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Abstract— In this paper we present the usage of the Dis-
tributed Environment Model (DEM) to supply a proactive
sensor system. The proactive sensor-system is a novel ap-
proach which combines low-resolution range sensors with
high-resolution range sensors. Its aim is to achieve a better
cost-benefit ratio on getting accurate knowledge about the
environment of a car. We describe the main concepts of the
DEM and of the proactive sensor system. Furthermore, we
show synergistic effects of the DEM environment knowledge
base combined with the efficient object classification done by the
proactive sensor system. Finally, an evaluation of the DEM and
the proactive sensor system in real traffic scenarios is presented.

I. INTRODUCTION

In the automobile industry, many comfort and safety ap-
plications rely on the knowledge about a car’s environment.
Therefore, environmental sensing plays a fundamental role in
this field [19]. This holds in particular for Advanced Driver
Assistance Systems (ADASs) which gather environmental
information via long range radars and cameras in present-day
cars. These sensors produce a huge amount of data which has
to be transported by the bus system of the car and processed
by electronic control units (ECUs). Managing this data is a
non-trivial software engineering task.

In the AUTOSAR consortium [1], leading automotive
manufacturers and suppliers are working together to develop
and establish an open industry standard for automotive
architectures. Common problems like hardware abstraction
and real-time communication with the environment are ad-
dressed by this standard. Standard software such as operating
systems is specified as well. However, fundamental issues
like sensor data distribution and the integration of driving
situation awareness [11] are not covered in AUTOSAR. To
handle these issues in ADASs development and deployment,
we propose the Distributed Environment Model (DEM) as
an addition to the AUTOSAR specification. DEM meets
the requirements of ADASs by a distributed framework,
supporting a situation model, situation analysis and thus
situation awareness. The DEM provides a uniform driving
situation for all ADASs and thus allows the detachment of
situation analysis, resulting in reduced ADASs development
complexity. Furthermore, the driving situation is used for
internal data distribution in DEM, which leads to a more
efficient usage of communication resources. In particular,
proactive data distribution for the most likely next driving
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situation, as suggested in this paper, improves the perfor-
mance of data acquisition from a remote host.

However ADASs development heavily relies on an ac-
curate knowledge about the car’s environment to detect
other traffic participants and possible threats. One way to
gain this knowledge is the use of range sensors such as
radars or laser scanners. The latter are often capable of
acquiring high-resolution range information, yet it is very
time-consuming to obtain a regular set of input data. This
would for example require the scene to be scanned line by
line. In a dynamic road traffic environment this becomes
problematic, as a single 3-D scan of the environment takes as
long as 4-12 sec [20]. Our objective is to develop a sensor
concept, that provides efficient accquisation of high reso-
lution environment information. In this context, efficiency
stands for an optimum cost-benefit-ratio which is the case if
an accurate environmental knowledge can be obtained under
real-time constraints. We propose the proactive sensor system
to fullfill this requirements. The proactive sensor system aims
at increasing sensor resource efficiency by allocating control
on high-resolution sensors using a saliency driven utility
optimisation scheme (see section III).

In this paper we consider the main concepts of DEM
and the proactive sensor system and present their synergistic
effects. The proactive sensor system profits from information
accessible through the DEM. It uses the object trajectories
provided by the DEM in order to anticipate the appearance
and disappearance of occlusions. As the attempt to observe
and classify an occluded object is futile, it decreases sensor
resource efficiency. At the same time, the DEM profits from
a robust object classification performance because tracking
algorithms heavily depend on a good model of object dy-
namics, governed by vehicle classes.

The remainder of this paper is organized as follows. In
section II the DEM architecture is presented. The concept
of a proactive sensor system is introduced in section III.
Section IV shows evaluation results in real driving scenarios.
Summary and conclusion can be found in section V.

II. DISTRIBUTED ENVIRONMENT MODEL (DEM)

The main concepts of the Distributed Environment Model
(DEM) have already been presented in [7]. In this section we
give a summary on the major parts of the DEM. The focus
is the proactive Sensor System described in section III.
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Fig. 1. Layered architecture of DEM

A. DEM Architecture

Real-time middleware is not very much considered in auto-
motive software. More general concepts like RT CORBA and
TAO [18] are based on Object Request Broker (ORB) archi-
tectures. These architectures are built for remote object calls.
They are not suitable for automotive environments because
of strict hardware limitations. Data is usually processed on
local machines to achieve hard real-time requirements. Data
transfer speed can be considered the main requirement for the
distributed system. The DEM focuses on real-time situation
recognition and subsequent adaptive data distribution.

The DEM is a distributed embedded framework for sensor
data fusion and interpretation in an automotive environment.
As shown in Fig. 1, it has as a layered architecture. The
Service Interface is used by applications (e.g. ADASs) to
access the internal functionality. Triggers acquire, store, or
modify data in the DEM Object Space. The communication
with sensors and the wrapping of sensor data to DEM objects
is implemented by Generic Services which provide location
independent data access. The Object Space is a system wide
container for sensor data. Its objects are indexed to allow
efficient query operations via the Query Interpreter layer,
based on a subset of the Object Query Language (OQL).
The Persistent Layer is used for error logging. It enables
subsequent error diagnostics and backtracking.

B. Data representation

The DEM uses a multi-level data representation to estab-
lish a bottom-up generic sensor data processing. The term
generic means that the DEM abstracts sensor data from
the producing sensors, a widely used technique in object
oriented programming. For example, radar measurements are
handled by a C++ class distance measurements with an
attribute indicating that its data was collected by a radar
sensor. So the DEM concepts are independent from specific
sensors although more accurate sensors provide more precise
information about the car’s environment.

As shown in Fig. 2, Sensor Data is processed through
Filter algorithms, sensor Data Fusion [24], data Association
[3] and a spin-image based Classification [12]. This kind of
information processing results in a detailed representation of
the environment around the so-called ego vehicle. On level 5
of the DEM data representation, the gathered information is
merged into the Situation Model, representing data in both,
logical and a spatial scope. Based on this knowledge repre-

sentation, further strategic operations like Situation Analysis
and Proactive Sensor usage (described in section III) can be
performed.
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Fig. 2. Data representation levels in DEM [6]

C. Situation representation

To establish situation awareness in automotive applica-
tions, we first define the main parts of a common traffic
situation. Possible actions and interactions for an artificial co-
pilot are described in [21]. Actions differ from interactions
because they can be accomplished without any other traffic
participant. In [21], the following nine distinct manoeuvres
(MRs) are identified:

MR1 running up MR2 follow
MR3 approach MR4 pass
MR5 cross MR6 lane change
MR7 turning off MR8 turning back
MR9 parking

According to [21], these manoeuvres can be assigned
to the manoeuvre groups actions (MG I) and interactions
(MG II). The manoeuvres MR2 and MR9 can be assigned
to both groups, because they can be interpreted as actions
and as interactions. To get distinct sets, MR2 is split into
• MR21 follow lane as an action and
• MR22 follow vehicle as an interaction.
The interpretation of MR9 as an interaction can be avoided

by considering that a car can be parked while being in-
teracting with other traffic participants. Table I shows the
assignment of manoeuvres to manoeuvre groups in the DEM.

Apart from actions and interactions, the behaviour of the
driver also depends on the current traffic regulations. The
DEM distinguishes traffic regulations in terms of inner city,
outer city and of highway specific regulations. So a driving
situation in DEM is represented through sets of
• actions,
• interactions, and
• regulations.
Finally, a tuple of sets

〈
Sa

t , Si
t , S

r
t

〉
represents the current

driving situation at a given time t. With Sa
t as the action at

time t, Si
t as the interactions at t and the traffic regulations Sa

t

at t. Sa
t contains the actions at t, Si

t one or more interactions
and Sr

t the given traffic regulations.
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MR1 MR21 MR22 MR3 MR4 MR5 MR6 MR7 MR8 MR9
MG I X X X X X X X
MG II X X X

TABLE I
MANOEUVRES ASSOCIATED TO MANOEUVRE GROUPS

D. Situation dependent data distribution

The need for driver assistance depends on the current traf-
fic situation and on the environment around the ego vehicle
[8]. Therefore, ADASs are only useful in specific driving
situations, e.g. Adaptive Cruise Control [5] on highways.
This observation is used by the DEM to establish a situation
based data distribution. As shown in [7], a set of tuples
b′ = 〈d, e, c〉 describes all subscriptions of a data consumer
in corresponding driving situations c, with d representing a
unique data type and e an event raised on this data type.
So every data consumer register his data needs, consisting
of which data at which events in which driving situations
is needed, at DEM through a set of tuples b

′
. Depending

on the current driving situation, only data required in this
situation will be distributed. Thus the aggregated data amount
transmitted to a data consumer is reduced by situation
dependent data distribution.

Based on the DEM situation analysis, it is possible to
predict upcoming driving situations [7]. The situation analy-
sis computes a prediction about the most likely next driving
situation, which is then used by the DEM to establish a
proactive data distribution. The data requirements of data
consumers in the particular driving situations are known by
(the concept of) situation based data distribution. The DEM
produces a proactive distribution table that contains all data
needed by applications in upcoming driving situation. Before
a driving situation changes, the DEM distributes this data
to the host on which the data is needed after the change,
taking the timeliness and the consistency of the data into
account. Using this concept of data distribution reduces
latency after situation changes and saves computing power
as well as network usage during the sensitive period of a
driving situation change.

III. PROACTIVE SENSOR SYSTEM IN DEM

The proactive sensor system presented in [13], [15] aims
at increasing sensor resource efficiency by allocating control
on high-resolution sensors using a saliency driven utility
optimisation scheme.

This concept can be divided into six processing steps or
modules. Each step provides input for the subsequent step:
• low-resolution range image acquisition
• saliency detection and extraction of key points
• selection of key points and regions
• scan pattern generation for 3-D laser scanner
• high-resolution data acquisition (intensity, range)
• classification by matching with 2-D/3-D descriptions
The function of this system during runtime is as follows.

A 3-D camera acquires a range image in which several key

points are determined, based on a saliency measure. One or
more of these key points are then selected to be observed
more closely, based on utility theory. The controllable high-
resolution sensors acquire range and intensity information of
the areas surrounding the key points. This information is then
matched with 2-D and 3-D descriptions stored in an object
class database, in order to classify the objects in the scene
using shape models and spin images [10].
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Fig. 3. Block diagram of the proposed sensor system used for object
classification. Rounded boxes represent sensor resources or optional sensor
resources (hatched) while rectangular boxes represent processing steps.

As shown in Fig. 3, the proposed sensor system receives
input from low-resolution sensors such as a 3-D camera [4]
which is then used to determine salient regions in the car’s
environment. Defining the term saliency is difficult because
saliency always depends on the actual task and environment.
Many publications transfer the definition of saliency from the
human visual system, which during its pre-attentive stage
considers regions salient that ’pop-out’ their surroundings
[9]. This definition constitutes a local approach, comparing
regions in the image with their surroundings in the same
way perceptive fields inside the human eye work. A second
definition expects that salient regions are rare, at best unique,
in the environment [23]. This definition assumes statistical
knowledge about the entire image and is detecting saliency
at a global scale.

We propose a combination of these two indicators for
salient regions, searching for globally rare combinations of
local features. The choice of features is dependent on the
used sensors and can not be stated generally. However, for
our low-resolution 3-D camera featuring 64 × 16 pixels
resolution, using 2 × 2 pixels Haar-like feature kernels
(cf. [22]) showed to be computationally inexpensive but
robust. For dynamic features, a fast translational 3-D motion
estimation algorithm has been proposed [14]. Inside salient
regions, key points are extracted to serve as oriented points
for the generation of spin images.

A key point is then selected to be scanned with a laser
scanner or to be observed by a pan-tilt-zoom (PTZ) colour-
camera by maximising the utility-to-cost ratio of scanning
or observing a certain key point. The utility of scanning a
certain key point can be expressed using utility functions
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describing the key points saliency, current uncertainty, reduc-
tion of uncertainty in past scans and observations, distance
from other key points, sensor accuracy, and alike.

The selection of a metric to asses the expected utility
is a central point in this resource allocation problem [2].
To optimise overall utility, methods such as maximising the
Nash product of all key points’ utilities [16] are used.

Once a key point is selected to be scanned by a laser
scanner, a scan-pattern for that key point is generated, again
maximising a cost-benefit function of acquisition cost and
expected classification rate. A method to generate efficient
scan-patterns is presented in [12].

The spin images calculated from the acquired laser scanner
data as well as the shapes observed by a PTZ camera can
then be matched against an object model database in order
to classify the objects in road traffic scenes.

A. Enhancing the Proactive Sensor-System using DEM

By supplying the proactive sensor systems with object
tracks from the DEM, the resource efficiency can be in-
creased further. This is mainly due to prior knowledge about
object occlusions.

There are two main cases in which the DEM can help to
anticipate occlusion effects. First, occlusion occurrence after
which it is futile to try to observe the occluded region, and
second, occlusion disappearance where a lot of information
can be gained observing the newly visible region.

Fig. 4. Appearance and disappearance of object occlusion due to manoeu-
vres.

Fig. 4 shows a common traffic scenario, illustrating both
cases. Our own vehicle – labled Ego – has a good view at
vehicle A, which is currently passing B. Our vehicle’s sensors
can now start to acquire data in order to classify vehicle
A, but not for long, since A’s trajectory inside our DEM
points towards the area occluded by B. It is efficient to stop
acquiring information about vehicle A before it enters the
occluded area (hatched), whereas the trajectory of A’ should
ideally be maintained as it now influences B’s trajectory.

Now it may turn out that driver B is rather unhasty, and
we might decide to pass B as well. At this point, it is still
futile trying to acquire data about A”. This changes when
we have reached position Ego’, from where we have a good
view at A” again or on whatever there might be at that time.

The advanced knowledge of the appearance and disappear-
ance of object occlusion, provided by the DEM, thus im-
proves sensor resource efficiency by reducing the time spent
on scanning or observing occluded objects and by delaying
the investigation of an occluded area until it becomes visible.

B. Enhancing DEM using a Proactive Sensor-System

The proposed proactive sensor system is more efficient
than conventional sensor systems in the sense that it reduces
the amount of raw sensor data. This reduction is desirable
for two reasons. First, less data is transmitted from one DEM
instance to another. Second the computational cost to process
the acquired data is reduced.

The computational efficiency is furthermore increased by
constraining object classification algorithms to key points.
This leads to a higher chance for successful classified com-
pared to an exhaustive search in the environment.

The DEM also profits from a correctly classified object
because in this case it is able to adapt the dynamics model for
the respective track according to the object class. Correctly
classified traffic participants will lead to better tracking re-
sults, since algorithms such as Kalman filters heavily depend
on a good model of object dynamics.

IV. EVALUATION OF THE DEM AND PROACTIVE SENSORS

In this section we present evaluation results of the DEM
and of the proactive sensor system in real driving situations
on German highways.

(a) (b)

(c) (d)

Fig. 5. Sequence of a DEM evaluation scenario which shows a critical
highway scenario with a truck cutting in the ego vehicles lane and other
traffic participants preventing a lane change to left.

Fig. 5(a)-5(d) show video frames of a test-drive on a
highway. To get repeatable scenarios, all taken sensor data,
including radar measurements, video data and laser scanner
measurements was recorded through the Automotive Data-
and Time-Triggered Framework (ADTF) [17]. Fig. 6 displays
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Fig. 6. Setting of the DEM evaluation

the basic setting of our evaluation. Through the ADTF inter-
face, we were able to access the data of the integrated long-
range radars, short-range radars, the laser scanner and the
camera. All this data was converted to DEM objects to enable
further processing according to the DEM data representation
(cf. section II-B). In the DEM Situation Analysis, the current
driving situation was broken down and upcoming driving
situations were predicted. According to the current driving
situation, the simulated ADAS components Adaptive Cruise
Control and Lane Change Assistant on DEM Driver Assis-
tance were activated or deactivated. If an ADAS was inactive
in the current driving situation, none of the subscriptions of
this ADAS were computed, and so no specific data of these
ADAS were distributed. DEM Proactive Sensors hosts the
proactive sensor system explained in section III.

Based on this setting, several test-drives have been made.
The results of the evaluation are shown in the following
subsections.

A. Situation dependent data distribution

We showed in [7] that, using driving situation dependent
data distribution, the transferred data volume can be de-
creased significantly. Now, as a second step, an evaluation of
the situation dependent data distribution and of the situation
analysis in real road traffic scenarios was done.

At initialisation state of the evaluation scenario, the sub-
scriptions of ADASs and the proactive sensor-system were
processed by the DEM to build specific distribution tables
for every driving situation (cf. section II). During the evalu-
ation scenario, the amount of data to be distributed to data
consumers was determined. In addition, a data logging of
recognised driving situations and predictions of upcoming
driving situations was done.

We compared the data volume using situation dependent
data distribution with the data volume not using this concept.
Furthermore, the recognised driving situations were com-
pared with the driving situations we identified by hand, and
the quality of the given predictions was determined.

Fig. 7 shows the recognized driving situations in the evalu-
ation scenario (black line) and the expected driving situations
(yellow line). Total there were 1543 driving situations to
recognize which lead to 20 driving situation changes. DEM
detects 1377 driving situations that is a recognition rate of
89,24 % (see also table II). As Fig. 7 shows the missed
driving situations are usually short-term outlier, which are
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Fig. 7. Driving Situation Recognition

the results of bad sensor readings or the switching between
situations with nearly the same possibility. Both problems
can be solved by adding additionally sensor to improve the
precision of the situation model. In the second case, also
corrections on the situation analysis algorithm are leading
towards the common aim. Further research has to be done
to evaluate the behavior of the situation analysis in the near
50:50 case.

Table II summarizes the results of the driving situation
recognition, shows the prediction rates of upcoming driving
situations and the decrease of the transported data volume by
using situation dependent data distribution. The transported
data volume to data consumers like ADASs and proactive
sensor-system could be reduced by 17,36 %. 89,24 % of
the driving situations and 90 % of the driving situation
changes in our scenario could be recognized. Also the given
prediction of the upcoming driving situation were accurate
in 30 % of the considered cases.

Recognised driving situations 89,24 % (1377 of 1543)
driving situation changes 90 % (18 of 20)
Predicted driving situation change 30 % (6 of 20)
Reduction of data volume 17,36 %

TABLE II
EVALUATION OF SITUATION DEPENDENT DATA DISTRIBUTION AND

SITUATION ANALYSIS

B. Proactive Sensors

The use of a PTZ camera that is able to observe a
variable – but preferably small – region in the environment
is tested using full video frames of a road traffic scene.
The PTZ camera is emulated by clipping regions from the
original video frame and inserting them over an originally
black background1. As time progresses, the inserted intensity
images fade to the background colour, thus representing
the decreasing relevance of past observations. The cropped
frames are also passed to a trained classifier in order to
recognise and classify traffic participants inside the focussed
region (cf. Fig 8, [15]).

1Demonstration footage: http://www.matzka.net/ptzCameraEmulation.mpg
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Fig. 8. Regions of interest are selected from a full video frame of a road
traffic scene using our utility driven gaze control algorithm. The selective
vision of a PTZ camera is emulated by extracting a 256×120 pixel image
region from a 640×480 pixel video frame.

It can be seen from both Fig. 8 and the demonstration
footage1 that relevant regions in the scene are determined
and traffic participants are correctly classified using our
utility driven gaze control algorithm. At the same time, only
256px×120px
640px×480px = 10% of the total area is observed at any given
moment. This results in a highly reduced amount of raw
data, while retaining enough information to classify traffic
participants using trained classifier cascade [15], [22].

V. CONCLUSION AND FUTURE WORK

In section IV we showed that the concepts of situation
dependent data distribution and of proactive sensor-system
can be implemented in an automotive environment.

The concepts of the DEM and the situation dependent
data distribution were presented. They reduce complexity in
ADASs development and decrease bus loads in automotive
environment. In the case of situation dependent data distri-
bution, the transmitted data volume is reduced significantly.
However, this concept highly depends on the quality of situ-
ation analysis as a prediction of upcoming driving situation.
As shown in section IV we obtain good results in recognition
of driving situation but the prediction of upcoming driving
situations is still a problem. Therefore, future research on the
DEM architecture and functionality will focus on situation
analysis and prediction.

The concept of a proactive sensor system has been pre-
sented. Its aim is to increase sensor resource efficiency and
also to reduce the amount of sensor raw data to be processed.
It has been shown that a proactive sensor system is able to
reduce video data to 10% and less while retaining the ability
to classify traffic participants in the environment. Future
work will include the quantitative evaluation of the presented
sensor system, with an emphasis on proving the concept’s
potential to increase sensor resource efficiency and its ability
to perform object classification in dynamic road traffic scenes
under real-time constraints using current hardware.
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