Fundamenta Informaticae XX (2008) 1-32 1
10S Press

Synthesis of Petri Nets from Finite Partial Languages

Robin Bergenthum, Jorg Desel, Robert Lorenz, Sebastian Mauser
Department of Applied Computer Science

Catholic University of Eichstdtt-Ingolstadt

85072 Eichstdtt, Germany

firstname.lastname @ ku-eichstaett.de

Abstract. In this paper we present two algorithms that effectively synthesize a finite place/transition
Petri net (p/t-net) from a finite set of labeled partial orders (a finite partial language). The synthesized
p/t-net either has exactly the non-sequential behavior specified by the partial language, or there is no
such p/t-net.

The first algorithm is based on the theory of foken flow regions for partial languages developed by
Lorenz and Juhds. Thus, this paper shows the applicability of this concept. The second algorithm
uses the classical theory of regions applied to the set of step sequences generated by the given partial
language. We finally develop an algorithm to test whether the net synthesized by either of the two
algorithms has exactly the non-sequential behavior specified by the partial language.

We implemented all algorithms in our framework VipTool. In this paper, the implementations of the
first two algorithms are used to compare the algorithms by means of experimental results.

1. Introduction

Synthesis of Petri nets from behavioral descriptions has been a successful line of research since the 1990s.
There is a rich body of nontrivial theoretical results, and there are important applications in industry, in
particular in hardware system design [8, 18], and recently also in workflow design [2]. Moreover, there
are several synthesis tools that are based on the theoretical results. The most prominent one is Petrify
[7].

Originally, synthesis meant algorithmic construction of an unlabeled Petri net from sequential ob-
servations. It can be applied to various classes of Petri nets, including elementary nets [14, 15, 12]
and place/transition nets (p/t-nets) [3, 4]. Synthesis can start with a transition system representing the
sequential behavior of a system or with a step transition system which additionally represents steps of
concurrent events [3]. Synthesis can also be based on a language (a set of occurrence sequences or step
sequences [9]). The synthesis problem is to decide whether, for a given behavioral specification, there

exists an unlabeled Petri net of the respective class such that the behavior of this net coincides with the
specified behavior.

Up to now, the synthesis problem was only studied for sequential specifications and for specifications
based on concurrent steps. The aim of this paper is to solve the synthesis problem for p/t-nets where the
behavior is given in terms of a finite partial language L, i.e. as a finite set of labeled partial orders (LPOs
— also known as partial words [16] or pomsets [26]). Partial order behavior of Petri nets truly represents
the concurrency of events and is often considered the most appropriate representation of behavior of Petri
net models. Moreover, we provide according synthesis algorithms. For typical applications of language
based Petri net synthesis (e.g. process mining [1], business process design [10], software synthesis
(UML)) the consideration of finite sets of LPOs is sufficient.

We start with a finite set of partially ordered sets of events together with a labeling function asso-
ciating a transition to each event. Thus, a single possible run (of the unknown p/t-net) is represented
by an LPO of events. The ordering relation defines a possible ordering of the transition occurrences: if
events e and ¢’ are ordered (e < €’), and if moreover e is labeled by ¢ and ¢’ is labeled by #/, then in this
run ¢ can occur before ¢'. It might be the case that ¢’ becomes enabled by the occurrence of ¢ and hence
both occurrences are causally dependent. However, in contrast to occurrence net semantics, we do not
demand causal dependency between the transition occurrences. If two events e and ¢’ are not ordered
(neither e < €’ nor ¢’ < e), then the respective transitions occur concurrently. We call an LPO enabled
w.r.t. a given p/t-net if it represents a possible order (in the above sense) of transition occurrences of this
p/t-net.

As in previous synthesis approaches, we apply the so called theory of regions. Since regions are
concepts defined for the behavioral specification, we will define regions for LPOs.

All approaches to Petri net synthesis based on regions roughly follow the same idea:

e Instead of solving the synthesis problem (is there a net with the specified behavior?) and then — in
the positive case — synthesizing the net, first a net is constructed from the given specification.

e The construction starts with the transitions taken from the behavioral specification.

e Since this net has too much concurrency, its behavior will be restricted by the addition of places
and according initial markings. In particular, a place constitutes a dependency relation between
the occurrences of the transitions in its pre-set and the occurrences of the transitions in its post-set.

e Each region yields a corresponding place in the constructed net. A region is defined in such a way
that the behavior of the net with its corresponding place still includes the specified behavior.

e When all, or sufficiently many, regions are identified, all places of the synthesized net are con-
structed. The crucial point for this step is that the set of all regions can be very large or even
infinite, whereas in most cases finite, smaller sets of regions suffice to represent all relevant depen-
dencies.

o [f the behavior of the synthesized net coincides with the specified behavior (where coincide is de-
fined by an appropriate notion of isomorphism), then the synthesis problem has a positive solution;
otherwise there is no Petri net with the specified behavior and therefore the synthesis problem has
a negative solution.

In [17] regions for trace languages are presented without deducing effective synthesis algorithms.
In [9] regions of regular languages and in [3] regions for step transition systems are proposed. In both
cases polynomial synthesis algorithms are developed. The three definitions of regions are consistent.
Combining ideas of [17, 9, 3] yields a synthesis algorithm for sets of step sequences. This algorithm can
be adapted to a synthesis algorithm for a set of LPOs by considering the set of step sequences generated
by the set of LPOs.

Let us explain this idea by means
of a simple example, shown in Figure

1. This figure shows a simple LPO with abaca ab(a+c)a
five events, labeled by transition names abcaa ac(atb)a
a, b and c. Viewed as a run of a Petri acbaa abc(a+a)
net, this LPO states t.h.at transition a oc- acaba ach(a+a)
curs first. Then transitions b and ¢ occur

a(b+c)aa a(b+c)(a+a)

concurrently, and after each of these oc-
currences there is another occurrence of
a. The generated step sequences of thiS Figure 1. Set of maximal step sequences generated by an LPO.
single LPO are given on the right hand

side of Figure 1. Formally, a step se-

quence is generated by an LPO if it adds causality to this LPO, where transition occurrences in one step
are considered to be concurrent and transition occurrences in different steps are considered to occur in the
order given by the sequence. Since we start with languages given by sets of LPOs, we have to consider
the union of all step sequences generated by LPOs of this language.

Now the classical theory of regions can be applied to this set of step sequences. This synthesis
approach suffers from the problem that the number of step sequences may be exponential in the size of
the LPOs. Thus, this approach cannot yield a (worst case) efficient synthesis algorithm.

An alternative idea to synthesize a net from a set of LPOs is to directly define regions of the LPOs.
Such regions are presented in [22], called token flow regions in the present paper. As the main theoretical
result of this paper, we derive an effective synthesis algorithm from token flow regions.

Both algorithms are given in this paper and their complexity is compared. Since both algorithms
do not solve the last step of the region based synthesis procedure described above (comparison of the
behavior of the synthesized net with the specified behavior) we provide algorithms to perform this step
as well.

The remainder of the paper is organized as follows: we start with a brief introduction to LPOs, par-
tial languages, p/t-nets and enabled LPOs in Section 2. In Section 3 we present the synthesis algorithm
based on token flow regions. In Subsection 3.1 we recall definitions and main results from [22] on the
theory of regions for partial languages. In the subsequent subsections we develop the main theoretical
results of this paper. In Subsection 3.2 we show how to compute regions as integer solutions of an ho-
mogenous linear inequation system, we prove that a finite set of basis solutions generating the set of all
solutions already appropriately represents the set of all regions, and we briefly discuss implementation
and performance details of the presented synthesis algorithm. Subsection 3.3 presents methods to test
whether the synthesized finite p/t-net has exactly the specified non-sequential behavior. In Section 4 we
present the synthesis approach based on regions of the set of step sequences generated by a partial lan-
guage. Subsection 4.1 develops the synthesis algorithm. Subsection 4.2 compares its performance with
the performance of the synthesis algorithm developed in Section 3, and Subsection 4.3 discusses further

variants of the synthesis of nets from partial languages. Finally, in Section 5 we provide experimental
results on the time consumption of both presented synthesis algorithms. All described algorithms are
presented compactly in pseudo code in algorithm boxes.

This paper is an extended version of the conference paper [21]. In the conference paper we presented
parts of Section 3 without considering implementation and performance details.

2. Preliminaries

In this section we recall the definitions of labeled partial orders (LPOs), partial languages, place/tran-
sition nets (p/t-nets) and LPOs enabled w.r.t. p/t-nets. We start with basic mathematical notations: by N
we denote the nonnegative integers. N* denotes the positive integers. Given a function f from A to B
and a subset C' of A, we write f|c to denote the restriction of f to the domain C. Given a finite set A,
the symbol | A| denotes the cardinality of A. The set of all multi-sets over a set A is the set N4 of all
functions f : A — N. Addition + on multi-sets is defined as usual by (m+m’)(a) = m(a)+m/(a). We
also write) | , m(a)a to denote a multi-set m over A and a € m to denote m(a) > 0. Given a binary
relation R C A x A over a set A, the symbol R™ denotes the transitive closure of R. We write aRb to
denote (a,b) € R. A directed graph is a pair (V,—), where V is a finite set of vertices and -=C V x V
is a binary relation over V, called the set of edges. All graphs considered in this paper are finite.

Definition 2.1. (Partial order)
A partial order is a directed graph po = (V, <), where < is irreflexive and transitive.

Two nodes v, v’ € V of a partial order (V, <) are called independent if v £ v' and v £ v. By
co« C V x V we denote the set of all pairs of independent nodes of V. A co-set is a subset C' C V
fulfilling: Vz,y € C': xco<y. A cut is a maximal co-set. For a co-set C' of a partial order (V, <) and
anode v € V \ C we write v < (>)C, if v < (>)s for an element s € C and vco< C, if vcoc s
for all elements s € C. A partial order (V’, <’) is a prefix of another partial order (V, <) if V! C V,
WeVA<V)= (veV')and <'=<nNV' x V"

A partial order po = (V, <) is called linear (or total) if co« = idy, and stepwise linear if co< is
transitive. Given partial orders po; = (V,<1) and poy = (V, <2), poa is a sequentialization of po; if
<1C<o. If pog is linear, it is called linearization of po; and if pos is stepwise linear, it is called step
linearization of po;. We use partial orders with nodes (called events) labeled by transition names to
specify scenarios describing the behavior of Petri nets.

Definition 2.2. (Labeled partial order)
A labeled partial order (LPO) is a triple Ipo = (V, <, 1), where (V, <) is a partial order,and [: V' — T
is a labeling function with set of labels T .

We use the above notations defined for partial orders also for LPOs. We will often consider LPOs
only up to isomorphism. Two LPOs (V, <, 1) and (V’, <’,1") are called isomorphic, if there is a bijective
mapping ¢ : V' — V' such thatl(v) = I'(¢p(v)) forv € V,and v < w <= ¢ (v) <" ¢(w) forv,w € V.
By [lpo] we will denote the set of all LPOs isomorphic to ipo. The LPO Ipo is said to represent the
isomorphism class [Ipo]. The behavior of systems is formally specified by sets of (isomorphism classes
of) LPOs. Such sets are called partial languages.

O
[b]
S P Fre0

P: 2 P2 Ps

Figure 2. A partial language. Figure 3. A marked p/t-net (N, my).

Definition 2.3. (Partial language)
Let T be a finite set. A set £ C {[lpo] | Ipo is an LPO with set of labels T'} is called partial language
over T

Usually, partial languages are given by sets of concrete LPOs representing isomorphism classes. We
always assume that each label from 7' occurs in a partial language over 1. Figure 2 shows a partial
language represented by the set of LPOs L = {Ipoy, lpo, }, which we will use as a running example.

A net is atriple (P, T, F'), where P is a (possibly infinite) set of places, T is a finite set of transitions
satisfying PNT = (),and F C (P x T') U (T x P) is the flow relation of the net.

Definition 2.4. (Place/transition net)
A place/transition-net (p/t-net) N is a quadruple (P, T, F, W), where (P, T, F) is anet,and W : F —
N is a weight function.

We extend the weight function W to pairs of net elements (z,y) € (PxT)U(T x P) with (z,y) ¢ F
by W(z,y) = 0. Amarking of anet N = (P, T, F,W) is a function m : P — N assigning m(p) tokens
to a place p € P, it is a multi-set over P. A marked p/t-net is a pair (N, mg), where N is a p/t-net,
and my is a marking of N, called initial marking. Figure 3 shows a marked p/t-net (N, my). Places are
drawn as circles including tokens representing the initial marking, transitions as rectangles and the flow
relation as arcs annotated by the values of the weight function (the weight 1 is not shown).

A multi-set of transitions 7 € N7 is called a step (of transitions). A step 7 is enabled to occur
(concurrently) in a marking m if and only if m(p) > >, 7(t)W(p,t) for each place p € P. In
this case, its occurrence leads to the marking m/(p) = m(p) + >°,c. 7(t)(W(t,p) — W(p,t)). We
write m —— m/ to denote that 7 is enabled to occur in m and that its occurrence leads to m/. A finite
sequence of steps 0 = 71 ...7,, n € N, is called a step occurrence sequence enabled in a marking m

and leading to m,,, denoted by m -7 m,, if there exists a sequence of markings my, ..., m, such that
m - m; = ... =% m,. In the marked p/t-net (N, mg) from Figure 3 only the steps a and b are

enabled to occur in the initial marking. In the marking reached after the occurrence of a, the step a + b
is enabled to occur. There are two equivalent formal notions of runs of p/t-nets defining non-sequential
semantics based on [20, 30]. We only give the notion of enabled LPOs here: an LPO is enabled w.r.t. a
marked p/t-net, if for each cut of the LPO the marking reached by firing all transitions corresponding to
events smaller than the cut enables the step (of transitions) given by the cut.

Definition 2.5. (Enabled LPO)
Let (IV,mg) be a marked p/t-net, N = (P, T, F,W). An LPO Ilpo = (V, <,l) with [: V' — T is called
enabled (to occur) in (N, mg) if mo(p) + >, cvpocc (W U(),p) — W(p,1(v)) = > cc W(p,1(v))
for every cut C of lpo and every p € P. Its occurrence leads to the final marking m’ given by m/(p) =
mo(p) + X per (W), p) — W(p, 1(v))).

Enabled LPOs are also called runs. The set of all isomorphism classes of LPOs enabled in (N, my)
is £po(N, mg). L£po(N, my) is called the partial language of runs of (N, my).

There is an equivalent characterization of enabledness using step sequences and their correspondence
to stepwise linear LPOs: a stepwise linear LPO Ipo’ = (V, <’, 1) can be represented by the step sequence
Olpor = T1 ... Ty definedby V. =V1U...UV,, <=U;.; Vi x Vjand 7i(t) = [{v € V; [I(v) = t}|
(01po is well defined, since co/ is transitive.). An LPO lpo = (V, <,1) is enabled in (IV,my) if and
only if, for each step linearization lpo’ = (V, <’, 1) of lpo, the step sequence oy, is enabled in (I, my).

Observe that £po (N, my) is always sequentialization and prefix closed, i.e. every sequentialization
and every prefix of an enabled LPO is again enabled w.r.t. (IN,mg). Moreover, the set of labels of
£po(N, mg) is always finite. Therefore, when specifying the non-sequential behavior of a searched p/t-
net by a partial language, this partial language must necessarily be sequentialization and prefix closed
and must have a finite set of labels. We assume that such a partial language L is given by a set of concrete
LPOs L representing £ in the sense that [lpo] € £ <= Jlpo’ € L : [Ipo] = [Ipo']. Usually, we specify
the non-sequential behavior by a set of concrete LPOs L which is not sequentialization and prefix closed
and then consider the partial language £ which emerges by adding all prefixes of sequentializations of
LPOs in L. In this sense, the partial language £ given by L in Figure 2 specifies the non-sequential
behavior of a searched p/t-net. Both LPOs shown in this Figure are enabled w.r.t. the marked p/t-net
(N, mg) shown in Figure 3. It holds £ = {[lpo] | Ipo is a prefix of a sequentialization of an LPO in
L} = £po(N,mg). Thus, (NN, mg) solves the synthesis problem w.r.t. L. In the following for technical
reasons the LPOs in L are assumed to have pairwise disjoint node sets.'

3. Synthesis Based on Token Flow Regions

In this section we present an effective algorithm to synthesize a finite p/t-net from a partial language
given by L. The algorithm is based on the definition of regions of partial languages presented in [22].
In this paper we denote these regions as foken flow regions. We first briefly recall definitions and main
results from [22] on the theory of token flow regions for partial languages. In the subsequent subsections
we develop the main new results of this paper: we show how to compute token flow regions as integer
solutions of an homogenous linear inequation system, we prove that a finite set of basis solutions gen-
erating the set of all solutions already appropriately represents the set of all token flow regions, and we
briefly discuss implementation and performance details of the presented synthesis algorithm. Finally,
we present methods to test whether the synthesized finite p/t-net has exactly the specified non-sequential
behavior L.

'In particular this ensures that L requires all technical requirements used in [22] to prove Theorem 3.2.

3.1. Region-based Synthesis

We consider the problem of synthesizing a p/t-net from a partial language specifying its non-sequential
behavior. As mentioned, such a partial language L is represented by a set of concrete LPOs L (which
is not necessarily prefix or sequentialization closed). This means we develop an algorithm to compute a
marked p/t-net (N, mg) from a given set of LPOs L such that the partial language £ emerging from L
satisfies £ = £po (N, mg) (if such a net exists). In this section we recall the definitions and main results
on region based synthesis from [22] in a consolidated version, which is better structured and easier
to understand: we explain the ideas of region based synthesis in two independent parts, first defining
axiomatically the so called saturated feasible net as the best upper approximation to a p/t-net having the
specified behavior and second introducing the notion of token flow regions for the computation of this
net.

3.1.1. Saturated Feasible Net

The idea to construct a net (N, mg) solving the synthesis problem is as follows: the set of transitions
of the searched net is the finite set of labels of L. Then each LPO in L is enabled w.r.t. the marked
p/t-net consisting only of these transitions (having an empty set of places), because there are no causal
dependencies between transitions. This net in general has many runs not specified by L. Thus, one
restricts the behavior of this net by creating causal dependencies between the transitions through adding
places. Such places are defined by their initial marking and the weights on the arcs connecting them to
each transition (Figure 4).

a b a b
2
Figure 4. An unknown place of a p/t-net. Figure 5. Left: a feasible place. Right: a place which is not
feasible.

Two kinds of such places can be distinguished. In the case that there is an LPO in L which is not
a run of the corresponding “one place”-net, this place restricts the behavior too much. Such a place is
non-feasible. In the other case, the considered place is feasible.

Definition 3.1. (Feasible place)

Let £ be a partial language over the finite set of labels 7" and let (N, my), N = ({p},T, F),, W) be a
marked p/t-net with only one place p. (N, m,) is called associated to p. The place p is called feasible
(w.rt. L), if L C £po(N,my), otherwise non-feasible (w.r.t. L).

Figure 5 shows on the left side a place which is feasible w.r.t. the partial language specified by L in
Figure 2. This is because, after the occurrence of a, the place is marked by 2 tokens. In this marking the
step a + b is enabled to occur (as specified by Ipo,). The place shown on the right side is non-feasible,
because, after the occurrence of a, the place is again marked by only 1 token. In this marking the step
a + b is not enabled to occur. Thus Ipo, is not enabled w.r.t. the one-place-net shown on the right side.

If we add all feasible places to the searched net, then the partial language of runs of the resulting net
includes £, and it is minimal with this property. We call this net the saturated feasible net (w.r.t. L). In
general, the partial language of runs of the saturated feasible net is not necessarily equal to £. If it is not
equal to £, there does not exist a marked p/t-net whose partial language of runs equals £. The synthesis
problem has a solution if and only if the partial language of runs of the saturated feasible net equals L.

Definition 3.2. (Saturated feasible p/t-net)
Let £ be a partial language over a finite set of labels 7. The componentwise union of all nets associated
to places feasible w.r.t. £ is called saturated feasible (w.r.t. L).

Theorem 3.1. Let (IV,my) be the saturated feasible net w.r.t. a partial language L.
(i) £ C Lpo(N,my).

(ii) The behavior of (N, my) is minimal with property (i):
V(N'mg) = (Lpo(N',mg) € Lpo(N,mg)) = (L £ Lpo(N', my)).

(iii) Either £po(N, mg) = L or the synthesis problem has a negative answer.

Note that there are always infinitely many feasible places, because each place which is a non-negative
linear combination of feasible places is feasible. For example, each place p,, with W (a,p,) = 2n,
W (pn,a) = n, W(pn,b) = n, W(b,p,) = 0 and mo(p,) = n is feasible w.r.t. the partial language
given by L in Figure 2. Therefore, the problem of representing the infinite set of feasible places by a
finite subset (restricting the behavior in the same way) must be solved.

3.1.2. Token Flow Regions

By so called token flow regions of partial languages it is possible to define the set of all feasible places
structurally on the level of the partial language given by L. The idea of defining token flow regions of
L is as follows: if two events = and y are ordered in an LPO Ipo = (V,<,l) € L — this means = < y
— this specifies that the corresponding transitions /(x) and I(y) are causally dependent. Such a causal
dependency arises exactly if the occurrence of transition [(z) produces tokens in a place, and some of
these tokens are consumed by the occurrence of the other transition [(y). Such a place can be defined as
follows: assign to every edge (z,y) of an LPO in L a natural number representing the number of tokens
which are produced by the occurrence of l(x) and consumed by the occurrence of l(y) in the place to be
defined. Then the number of tokens consumed overall by a transition I(y) in this place is given as the
sum of the natural numbers assigned to ingoing edges (x, y) of y. This number can then be interpreted as
the weight of the arc connecting the new place with the transition /(y). Similarly, the number of tokens
produced overall by a transition /() in this place is given as the sum of the natural numbers assigned to
outgoing edges (x,y) of x, and this number can then be interpreted as the weight of the arc connecting
the transition /(x) with the new place. Moreover, transitions can also

e consume tokens from the initial marking of the new place (tokens which are not produced by
another transition): in order to specify the number of such tokens, we extend an LPO by an initial
event vy representing a transition producing the initial marking. The sum of the natural numbers
assigned to outgoing edges (v, y) of the initial event vy can be interpreted as the initial marking
of the new place.

e produce tokens in the new place which remain in the final marking after the occurrence of all
transitions (tokens which are not consumed by some subsequent transition): in order to specify
the number of such tokens, we extend an LPO by a final event vy,q, representing a transition
consuming the final marking.

Figure 6 shows the LPOs Ipo; and Ilpo, from Figure 2 extended by an initial and a final event. Such
extensions we call x-extensions of LPOs.

Definition 3.3. (x-extension)
For a set of LPOs L we denote Wi, = Uy < per Vs EL = U< pper, <and i = U e per - A
-extension Ipo™ = (V*, <* 1*) of lpo = (V, <,1) is defined by

i V*=(VU {vf)p",vfﬁgx) with vé”",fufﬁgx ¢V,
(i) <*=< U({oP°} x V) U (V x {22 }) U {0, v22)},
i) 1*(vfF°), 1* (0lFS) @ 1(V), 1*(ulF°) # 1*(vf8S,) and I*|y = L.

U(l)p ° is called the initial event of Ipo and 0P, the maximal event of lpo.

Let lpo* = (V*, <*,1*) be a x-extension of each Ipo € L such that:
(iv) For each two LPOs (V, <, 1), (V', <, I') € L: I*(vlP*) = (I')* (') .

(v) For each two distinct LPOs (V, <, 1), (V', <', ') € L: I*(v2%), (I)*(v2%) & 1,(Wr), 1*(vFSy)
() (vihe)-
Then the set L* = {Ipo™ | lpo € L} is called %-extension of L. We denote W} = Wy, E} = Ep~ and
It =1lp..

Figure 6. *-extensions of LPOs. Figure 7. Token flow region of a partial language.

According to the above explanation, we can define a new place p, by assigning in each LPO Ipo =
(V,<,l) € L a natural number r(z,y) to each edge (x,y) of a x-extension of Ipo through a function
r: B — N:

e The sum of the natural numbers Iy, (y,7) = 3, -+, 7(2,y) assigned to ingoing edges (x,y) of
anode y € Wy, defines W (p,, [(y)) = Inp,(y,). We call Ing,(y,r) the in-token flow of y.

e The sum of the natural numbers Outy,(z,7) = >, .+, (2, y) assigned to outgoing edges (z,y)
of anode x € Wy, defines W (l(x),p,) = Outyp,(x, 7). We call Outyy, (x,) the out-token flow of
x.

e the sum of the natural numbers assigned to outgoing edges (vép ?) of an initial node v(l)p ? (the
out-token flow of vép ?) defines mq(p;) = Outlpo(vép . r). We call Outlpo(vép ? r) the initial token

flow of Ipo.

The value 7(z,y) we call the token flow between z and y. Since equally labeled nodes formalize oc-
currences of the same transition, this is well-defined only if equally labeled events have equal in-token
flow and equal out-token flow. In particular all LPOs must have the same initial token flow. We say that
r: Ef — N fulfills the properties (IN) and (OUT) on L if for all lpo = (V, <,1),lpo’ = (V',<",I') € L
and for all v € V* o' € (V')* holds:

(IN) I(v) =1"(V") = Ingo(v,7) = Ingpy (V7).
(OUT) I(v) =1I'(v") = Outypo(v, 1) = Outp, (v', 7).

Observe that (OUT) in particular ensures that all LPOs have the same initial token flow. Altogether, each
such function r fulfilling (IN) and (OUT) on L defines a place p,.. We call p,. corresponding place of r.

Definition 3.4. (Token Flow Region)
Let L be a set of LPOs which is sequentialization and prefix closed. Let further £ be the partial language
represented by L. A token flow region of L is a function r : EF — N fulfilling (IN) and (OUT) on L.

If we define a function r fulfilling (IN) and (OUT) on a set of LPOs L which is not sequentialization
and prefix closed, then this function is easily extended to a token flow region of the partial language
defined by the set of all prefixes of sequentializations of LPOs in L without changing in- and outtoken
flows of nodes:

e Assign the value 0 to each additional edge within a sequentialization of an LPO in L and keep the
values of r on all other edges.

e Define r on a prefix of an LPO in L by gluing all nodes subsequent to the prefix to a maximal
node of the prefix. If several edges are glued to one edge, then sum up the values of r on the glued
edges. Keep the values of 7 on all remaining edges.

Thus, it is enough to specify a function fulfilling (IN) and (OUT) on some set of LPOs L, called foken
flow region of L, to define a token flow region of the partial language £ defined by L. Figure 7 shows
a function r fulfilling (IN) and (OUT) on the set L of LPOs given in Figure 2, which in this sense can
be extended to a token flow region of the partial language defined by L. The corresponding place p; is
defined by W (p,,a) = 1, W(a, p,) = 2, W(py,b) = 1, W (b, p,) = 0 and mgo(p,) = 1 (p, is the middle
place of the p/t-net in Figure 3).

As the main result we showed in [22] that the set of places corresponding to token flow regions of a
partial language equals the set of feasible places w.r.t. this partial language.’

%In [22] we assumed that the set of LPOs L representing £ fulfills some technical requirements. These will be automatically
fulfilled for all such sets L we consider in the following. Thus, we omit their detailed presentation here.

Theorem 3.2. ([22])
Let £ be a partial language. Then it holds (i) that each place corresponding to a token flow region of £
is feasible w.r.t. £ and (ii) that each place feasible w.r.t. £ corresponds to a token flow region of L.

Thus the saturated feasible net can be given by the set of places corresponding to token flow regions:

Corollary 3.1. Let £ be a partial language represented by the set of LPOs L. Denote P = {p, |
r is a token flow region of L}, T" the set of labels of £, W (p;, l1,(v)) = In,(v,r) and W (lL(v),pr) =
Outpe (v, 1) for p, € P and some lpo = (V,<,l) € Lwithv € V, F = {(z,y) | W(x,y) > 0} and
Msat(pr) = Outlpo(vép ? r) for p, € P (and some lpo € L). Then the p/t-net (Nsat, Msat)> Nsat =
(P, T, F,W), is the saturated feasible p/t-net (w.r.t. L).

The saturated feasible net has infinitely many places, i.e. there are infinitely many token flow regions
of L. Moreover, even the description of one token flow region may be infinite, since there may exist
infinitely many edges in E7. Therefore, we restrict ourselves in the following to finite partial languages,
i.e. to partial languages which are represented by a finite set of LPOs L.

3.2. Computing a Finite Representation of all Regions

For finite partial languages we show in this subsection that the set of token flow regions can be computed
as the set of non-negative integer solutions of a homogenous linear equation system A - x = 0. It is well
known that there is a finite set of basis solutions, such that every solution is generated as a non-negative
linear sum of basis solutions. We prove that the set of places corresponding to basis solutions already
restricts the behavior of the searched net in the same way as the set of all feasible places. Therefore there
is a representation of the saturated feasible net by a net with finitely many places having the same partial
language of runs. For this finite net it can be tested effectively if it has £ as its partial language of runs
(Subsection 3.3).

3.2.1. Computing Token Flow Regions

In this subsection we show how to compute token
flow regions (and thus feasible places) of a partial lan-
guage L represented by a finite set of LPOs L. For
this, we rewrite the properties (IN) and (OUT) as a
homogenous linear equation system Ay - x = 0. To
compute a token flow region r, we need to assign a
value r(z, y) to every edge e = (x, y) in the finite set
of edges E7. We interpret r as a |E7 |-dimensional
vector X, = (Z1,...,2,), n = |E}|. Considering a
fixed numbering of the edges in £ = {e1,...,e,},
a value r(e;) equals x;. Figure 8 shows a numbering
of the edges of the x-extension of the set of LPOs L
given in Figure 2.

Now, we encode the properties (IN) and (OUT)
by a homogenous linear equation system Ay -x =0

Figure 8. A numbering of edges.

in the sense that r : £7 — N fulfills (IN) and (OUT) on L if and only if Ay, - x, = 0. This can be done
by, loosely speaking, defining for pairs of equally labeled nodes a row in of A, counting the token flow
on ingoing edges of one node positively and of the other node negatively. Similarly, a row out of A,
counting the token flow on outgoing edges of one node positively and of the other node negatively can
be defined. It is enough for each label ¢ to ensure that the intoken (outtoken) flow of the first and second
node with label ¢ are equal that the intoken (outtoken) flow of the second and third node with label ¢ are
equal, and so on.

Formally, we denote W; = {v € W} | I} (v) =t} = {v}, v}, ...} for all labels ¢ € T" and denote for
1 <m < |Wt’ —1:

et _ -t -t
in,, = (mmJ, el mm,n)
1 if e; is an ingoing edge of v,
ot _ . s . . t
in,, ; = —1 if e; is an ingoing edge of v, ,
0 else.
t t t
out,, = (outy,,...,outy,)
1 if e; is an outgoing edge of v%, ,
t o . . . t
out,, ; = —1 if e; is an outgoing edge of v, , ;
0 else.

Clearly, in}, - x, = 0 resp. out!, - x, = 0 if and only if In, (v,) = Iny, (v, 7) resp.
Out o (V1) = Outyyyr (v}, 41, 7) for the LPOs Ipo = (V, <,1) and lpo" = (V',<',I') with v}, € V
and vl €V’

Finally, to ensure that all LPOs have the same initial token flow, we denote L = {Ipoy, lpos, ...} and
addrows for1 < m < |L| — 1:

init,, = (initp1,...,MNitny)
1 if e; 1s an outgoing edge of vé om.
. s . . . l
init,, ; = —1 if e; is an outgoing edge of vopom“
0 else.
. . . . l
Clearly, init,, - x, = 0 if and only if OQuty, (v(l)po"" ,T) = Outypo,, ., (vopo’"+1 ,T).

Figure 9 shows the described homogenous linear equation system A, - x = 0 for the numbering of
edges given in Figure 8. There exist two pairs of equally labeled nodes, and we need to ensure that each
pair has the same intoken and outtoken flow. The first row in{ ensures for every function 7 given by a
solution x, that both a-labeled nodes have the same intoken flow. Therefore, the sum of the values on
all ingoing edges of v{ (namely e5) must equal the sum of the values on all ingoing edges of v§ (namely
e7 and eg). We get the corresponding equation x5 — z7 — x9 = 0 (this equation corresponds to the first
row in{ of Ar). Row number two out{ guarantees equal outtoken flow of the a-labeled nodes. Rows
number three in% and four out! do the same for both nodes labeled by b. The last row of the matrix
ensures that both LPOs have the same initial token flow. A possible non-negative integer solution is

N
J

O @ @ 6 6 @ @ ®© v © @ g .o
. of |o
in, 1 -1 -1 ®
out,? 1 1 1 1 ® 0
in,® 1 -1 -1 . g =|0
out,” 1 -1 0
init, 11 101 -1 % 0]
@
¥®J

Figure 9. Equation system defining token flow regions.

x, = (0,1,0,0,1,0,0,1,1,0,0,2) corresponding to the token flow region drawn in Figure 7 (and to the
middle place shown in Figure 3).

By the above considerations the set of token flow regions r is in one-to-one-correspondence to the
set of non-negative integer solutions x = (x1,...,x,) of A - x = 0 via r(e;) = x;. This means, every
feasible place can be computed by such a solution. The place corresponding to a solution x we denote
by px. Note that the number of rows of A, linearly depends on the number of nodes |WWy|. A, contains
at most |Wy| — 1 in-rows, at most |WWy| — 1 out-rows and exactly |L| — 1 < |[Wz| — 1 init-rows.
Exactly |Wp| — 1 in-rows resp. out-rows occur in the case that all nodes in W, carry the same label.
The number of columns of A; is equal to the number of edges |E}| = 2|Wp| + |EL|.

3.2.2. Finite Representation

The homogenous linear equation system developed in the last subsection is in fact an inequation system,
since we search for non-negative solutions, i.e. we require x > 0 for solutions x. Thus we compute token
flow regions of a finite partial language £ and subsequently places of the searched saturated feasible p/t-
net by solving the finite homogenous linear inequation system Ay - x < 0, —Ar, -x <0, —x <0
with n + 2N rows (/V is the number of rows, n the number of columns of A;). The set of solutions
of such a system is called a polyhedral cone. According to a theorem of Minkowski [24] polyhedral
cones are finitely generated, i.e. there are finitely many vectors y1, ...,y (also called basis solutions)
such that each element x of the polyhedral cone is a non-negative linear sum x = Zle Aiy; for some
Al,...,Ar = 0. In our case the cone is pointed. Then a minimal basis yq, ...,y is given by the
rays of the cone [27]. Such basis solutions y1, ...,y can be effectively computed from A (see for
example [25, 28]). If all entries of A, are integral, then also the entries of all y; can be chosen to be
integral (i.e. as regions). The time complexity of the computation essentially depends on the number &
of basis solution which is bounded by k < (”:_in) This means, in the worst case the time complexity
is exponential in the number of nodes, whereas in most practical examples of polyhedral cones there are
only few basis solutions.

We finally claim that all places which do not correspond to basis solutions can be deleted from
the saturated feasible p/t-net without changing its partial language of runs. Thus, the saturated feasible
p/t-net has a finite representation. Consider places p, p1, ..., pr of some marked p/t-net (N, mg) and

Q
(o

Co> —©

P, Ps

Figure 10. The p/t-net from Figure 3 extended by p4 and ps. p4 and ps are non-negative linear combinations of
p1, p2 and p3.

non-negative real numbers A1, ..., Ay (kK € NT) such that (i) mg(p) = Zle Aimo(pi), (1) W(p,t) =
Zle AiW (pi, t) for all transitions ¢ and (iii) W (t,p) = Zle AiW (t,p;) for all transitions ¢. In such
a case we write p = Zle A\ip;. Figure 10 shows the p/t-net N from Figure 3 extended to a net N’ by
adding the two places p4 and ps. Neither ps nor ps restrict the behavior of N’ more than {p1, p2, p3}.
In other words each LPO enabled in N is also enabled in N’. That is because the places p4 and ps are
non-negative linear combinations of the other three places. It holds p5s = 2p3 and py = %pl + %pg + %pg.

Lemma 3.1. Let (N, mg), N = (P,T,F,W), be a marked p/t-net with P = {p1,...,p,p} and p =
Zle \ip; for non-negative real numbers Ay, ..., \; (k € NT). Denote P’ = {p1, ..., px}, m\ = mo|pr
and N' = (P, T, F|(prxryurxp)> Wlp xryurxpry)- Then each LPO enabled w.rt. (N',myg) is
enabled w.r.t. (N, mg).

Proof:
Let lpo be enabled w.r.t. (N',my), lpo = (V, <,l). According to Definition 2.5, for a cut C of Ipo and

i€ {1,...,k}itholds mo(p;) + > e rvcc(WI(V), pi) — W(pi, 1(v))) = > cc Wi(pi,l(v)). This
implies for an arbitrary cut C' of Ipo and the place p:

mo(p) + Y (W(lv),p) = W(p,1(v)))

veVAv<C
k
= > Xlmo) + Y (W((v),pi) = W(pi,1(v))))
=1 veVAv<C
k
> Y Ay Wi lw) =) Wip,lv)).
i=1 wveC vel
Thus, lpo is enabled w.r.t. (N, mg). 0

Ifx = Zle A;y; for integer basis solutions yi,...,yx of Ay - x = 0,x > 0, then px =
Zle Aipy,. Thus, the finite net (/V,m) having the places py,,...,py, satisfies £p0(Ngqr, Msqr) =
£po(N, m). In other words (N, m) generates the smallest partial language of runs including L. To com-
pute (N, m), we compute such a finite set of integer basis solutions yi, ...,y (Algorithm 1). The set
of regions {y1,...,yx} we call basis representation (of the set of all regions).

Algorithm 1 does not decide the synthesis problem (is there a net with the specified behavior?). In
a further step of the synthesis procedure (Section 3.3) the net constructed with Algorithm 1 is exploited

A — EmptyMatriz
forallt € T do
Wi fve Wi | I5(0) =t}
form =1to |[W;| —1do
A .addRow(in))
A .addRow(out!))
end for
end for
form =1to |L| — 1do
A .addRow(init,,)
: end for
. Solutions <+ Ay .get BasisSolutions
: (N,m) «— (0,7,0,0,0)
: for all r € Solutions do
(N, m).addCorrespondingPlace(r)
: end for
17: return (N, m)

e A AN o ey

— e e e e e
T SRS

Algorithm 1: Calculates a net (N, m) from a partial language over 7' given by L, such that (N, m)
generates the smallest partial language of runs including L.

to effectively decide the synthesis problem as explained in the Introduction. Nonetheless for practical
applications in particular Algorithm 1 is of interest, because the main focus usually lies in the construc-
tion of a system model from a given specification (not in the decision of the synthesis problem). In this
context Algorithm 1 is a useful standalone algorithm to compute a p/t-net system, which is a best upper
approximation for a set of scenarios specified in terms of LPOs.

3.2.3. Implementation and Performance

We implemented Algorithm 1 as a plug-in for our framework VipTool [11]. We denote by n the number
of nodes belonging to LPOs in the input L. Then the construction of the matrix A has linear runtime
in n since the number of rows of Ay is linear in n. If & denotes the number of basis solutions of
the considered cone, then constructing the synthesized net (N, m) from the set of basis solutions is
linear in k. Thus, for the performance of Algorithm 1, the crucial factor is the algorithm computing
the basis solutions, which, as mentioned, has exponential runtime in the worst case, i.e. £ = O(2").
We implemented the algorithm of Tschernikow [28] to compute the integer basis of the cone from the
integral homogeneous equation system Ay - x = 0. Tschernikow’s algorithm is an improved version of
a previous algorithm to compute the basis of arbitrary homogeneous inequation systems developed by
Motzkin and Burger, especially adopted for computing basis solutions for the set of non-negative integer
solutions of an homogeneous equation system as it is given in our situation. Tschernikow’s algorithm
starts with the matrix (I, Af), consisting of the identity matrix I and the transpose of the matrix Aj.
This matrix is stepwise transformed. In each step a non-zero lead column corresponding to one of the
equations is chosen and so called balanced pairs of rows are transformed to equilibrium rows w.r.t. the
lead column. These equilibrium rows are added to the matrix. The number of added rows depends on

the number of non-zero components of the lead column. This number is at most n? (in the case all
components are non-zero). For sparse matrices it is a lot smaller. After such transformation the previous
lead column only contains zero values. The algorithm finishes when each column corresponding to an
equation (the second part of the matrix) is zero, i.e. it performs at most as many steps as Ay, has rows.
The non-negative integer basis solutions of A can then directly be read out from the first part of the
constructed matrix. Namely, the first part of each row (corresponding to I) is such a basis solution. Thus,
there are as many basis solutions as rows. These solutions define the set of places of (INV,m) in our
case. Since we have a sparse matrix (i.e. many entries of a lead column are already zero), the algorithm
should perform quite well in our setting. In particular, the growth of the number of rows of the stepwise
computed matrices and therefore the number of basis solutions should be very limited.

The size of the basis determining the size of the synthesized net is not only important for memory
consumption, but also as the input for the equality test. There are methods to reduce this size. The
synthesized net usually contains many implicit places which can be deleted by appropriate algorithms,
without changing the behavior of the net. Therefore a simple and efficient procedure to delete implicit
places of the synthesized net is added to the implementation of Algorithm 1. This procedure deletes
places that are dominated (w.r.t. the behavioral restriction) by one another place, but combinations of
places dominating other places are not searched. One place p’ dominates another place p if A - mg(p) >
mo(p’) and X - W(t,p) > W(t,p') as well as X\ - W(p,t) < W(p',t) for all transitions ¢ and some
A > 0. In the implementation only A = 1 is considered. Implicit places dominated by one another place
are searched by comparing the computed places pairwise. Advanced methods to detect implicit places
(considering combinations of places) still offer extensive improvement possibilities for this module of
Algorithm 1. Experimental results on the performance of Algorithm 1 can be found in Section 5.

3.3. [Equality Test

Up to now, we have shown how to compute from a finite set of LPOs L a finite marked p/t-net (N, m)
which has the smallest partial language of runs £po(V, m) including the specified partial language £ =
{[lpo] | lpo is a prefix of a sequentialization of an LPO in L} (Algorithm 1). This net either solves the
synthesis problem (£po(N, m) = L) or there is no solution. In this section we develop two methods to

test whether £po(N, m) = L.

Let ng;f be the set of all sequentializations of prefixes of LPOs in L. Since we already know
Lpo(N,m) O L, in order to test £po(N, m) = L, we (1) either have to check if each enabled Ilpo of
(N, m) is isomorphic to an LPO in LELe! (optimistic equality test), or (2) to test that no LPO Ipo which

is not isomorphic to an LPO in L’;ng is enabled w.r.t. (IV, m) (pessimistic equality test).

3.3.1. Optimistic Equality Test

In the first case (1), we calculate all enabled LPOs of (N, m). The set of (pairwise non-isomorphic)
enabled LPOs of a p/t-net in general can be infinite, but £po(N, m) is always finite. This can be proven
for £po(Nsat, Msar) (= L£po(IN,m)) as follows: for every transition ¢ and every LPO lpo = (V, <,[) €
L there is a finite number 7y, ; of nodes v € V labeled by ¢. Since L is finite we get a finite upper
bound n; = max({np, | lpo € L}) for the maximal number of occurrences of ¢ in an LPO Ipo € L.
Consequently, the place p; with the initial marking mg(p;) = n¢, an empty pre-set and ¢ as the only

transition in its post-set with W (p;,t) = 1 is feasible w.r.t. £. This means, that each transition ¢ can
maximally occur n;-times, and thus every LPO in £po(Nsq, msqt) has at most), 1y nodes.

® @ @ &
@{?
® @

Figure 11. Maximal process nets of the p/t-net shown in Figure 3 and corresponding runs.

® @ & ®

C

JL

>@

Since £po(N,m) is finite, it can be calculated. In principle, we have to check if each run lpo €
£po(N,m) is isomorphic to an LPO in L@’;“gf . But for a run Ipo’, which is a sequentialization of a
prefix of another run lpo, it is enough to consider only Ipo, because if Ipo’ is not isomorphic to an
LPO in Lg’;gf , then the same holds for Ipo. Therefore, we only have to regard runs which are not
sequentializations of prefixes of other runs. The set of all such runs can be computed through the (finite)
set of process nets with maximal length [30]: omitting conditions in a process net and only keeping the
ordering between events yields an LPO, and it is well known that each such LPO underlying a process
net is a run. Moreover, each run is a sequentialization of a prefix of an LPO underlying a process net
with maximal length. Thus, it is enough to regard the LPOs underlying such process nets of (N, m).
The synthesis problem has a solution if and only if each such LPO is isomorphic to some LPO in Lé’,’;gf
(Algorithm 2). For example, the maximal process nets and the underlying LPOs of the p/t-net shown in
Figure 3 are depicted in Figure 11. The first two LPOs are isomorphic to the two LPOs (of the running
example) shown in Figure 2 and the third one is isomorphic to a sequentialization of the second LPO in
Figure 2.

1: Process < (N, m).get AllM axProcesses

2: for all pro € Process do

3 if ng;f.notContainsIso(pro.getLPO) then
4 return false
5: endif

6: end for

7: return true

Algorithm 2: Optimistic equality test: tests if £po(N, m) = L (indicated by a boolean variable).

An algorithm that calculates the set of maximal process nets of a p/t-net is implemented in our tool
VipTool [11]. In general, the number of process nets is exponential in the size of the p/t-net, and the
calculation of the process nets requires an exponential runtime in the worst case. Recently, we studied
several new unfolding algorithms, which can be used to compute the searched set of LPOs underlying
maximal process nets [6]. Compared to classical unfolding algorithms, we developed two very fast
and less memory consuming algorithms for this purpose, called Method 1 and Method 2. In [6] we
demonstrated their superior performance. In contrast to classical unfolding algorithms the two new
algorithms abstract from the individuality of tokens using token flows (as presented in this paper). Instead
of occurrence nets we use the concept of prime event structures. One of the unfolding models avoids
to represent isomorphic processes while the other additionally reduces the number of (possibly non-
isomorphic) processes with isomorphic underlying runs. Both proposed unfolding models still represent
the complete partial order behavior in the sense that all LPOs underlying process nets are computed.
In our special situation we expect that the number of process nets of (IV,m) roughly coincides with
the size of L, because in the case that there is a positive solution of the synthesis problem there holds
£po(N, m) = L, and in the negative case £po (N, m) is the best upper approximation to L.

It can directly be tested if a computed LPO underlying a maximal process net (constructed by some
unfolding procedure) is isomorphic to a sequentialization of one of the specified LPOs in L. This test
is a special graph isomorphism problem. Graph isomorphism problems are widely believed to form an
own complexity class between P and NP. The common procedure to solve graph isomorphism problems
is applying backtracking algorithms constructing a set of possible isomorphisms, and then checking
each possible isomorphism, if it actually is an isomorphism. The efficiency of the procedure depends
on restricting the set of possible isomorphisms in the backtracking algorithm as good as possible. We
consider the following very restrictive strategy for eliminating possible isomorphisms in the backtracking
procedure: we identify appropriate equivalence classes of events in the two considered LPOs, such that
by an isomorphism events of the first LPO can only be mapped onto events of the second LPO being in the
same equivalence class. These equivalence classes account for the label of an event as well as the labels
of all events in the pre- and post-set of the event. Postulating coincidence of these labels is very restrictive
in our case because of the transitivity of LPOs. Thus this strategy ensures an efficient isomorphism test.
Actually the implemented algorithm (called Isotest 1) does not perform an isomorphism test between
all sequentializations of LPOs in L and computed LPOs, but only tries to embed the computed LPOs
as sequentializations of LPOs in L regarding isomorphism (using the principles described above), i.e.
not all sequentializations of LPOs in L have to be computed. Finding an appropriate isomorphism is
only problematic concerning runtime in cases of auto-concurrency (equally labeled concurrent events).
In practical examples auto-concurrency often does not occur (for example in Mazurkiewicz traces).

We implemented Algorithm 2 as described in this subsection in our framework VipTool (as a plug-
in). We applied the unfolding procedure called Method 1 in [6] to compute the set of runs associated to
maximal process nets of the synthesized net (N, m) and the isomorphism test Isotest 1. Experimental
results for Algorithm 2 are shown in Section 5.

3.3.2. Pessimistic Equality Test

The alternative possibility (2) to test £po(NN,m) = L is to check, if no LPO [po not isomorphic to
some LPO in LE</ is in £po(N,m). For one such LPO Ipo this can be tested in polynomial time
in the number of nodes of [po using the algorithm we presented in [19]. The problem is that there

M...

Figure 12. Some LPOsin L%, .

are infinitely many such LPOs. Therefore, we define a finite set L%, of LPOs representing the set
of all LPOs L€ not specified by L in the following sense: if no LPO in L%, is enabled in (N, m)
then also no LPO in L€ is enabled in (N, m). The idea for the construction of L5, 1s to extend each

Ipo € Lé’g;f in all possible ways by one event, such that the resulting LPO Ipo’ is not isomorphic
to an LPO in L’;l;:;f . This means, LS, consists of all LPOs Ipo’ not isomorphic to an LPO in Lé’gf;f

defined by Ipo’ = (V U {v;},< U <4, 1 U (vi,t)), where (V,<,1) € LBt € T, v ¢ V and
< ={v [V e VIV < V'} x {t} foraco-set V' of (V, <,1) (V' may be empty, which means that v,
becomes an additional minimal event). Figure 12 shows some of the LPOs in L;m for the set of LPOs
L shown in Figure 2. The most left LPO is constructed by appending an a-labeled event v, to the empty
co-set V' of Ipol from Figure 2.

If there exists an LPO Ilpo’ € LS, which is enabled in (N, m), then obviously £ # £po(N,m).
On the other hand, if every such LPO Ipo’ is not enabled in (N, m), we conclude that £ = £po(N,m)
(Algorithm 3). This can be proven as follows by contradiction: assume that every LPO Ipo’ € L, is
not enabled in (N, m), but there exists an [po € L¢ which is enabled in (/V, m). Then, there is a maximal

of Ipo (possibly empty) isomorphic to an LPO in Lé’g;f . Let Ipoj,,.

/
pre
/
pre pre
we conclude that lpo;,re is isomorphic to an LPO in L%, . Since Ipo

(N, m), it is also enabled in (N, m). This is a contradiction.

prefix Ipo be a further prefix of Ipo

exists because Ipo is not isomorphic to an LPO in L’;g;f). The

is not isomorphic to an LPO in L@Z;f . By construction of L%, ,

/
pre

pre

having one additional node (such Ipo
maximality of lpo,,.. implies that Ipo

is a prefix of an LPO enabled in

- for all [po’ € LS, do

1

2. if £po(N, m).contains(lpo’) then
3: return false

4: endif

5: end for

6:

return true

Algorithm 3: Pessimistic equality test: tests if £po(N, m) = L (indicated by a boolean variable).

The complexity of the pessimistic equality test (Algorithm 3) in particular depends on the size of
the set L%,;,. Each LPO in L%, has to be tested if it is in £po(N,m). As mentioned, this test can be
performed in polynomial time in the number of nodes of the LPO using methods from [19]. Since the
set L;m can have exponential many LPOs in the size of L, the runtime is exponential in the worst case.
We assume that a significantly smaller subset of L, suffices to represent the set of all LPOs L€, and we

are currently working on methods to reduce the set L%, . We did not implement Algorithm 3 so far.

4. Alternative Synthesis Approaches

It is also possible to indirectly derive a synthesis algorithm for p/t-nets from a partial language using
“classical” region definitions. A partial language given by L defines a language Sy, of step sequences
given by the set of all step linearizations of LPOs in L. Following ideas in [17], where regions of trace
languages are defined, it is possible to define regions of languages of step sequences. It turns out that
each place defined by a token flow region of L (as defined in this paper) is also defined by a region of S,
and vice versa.®> Thus, in our terminology the set of regions of Sy, corresponds to the set of feasible places
of L (compare Theorem 3.2). Consequently we can apply the region definition for p/t-nets and languages
of step sequences to deduce a synthesis algorithm for the setting of p/t-nets and finite partial languages.
Here the same problems appear as in the case of token flow regions, in particular there are also infinitely
many regions. Therefore, it is necessary to compute a finite representation of the set of all regions. Such
a finite representation is developed in [3] for regions of step transition systems and in [9] for regions of
regular languages. The finite representations developed there we call separation representations in this
paper. These have a fundamental different intuition to basis representations. Combining the ideas from
[3] and [9], separation representations can be adopted for languages of step sequences.

Altogether, there is a second approach to synthesize a net from a partial language given by L through
computing a separation representation of the set of classical regions of the set of step sequences Sy..
This approach is presented in the next subsections in detail together with a short comparison of the
performance of the two synthesis algorithms presented in this paper. Moreover, there are further variants
of synthesis algorithms: it is observed in [23] that the two kinds of regions can be each combined with
the two kinds of finite representations. These variants we discuss only very briefly, because it turns out
that they do not promise a better performance.

4.1. Synthesis Based on a Separation Representation of Classical Regions

A (classical) region of a language of step sequences L' is simply a tuple of natural numbers which rep-
resents the initial marking of a place and the number of tokens each transition consumes respectively
produces in that place, satisfying some property which ensures that no step sequence of the given lan-
guage L' is prohibited by this place. The set of regions of L’ defines the set of feasible places of L'.

Definition 4.1. (Region)
Denoting T' = {t1, ..., t;, } the transitions occurring in L, a region of L' isatuple r = (rq,...,7om) €
N2m+1 gatisfying for every o = 71 ...7, € L' andevery j € {1,...,n}:

(*) ro + Z((Tl 4+ ... +Tj71)(ti) c Ty — (7’1 4+ ... —I—Tj)(ti) . ’I"m+z') > 0.
=1

Every region r of L’ defines a place p, via mg(p,) := ro, W(t;,pr) := r; and W(p,, t;) := rmti
for 1 < ¢ < m. The place p, is called the corresponding place to r.

31t was already shown in [22] that the region definition for trace languages (and p/t-nets) from [17] is consistent to the token
flow region definition for partial languages of this paper.

The set of regions of L’ can be characterized as the set of non-negative integral solutions of a ho-
mogenous linear inequation system
AL’ ‘T > 0.

The matrix A/ consists of rows al, = (afno, o 7“?7,2m) forallo =n...7, € L', j € {1,...,n},

satisfying al . r>0s (*). This is achieved by setting:

1 fori =0,
al . = (114 ... +7-1)(t:) fori=1,....,m
_(Tl+---+7_j)(ti—m) forz':m—i—l,...,Qm.

The ideas in [3, 9] to get an effective synthesis algorithm is to prohibit non-specified behavior by
places corresponding to regions. In our setting we search for a region for each step sequence not specified
in L’ such that the corresponding place guarantees that this step sequence is not enabled. If 7y ... 7, is
not enabled then also 7y ... 7,741 and 71 ... 7, with 7, < 7/, are not enabled. Moreover, we assume
that I’ is step linearization closed, because this is the case for Sy . Therefore, we only have to consider
certain step sequences not in L' which we call wrong continuations:

Definition 4.2. (Wrong continuation)
Denote Ly, ={71...7j | 71...7 € L'Aj € {1,...,n}} U{e} (¢is the empty step sequence) the set

of all prefixes of L’. The set of wrong continuations of L' is defined by L, ;g = {71 - .- Tn—1(Tn +1:) &
L

|7...TeL ie{l,...ompU{rn...mti ¢ L _.|7...TnEL ie{l,...,m}}.

/
pref pref? pref pref?

In order to compute a feasible place which prohibits a wrong continuation ¢’ = 77 ...7,, of L', one
defines so called separating regions defining such places:

Definition 4.3. (Separating region)
Let o/ = 7{ ... 7], be a wrong continuation. A region r of L’ is a separating region w.r.t. o’ if

(o) ro+ D ((H A AT)W) = (T T () Tmg) < 0.
=1

A separating region r w.r.t. ¢’ can be calculated (if it exists) as a non-negative integer solution of a
homogenous linear inequation system with integer coefficients of the form

AL/ - T Z O
b, -r < 0.
The vector by = (bg g, - .., by’ 2,,) is defined in such a way that b,/ - r < 0 < (%x). This is achieved
by setting
1 fori =0,
bori = (11 4+ ...+ 7 _1)(t) fori=1,...,m
/

—(rf 4 ...+ 7)) (tiem) fori=m+1,...,2m.

If there exists no non-negative integer solution of the system A/ -r > 0,b, - r < 0, there exists
no separating region w.r.t. ¢’ and thus no feasible place prohibiting ¢’. If there exists a non-negative

integer solution of the system, any such solution defines a feasible place prohibiting o’. If we choose one
arbitrary separating region r, for each wrong continuation ¢’ for which such a region exist, then we call
the set {r | 30’ : r = r,/} a separation representation (of the set of all regions). A place corresponding
to each separating region of the separation representation is added to the synthesized net (N, m). It is
easy to prove that there is a p/t-net having L;re 7 as its set of step occurrence sequences if and only if
there is a separating region for each wrong continuation in L{Umng. In the positive case (N, m) is such
net.

Since we are interested in solving the synthesis problem for a partial language given by L, we now
shift to this setting. As mentioned above, L defines a language Sy, of step sequences as follows:

Definition 4.4. Let L define a partial language. The language of step sequences defined by L is given
by St = {0 | 3lpo € L : Ipd’ is a step linearization of Ipo}.

As mentioned, the definitions of token flow regions of L and regions of Sy, are consistent.

Theorem 4.1.

(i) Let r be a token flow region of L and p, be the corresponding place. Then there is a region 7’ of
St with p.r = p,..

(ii) Let 7’ be aregion of Sy, and p,- be the corresponding place. Then there is a token flow region 7 of
L with p, = p,.

Proof:
ad (i): Define 75 = mo(py), V1 < i <m: rj = W(ti,pr) A7y, = Wi(pr, ti) and v’ = (r(,...,75,,).
Since r is a token flow region of L, p, is feasible w.r.t. L (Theorem 3.2). Consider the net IV, associated
to p,. Since p, is feasible, all LPOs in L are enabled w.r.t. IV, . From the definition of enabled LPOs
we deduce that each step sequence corresponding to a step linearization of an LPO in L, i.e. each step
sequence in S, is enabled to occur in N, . This means that 7’ satisfies (x), i.e. 7’ is a region of Sy. By
definition of 7/, p, = p,.

ad (ii): Let 1’ be a region of Sy, p, be the corresponding place and Np,, be the associated net.
According to (x), each step sequence in Sf, is enabled in N, ,. This means, each LPO in L is enabled
w.rt. Ny, i.e. pp is feasible w.rt. L. We deduce that there is a token flow region 7 of L defining p,/
(Theorem 3.2). O

Now we can solve the synthesis problem for a partial language given by L by solving the synthesis
problem as shown above for the language L' = Sy,. If we denote the synthesized net by (N, m), we get:

Lemma 4.1. There is a solution of the synthesis problem for the partial language £ (defined by L) if and
only if £po(N,m) = L.

Proof:

It is only necessary to prove the only if-part. Assume there is a solution (N/, m’) of the synthesis problem
for the partial language £ (defined by L) and £po(N, m) # L. This implies £po(N,m) 2 L, because
we know £po(NN,m) O L from the fact that the set of regions of L’ is consistent with the set of token
flow regions of L (Theorems 3.1 and 4.1).

We can distinguish two cases: either the set of enabled step occurrence sequences of (N, m) coin-
cides with L;W ¢y or not. If the set of enabled step occurrence sequences of (N, m) does not coincide with
;Te #» then for some wrong continuation 0" € Liyyon, there does not exist a separating region. In this
case o’ corresponds to an LPO not specified by L, which is enabled in (N’,m'). Otherwise, (N, m’)
would have a place prohibiting ¢/, and this place would correspond to a separating region. This is a
contradiction.

Let the set of enabled step occurrence sequences of (N, m) coincide with L;M 7 and let lpo ¢ Lé’gf;f
be enabled in (V,m). This means each step sequence oy, associated to a step linearization Ipo’ of
Ipo is enabled in (IV,m). Since the set of enabled step occurrence sequences of (IV,m) coincides with

ref» We conclude oy, € Ly .. Thus all step linearizations lpo’ of Ipo are also enabled in (N’,m’).
Therefore also lpo ¢ LEte! is enabled in (N, m’) and thus £po(N’, m’) # L. This is a contradiction.
O

For the partial lan-
guage L of the running ex- a - ~\ -

J

. ; 1 1 0
ample (Figure 2), Figure b P
13 shows on the left side ! 1 ; 0
0
the language L;Te s and aa 101 -2 . 0
one wrong continuation o’ ab 11 1 1 1 S 0
/s : [] r
of L' in grey. Qn tbe right a(a+b) 11 P 21=1,
the corresponding inequa- ry
tions leading to the in- aab 1oz 2 r 0
equation system A/ -r > aba 1 1 1 2 -1 L 4,, 0
0 and —bgl T > 1 (lIl a(a+b)a 1 2 1 3 -1 1
. /
grey) are shown. The set ./

of separating regions of £
w.r.t. o is given by the
set of non-negative integer
solutions of this inequa-
tion system.

Altogether, the synthesis algorithm for a partial language given by L is as follows: successively
each wrong continuation ¢’ € Ly, is considered. If o’ is enabled in the net constructed so far,
then an attempt is made to solve the respective inequation system Ay -r > 0, r > 0, b, - r <
0. If there is no solution, the synthesis problem has a negative answer. Otherwise one solution is
computed and the corresponding place is added to the net. In order to decide the solvability of the
inequation system and to compte a solution in the positive case several linear programming solvers, such
as the Simplex method, the method by Khachyan or the method of Karmarkar, can be applied.* The
methods of Khachiyan (ellipsoid method) and Karmarkar (interior point method) need only polynomial
runtime [27]. Nevertheless usually a better choice is the classical Simplex algorithm or variants of the
Simplex algorithm [29]. While the Simplex algorithm is exponential in the worst case, probabilistic and
experimental results [27] show that the Simplex algorithm has a significantly faster average runtime than

Figure 13. Equation system defining separating regions of the partial language
of the running example w.r.t. the wrong continuation shown in the last (grey) row
(tl = a, tQ = b)

4Since the considered inequation systems are homogenous, we can apply solvers searching for rational solutions, because each
rational solution of the system can be transformed to an integer solution by multiplying with the common denominator of the
components of the solution vector.

for example the algorithm of Khachiyan. Having processed all wrong continuations, the first part of the
synthesis algorithm is finished and the synthesized net (N, m) is constructed (Algorithm 4).

A — EmptyMatriz

l:

2. (P, T,F,W,mg) «— (0,7,0,0,0)

3: solvable «— true

4: forallm...7, € L' do

5. forj=1tondo

6: A .addRow(as,.. -;)

7: end for

8: end for

9: forall o’ € Lj,,,,, do
10: ifisStepOccurrenceSequence(o’, (P, T, F,W,my)) then
11: r — Solver.getIntegerSolution(Ar -r > 0,r > 0,b, - r < 0)
12: if 7 # null then
13: P.add(correspondingPlace(r))
14: else
15: solvable +— false
16: end if
17: end if
18: end for

19: return [(P, T, F,W,my), solvable]

Algorithm 4: Computes (N, m) and the answer to the synthesis problem of L’ from a partial language
given by L.

The disadvantage of Algorithm 4 is that the number of step linearizations of an LPO may be expo-
nential in the number of nodes of the LPO, i.e. the size of L' may be exponential in the size of L. Thus
the considered inequation systems (i.e. the matrix A ,) may have exponential many rows in the size
of the input L. Moreover, the number of wrong continuations |L},,,,,| is exponential in the size of L
(since the number of wrong continuations |L§Umng\ may in the worst case be 2|7 ’L;ﬂ‘e f|). Therefore,
the number of inequations that have to be solved (bounded by |L;,,,,,|) as well as the number of places
(defined by solutions) in the constructed net may be exponential in the input L. But usually the number
of places is much smaller, because one separating region typically prohibits many wrong continuations
at once.

We implemented Algorithm 4 as a plug-in into our framework VipTool. As the linear programming
solver we implemented the standard procedure to calculate a starting edge with the Simplex algorithm.
This is a natural and in practical applications very efficient approach to decide, if there is a non-negative
integer solution of the considered linear inequation systems and to find such solution in the positive case.
Note that in the whole approach instead of choosing L’ = S}, we could only add to L’ step sequences of
S1, having maximal concurrency (the definition of L}, has to be adapted in this case). As an alter-
native, the algorithm can also be optimized by searching for identical vectors ar,..r; and vectors ary ..z
defining less restrictive inequations than other vectors ar .7/ to delete respective inequations from A .
This idea is realized in our implementation of Algorithm 4. Omitting such inequations significantly re-
duces the size of the considered inequation systems. Searching for identical or less restrictive vectors b,

can also reduce the number of wrong continuations o’ that have to be considered. But this is not nec-
essary, because the "if isStepOccurrenceSequence(o’, (P, T, F, W, mg)) -test in Algorithm 4 very
efficiently deals with such wrong continuations. Experimental results for this synthesis algorithm are

shown in Section 5.
a lal |al [a] [a]
L
b] [al b b

Figure 14. Left: a partial language given by L. Right: an LPO lpo ¢ Lf:;f with Sy0p = {a(a +b), (a +
a)b, aab,aba} C St.

The considerations in the last proof (Lemma 4.1) show that the synthesis problem for L has a negative
answer, if it has a negative answer for L’ = Sp. If it has a positive answer for L', £po(N,m) = L is
still not ensured, because there still may exist LPOs Ipo ¢ LZ¢! fulfilling Olpo! € Lot
linearization Ipo’ of Ipo. Such Ipo is enabled in (N, m), but it is not specified in £, i.e. the synthesis
problem has a negative answer in this case. Figure 14 shows an example of a partial language given by
L and such an LPO Ipo. It can be tested similarly as in Algorithm 3 if such LPOs exist (see Algorithm
5). The performance of Algorithm 5 is similar to the performance of Algorithm 3. Only the testing for
enabledness of LPOs in L;m is replaced by a set inclusion test (or more precisely an isomorphism test)
making Algorithm 5 independent from the net synthesized with Algorithm 4. We did not implement
Algorithm 5 so far. Instead of using Algorithm 5, £po(N, m) = L can also be checked with Algorithm
2 or Algorithm 3 (because £po(N, m) D L).

for every step

1: for all Ipo € L‘Jim do

2: solvable — false

3 for all Ipo’ step linearization of Ipo do
4 if 0;,,, ¢ L' then
5: solvable «— true
6 end if

7 end for

8. if !solvable then
9 return false
10: end if

11: end for

12: return true

Algorithm 5: Language based equality test: tests if £po(N, m) = L (indicated by a boolean variable).

4.2. Performance Comparison

It is not easy to compare the performance of Algorithm 1 and Algorithm 4 on the theoretical level for
two reasons.

First, the region definitions applied in the two algorithms are of a fundamentally different form. This
is observed in [23], where the regions applied in Algorithm 1 are called token flow regions (as in this
paper) and the classical regions applied in Algorithm 4 are called fransition regions. On the one hand,
token flow regions specify the token flow between transition occurrences. They are determined by a
variable for each possible token flow between two transition occurrences. Thus there are O(n?) such
variables, where n is the number of events in L. As presented, token flow regions can be represented as
solutions of a linear inequation system over these variables. The number of inequations linearly depends
on n. On the other hand, transition regions directly specify the initial marking and the weights on the
arcs connecting places with transitions. Thus the number of variables in this case is independent from
n and |L'|. As presented, also transition regions can be represented as solutions of an appropriate linear
inequation system. The number of inequations linearly depends on |L;, . =002

Second, in Algorithm 1 a finite representation of the infinite set of regions (feasible places) is com-
puted in another way than in Algorithm 4. In [23] we call the finite representation applied in Algorithm
1 a basis representation, whereas we denote the classical finite representation applied in Algorithm 4 as
separation representation (as in this paper). The basis representation consists of a finite basis of the set
of all solutions of the considered inequation system. There can be exponential many basis solutions in
the number of inequations resp. in n. As argued, from a basis representation we cannot directly deduce
whether the computed net is a solution. This is because the net may still generate behavior additional
to L. With a separation representation one tries to prohibit such in addition behavior. For this, one con-
siders wrong continuations of step sequences in L’. A separation representation contains for each wrong
continuation a place (region) prohibiting this wrong continuation, if such a place exists (each such place
is a solution of a different inequation system which can be computed in polynomial time). Usually not all
wrong continuations must be considered since some places prohibit more than one wrong continuation.
This leads to the effect that typically the synthesized net has less places than using the basis representa-
tion approach. A further advantage of a separation representation is that an equality test in some cases
is not necessary (when Algorithm 4 already gives a negative answer). The disadvantage of the sepa-
ration representation is that the separation representation not necessarily minimizes the behavior of the
constructed net. Algorithm 4 does not necessarily construct a net with minimal partial order behavior
including L. In the case that Algorithm 4 already gives a negative answer to the synthesis problem, the
constructed net does not even guarantee minimal step sequence behavior including L.

Altogether, in both Algorithms the time bound is O(2"). For the computation of a basis represen-
tation of token flow regions of L, we compute a basis of potentially exponential size of an inequation
system with O(n) inequations and O(n?) variables. The equality test also needs in the worst case O(2")
time. For the computation of a separation representation of transition regions of L', we compute O(2")
times a solution of some inequation system with O(2") inequations and a constant number of variables.
In Section 5 we present experimental results comparing these two methods.

4.3. Variants

As observed in [23], the two kinds of regions can be each combined with the two kinds of finite repre-
sentations. This leads to further variants of the two synthesis methods considered in the last subsection.

(A) Itis possible to compute a separation representation of token flow regions of L. If we assume that L
is given by LPOs with maximal length representing minimal causality, then a wrong continuation

is an LPO which extends a prefix of a sequentialization of an LPO in L by exactly one transition
occurrence [23]. Consequently there are O(2™) wrong continuations. This is probably less efficient
than computing the basis representation in average case since the basis representation is often very
small in practice.

(B) It is possible to compute a basis representation of transition regions of L. Such regions are deter-
mined by O(2") inequations [23]. Since the basis representation can be exponential in the number
of inequations, this method is less efficient than using token flow regions.

(C) It is possible to compute a separation representation of transition regions of L. In this case one
computes O(2") times a solution of some inequation system with O(2") inequations and a constant
number of variables similar as when computing a separation representation of transition regions of
L.

(D) It is possible to compute a basis representation of transition regions of L’. This has a similar
performance as (B).

(E) It is possible to compute a basis representation of token flow regions of L’. Such regions can be
defined on LPOs lpo associated to step sequences oy, € L’. This involves more variables and
inequations as in the case of a basis representation of token flow regions of L.

(F) It is possible to compute a separation representation of token flow regions of L’. This involves
more variables and inequations as in the case of a separation representation of token flow regions
of L (case (A)).

Since none of these variants promises a better performance, we decided to present experimental
results only for computing the basis representation of token flow regions of L and the separation rep-
resentation of transition regions of L’ (i.e. for the two presented synthesis approaches Algorithm 1 and
Algorithm 4).

5. Experimental Results

We implemented Algorithm 1, Algorithm 2 and Algorithm 4 and integrated them in a beta version of our
framework VipTool [11]. Thus we can use Algorithm 1 or 4 to synthesize a p/t-net (/V, m) from a partial
language L, where in each case (N, m) is the only candidate to solve the synthesis problem. Algorithm
2 can be used to test if (/V, m) actually solves the synthesis problem, i.e. in this way we get an answer to
the synthesis problem in the setting of p/t-nets and partial languages.

Figure 15 shows a screenshot of VipTool. On the left side the two LPOs defining the partial language
L (given by L) of the running example are depicted. On the right side the p/t-nets synthesized from L
with Algorithm 1 and Algorithm 4 are shown. The partial language may be specified in the VipTool
editor or as an xml-file. The synthesized net is stored as a pnml-file and can be visualized with VipTool.
Figure 15 shows an example of the user interface of VipTool.

As explained, the practical performance of the presented synthesis algorithms is quite hard to es-
timate on a theoretical level. Therefore the implementation is used to get experimental results on the
performance and on the size of the computed nets of the synthesis algorithms. In particular a practical
comparison of the alternative synthesis approaches pursued by Algorithm 1 and Algorithm 4 is shown.

. ¥ipTool 1H[=]

File Edit Draw View Anabze HELP
k]2 oJo[~[o][» | [#] (K] fom 3]
e aigt |

T Workspace default

=
1= lpo
o Ipol sl
1 lpoZ =ml
{7 petrinets
& Algl.pnml
& Algd.pnml

st | ab]

4] Il [r]|:

Figure 15. Screenshot of VipTool: the LPOs [pol and [po2 define a partial language £. Algl respectively Alg4
show the nets synthesized from these two LPOs by our implementation of Algorithm 1 respectively Algorithm 4.

We show experimental results of the implementation of the synthesis algorithm based on token flow
regions combining Algorithm 1 and Algorithm 2 and of the synthesis algorithm based on classical regions
combining Algorithm 4 and Algorithm 2.> The considered partial languages are given by subsets of the
LPOs shown in Figure 15, Figure 16 and Figure 17. The table on the page after next shows experimental
results for some example partial languages indicated in the column “Language” by numbers referring to
the LPOs defining the language. The table shows the runtime in milli seconds ("ms”) of Algorithm 1 and
Algorithm 4, and in each case the runtime of the optimistic equality test Algorithm 2 for the synthesized
nets. We also show the number of basis regions ("#b”’) and the final number of places (#p”) of the net
computed with Algorithm 1 as well as the number of places ("#p”) of the net synthesized with Algorithm
4. Concerning Algorithm 2 we depict the final result of the equality test (’solv”).

We ran three test series. A first one increasing the number of considered LPOs (Ipol - 1po6), a
second one increasing the number of nodes in one LPO (Ipo7a - Ipo7c, Ipo8) and a third one increasing
the number of concurrent nodes in one LPO (Ipo9a - Ipo9e).

>We used Java SE 1.5.0 on an Intel Xeon 2.8 GHz machine with 3072 MB RAM running Microsoft Windows Server 2003 SE
operating system.

a] a]
e]
b
[d] [d |
Ipo3 Ipo4 Ipo5 Ipo6 Ipo7b Ipo8

Figure 16. Example LPOs lpo3, Ipo4, Ipo5, 1po6, Ipo7a, Ipo7b, Ipo7c, 1po8.

!]

Figure 17. Example LPOs Ipo9a, Ipo9b, 1po9c, 1po9d, Ipo9e.

It is obvious that Algorithm 4 generates smaller nets than Algorithm 1. The number of places of the
synthesized nets is considerably smaller in all three test series. Thus the performance of the equality test
Algorithm 2 is significantly better in the case of Algorithm 4. Concerning the runtime of Algorithm 1
in particular the follow-up equality test Algorithm 2 (or more precisely the unfolding algorithm of Algo-
rithm 2) seems problematic (the runtime entry ”-” means that the algorithm did not finish in reasonable
time), although we have already chosen an efficient unfolder. We are currently working on an even more
efficient unfolding algorithm. Also further methods to delete implicit places in the synthesized nets could
improve the situation. It could also be interesting to implement the pessimistic equality test (Algorithm
3), which does not include an unfolding algorithm, instead of the optimistic test used here.

Algorithm 1 is fast if the LPOs include a lot of concurrency as in the third test series. If the specified
LPOs do not exhibit too much concurrency, as in the second test series, or even very low level concur-
rency, as in the first test series, Algorithm 4 is very efficient (compared to Algorithm 1). The follow-up
equality test with Algorithm 2 is very fast in all examples. Thus in the case of Algorithm 4 it seems not
necessary to shift to one of the alternative equality tests Algorithm 3 or Algorithm 5. The runtime of
Algorithm 4 gets into serious difficulties, when the degree of concurrency in the LPOs is high. The third
test series shows that in this case the runtime of Algorithm 4 grows very fast and that it is significantly
worse than in Algorithm 1. Algorithm 4 does not synthesize a net in reasonable time already for quite
small examples exhibiting much concurrency.

Language Synthesis with token flow regions Synthesis with classical regions
Algorithm 1 Algorithm 2 Algorithm 4 Algorithm 2
ms #b #p ms solv ms #p ms solv
{1, 2} 131 9 5 67 true 9 3 8 true
{1, 2, 3} 266 35 7 81 true 19 3 11 true
{1, 2, 3, 4} 390 88 12 134 true 29 4 23 true
{1,2,3,4,5} | 1.890 220 17 - - 32 4 24 true
{1, 2, 6} 359 48 14 | 5901 false 28 4 false
{7a, 8} 279 49 19 96 true 26 5 10 true
{7b, 8} 407 149 27 1301 true 35 6 20 true
{7¢, 8} 734 321 41 - - 76 7 26 true
{9a} 203 10 6 18 true 2107 6 25 true
{9b} 218 15 7 85 true 19759 6 59 true
{9c} 250 20 8 141 true 227680 6 77 true
{9d} 282 25 9 192 true | 3621130 6 102 true
{9e} 312 55 9 403 true - - - -

6. Conclusion

In this paper we presented two methods, given a finite set of LPOs representing a partial language, how to
compute a (finite) marked p/t-net being the only candidate to solve the synthesis problem. In both cases
region theory is applied, such that each specified LPO is a run of the computed net. One method is based
on the application of classical regions to the set of step sequences generated by the partial language. The
other methods uses a novel definition of token flow regions of partial languages. For both methods, we
developed effective methods to test whether the computed net has more runs than specified or not. This
decides the synthesis problem, since the synthesis problem has a solution if and only if the computed net
does not have more runs than specified. We implemented both methods in our tool VipTool and finally
presented experimental results comparing the runtime of both methods. As expected, the innovative
method based on token flow regions significantly outperforms the classical approach, if the given LPOs
specify sufficient concurrency among events. If there is only low level concurrency the classical approach
is very fast.

The restriction to finite partial languages need not be a problem in practice. An application field
of synthesis methods is the discovery of workflow processes (given as Petri nets) from finite event logs
[2, 5]. A finite event log is a finite set of finite sequences of observed actions, thus a special type of a finite
partial language (without concurrency). Currently there is a research effort to deduce information about
concurrency from event logs. Another natural application field is the specification of system behavior
via message sequence charts, which are special types of LPOs. In both cases, the synthesized net can be
used for analysis purposes.

The next step of research is the examination of the special instances of polyhedral cones used in
the algorithm in view of a better upper bound for the number of basis solutions. We also work on a

generalization of the presented results to infinite partial languages which allow a finite representation
(for example a term-based representation).

References

(1]

(2]

(3]
(4]

(5]

(6]

(7]

(8]

[9]

(10]
(11]

(12]
(13]

[14]

[15]

[16]
(17]

van der Aalst, W. M. P., van Dongen, B. F., Herbst, J., Maruster, L., Schimm, G., Weijters, A. J. M. M.:
Workflow mining: A survey of issues and approaches., Data Knowl. Eng., 47(2), 2003, 237-267.

van der Aalst, W. M. P., Weijters, T., Maruster, L.: Workflow Mining: Discovering Process Models from
Event Logs., IEEE Trans. Knowl. Data Eng., 16(9), 2004, 1128-1142.

Badouel, E., Darondeau, P.: On the Synthesis of General Petri Nets., Technical Report 3025, Inria, 1996.

Badouel, E., Darondeau, P.: Theory of Regions., Petri Nets (W. Reisig, G. Rozenberg, Eds.), Lecture Notes
in Computer Science 1491, Springer, 1998, 529-586.

Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process Mining Based on Regions of Languages., BPM
2007 (G. Alonso, P. Dadam, M. Rosemann, Eds.), Lecture Notes in Computer Science 4714, Springer, 2007,
375-383.

Bergenthum, R., Lorenz, R., Mauser, S.: Faster Unfolding of General Petri Nets., Proceedings 14. Workshop
Algorithmen und Werkzeuge fiir Petri Netze (AWPN), 2007, 63—-68.

Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Petrify: A tool for manipulating
concurrent specifications and synthesis of asynchronous controllers., IEICE Trans. of Informations and
Systems, E80-D(3), 1997, 315-325.

Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Hardware and Petri Nets: Ap-
plication to Asynchronous Circuit Design., ICATPN 2000 (M. Nielsen, D. Simpson, Eds.), Lecture Notes in
Computer Science 1825, Springer, 2000, 1-15.

Darondeau, P.: Deriving Unbounded Petri Nets from Formal Languages., CONCUR 1998 (D. Sangiorgi,
R. de Simone, Eds.), Lecture Notes in Computer Science 1466, Springer, 1998, 533-548.

Desel, J.: From Human Knowledge to Process Models., to appear in: Proceedings of UNISCON, 2008.

Desel, J., Lorenz, R., Mauser, S., Bergenthum, R.: VipTool-Homepage, 2008, Http://www.informatik. ku-
eichstaett.de/projekte/vip/.

Desel, J., Reisig, W.: The Synthesis Problem of Petri Nets., Acta Inf., 33(4), 1996, 297-315.

Donatelli, S., Thiagarajan, P. S., Eds.: Petri Nets and Other Models of Concurrency - ICATPN 2006, 27th
International Conference on Applications and Theory of Petri Nets and Other Models of Concurrency, Turku,
Finland, June 26-30, 2006, Proceedings, vol. Lecture Notes in Computer Science 4024 of Lecture Notes in
Computer Science, Springer, 2006.

Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures. Part I: Basic Notions and the Representation
Problem., Acta Inf., 27(4), 1989, 315-342.

Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures. Part II: State Spaces of Concurrent Systems., Acta
Inf., 27(4), 1989, 343-368.

Grabowski, J.: On partial languages., Fundamenta Informaticae, 4(2), 1981, 428-498.

Hoogers, P., Kleijn, H., Thiagarajan, P.: A trace semantics for Petri nets., Information and Computation,
117(1), 1995, 98-114.

Josephs, M. B., Furey, D. P.: A Programming Approach to the Design of Asynchronous Logic Blocks., Con-
currency and Hardware Design (J. Cortadella, A. Yakovlev, G. Rozenberg, Eds.), Lecture Notes in Computer
Science 2549, Springer, 2002, 34-60.

Juhds, G., Lorenz, R., Desel, J.: Can I Execute My Scenario in Your Net?, [ICATPN 2005 (G. Ciardo,
P. Darondeau, Eds.), Lecture Notes in Computer Science 3536, Springer, 2005, 289-308.

Kiehn, A.: On the Interrelation Between Synchronized and Non-Synchronized Behaviour of Petri Nets.,
Elektronische Informationsverarbeitung und Kybernetik, 24(1/2), 1988, 3—18.

Lorenz, R., Bergenthum, R., Desel, J., Mauser, S.: Synthesis of Petri Nets from Finite Partial Languages.,
ACSD 2007, IEEE Computer Society, 2007, 157-166.

Lorenz, R., Juhas, G.: Towards Synthesis of Petri Nets from Scenarios., in: Donatelli and Thiagarajan [13],
302-321.

Lorenz, R., Juhds, G., Mauser, S.: How to Synthesize Nets from Languages - a Survey., Proceedings of the
Wintersimulation Confernce (WSC) 2007, IEEE Computer Society, 2007, 637-647.

Minkowski, H.: Geometrie der Zahlen, Teubner, 1896.
Motzkin, T.: Beitrdge zur Theorie der linearen Ungleichungen, Ph.D. Thesis, Jerusalem, 1936.

Pratt, V.: Modelling Concurrency with Partial Orders., Int. Journal of Parallel Programming, 15, 1986,
33-71.

Schrijver, A.: Theory of Linear and Integer Programming, Wiley, 1986.

Tschernikow, S. N.: Algorithm for finding a general formula for the non-negative solutions of a system of
linear inequalities., USSR Computational Mathematics and Mathematical Physics, 5(2), 1965, 228-233.

Vanderbei, R. J.: Linear Programming: Foundations and Extensions, Kluwer Academic Publishers, 1996.

Vogler, W.: Modular Construction and Partial Order Semantics of Petri Nets, vol. 625 of Lecture Notes in
Computer Science, Springer, 1992.

