tokens in a place.

The process definition of [22] is based on the usual notion of occurrence nets extended by activator
arcs. Occurrence nets are (labeled) acyclic nets with non-branching places (conditions) whose underlying
causal relationship between events is described by LSOs. Inthe following definitionB represents the
finite set ofconditions, E the finite set ofevents, R the flow relation andAct the set of activator arcs of
the occurrence net.

Definition 3.8. (Activator occurrence net)
A labeled activator occurrence net(ao-net) is a five-tupleAON = (B,E,R,Act, l) satisfying:

• B andE are finite disjoint sets,

• R ⊆ (B × E) ∪ (E ×B) andAct ⊆ B × E,

• | •b|, |b• | ≤ 1 for everyb ∈ B,

• the relational structureS(AON) = (E,≺loc,<loc, l|E) = (E, (R ◦R)|E×E ∪ (R ◦Act), (Act−1 ◦
R) \ idE , l|E) is♦-acyclic,

• l is a labeling forB ∪ E.

For x ∈ B ∪ E andX ⊆ B or X ⊆ E we denote•x = {y | (y, x) ∈ R}, x• = {y | (x, y) ∈ R},
•X =

⋃
x∈X

•x andX• =
⋃

x∈X x• . Forx ∈ E andX ⊆ E we denotex+ = {y | (y, x) ∈ Act} and
X + =

⋃
x∈X x+.

The LSO generated byAON is κ(AON) = (E,≺AON,<AON, l|E) = S(AON)♦.

The relations≺loc and<loc represent the local information about causal relationships between events.
Figure 7 shows their construction rule.κ(AON) captures all (not only local) causal relations between
the events (see also Figure 6). Note that Definition 3.8 is a conservative extension of standard occurrence
nets by read arcs.

Figure 7. Generation of the orders≺loc and<loc in ao-nets.

There are the notions of weak and strong configurations and slices forao-nets. We formally introduce
only weak configurations and slices, since strong configurations and slices are only used when referring
to [22]. A set of eventsD ⊆ E is called aweak configurationof AON, if e ∈ D andf(≺loc ∪ <loc)

+e
impliesf ∈ D. A weak sliceof AON is a maximal (w.r.t. set inclusion) set of conditionsS ⊆ B which
areR◦(≺loc∪<loc)

∗ ◦R-independent.WSL(AON) denotes the set of all weak slices. The setMINAON

of all conditions without incoming flow arcs (the minimal conditions w.r.t.R) and the setMAXAON of
all conditions without outgoing flow arcs (the maximal conditions w.r.t.R) are weak slices. For a weak
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configurationC, the marking reached from the initial marking after the transitions occurrences fromC
is represented by the weak sliceSC = (C• ∪MINAON) \ •C. In [22] it is shown that the set of weak
slicesS of AON equals the set of weak slicesSC for weak configurationsC. In Figure 8, the weak
configurations of the ao-netO1 are{e1}, {e1, e2}, {e1, e3} and{e1, e2, e3}. Each defines a weak slice.
The set{e2} is not a weak configuration, sincee1(≺loc ∪ <loc)

+e2.
An activator occurrence net generates a set of labeled step sequences describing its dynamics using

the standard a-priori occurrence rule of elementary nets with read arcs [22], where such labeled step
sequences are required to contain all events of the occurrence net. Formally, this set is defined by the
mappingλ. The set of slices is the union of the sets of weak and strong slices.

Definition 3.9. (The mappingλ)
Let AON = (B,E,R,Act, l) be anao-net. A sliceS enablesa stepof ≺+

loc-independent eventsτ ⊆ E

if •τ ∪ τ + ⊆ S. Theoccurrenceof τ yields the sliceS′ = (S \ •τ) ∪ τ• . We writeS
τ

−→ S′.
λ(AON) is the set of all labeled finite sequences of steps of≺+

loc-independent events(τ1 . . . τn, l),
such that there is a sequence of weak slicesS0, . . . , Sn with S0 = MINAON, Sn = MAXAON and
S0

τ1−→ S1
τ2−→ . . .

τn−→ Sn.

Note that a sliceS is a weak slice if and only if there is a finite sequence of stepsof ≺+
loc-independent

eventsτ1 . . . τn with S
τ1−→ S1

τ2−→ . . .
τn−→ MAXAON.

Now we are prepared to define processes of PTI-nets as in [22].The mentioned artificial conditions in
such processes are labeled by the special symbolf. They are introduced in situations, when a transition
t ∈ T tests a place in the pre- or post-multi-set of another transition w ∈ T for absence of tokens, i.e.
whenI(p, t) 6= ∞ and •w(p) +w• (p) 6= 0 for somep ∈ P . Such situations are abbreviated byw ⊸ t.
If w ⊸ t holds, then any two occurrencesf of w ande of t in a process are adjacent to a common
f-condition representing a causal dependency off ande. That means there exists af-labeled condition
b such that(b, e) ∈ Act andb ∈ ( •f ∪ f• ). This is abbreviated byf ⊸• e (see requirement (Cond6) in
Definition 3.10). The axiomatic process definition in [22] isas follows:

Definition 3.10. (Activator process)
An activator process(a-process) ofNI is anao-netAON = (B ⊎ B̃, E,R,Act, l) satisfying:

(Cond1) l(B) ⊆ P , l(E) ⊆ T andl(B̃) = {f}.

(Cond2) B̃ = {b | ∃e ∈ E : (b, e) ∈ Act}.

(Cond3) m0 = l(MINAON ∩B).

(Cond4) For all e ∈ E, •l(e) = l( •e ∩B) andl(e)• = l(e• ∩B).

(Cond5) For all b ∈ B̃, there are uniqueg, h ∈ E such that•b ∪ b• = {g}, (b, h) ∈ Act andl(g) ⊸

l(h).

(Cond6) For all e, f ∈ E, if l(f) ⊸ l(e) then there is exactly onec ∈ B̃ such thatf ⊸• e throughc.

(Cond7) For alle ∈ E and all strong slicesS, if •e∪{b ∈ B̃ | (b, e) ∈ Act} ⊆ S thenl(S∩B) ≤ −l(e).

The set of a-processes ofNI is denoted byLANNI = α(NI). ForAON ∈ α(NI) the LSOκ(AON)
is called arun (associated toAON). RUNNI denotes the set of all runs.
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The requirements (Cond1), (Cond3), (Cond4) in Definition 3.10 represent common features of pro-
cesses well-known from p/t-nets. They ensure that a-processes constitute a conservative generalization
of common p/t-net processes. That means, the set of processes of Und(NI) coincides with the set of
processes resulting fromα(NI) by omitting thef-labeled conditions (omitting thef-conditions from
an a-processAON leads to the so called underlying processUAON of AON). If NI has no inhibitor arcs
(thusNI = Und(NI)), a-processes coincide with common processes. Thus, Definition 3.10 can also be
used to define processes of p/t-nets. The properties (Cond2)and (Cond5) together with the rule (Cond6)
– describing whenf-conditions have to be inserted – constitute the structure of the f-conditions. The
requirement (Cond7) expresses that in the strong slices ofAON the inhibitor constraints of the PTI-net
have to be properly reflected. That means, for events enabledin a certain slice ofAON the respective
transitions are also enabled in the respective marking in the PTI-netNI.

e2 e3e1

(a+b+c), (a+b)c, a(b+c), 
(a+c)b, abc, acb, 
(b+c)a, bca, cba, 
b(a+c), bac

NI:

LAN :

RUN :

LEX:EX:

a
b c

(e1+e2+e3), (e1+e2)e3, e1(e2+e3), (e1+e3)e2, e1e2e3, e1e3e2, 
(e5+e6)e4, e5e6e4, e6e5e4, 
e8(e7+e9), e8e7e9
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Figure 8. Different semantics of PTI-nets.

Example 3.1. Figure 8 shows an example of the semantics of a PTI-net as occurring in the framework
of Figure 4 (b); in this figure, we neglect ”prefixes”, i.e. always considering processes, runs, enabled
causal structures and (labeled) step sequences of maximal length.

The mappingω defines the step semanticsEX . Transitiona can fire within a step if and only if there
are0 or 1 tokens in the place connected toa via an inhibitor arc. That means, it is not possible to firea if
c has occurred before, butb has not occurred before. In other words, the only step sequences which are
not valid arecab andc(a+ b).
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The mappingα defines the process semanticsLAN according to Definition 3.10. In Figure 8 only
processes with underlying minimal runs are shown. Namely, the processes whereb consumes a token
produced byc are omitted. Sinceb ⊸ a andc ⊸ a, each of the process nets inLAN has twof-
conditions. There are four possible combinations to introduce these twof-conditions, since both can
belong to the pre-set or the post-set of theb- resp. c-labeled event. Only the possibility shown in the
occurrence netO4 is not a process net, since it contradicts property (Cond7):The strong configuration
C = {e12} yields a sliceSC which enablese10 but satisfiesl(SC ∩B) 6≤ −a.

The mappingκ assigns to each process net inLAN a run inRUN through omitting the places in
the process net and keeping the causal relations between theevents (transition occurrences) according to
Figure 7. It holdsκ(Oi) = Ri for i = 1, 2, 3, 4.

The mappingλ assigns labeled step sequences of the setLEX to a process net inLAN according to
Definition 3.9. The mappingǫ assigns the set of all labeled step sequences inLEX to an LSO inRUN ,
which add causality to the LSO (events in one step are considered to be synchronous). The event names
indicate which labeled step sequences are generated by which process resp. run.

The mappingι assigns an LSO to a set of labeled step sequencesΣ (with set of eventsV and labeling
function l) as shown in Definition 3.7. There holdsι(ǫ(Ri)) = Ri for i = 1, 2, 3.

The mappingφ simply abstracts from the individuality of events in a labeled step sequence inLEX ,
for exampleφ((e1 + e2)e3) = (a+ b)c.

Finally, π is an algorithm for the construction of a set of process nets from a step sequence. Namely,
for a step sequence all process nets generating the given step sequence are computed. It holds, for
example,π((a+ b+ c)) = {O1}, π((b+ c)a) = {O2} andπ(bac) = {O3}.

In [22], it is proven that the a-process definition given in Definition 3.10 fulfills all properties of the
semantical framework of Figure 4, left part. That means the process semantics for PTI-nets given in [22]
is in particular sound and weakly complete. But it is not complete as shown in the next theorem.

Theorem 3.1. The process semantics defined in Definition 3.10 is not complete.

Proof:
Figure 9 gives an example of a PTI-netNI and an LSOS satisfying:

(i) S is enabled w.r.t.NI (φ(ǫ(S)) ⊆ EX ): This is an easy computation using the step semanticsEX
of NI shown in Figure 8 (remember that onlycab andc(a+ b) are not inEX ).

(ii) S is not an extension of a run (S 6∈
⋃

R∈RUN ψ(R)): This can easily be verified by checking all
minimal runs ofNI (shown in Figure 8). The reason that the enabled LSOS is not extension of
a run follows from the considerations in Example 3.1 on the construction off-conditions. There
are two problems, each being sufficient to produce a contradiction. First, according to (Cond6),
it is necessary to introduce twof-conditions connecting to theb- anda-labeled events resp. the
c- anda-labeled events. Therefore, theb- anda-labeled event resp. thec- anda-labeled event
labeled event cannot be concurrent in some process net. Second, the only possibility to establish a
”not later than”-relation betweenb andc is through af-condition connecting theb- andc-labeled
event. Such a condition cannot be introduced according to (Cond5), sinceb 6⊸ c.

Altogether,S ∈ ELCS \
⋃

R∈RUN ψ(R). ⊓⊔
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Figure 9. Example contradicting the completeness of the process definition from [22].

3.4. Complete Process Semantics

In this subsection we propose a new definition of a-priori process nets for PTI-nets and show that the
resulting process semantics is complete. Formally, we change the definition ofα and thusLAN in the
semantical framework (while this also changes the setRUN all other notations remain the same). The
new definition is based on a modification of the properties (Cond5), (Cond6) and (Cond7) of Definition
3.10. Briefly, following to the arguments in the proof of Theorem 3.1, (Cond5’) allows for additional
f-conditions and according to (Cond6’) adding off-conditions is more flexible. (Cond7’) covers a
technical difficulty after modifying (Cond5) and (Cond6).

Definition 3.11. (Complete activator process)
A complete activator process(ca-process)4 of NI is anao-netAON = (B ⊎ B̃, E,R,Act, l) satisfying:

(Cond1) l(B) ⊆ P , l(E) ⊆ T andl(B̃) = {f}.

(Cond2) B̃ = {b | ∃e ∈ E : (b, e) ∈ Act}.

(Cond3) m0 = l(MINAON ∩B).

(Cond4) For all e ∈ E, •l(e) = l( •e ∩B) andl(e)• = l(e• ∩B).

(Cond5’) For all b ∈ B̃, there are uniqueg, h ∈ E such that •b ∪ b• = {g}, (b, h) ∈ Act and
l(g) ⊸ l(h) or b• = {g}, (b, h) ∈ Act and additionally•l(h) ∩ l(g)• ∩ −z 6= ∅ for somez ∈ T .

(Cond6’) For alle, f ∈ E, if f ⊸• e then there is exactly onec ∈ B̃ such thatf ⊸• e throughc.

(Cond7’) For all e ∈ E andS ∈ WSL(AON), if •e ∪ {b ∈ B̃ | (b, e) ∈ Act} ⊆ S thenl(S ∩ B) ≤
−l(e).

The set of ca-processes ofNI is denoted byα′(NI). For AON ∈ α′(NI) the generated so-structure
κ(AON) is called a run (associated toAON).

Example 3.2. Figure 10 illustrates the complete process semantics givenby ca-processes of the marked
p/t-net shown in Figure 8. Theao-netO5 is a ca-process (given byα′) but no a-process (given byα) as
explained in the context of Figure 8.

4Note that in [22] the termca-processis used for processes of a restricted class of PTI-nets, namely p/t-nets withcomplemented
inhibitor places.
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Thef-condition establishinge15 ⊸• e14 can be introduced according to (Cond5’), since•b ∩ c• ∩
−a 6= ∅.

Observe that the sliceMINAON enables the stepe15. Since{e15} is a strong but not weak con-
figuration, the occurrence ofe15 leads to the strong but not weak sliceS{e15}. S{e15} enablese13, but
l(S{e15} ∩B) does not obey the inhibitor restrictions fora (i.e. does not enablea). That means,O5 gen-
erates a labeled step sequence (namelye15e13) which defines a step sequence viaφ (namelyac) which
is not enabled, but this sequence cannot be completed bye14. Such situation is possible, because an
inhibitor restriction of a transition occurrence (the event e13 in the example) need not longer be directly
reflected by relatingf-conditions to such a transition occurrence.

Nevertheless, property (Cond7’) is satisfied, since there are considered only weak slices (in (Cond7)
strong slices are considered). Starting in the respective marking of a weak slice, all events ofAON not
occurred yet can still be executed. With (Cond7’), we only model such behavior by a process netAON,
in which every event ofAON actually occurs, i.e. the labeled step sequencee15e13 is not regarded.

The LSOK5 is the run associated toO5. Note thatK5 equalsS from Figure 9. This illustrates that
the process semantics given by Definition 3.11 is complete for the considered example PTI-netNI.

Note that the requirements (Cond1), (Cond3), (Cond4) of Definition 3.10 are preserved in Definition
3.11, and thus also ca-processes constitute a conservativegeneralization of common p/t-net processes.
Omitting thef-conditions from a ca-processAON leads to the so called underlying processUnd(AON)
of AON, which is a process ofUnd(NI).

cb

a

1

e13

e14

e15

a

b

c

e15 e13e14 ac

O5

b

R5

LAN : ELCS:

... ...

NI:

Figure 10. Completeness of the ca-process definition.

The main ideas of the modifications (in Definition 3.11 in contrast to Definition 3.10) can be deduced
from the proof of Theorem 3.1. The first observation in this proof is that, according to (Cond6), each⊸-
relation must be reflected by af-condition. Since through this requirement possibly too much causality
is added, it is weakened in (Cond6’) to the possibility of introducing a (unique)f-condition. The second
observation was that there are situations additional to (Cond5), in which the introduction off-conditions
should be possible. Considering the example shown in Figure9, this is the case, if a transition, testing
some place via an inhibitor arc, occurs concurrently to transitions consuming and producing tokens
in this place. Then these transition occurrences must eventually be ordered via af-condition. Such
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f-conditions are intended to ensure that tokens in the considered place are consumed not later than
produced in order to restrict the maximal number of tokens inthe place according to the inhibitor weight.
This is formally reflected in (Cond5’).

These modifications can lead to situations, where a strong slice enables an event, but the marking
corresponding to this slice does not obey the correspondinginhibitor restrictions (violating (Cond7), see
Example 3.2). This problem is resolved by considering only weak slices in (Cond7’) instead of strong
slices. Since each weak slice is also a strong slice, (Cond7’) weakens (Cond7). As already mentioned,
from weak slices always the sliceMAXAON can be reached. That means, starting in the respective
marking of a weak slice, all events ofAON not occurred yet can still be executed. This is not the case for
strong slices. With (Cond7’), we only model such behavior bya process netAON, in which every event
of AON actually occurs. Altogether, aca-process may generate a labeled step sequence which does not
define an enabled step sequence viaφ, but in such sequences never all events of the process can occur
(Figure 10). According to the definition ofλ such sequences do not belong toLEX .

Altogether (Cond6’) does not any more require certainf-conditions, (Cond5’) allowsf-conditions
additional to (Cond5), and (Cond7’) is only formulated for weak slices (instead of strong slices). Thus
(Cond5’), (Cond6’) and (Cond7’) are weaker requirements than (Cond5), (Cond6) and (Cond7) Conse-
quently every a-process is a ca-process, i.e.α(NI) ⊆ α′(NI).

We show the main result of the paper, stating that actually theca-process definition in general fulfills
the aim of completeness. As a preparation we need the notion of prefixes of LSOs and a specific relation
between prefixes of an LSOS and prefixes of labeled step sequences inǫ(S). Prefixes are defined by
subsets of nodes which are downward closed w.r.t. the<-relation:

Definition 3.12. (Prefix)
LetS = (V,≺,<, l) be an LSO and letV ′ ⊆ V be a set of events such thatu′ ∈ V ′, u < u′ =⇒ u ∈ V ′.
ThenV ′ defines aprefix S ′ w.r.t. S by S ′ = (V ′,≺ |V ′×V ′ ,< |V ′×V ′ , l|V ′). A prefix S ′ enabling
u ∈ V \ V ′ is a prefix w.r.t.S satisfying(v ≺ u =⇒ v ∈ V ′).

Lemma 3.1. Let V ′ define a prefixS ′ (enablingu ∈ V ) w.r.t. S. Then there exists(τ1 . . . τn, l) ∈ ǫ(S)
such thatV ′ =

⋃k
i=1 τi (andu ∈ τk+1) for somek.

Proof:
τ1 . . . τn can be constructed byτ1 = {v ∈ V ′ | ∀v′ ∈ V ′ : v′ 6≺ v}, τ2 = {v ∈ V ′ \ τ1 | ∀v′ ∈ V ′ \ τ1 :
v′ 6≺ v} and so on. In general, we defineτi ⊆ V ′ as the set of nodes{v ∈ V ′ \ (

⋃i−1
j=1 τj) | ∀v′ ∈

V ′ \ (
⋃i−1

j=1 τj) : v′ 6≺ v} which are minimal w.r.t. the restriction of≺ onto the node setV ′ \ (
⋃i−1

j=1 τj),

until V ′ \ (
⋃k

j=1 τj) = ∅ for somek.

Then we continue with the same procedure onV \ V ′ = V \ (
⋃k

j=1 τj), i.e. τk+1 = {v ∈ V \

(
⋃k

j=1 τj) | ∀v
′ ∈ V \ (

⋃k
j=1 τj) : v′ 6≺ v} and so on. By constructionV ′ =

⋃k
i=1 τi andu ∈ τk+1. ⊓⊔

Theorem 3.2. For every enabled LSOS = (E,≺,<, l) of a PTI-netNI there exists a ca-process
AON ∈ α′(NI) such thatS is an extension of the runκ(AON).

Proof:
We construct a ca-processAON, which satisfies the statement. First we defineAON. Then we prove
that AON fulfills all formulated requirements. For illustration of the proof, we provide an example in
Figure 11 and Figure 12.



G. Juhás, R. Lorenz, M. Mauser / Complete Process Semanticsof Petri Nets 23

”Construction of AON”: Since the inhibitor relationI of NI restricts the behaviour of the under-
lying p/t-netUnd(NI), it a fortiori holds thatS is enabled w.r.t.Und(NI). Note here that in a p/t-net
transitions that can be executed as one step can also be executed in arbitrary order. Furthermore, every
< \ ≺-relation between two events in the so-structureS allows the occurrence of these events in one
step. Therefore, the enabledness w.r.t. the p/t-netUnd(NI) is preserved omitting the<-relation. That
means, the LPOlpoS = (E,≺, l) underlyingS is enabled w.r.t.Und(NI). Since the enabledness notion
for so-structures applied to LPOs coincides with the usual enabledness notion for LPOs, we can use the
usual notion here.

Now we can apply the LPO-analogon to this theorem proved in [20]: SincelpoS is enabled w.r.t.
Und(NI), there exists a processUAON = (B,E,R′, l′) of Und(NI) fulfilling that lpoS sequentializes
the runκ(UAON) (for the definition of the p/t-net processUAON and the mappingκ we can use Defi-
nition 3.10 as well as the usual process definition for p/t-nets in [20], because they coincide for p/t-nets).
Note thatUAON is not unique here, but this causes no troubles.

The basic idea is now to construct anao-netAON from UAON by adding allf-conditions toUAON
which can be added according to the properties (Cond 5)’ and (Cond 6)’ and do not produce causal
dependencies contradictingS. We claim that thisao-net AON = (B ⊎ B̃, E,R,Act, l) is the desired
ca-process.

Formally, first for each pair of eventsf, e ∈ E with f ≺ e we insert af-condition intoUAON
generating this causality according to Figure 7, if this is allowed according to (Cond 5)’ and (Cond 6)’
in Definition 3.11. Analogously, for each pair of eventsf, e ∈ E with f < e we insert af-condition
to UAON generating this causality according to Figure 7, if this is allowed according to (Cond 5)’ and
(Cond 6)’ in Definition 3.11. Note that the order of addingf-conditions is irrelevant, since adding a
possiblef-condition does not prohibit another possiblef-condition in this construction. To verify this,
(Cond 6)’ has to be regarded (all other requirements for addingf-conditions are independent from other
f-conditions): The only possibility to get twof-conditions generatingf ⊸• e is f ≺ e ande < f , but
this is not possible in an so-structure. Next we prove thatAON fulfills the desired properties.

”Obvious properties of AON”: Most requirements formulated in the statement of the theorem can
easily be observed. By construction it is clear that

• AON is anao-net: We have to verify thatS(AON) is ♦-acyclic, which is obvious, sinceS is an
so-structure and consequently≺S(AON)♦ ⊆ ≺ is irreflexive.

• S extendsκ(AON).

• AON fulfills the conditions (Cond 1) - (Cond 4), (Cond 5)’ and (Cond 6)’ of Definition 3.11.

”(Cond 7)’ for AON”: It only remains to show thatAON meets condition (Cond 7)’ of Definition
3.11: Givene ∈ E andS ∈ WSL(AON) with •e ∪ {b ∈ B̃ | (b, e) ∈ Act} ⊆ S we have to show
l(S ∩B) ≤ −l(e). In the following we denoteMAR(C) = l(SC ∩ B) for a configurationC of AON.
According to [22] (see section 3) there exists a weak configurationC of AON with S = SC . Therefore,
if we show thatl(e) is enabled (w.r.t. the inhibitor relation) in the PTI-netNI after the occurrence of
the transitions corresponding to events inC, the theorem is proven. The proof for this proceeds in steps
and in each step we consider new sets of eventsCi, i ∈ {1, 2, 3}, and prove intermediate properties. We
start by showing that a set of events denoted byCpre fulfills MAR(Cpre) ≤ −l(e). Then this set will
be stepwise modified using the setsCi and we will show that the above property is preserved for the
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modified sets. The last modified set of events will equalC proving (Cond 7)’, i.e.MAR(C) ≤ −l(e).
More precisely, we will proceed as follows:

• We defineCpre and show thatl(e) is enabled in the PTI-netNI after the occurrence of the transi-
tions corresponding to events inCpre, i.e. MAR(Cpre) ≤

−l(e).

• We defineC1, C2 andC3 and showC = ((Cpre \ C1) \ C2) ∪ C3.

• We show thatCpre \ C1 fulfills MAR(Cpre \ C1) ≤
−l(e).

• We show that(Cpre \ C1) \ C2 fulfills MAR((Cpre \ C1) \ C2) ≤
−l(e).

• We show thatC = ((Cpre \ C1) \ C2) ∪ C3 fulfills MAR(((Cpre \ C1) \ C2) ∪C3) ≤
−l(e).

”Inequality MAR(Cpre) ≤
−l(e)”: We denoteC3 = {c ∈ C | e < c} (these events cannot belong

to an enabling prefix ofe in S), C0 = C \ C3 (these events will belong toCpre) andCpre = C0 ∪ {c ∈
E | ∃c′ ∈ C0, c < c′} ∪ {e′ ∈ E | e′ ≺ e}. Cpre defines an enabling prefix ofe in S which contains
a maximal number of events from the setC and is minimal with this property. By Lemma 3.1 there
is (τ1 . . . τn, l) ∈ ǫ(S) such thatCpre =

⋃k
i=1 τi and e ∈ τk+1 for somek. BecauseS is enabled,

l(τ1) . . . l(τn) represents an enabled synchronous step sequence ofNI. This implies thatl(e) is enabled
in the marking given by the sliceSCpre , i.e. MAR(Cpre) ≤

−l(e).
”Equality C = ((Cpre \ C1) \ C2) ∪ C3”: There are the following events inCpre \ C: c ∈ C1 =

{c ∈ Cpre \ C0 | c 6≺ e} andc ∈ C2 = {c ∈ Cpre \ C0 | c ≺ e} , i.e. we consider the partition
Cpre = C0⊎C1⊎C2. LetC3 equal the set of eventsC \Cpre, consequentlyC = ((Cpre\C1)\C2)∪C3.
First we consider the most complicated case of the three announced modifications ofCpre. This first
inequality is proven by means of several preliminary results.

”Inequality MAR(Cpre \ C1) ≤ −l(e)”: Recalling the definition ofCpre = C0 ∪ {c ∈ E | ∃c′ ∈
C0, c < c′} ∪ {e′ ∈ E | e′ ≺ e}, an eventc ∈ C1 ∩Cpre is obviously neither in the first setC0 nor in the
third set{e′ ∈ E | e′ ≺ e} of the respective union. Thus it is in the second one{c ∈ E | ∃c′ ∈ C0, c <

c′} meaning that there existsc′ ∈ C0 with c < c′ (andc′ 6≺ e because of (C4) in Definition 3.3). We first
show that if we omit all eventsc′ ∈ {c′ ∈ C0 | ∃c′′ ∈ C1 : c′′ < c′} additionally toC1 fromCpre we get
again a prefix enablinge. We defineCcancel = C1 ∪ {c′ ∈ C0 | ∃c′′ ∈ C1, c

′′
< c′} and prove:

”Cpre \Ccancel defines a prefix ofS enablinge”: We show first thatCpre \Ccancel defines a prefix
of S, i.e. for c′ ∈ E, c ∈ Cpre \ Ccancel, c

′
< c there holdsc′ ∈ Cpre \ Ccancel. SinceCpre defines a

prefix, we know thatc′ ∈ Cpre. Assume now thatc′ ∈ Ccancel, then according to the definition ofCcancel

there are two possibilities:

(i) c′ ∈ C1: In this case eitherc ∈ C0, which implies thatc ∈ {c′ ∈ C0 | ∃c′′ ∈ C1, c
′′ ⊆ c′} ⊆

Ccancel, or c ∈ Cpre \ C0, which implies thatc ∈ C1 ⊆ Ccancel, sincec 6≺ e. This contradicts
c /∈ Ccancel.

(ii) c′ ∈ C0 such that∃c′′ ∈ C1 : c′′ < c′: In this casec′′ < c′ < c, i.e. c′′ < c or c′′ = c (by
(C3)). The latter impliesc ∈ C1 ⊆ Ccancel contradictingc /∈ Ccancel. The casec′′ < c leads to (i)
(consideringc′′ instead ofc′), i.e. a contradiction.

This givesc′ 6∈ Ccancel and thusCpre \ Ccancel defines a prefix ofS.
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FurthermoreCpre \Ccancel even defines a prefix enablinge, i.e. {e′ ∈ E | e′ ≺ e} ⊆ Cpre \Ccancel.
This can be shown as follows: First, by definitionCpre includes{e′ ∈ E | e′ ≺ e}. Second, inn order
to showCcancel ∩ {e′ ∈ E | e′ ≺ e} = ∅, we have to verifyC1 ∩ {e′ ∈ E | e′ ≺ e} = ∅ and
{c′ ∈ C0 | ∃c′′ ∈ C1, c

′′
< c′} ∩ {e′ ∈ E | e′ ≺ e} = ∅. The statementC1 ∩ {e′ ∈ E | e′ ≺ e} = ∅

directly follows from the definition ofC1 = {c ∈ Cpre \ C0 | c 6≺ e}. Assuming that{c′ ∈ C0 | ∃c′′ ∈
C1, c

′′
< c′} ∩ {e′ ∈ E | e′ ≺ e} 6= ∅, there is an eventc′ ≺ e and an eventc′′ ∈ C1, c

′′
< c′. Then by

(C4) we havec′′ ≺ e, which contradicts the definition ofC1 = {c ∈ Cpre \ C0 | c 6≺ e}.
”Preliminary inequality MAR(Cpre \ Ccancel) ≤ −l(e)”: Of courseCpre \ Ccancel also defines

a prefix of the prefix defined byCpre. Consequently, without loss of generality, by Lemma 3.1 we can
assume thatCpre \ Ccancel =

⋃i
j=1 τj for somei ≤ k (the above requirements for(τ1 . . . τn, l) allow

choosing such(τ1 . . . τn, l)) and l(e) is enabled after the occurrence ofl(τ1) . . . l(τi) (as well as after
l(τ1) . . . l(τk) as explained above). As forCpre, this implies thatl(e) is enabled in the marking given by
the sliceSCpre\Ccancel

, i.e. MAR(Cpre \ Ccancel) ≤
−l(e).

”Cpre \ C1 is a weak configuration”: Since we are interested inCpre \ C1, we first verify that
Cpre \ C1 is a weak configuration ofAON (it need not define a prefix ofS). SinceCpre defines a prefix
of S andS extendsκ(AON), it is a weak configuration ofAON. Assuming thatCpre \ C1 is no weak
configuration, there isc′ ∈ C1, c ∈ Cpre \C1, such that the relationc′ ≺loc c or c′ <loc c is generated by
some condition inAON (according to Figure 7). We distinguish two possibilities:Eitherc ∈ C, then by
definition of weak configurations, we havec′ ∈ C (C is a weak configuration). This is a contradiction,
becauseC ∩ C1 = ∅. Or c /∈ C, thenc ∈ C2, i.e. c ≺ e. By (C4) we havec′ ≺ e contradicting the
definition ofC1.

”Inhibitor constraint MAR(Cpre \C1) ≤
−l(e)”: Now we check whether the inhibitor constraints

of l(e) are respected in the marking resulting from the execution ofthe events inCpre \ C1. Assume the
opposite: Letp ∈ P with MAR(Cpre \ C1)(p) >

−l(e)(p). We know thatMAR(Cpre)(p) ≤
−l(e)(p)

andMAR(Cpre \ Ccancel)(p) ≤ −l(e)(p). There must be a transitionl(c) corresponding to an event
c ∈ C1, that consumes tokens fromp, sinceMAR(Cpre \ C1)(p) > −l(e)(p) > MAR(Cpre)(p).
Similarly, there must be a transitionl(c) corresponding to an eventc ∈ Ccancel \ C1, that produces
tokens inp, sinceMAR(Cpre \ Ccancel)(p) 6 −l(e)(p) < MAR(Cpre \ C1)(p). Thus the setsCp

1 =
{c ∈ C1 | W (l(c), p) < W (p, l(c))} andCp

c = {c ∈ Ccancel \ C1 | W (l(c), p) > W (p, l(c))} are not
empty. Now we distinguish two cases:

(i) ∃c′ ∈ Cp
1 ,∃c ∈ Cp

c : c′ < c: In this case, by construction there exist af-condition inAON with a
read arc toc′ and a flow arc toc, because thisf-condition matches the requirements of (Cond 5)’
in Definition 3.11 and reflects thec′ < c relation. Sincec ∈ Ccancel \ C1 ⊆ C0 ⊆ C andc′ 6∈ C
(c′ ∈ C1 andC1 ∩C = ∅), this is a contradiction to the definition of weak configurations.

(ii) ∀c′ ∈ Cp
1 ,∀c ∈ Cp

c : c′ 6< c: In this case we claim thatX = (Cpre \ Ccancel) ∪ Cp
c ∪ {c′ ∈

Ccancel | ∃c ∈ Cp
c , c′ < c} is an enabling prefix ofe w.r.t. S with MAR(X)(p) > −l(e)(p) –

what is a contradiction to the enabledness ofS.

Clearly{e′ ∈ E | e′ ≺ e} ⊆ X becauseCpre\Ccancel ⊆ X. Moreover,X is <-downward closed:
For an eventc′ < c, c ∈ Cp

c (which is in<-relation to an eventc ∈ Cp
c ) there are two cases.

Eitherc′ ∈ Ccancel, thenc′ ∈ {c′ ∈ Ccancel | ∃c ∈ Cp
c , c′ < c} ⊆ X;

Or c′ /∈ Ccancel, thenc′ ∈ Cpre \ Ccancel ⊆ X, since by definition ofCp
c andCcancel, we have

c ∈ C0 ⊆ Cpre andCpre is a prefix ofS (which impliesc′ ∈ Cpre).
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Thus,X is an enabling prefix ofe in S. SinceX ∩ Cp
1 = ∅ we finally computeMAR(X)(p) ≥

MAR((X \C1)∪(Ccancel\C1))(p) = MAR(Cpre\C1)(p) >
−l(e)(p). Here, the first≥-relation

in this inequation follows, sinceX does not contain any events ofCp
1 , and therefore by erasing

C1 from X no events consuming tokens inp are erased; similarly, sinceX already contains all
Cp

c -events, by addingCcancel \ C1 no events producing tokens inp are added.

Altogether the assumption has lead to a contradiction and thus it holdsMAR(Cpre \C1) ≤
−l(e). Now

we prove the remaining two inequalities:
”Inequality MAR((Cpre \C1) \ C2) ≤

−l(e)”: We again first show that(Cpre \ C1) \C2 = C0 is
a weak configuration. SinceCpre \ C1 is a weak configuration, if we assume thatC0 is not, then there
is c′ ∈ C2, c ∈ C0 such that the relationc′ ≺loc c or c′ <loc c is generated by some condition inAON
(according to Figure 7). Sincec ∈ C, by definition of weak configurations, we havec′ ∈ C (C is a weak
configuration). This is a contradiction, becauseC ∩ C2 = ∅.

Let c ∈ C2. Sincec 6∈ C there cannot exist af-condition with a read arc toe and an ingoing flow
arc fromc (otherwise thisf-condition is in the weak sliceS according to the preliminaries of (Cond 7)’
of Definition 3.11 and thereforec is in the weak configurationC). This impliesl(c) 6⊸ l(e) (otherwise
af-condition as described above is present by construction).Consequently, the transitionsl(c), c ∈ C2

do not produce or consume tokens in places with−l(e) <∞ and consequently can be omitted from the
inequationMAR(Cpre \ C1) ≤

−l(e) preserving the≤-relation:MAR((Cpre \ C1) \ C2) ≤
−l(e).

”Inequality MAR(((Cpre\C1)\C2)∪C3) ≤
−l(e)”: By construction((Cpre\C1)\C2)∪C3 = C

is a weak configuration.
Let c ∈ C3. Thene < c but sincec ∈ C ande 6∈ C there is nof-condition having a read arc to

e and a flow arc toc. Thusl(c) 6⊸ l(e), otherwise such af-condition exists by construction ofAON.
Consequently, as in the case ofC2, C3 has no relevance for the marking of places with−l(e) < ∞ and
can therefore be added in the inequation as follows:MAR(((Cpre \ C1) \ C2) ∪ C3) ≤

−l(e). ⊓⊔

a d

b e

c f

e2 e5b e

e1 e4a d

e3 e6c f

Figure 11. Left: Example PTI-netNI (place names are neglected). Right: Example LSOS enabled w.r.t.NI.

Example 3.3. The following example illustrates the proof of Theorem 3.2.Considering the netNI
on the left of Figure 11 and the enabled LSOS shown on the right of Figure 11, the ca-processAON
constructed according to this proof is depicted in Figure 12.

In the unique maximal process netUAON of the underlying p/t-netUnd(NI), all transition occur-
rences are concurrent. For each of the ”earlier than”- and ”not later than”-relations between events in
S, af-condition is introduced, if this is possible according to (Cond 5)’ and (Cond 6)’. For example, a
f-condition establishese3 ”earlier than”e6. This f-condition can be added sincec ⊸ f . Note that it
is not possible to add af-condition producinge1 ”not later than”e3 since the transitionsa andc are not
related via inhibitor arcs.
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a d

b e

c f

e2 e5

e1 e4

e3 e6

Figure 12. Ca-processAON constructed according to the proof of Theorem 3.2 from the LSOS shown in Figure
11 (labels of the conditions are neglected).

To illustrate the main part of the proof, the verification of condition (Cond 7)’, we consider the weak
sliceS given by the grey conditions and the evente5 labeled bye. The respective weak configuration
C = {e2, e3, e6} comprises the grey events. For this example, the sets of events considered in the proof
areC0 = {e2, e3}, C1 = {e1}, C2 = {e4}, Cpre = C0 ⊎ C1 ⊎ C2 = {e1, e2, e3, e4}, C3 = {e6} and
Ccancel = {e1, e3}.

3.5. The Whole Framework

The last theorem showed that the newly developed process semantics for PTI-nets defined in Definition
3.11 is complete. In the following we briefly explain that theother properties of the presented semantical
framework are still fulfilled by the new process definition (see Figure 4). Therefore, this definition is an
adequate generalization of Definition 3.10.

3.5.1. Runs Are Reconstructible from Step Sequences

Each run is the intersection of all observations it generates, i.e. ι ◦ ǫ reconstructs a run. This relation
holds because of the generalization of Szpilrajn’s theoremto so-structures as described in Subsection 3.2
(note that in this context nothing is changed with respect to[22]).

3.5.2. Weak Completeness

Any executionσ ∈ EX = ω(NI) of a PTI-netNI is generated from a ca-process, i.e. there exists a
ca-processAON ∈ α′(NI) with σ ∈ φ(λ(AON)) (ω(NI) ⊆

⋃
AON∈α′(NI) φ(λ(AON))). This holds

for ca-processes, because the aim of completeness is a generalization of the weak completeness property
as already mentioned.

3.5.3. Consistency of Runs and Processes

Consistency of runs and processes requires that processes and runs generate the same labeled step se-
quences, i.e. ifAON ∈ α′(NI), thenǫ(κ(AON)) = λ(AON) (that means the rules for constructing
causal relationships between events from processes as shown in Figure 7 are correct). This relation holds
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for ca-processes, because in Proposition 5.19 of [22]ǫ(κ(AON)) = λ(AON) was shown for arbitrary
ao-netsAON. Note here that the construction rules of the involved mappingsλ, κ andǫ have not changed
with respect to [22], only the process definition constituting the starting point of this relation is changed.

3.5.4. Soundness

According to Proposition 5.19 of [22] (Subsection 3.5.1), to showφ(ǫ(κ(AON))) ⊆ ω(NI) for all
AON ∈ α′(NI), it suffices to prove thatφ(λ(AON)) ⊆ ω(NI) for AON ∈ α′(NI). Recalling
the definition ofλ(AON) in Definition 3.9, this relation is clear by (Cond3), (Cond4)and (Cond7’) of
Definition 3.11: (Cond3) and (Cond4) ensure thatσ ∈ φ(λ(AON)) is enabled inUnd(NI) and (Cond7’)
guarantees thatσ respects the inhibitor constraints ofNI. This shows that every run ofNI is enabled
w.r.t.NI.

3.5.5. Construction of Processes from Step Sequences

There is no obvious way to generalize the constructive definition of π from [22] (a-processes) to ca-
processes, because especially the new requirement (Cond6’) of Definition 3.11 is problematic: Now it
is no more mandatory but optional to introducef-conditions between certain transitions (the transition
candidates can be identified with (Cond5’)) and one has to check whether (Cond7’) holds ((Cond7)
holds by construction). There is the following constructive process definition that is based directly on
the axiomatic definition. Given an enabled step sequenceσ = U1 . . . Un of NI, a ca-processesAON =
(B ⊎ B̃, E,R,Act, l) of NI can be generated fromσ, such thatσ ∈ φ(λ(AON)), as follows:

(I) Construct a usual p/t-net processUAON = (B,E,R, l) of Und(NI) (based on an occurrence
net) starting fromσ = U1 . . . Un (e.g. as shown in Definition 6.2 in [22]), such thatE =
E1

⊎
. . .

⊎
En, Σ = (E1 . . . En, l) is a labeled step sequence generated byUAON andl(Ei) = Ui

for i ∈ {1, . . . , n}, i.e.σ ∈ φ(λ(UAON)). Initialize B̃ = ∅ andAct = ∅.

(II) Initialize two relations≺f

UAON= {(e, f) ∈ E × E | e ∈ Ei, f ∈ Ej , i < j ∧ l(e) ⊸ l(f)} and
<

f

UAON= {(e, f) ∈ E × E | e ∈ Ei, f ∈ Ej , i ≤ j ∧ (l(f) ⊸ l(e) ∨ (∃z ∈ T : •l(e) ∩ l(f)• ∩
−z 6= ∅))} (depending onUAON) specifying possiblef-labeled conditions in accordance with
(Cond5’) and (Cond6’) of Definition 3.11 andΣ (not contradicting the causal relations given by
Σ).

(III) Choose arbitrary subsets≺f⊆≺f

UAON and<
f⊆<

f

UAON.

(IV) Introducef-labeled conditions corresponding to≺f and<
f to AON as follows: For(e, f) ∈≺f

create exactly one conditionb ∈ B̃, setl(b) = f and add two arcs(e, b) ∈ R and(b, f) ∈ Act.
For (e, f) ∈<

f create exactly one conditionb ∈ B̃, setl(b) = f and add two arcs(b, e) ∈ Act
and (b, f) ∈ R. Delete the considered subsets≺f respectively<f from the relations≺f

UAON

respectively<f

UAON: ≺f

UAON becomes≺f

UAON \ ≺f and<
f

UAON becomes<f

UAON \ <
f.

(V) If ≺f

UAON=<
f

UAON= ∅ the construction is finished andAON is returned, else (Cond7’) of Defi-
nition 3.11 is checked forAON. If AON fulfils (Cond7’) the construction is finished andAON is
returned, else the next step is performed.
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(VI) Choose arbitrary subsets≺f⊆≺f

UAON and <
f⊆<

f

UAON, such that≺f6= ∅ or <
f6= ∅. Then

proceed with step (IV).

Note that this algorithm is non-deterministic. First the construction ofUAON in step (I) (UAON
is not unique) as well as the choice ofΣ = (E1 . . . En, l) are non-deterministic. Second choosing
subsets of possiblef-labeled conditions in step (III) and step (VI) is non-deterministic. Nevertheless the
algorithm always terminates in finite time, since step (I) terminates [22], and the sets≺f

UAON⊆ E × E
and<

f

UAON⊆ E × E specifying possiblef-labeled conditions are finite. It remains to be shown that
the computed netAON is actually a ca-process, independently from the choices inthe non-deterministic
algorithm. There are two termination criteria in step (V):

(1) ≺f

UAON=<
f

UAON= ∅.

(2) AON fulfils (Cond7’).

For both, we have to prove that the resulting netAON = (B ⊎ B̃, E,R,Act, l) is a ca-process ofNI.

Lemma 3.2. AON ∈ α′(NI) = LAN for the netAON constructed with the above algorithm.

Proof:
First we have to show thatAON is anao-net. The only defining property ofao-nets, which is not
obvious, is thatS(AON) = (E,≺loc, <loc, l|E) is ♦-acyclic. This follows by construction from
(e≺locf =⇒ e ∈ Ei, f ∈ Ej , i < j) and (e<locf =⇒ e ∈ Ei, f ∈ Ej , i ≤ j).

SinceUAON is a process net ofUnd(NI), by construction (Cond1), (Cond2), (Cond3) and (Cond4)
in Definition 3.11 are satisfied byAON (compare Definition 6.2 in [22]). The definition of≺f

UAON and
<

f

UAON guarantees (Cond5’) in Definition 3.11.
To prove the uniqueness in (Cond6’) (”exactly one”), assumethat there are twof-labeled conditions

c, c′ ∈ B̃ such thatf ⊸• e throughc andc′. The only possibility for this is thatc is introduced cor-
responding to(f, e) ∈≺f

UAON andc′ is introduced corresponding to(e, f) ∈<
f

UAON. In this case the
definition of≺f

UAON and<
f

UAON implies thate ∈ Ei andf ∈ Ej for j < i ∧ i ≤ j. A contradiction.
Concerning the termination criterion (2), it is obvious that AON fulfills (Cond7’) in Definition 3.11.

ForAON = (B ⊎ B̃, E,R,Act, l) resulting from the algorithm terminating with criterion (1), property
(Cond7’) can be proven as shown in the proof of Proposition 9.4 in [22]: Givene ∈ E, S ∈ WSL(AON),
such that•e ∪ {b ∈ B̃ | (b, e) ∈ Act} ⊆ S, we have to showl(S ∩ B) ≤ −l(e). Let e ∈ Ei.
By constructionC = E1 ∪ . . . ∪ Ei−1 is a weak configuration defining a weak sliceSC . Sinceσ is
enabled inNI, we getl(SC ∩B) ≤ −l(e) (use (Cond4) in Definition 3.11). Thus it is enough to show
l(S ∩ B)(p) ≤ l(SC ∩ B)(p) for all p ∈ P fulfilling −l(e)(p) < ∞. If we assume the opposite, then
there isb ∈ S \SC andp ∈ P fulfilling −l(e)(p) <∞ andl(b) = p. We distinguish the following cases
each leading to a contradiction:

(i) •b = b• = ∅: This impliesb ∈ SC .

(ii) ∃f ∈ Ej , j < i : b• = {f}: This impliesl(f) ⊸ l(e). That means(f, e) ∈≺f

UAON. Therefore,
there existsc with •c = {f} such thatf ⊸• e throughc. It follows c ∈ S, i.e. b /∈ S.

(iii) ∃f ∈ Ej , j ≥ i : •b = {f}: This impliesl(f) ⊸ l(e), i.e. (e, f) ∈<
f

UAON. Therefore, there
existsc with c• = {f} such thatf ⊸• e throughc. It follows c ∈ S, i.e. b /∈ S.
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(iv) ( •b = ∅) ∧ (∃f ∈ Ej, j ≥ i : b• = {f}): This impliesb ∈ SC .

(v) (∃f ∈ Ej, j < i : •b = {f}) ∧ (b• = ∅): This impliesb ∈ SC .

(vi) ∃f ∈ Ej , g ∈ Ek, j < i ≤ k : •b = {f} ∧ b• = {g}: This impliesb ∈ SC .
⊓⊔

Denote the set of ca-processes constructible with the presented (non-deterministic) algorithm from
an enabled step sequenceσ = U1 . . . Un of NI by π′(σ). The processes inπ′(σ) are exactly the ca-
processes ofNI havingσ (provided with respective labels) as an execution. This finally shows the aim
of the construction of processes from step sequences.

Lemma 3.3. π′(σ) = {AON ∈ LAN | σ ∈ φ(λ(AON))}.

Proof:
Let σ = U1 . . . Un. We first proveπ′(σ) ⊆ {AON ∈ LAN | σ ∈ φ(λ(AON))}. We already showed
π′(σ) ⊆ LAN = α′(NI). It remains to showσ ∈ φ(λ(AON)) for AON ∈ π′(σ). For this it is enough
to show that (in the notation given in step (I)) the labeled step sequenceΣ = (E1 . . . En, l) is generated
by AON, i.e. Σ ∈ λ(AON). This is guaranteed byΣ ∈ λ(UAON) and the definition of≺f

UAON and
<

f

UAON.
Second we proveπ′(σ) ⊇ {AON ∈ LAN | σ ∈ φ(λ(AON))}. LetAON = (B⊎B̃, E,R,Act, l) ∈

LAN fulfill σ ∈ φ(λ(AON)) and letΣ = (E1 . . . En, l) be a labeled step sequence generated by
AON and l(Ei) = Ui for i ∈ {1, . . . , n}, E = E1

⊎
. . .

⊎
En. SinceΣ is also generated by the

processUnd(AON) underlyingAON, there is a non-deterministic choice in step (I) leading toUAON =
Und(AON) and the labeled step sequenceΣ. All f-labeled conditions̃B in AON are in accordance
with (Cond5’) and (Cond6’) of Definition 3.11 andΣ. ThusB̃ corresponds to two subsets≺f⊆≺f

UAON

and<
f⊆<

f

UAON in the sense that choosing non-deterministically≺f and<
f in step (III), the set of

f-labeled conditions introduced in step (IV) coincides withB̃. Therefore, there is a non-deterministic
choice in step (III) leading toAON in step (IV). SinceAON fulfills (Cond7’), AON is returned as the
constructed ca-process in step (V), i.e.AON ∈ π′(σ). ⊓⊔

With the presented construction algorithm the requirements interrelated with the mappingπ in the
semantical framework of Figure 4 are fulfilled for ca-processes in a similar manner as for a-processes or
processes of p/t-nets. In these two casesπ is also defined by a non-deterministic algorithm constructing
process nets [22]. Although it is not explicitly mentioned in the semantical framework, the performance
of such a construction algorithm is important for the practical applicability of a process definition. In our
case, the number of possiblef-conditions specified by≺f

UAON and<
f

UAON is at most quadratic in the
number of eventsE, which means that the number of repetitions of the steps (IV)– (VI) of the algorithm
is polynomial. As shown in [22], step (I) of the algorithm runs in linear time. Thus, only checking
(Cond7’) in step (V) may be not efficient, since there exists an exponential number of (weak) slices in
the number of events. But current research results on a similar topic summarized in [24] show that there
exists an algorithm polynomial in time solving this problem. In [24] we present a polynomial algorithm
(based on flow theory) which tests whether an LSO is enabled w.r.t. a given PTI-net. Ifn denotes the
number of nodes of the considered LSO, this algorithm runs inO(n3) time. According to the following
lemma, we can apply this algorithm in step (V).
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Lemma 3.4. AON fulfills (Cond7’) if and only if the LSOκ(AON) is enabled.

Proof:
Let κ(AON) be enabled, letS be a weak slice and lete be a node with•e ∪ {b ∈ B̃ | (b, e) ∈ Act} ⊆
S. Let C be the weak configuration withS = SC , i.e let S represent the marking reached after the
occurrence of all transitions corresponding toC. There is a labeled step sequenceΣ = (E1 . . . En, l) ∈
ǫ(κ(AON)) such thatC = E1 ∪ . . . ∪Ek ande ∈ Ek+1 for somek. Sinceκ(AON) is enabled, the step
sequencel(E1) . . . l(En) is an enabled step occurrence sequence. Since the marking reached after the
occurrence of the prefixl(E1) . . . l(Ek) equalsl(S ∩B) and enablesl(Ek+1), we getl(S ∩B) ≤ −l(e).

Let l(S ∩ B) ≤ −l(e) for all weak slicesS and all eventse with •e ∪ {b ∈ B̃ | (b, e) ∈ Act} ⊆ S
and letΣ = (E1 . . . En, l) ∈ ǫ(κ(AON)). Assume that, for somek > 0, the prefixl(E1) . . . l(Ek) is
an enabled step occurrence sequence (fork = 0 the prefix is empty). The setCk = E1 ∪ . . . ∪ Ek is
a weak configuration ofAON. For anye ∈ Ek+1 there holds•e ∪ {b ∈ B̃ | (b, e) ∈ Act} ⊆ SCk

.
Sincel(SCk

∩B) ≤ −l(e) for all suche, alsol(E1) . . . l(Ek+1) is an enabled step occurrence sequence
(this argumentation also holds for the empty prefix and the initial weak configurationMIN(AON)). We
deduce thatκ(AON) is enabled. ⊓⊔

Altogether, we can check (Cond7’) forAON through checking enabledness ofκ(AON) in poly-
nomial time. Therefore, the whole presented algorithm has apolynomial time consumption. More
precisely, each deterministic execution of the non-deterministic algorithm returns in polynomial time a
ca-process ofNI having a given step sequencesσ as an execution. Moreover, each such ca-process
of NI is constructed by some deterministic execution of the algorithm. There may be exponentially
many possible deterministic executions of the non-deterministic algorithm. This is also the case for the
non-deterministic construction algorithms for a-processes and processes of p/t-nets. But one determin-
istic execution in these cases constructs a process in linear time [22]. The linear time bound is reached
through certain structural properties in the process definitions. For example in the non-deterministic al-
gorithm constructing a-processes, (Cond7) of Definition 3.10 is fulfilled by construction, since all in an
appropriate sense possiblef-labeled conditions are required by (Cond6) of Definition 3.10. Since the
ca-process definition is more complex than the a-process definition, it seems very difficult to exploit sim-
ilar structural properties to get an algorithm constructing ca-processes in linear time. This is a topic of
further research. Nevertheless it is possible to apply the construction algorithm for a-processes presented
in [22] to construct certain ca-processes, since every a-process is a ca-process.
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4. Other Net Classes

In the last part of this paper we shortly discuss several other existing process definitions for Petri nets
in the context of the semantical framework of Figure 4, wherethe considered list of Petri net classes
and process definitions is not exhaustive. In particular we focus on the new completeness requirement,
which turns out to be fulfilled by many of the existing acknowledged process semantics. This is a further
justification that the developed framework including the completeness aim is reasonable.

Note that there are two different step semantics of Petri nets, one based on concurrent steps and one
based on synchronous steps. For example, step semantics of p/t-nets is defined through concurrent steps
and step semantics of PTI-nets is defined through synchronous steps in this paper. As already mentioned,
the term of enabled LPOs can be equivalently defined through concurrent steps and through synchronous
steps. As discussed in [17], enabled LSOs can be equivalently defined through synchronous steps or
concurrent steps of synchronous steps. Altogether, the semantical framework does not depend on the
considered step semantics.

4.1. P/t-nets

As already mentioned in the introduction, it is well known that the classical Goltz-Reisig processes
[9, 10] for p/t-nets fulfill all requirements of the semantical framework in Figure 4. All aims of the
framework except for the completeness aim can easily be shown (see e.g. [20, 34, 35]). Whether the
Goltz-Reisig process definition is complete or not was unknown for several years. In [20], completeness
was finally shown for Goltz-Reisig processes. As mentioned in [34], the proof in [20] is quite compli-
cated. In [34, 35] an alternative proof based on a version of the marriage theorem from graph theory is
presented. In [15] a third variant of the proof is shown. Thisself contained variant is based on the so
called token flow property.

4.2. Elementary Nets with Extensions

Concerning process definitions of elementary nets, as defined e.g. in [30], and extensions of elementary
nets by context arcs [26, 12], the completeness aim is the most complicated aim of the framework. The
other aims of the semantical framework are either straightforward observations or proven in the respective
papers [30, 26, 12]. Our considerations about algebraic nets in [5, 6, 15, 16] prove the completeness
of processes of elementary nets [5, 15], of elementary nets with inhibitor arcs, read arcs and mixed
context each equipped with the so called a-posteriori semantics [6, 15], as well as of elementary nets
with inhibitor arcs equipped with the a-priori semantics [15, 16]. Namely, in these papers we deduce
causal semantics from algebraic semantics. By construction, this causal semantics is exactly the set of
enabled causal structures of a given net. As a main result, weshow that the set of minimally enabled
causal structures equals the set of minimal runs as defined in[30, 26, 12].

4.3. P/t-nets with Capacities

An extension of p/t-nets are capacities restricting the maximal number of tokens in places. Basically
there are two different interpretations of capacities, theso called weak and the so called strong capacities
as discussed in [7, 15]. In [7] it is shown, that given a p/t netwith capacities with an initial marking,
both for the strong and weak enabling rule there exists a transformation into a marked p/t-net with the
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same number of transitions, such that the step sequences of the net with capacities and the transformed
net without capacities are equal. For strong capacities, the transformation is analogous to the mentioned
concept of complementation, while for weak capacities the transformation is more complicated. The
processes and runs of the transformed net provide then the causal semantics of the p/t-net with capacities.
Since the transformed net has equal step semantics as the original net, the relationships between enabled
LPOs and runs of a p/t-net without capacities hold also for p/t-nets with capacities. That means p/t-nets
with capacities fulfill the presented semantical frameworkincluding the completeness aim. Note here
that the weak capacity semantics can be generalized by considering LSOs instead of LPOs. For this
semantics no process definition exists.

4.4. P/t-nets with Inhibitor Arcs

For an inhibitor net class, which is a special case of the class of PTI-nets, the ca-process definition of this
paper provides a sound and complete process semantics. But often there are more simple process defi-
nitions for such sub-classes: In [21, 22] the technique of complementation, used to define processes of
elementary nets with inhibitor arcs in [12], is extended to define processes of bounded p/t-nets with un-
weighted inhibitor arcs (a-priori semantics) [21] as well as processes of complemented PTI-nets (a-priori
semantics), where every place already has a unique complement place [22]. All aims of the semantical
framework of [22] are shown in the respective papers. Since the general idea of generating causali-
ties is the same as in the elementary net case, we assume that these process definitions also fulfill the
completeness aim.

While the technique of complementation is very useful for elementary nets and bounded nets, it
cannot be applied to unbounded p/t-nets with inhibitor arcs. Firstly we consider unweighted inhibitor
arcs. Here we have a process definition in [2, 3, 4] for the a-posteriori case and in [21] for the a-priori
case. The a-priori process definition in [21] is based on so called z-conditions, which lead to non-standard
occurrence nets with branching conditions. For this definition all aims of the semantical framework of
[22] are proven. Completeness, postulating that the processes can model minimal causalities, seems to
be also valid, since the z-conditions directly model the dependencies arising from inhibitor arcs. More
precisely, a z-conditions is an explicit ”record” that a place is empty. An inhibitor test is then modeled
by a read arc to the respective event from the most recent record of the respective inhibitor place being
empty. This technique benefits from the fact that, if an inhibitor place is empty, modeled by a z-condition,
then some transition producing tokens in the inhibitor place has to occur earlier than some transition
consuming tokens in the place. Since this cannot directly betransferred from zero-testing to weighted
inhibitor arcs, the technique of z-conditions is not used for PTI-nets. Therefore in [22] the a-process
semantics (of Definition 3.10) was introduced for this case.We have already copiously discussed that
these processes fulfill the presented semantical frameworkexcept for the completeness aim. It is shown
in [22] that for a restricted net class of the so called PTDI-nets, including standard unweighted inhibitor
nets, the a-processes definition meets the completeness aim. In [2, 3, 4] process and causal semantics
are introduced for so called contextual p/t-nets, extending p/t-nets by read arcs and unweighted inhibitor
arcs, w.r.t. the a-posteriori case. The definition of processes is based on so called enriched occurrence
nets, which contain read arcs and two types of inhibitor arcsproducing different causal relations between
events. The different inhibitor arcs distinguish the case,when an event, testing a condition via an inhibitor
arc, occurs after an event consuming this condition, from the case, when an event, testing a condition
via an inhibitor arc, occurs before an event producing this condition. The relation of process semantics,
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causal semantics and step semantics is studied in [3, 4]. There it is shown that the presented process
semantics is sound and weakly complete and how process nets can be constructed from step sequences.
Also completeness seems to be valid: From the nature of unweighted inhibitor arcs it is necessary to
introduce either an after- or an before-relation between events as described above, i.e. the causalities
introduced in process nets cannot be omitted.

4.5. P/t-nets with Read Arcs

A concept, which is very similar to inhibitor arcs are read arcs. While inhibitor arcs test for the absence
of tokens, read arcs test for the presence of tokens in places. Most of the approaches sketched in the
last paragraph for inhibitor nets are also developed for or can be carried over to read arcs. In particular
one also distinguishes between a-priori and a-posteriori process semantics. For safe nets with read arcs,
in [36] an additional intermediate process semantics is considered. This semantics regards time inter-
vals. The causal relationships are based on special causal structures, so called spc-structures. For these
structures there is not yet introduced a notion of enabledness and therefore completeness is of course not
examined yet (but some requirements of the presented semantical framework are checked in [36]).

4.6. High-level Petri Nets

Lastly, it is interesting to discuss the presented framework for high level Petri nets. There are several
process semantics for various variants of high-level nets such as basic high-level nets [31], coloured
Petri nets [23, 13] or M-nets [19]. Mostly the high-level process semantics is analogous to the process
semantics given by the expansion of the high-level net to a low-level p/t-net. In this case, the results
for processes of p/t-nets carry over to high-level nets, i.e. the high-level process definition fulfills the
presented semantical framework. But as mentioned in [19, 23] one has to pay attention here, that in the
case the colour (or element) set of the high-level net is infinite, the p/t-net expansion is infinite. In [33] a
process definition of the special high-level net class of object nets is given.
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5. Conclusion

In this paper we have developed a general semantical framework that supports the definition of process
semantics and respective causal semantics for arbitrary Petri net classes. The framework is based on the
semantical framework from [22] additionally requiring that process semantics should be complete w.r.t.
step semantics: Each causal structure which is consistent to step semantics – such causal structures we
call enabled – should be generated from a process net. Since for the description of causal net behavior
of PTI-nets under the a-priori semantics labeled so-structures are applied, the notion of enabled so-
structures has been introduced. We were able to show that theprocess definition for PTI-nets from [22]
is not complete w.r.t. step semantics and to identify a structural generalization of this process definition
which is complete (while still satisfying all the other requirements of the framework of [22]).

Possible further applications of the results of this paper are on the one hand the usage of the seman-
tical framework on further Petri net classes in order to check existing process semantics and to evolve
new process semantics. Concerning existing process semantics of Petri net classes, the considerations in
the last section indicate that most aims of [22] are checked for the bigger part of the process definitions.
Moreover, a lot of existing process semantics seem to satisfy the aim of completeness and at least for
some process definitions there are formal proofs. On the other hand, the ca-processes of this paper con-
stitute a process definition for PTI-nets under the a-priorisemantics expressing minimal causalities and
can thus be useful e.g. as a first step to model checking algorithms based on unfoldings of PTI-nets.
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