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Abstract: We propose the following approach to model a business process applying
Petri net synthesis: In a first phase runs supported by the process are designed. The
second phase is automatically creating a Petri net model of the business process using
synthesis algorithms. We present a concrete procedure including several design steps
for the first phase. For the second phase we develop an appropriate adaption of existing
synthesis algorithms.

1 Introduction

Business process modelling has attracted increasing attention in recent years [vdAvH02,
vdADtH05, Wes07]. One of the main issues of modelling a business process is analysis.
Analysis requires a formalization of the business process model. Obviously, the value of
the analysis outcome depends on the correctness of the model with respect to the actual (or
intended) business process. To avoid confusion with the formal interpretation of the term
correctness (a model is correct if it satisfies a property formulated by a specification), we
call a model valid if it faithfully represents the business process. Most of the theory con-
cerned with business process management and according tools assume validity of models
and concentrate on analysis and verification issues. However, experience shows that in
many cases negative results of analysis or verification are caused by invalid models rather
than by incorrect business processes. Even worse, positive results do not mean much if va-
lidity of models cannot be assumed. Therefore, the first phase of modelling is of particular
importance. Any error in an early stage of modelling will cause very costly redevelopment
efforts in later phases.

The paper [Des08] systematically tackled the problems occurring in the beginning of pro-
cess design. Its ideas are based on suggestions for a systematic analysis of requirements
developed in [MS93, May98, MK02, MKE07, FMK03]. It is argued that knowledge about
a process is typically distributed in different people’s minds. Deriving a valid process
model in such an informal environment is a difficult and error-prone task. The classi-
cal modelling approach starts with identifying tasks and resources of the process. Then
the knowledge of all involved people is collected. This step is often supported by semi-
formal modelling languages. The resulting process descriptions are used to design the
control flow of the process model. The validity of the model is checked by examining
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its behaviour in comparison to the behaviour of the business process, either implicitly or
explicitly [DJLN03, BDJL06].

The modelling approach proposed in [Des08] is different. The simplest modelling con-
cept is on the instance level: a single run of a process. It is assumed that the relevant
persons can more easily describe single runs than considering the process as a whole. In
[SMG06, Gli95, Gli00, Des99] key advantages of using runs in requirements engineering
are surveyed showing their intuitive handling. In particular, runs need not be designed by
some modelling expert, but they may be designed independently by domain experts.

Therefore the novel design approach (shown in detail by the enumeration below) starts by
collecting runs, also called scenarios or use cases, of the business process. The develop-
ment of a specification of the business process in terms of runs includes several problems
such as identifying relevant single activities. Having created such specification, we pro-
pose to use synthesis algorithms to generate automatically a process model. The prob-
lem of creating a process model from a respective behavioural specification is tackled
by Petri net synthesis methods [BD96, LBDM07, BLM06] and process mining techniques
[vdA07, BDLM07]. Petri nets are a standard formalism for the representation of processes
[vdAvH02, vdADtH05].

In the described approach the complex task of integrating the different views of a process
(in the standard modelling approach) is performed automatically by synthesis methods.
The only task that has to be done ”by hand” in this new modelling approach is to design
appropriate single runs of the process. Assuming that the specification given by the col-
lected runs has a high quality, a high degree of validity of the process model is ensured,
since the automatically synthesized model conforms to the specified runs.

This design approach is embedded in [Des08] into a comprehensive business process mod-
elling procedure allowing the refinement of single activities to subprocesses. While all
other steps of this modelling procedure are explained in detail, the design steps of speci-
fying runs of the process and of synthesizing a Petri net from the specified runs are only
described on an abstract level. In this paper we fill this gap. We propose a flexible method
to design runs of a process and show in detail how to synthesize a Petri net model of the
process from the specification given by the runs.

The following enumeration shows the whole modelling procedure proposed in [Des08].
The considerations in this paper explain how to perform steps 2-4 and 7-9.

1. First, identify start conditions, start actions and end actions of the process to be
defined.

2. Let relevant people define runs of the process on an abstract level.

3. Agree on the abstract actions that occur in these runs.

4. Synthesize a process from the runs using synthesis methods.

5. Validate this process by generating runs.

6. Identify actions that have to be refined.



7. Identify experts that can provide information (namely runs) for these actions.

8. Agree on actions that occur in these runs.

9. Synthesize a process from the runs using synthesis methods.

10. Validate this process by generating runs.

11. Iterate the procedure if there is a need for a higher refinement hierarchy.

12. Construct the entire flat process by refining all transitions on the abstract level (pos-
sibly to be repeated for the next levels).

13. Analyze this process w.r.t. appropriate correctness criteria, such as liveness, using
known techniques for Petri nets.

The remainder of the paper is organized as follows: In Section 2 we describe a proce-
dure of developing a specification in terms of runs. In Section 3 a synthesis approach to
automatically generate a process model from the developed behavioural specification is
presented. Section 4 illustrates the proposed business process design approach by a simple
case study supported by our modelling tool VipTool [DJLN03, BDJL06].

The approach described in the following sections requires advanced techniques from the
research field of partially ordered runs of Petri nets. We present the formalities in separate
paragraphs distinguished by italic font. The technical paragraphs are announced by a bold
faced ”Technical part”. These parts only regard technical details. Readers not familiar with
the field of partially ordered runs of Petri nets may skip these parts for better readability.

2 Specifying Runs

The main task in the new design approach is specifying the behaviour of a process in terms
of single runs. We claim that modelling a single run is an easy and intuitive task, also for
domain experts unexperienced in modelling. There are many possibilities to describe runs
(also textual descriptions are adequate). Using runs in requirements engineering has re-
ceived significant attention in the last years [SMG06, Gli95, Gli00]. In particular, descrip-
tions of runs occur in almost all modelling languages, e.g. activity diagrams, sequence
diagrams and use case diagrams in the case of the UML language. Runs do not necessarily
have to be designed from scratch. In many cases it is possible to exploit already existing
descriptions of runs supported by the business process. In an enterprise, typical sources
of scenario descriptions are log files recorded by information systems (process mining
focuses on this source of information), process instructions for employees or textual and
formal process descriptions from some requirements analysis.

In the first step of the design approach, as many as possible single runs of the process are
identified to get a preferably complete description of the behaviour of the business process.
In this paper, we consider the formal model of labelled partial orders (LPOs) to specify



single runs. LPOs are a very general formalism and most languages used in practice can
be mapped to LPOs.

Technical part (labelled partial order) A labeled partial order (LPO) is a triple lpo =
(V,<, l), where V is a set of events, < is an irreflexive and transitive binary relation on
V , and l : V → T is a labeling function with set of labels T .

The behaviour specified by an LPO includes so called prefixes and sequentializations.
An LPO (V ′, <′, l′) is called a prefix of another LPO (V,<, l) if V ′ ⊆ V , (v′ ∈ V ′ ∧
v < v′) =⇒ (v ∈ V ′), <′=< ∩V ′ × V ′ and l′ = l|V ′ . An LPO (V,<′, l) is called
a sequentialization of another LPO (V,<, l) if <⊆<′. We consider LPOs only up to
isomorphism (i.e. isomorphic LPOs are not distinguished), because isomorphic LPOs
model the same behaviour. Two LPOs (V,<, l) and (V ′, <′, l′) are called isomorphic,
if there is a bijective mapping ψ : V → V ′ such that l(v) = l′(ψ(v)) for v ∈ V , and
v < w ⇐⇒ ψ(v) <′ ψ(w) for v, w ∈ V .

An LPO models a single run by specifying ”earlier than”-dependencies (a causal order)
between events, where events represent occurrences of respective activities. LPOs allow
to account for arbitrary concurrency relations between activities. They offer the following
advantages in business process modelling [DJLN03]:

• A natural and intuitive representation of the behaviour of business processes: Since
concurrency plays an important role in business process models, it is appropriate to
enable modelling of concurrency also in single runs of a business process. In partic-
ular, instead of considering sequential runs and trying to detect possible concurrency
relations from a set of sequential runs, it is much easier and more intuitive to work
with partially ordered runs.

• An efficient representation of the behaviour of business processes: A single LPO
represents a set of sequential runs, which can be quite large (exponential in the
number of transition occurrences) in the presence of concurrency.

• A high degree of expressiveness: First, considering sequential runs, concurrency
cannot be distinguished from non-deterministic resource sharing. Second, LPOs
explicitly model causal dependencies between transition occurrences, which enables
the explicit modeling of the flow of objects and information in business processes
(this is not even implicitly possible with sequential runs).

• Efficient analysis algorithms for business process models: In many cases analysis
techniques applied to LPOs are more efficient than those considering sequential runs
[BDJL06, BM07].

The second step of the approach is the translation of the various scenario descriptions to
LPOs. Since LPOs allow modelling of true concurrency, such translation will always be
possible. We do not discuss problems related with this step in this paper.

As a result of the second step we get a collection of LPOs representing runs of the pro-
cess. An example of such a set of LPOs is shown in Figure 1 for the workflow triggered
by a damage report in an insurance company (claim processing). The figure depicts a run



showing the registration process, several runs describing possible evaluation procedures of
the claim, a run modelling the payment of the insurance company as well as the three sin-
gleton runs for building reserves, gathering information for the payment by asking queries
and the completion of the workflow. It is assumed that the runs modelling the different
aspects of the process have been described by various involved people. Since modelled
runs typically only describe a certain part of the behaviour of the process, the problem is
that the runs may have different relationships to each other.

Receive Claim

Register ClaimAssign Claim Expert

Registration

Send Acceptance Letter

Check InsuranceCheck Damage

Positive Evaluation

Send Refusal Letter

Check InsuranceCheck Damage

Negative Evaluation 1

Send Refusal Letter

Check Damage

Negative Evaluation 2

Send Refusal Letter

Check Insurance

Negative Evaluation 3

Pay Damage

Estimate Damage

Payment

Ask Additional Queries

Query

Set Aside Reserves

Reserves

Complete Claim

Completion

Figure 1: Example for a collection of runs in terms of LPOs.

The third step of our approach is to integrate the runs into a single model respecting the
relations between the runs. Runs can be related in four ways (Figure 2):

• One specified run of the process can only occur after another run (sequence).

• Either one run can occur or another run (alternative).

• A specified run can be followed n times by itself (iteration).

• Two runs of the process can occur concurrently (concurrency).

Similar to the approach for scenario integration based on statecharts in [Gli95], higher
level structures of runs are built by concatenating and nesting blocks according to the re-
lationships sequence (;), alternative (+), iteration (∗), and concurrency(||). For the runs
of Figure 1, we assume that they are related as depicted in Figure 2 to faithfully model
the underlying workflow. That means the workflow starts with the ”Registration” of the
claim. Then one of the evaluation runs is performed concurrently to the subprocess of
setting aside reserves for the claim. The four possibilities of evaluation are alternatives.
The run modelling the positive case is a sequential composition of the three single runs
”Positive Evaluation”, ”Queries” and ”Payment”. Asking additional queries can be iter-
ated arbitrarily often until a sufficient degree of information is reached. Finally, after the
execution of all other runs, the process is finished by the run ”Completion”. Figure 2 also
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Figure 2: A composed run over the set of runs depicted in Figure 1.

illustrates a possible graphical representation of the four composition templates for runs
(;-composition is depicted by arcs, +, ∗ and || by respective symbols). While the composi-
tion operators are actually binary, the readability of the graphical representation can often
be improved by composing more than two blocks in figures (e.g. the +-composition of the
four alternative evaluation possibilities). We call such behavioural specification generated
by the composition of single runs a composed run.

Since single runs are given by LPOs, the semantics of a composed run R is defined as
a set of LPOs Lpo(R) modelling alternative behaviour, called the set of runs defined by
a composed run. The set of runs defined by the composed run of Figure 2 is illustrated
in the screenshot of Figure 5 in Section 4. The iteration of the activity ”Ask Additional
Queries” generates an infinite set of runs. Figure 5 only shows the cases that this activity
is iterated zero, one and two times (scenario 4-6). Runs with more iterations of the activity
are analogous.

Technical part (composed run) Given a finite set of single runs A, a composed run over
A is inductively defined as follows: The single runs lpo ∈ A, the empty LPO λ = (∅, ∅, ∅)
and the empty set ∅ are composed runs. Let R1 and R2 be composed runs. Then R =
R1;R2 (sequential composition), R = R1 + R2 (alternative composition), R = (R1)∗

(iteration) and R = R1 ‖ R2 (concurrent composition) are composed runs.

We define for two LPOs lpo1 = (V1, <1, l1), lpo2 = (V2, <2, l2) ∈ A the sequential
composition by lpo1; lpo2 = (V1 ∪ V2, <1 ∪ <2 ∪(V1 × V2), l1 ∪ l2), the parallel com-
position by lpo1 ‖ lpo2 = (V1 ∪ V2, <1 ∪ <2, l1 ∪ l2), and denote lpo0

1 = λ and
lpon1 = lpon−1

1 lpo1 for n ∈ N+ (N+ denotes the positive integers).1

The set of runs Lpo(R) of a composed run R over A is a possibly infinite set of LPOs.
Given a composed run R, we first inductively define a set of LPOsK(R) represented by R.
The set Lpo(R) is the prefix and sequentialization closure of K(R). We set K(λ) = {λ},
K(∅) = ∅ and K(lpo) = {lpo} for lpo ∈ A. We further define inductively for LPO-terms
R1 and R2:

1We assume that lpo1, lpo2 have disjoint sets of nodes.



• K(R1 + R2) = K(R1) ∪K(R2).

• K(R1;R2) = {lpo1lpo2 | lpo1 ∈ K(R1), lpo2 ∈ K(R2)}.

• K((R1)∗) = {lpo1 . . . lpon | lpo1, . . . , lpon ∈ K(R1), n ∈ N+} ∪ {λ}.

• K(R1 ‖ R2) = {lpo1 ‖ lpo2 | lpo1 ∈ K(R1), lpo2 ∈ K(R2)}.

In Figure 5, the set K(R) (not regarding all iterations of the activity ”Ask Additional
Queries”) of the composed run R depicted in Figure 2 is shown. The set of runs Lpo(R)
of R is given by the set of prefixes of sequentializations of LPOs in K(R).

Integrating single runs to one composed run has to be done cooperatively by the involved
practitioners. They have to detect the detailed relationships between the runs by exchang-
ing their knowledge about dependencies of runs to other parts of the behaviour of the
process. At the end of the third step of our approach they have to agree on one composed
run including all single runs. The composed run represents an integrated model of the
behaviour of the considered business process.

A problem excluded so far is that some runs may overlap. That means, the knowledge
about one run may be distributed on several experts, each knowing only an extract of the
whole run. In the simplest case extracts can be treated as single (sub-) runs that can be
composed as shown above. But this is not possible if the extracts contain common events.
Then the extracts of the respective run have to be fused to one single run. The situation
of extracts having common events occurs if several experts have different views to one
process execution, i.e. they observe different subsets of all events of the respective run,
whereas respective other parts of the run are hidden.

We propose the following concept to fuse extracts of one run. Given several extracts of
one run, first the involved people have to determine which events of an extract of the
run observed by one expert coincide with events of an extract of the run observed by
another expert. This problem has to be solved by an appropriate communication between
the experts. They have to agree on a fusion equivalence relation on the set of events
of all extracts of the considered run, such that different observations of one event are
equivalent. Obviously, only events of different extracts having the same label (referring to
the same activity) can be equivalent. Also, the orderings given by different extracts must
not contradict each other. The fusion of the extracts is then given by a new LPO, which has
an event for each equivalence class. If two events are ordered in some extract, then their
respective classes are ordered in this LPO. Thus, each dependency observed (respectively
modelled) by some expert in some extract of the run is regarded in the fused run. No
further dependencies are introduced. Conversely, we assume concurrency between events
if no expert detected any dependency. This is motivated by the idea that extracts of one
run observed by different experts tend to be concurrent.

A simple example is shown in Figure 3. Assume the run ”Registration” of Figure 1 is not
given directly, but rather the two extracts of the run shown in Figure 3 are specified by
two experts (responsible for respective tasks). If they agree that the two events labelled by
”Receive Claim” coincide, the described fusion approach generates the fused run ”Regis-
tration” of Figure 1.
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Registration
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Register Claim
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Figure 3: Two possible extracts of the run ”Registration” shown in Figure 1.

Technical part (fusion) Given LPOs lpoi = (Vi, <i, li), i ∈ {1, . . . , n} (all Vi can be
assumed pairwise disjoint) modelling different extracts of one run and an equivalence
relation ∼ on

⋃n
i=1 Vi, fulfilling the fusion requirement v ∼ v′, v 6= v′, v ∈ Vi, v

′ ∈
Vj =⇒ i 6= j ∧ li(v) = lj(v′) ∧ ∀v′′ ∈ Vi, v′′′ ∈ Vj , v′′ ∼ v′′′ : (v <i v′′ =⇒ v′′′ 6<j v′),
the fused LPO of lpoi = (Vi, <i, li), i ∈ {1, . . . , n} w.r.t. ∼ is defined by lpo = (V,<, l),
where V = {[v]∼ | v ∈

⋃n
i=1 Vi}, [v]∼ < [v′]∼ ⇐⇒ (∃v′′ ∈ [v]∼, v′′′ ∈ [v′]∼, i ∈

{1, . . . , n} : v′′, v′′′ ∈ Vi, v′′ <i v′′′) and l([v]∼) = li(v) (for v ∈ Vi). The fused LPO is
well defined by the fusion requirement.

Finally, if the set of single runs given after step two of our approach still contains extracts
of runs, such extracts either have to be considered as usual single runs or the extracts have
to be fused to one single run as shown above. Having done this at the beginning of step
three of the approach, the requirements to define a composed run as described above are
fulfilled.

3 Synthesizing a Process Model

The next step in the design approach starts with a specification of the business process by a
composed run. The aim is to automatically create a Petri net model from the composed run.
Formally, the composed run is defined as a term over the alphabet of single runs employing
the composition operators ;, +, ∗ and ||. In a recent submission to the ACSD2008 confer-
ence (based on [BLM06]), we show how to synthesize a place/transition net (p/t-net) from
such a term. A synthesis algorithm is presented which computes from a composed run a
p/t-net having the specified behaviour and minimal additional behaviour. That means, the
set of runs of the computed p/t-net is the best upper approximation (possible by a p/t-net)
to the set of runs of the composed run.

The activities of the business process are modelled by the transitions of the synthesized
Petri net. The places together with their connections to the transitions and their markings
define dependencies between the activities. Figure 6 shows a marked p/t-net. As usual,
places are drawn as circles including tokens representing the initial marking, transitions as
rectangles and the flow relation as arcs annotated with values of the weight function (arcs
with weight 0 are not drawn, the weight 1 is not shown).

A run of a p/t-net (N,m0) is given by an LPO with event labels referring to transitions,
such that the events can occur respecting the concurrency and dependency relations of the



LPO. Thus, a run describes executable behaviour of the net in the sense that the transi-
tion occurrences given by the events are possible in the net only using the dependencies
specified by the run for the flow of tokens. The set of all runs of (N,m0) is denoted by
Lpo(N,m0).

The synthesized p/t-net (N,m0) is a best upper approximation to the specified com-
posed run R in the sense that Lpo(R) ⊆ Lpo(N,m0) and ∀(N ′,m′0) : (Lpo(R) ⊆
Lpo(N ′,m′0)) =⇒ (Lpo(N,m0) ⊆ Lpo(N ′,m′0)).

Technical part (p/t-net) A (marked) p/t-net is a quadruple (P, T,W,m0), where P is a
finite set of places, T is a finite set of transitions satisfying P ∩ T = ∅, W : (P × T ) ∪
(T × P ) → N+ is a weight function defining the flow relation, and m0 : P → N ∈ NP
(N denotes the non-negative integers) is an initial marking.

The behaviour of a p/t-net is defined as follows: A multi-set of transitions τ : T → N ∈
NT is called a step (of transitions). A step τ is enabled to occur (concurrently) in a
marking m : P → N ∈ NP of a p/t-net, if and only if m(p) ≥

∑
t∈τ τ(t)W (p, t) for

each place p ∈ P . In this case, its occurrence leads to the marking m′(p) = m(p) +∑
t∈τ τ(t)(W (t, p) − W (p, t)), abbreviated by m τ−→ m′. A finite sequence of steps

σ = τ1 . . . τn, n ∈ N, is called a step occurrence sequence enabled in a marking m and
leading to mn, denoted by m σ−→ mn, if there exists a sequence of markings m1, . . . ,mn

such that m τ1−→ m1
τ2−→ . . .

τn−→ mn.

We are interested in the behaviour in terms of LPOs. Given an LPO lpo = (V,<, l),
two events v, v′ ∈ V are called independent if v 6< v′ and v′ 6< v, denoted by v co v′.
A co-set is a subset C ⊆ V fulfilling: ∀v, v′ ∈ C : v co v′. A cut is a maximal co-
set. For a co-set C and an event v ∈ V \ C we write v < (>)C, if v < (>) v′ for
an element v′ ∈ C and v coC, if v co v′ for all elements v′ ∈ C. Given a marked p/t-
net (N,m0), an LPO lpo = (V,<, l) with l : V → T is called a run of (N,m0) if
m0(p) +

∑
v∈V ∧v<C(W (l(v), p) −W (p, l(v))) ≥

∑
v∈CW (p, l(v)) for every cut C of

lpo and every p ∈ P . The set of runs of a p/t-net (N,m0) is defined by Lpo(N,m0) =
{(V,<, l) | (V,<, l) is a run of (N,m0)}.
Synthesizing an upper approximation is useful, because the behaviour explicitly specified
by R should definitely be included in the behaviour of the synthesized model. The best
upper approximation property ensures that only necessary additional behaviour is added to
the synthesized net. Thus, computing a best upper approximation may be seen as a natural
completion of the specified behaviour R by a Petri net. Such an approach is necessary,
since process specifications in practice are typically incomplete and not arbitrary specified
behaviour can be reproduced by a Petri net.

In the underlying design procedure of [Des08], a special class of Petri nets is considered to
model business processes: We consider connected p/t-nets with two distinguished sets of
input and output transitions as processes. In Figure 4 such processes are shown, where the
input respectively output transitions are depicted with two ingoing respectively outgoing
arcs.

Actually, in [Des08] no arc weights are considered. Moreover, the nets are required to have
a certain 1-boundedness property. This property ensures that the refinement steps of the de-
sign procedure can properly be performed. In a recent submission to ATPN2008, we show



how this property can be guaranteed by the considered synthesis algorithm. Nevertheless,
in the present paper we consider the definition of processes based on general p/t-nets, be-
cause the synthesis algorithm is a lot more efficient in this case [LBDM07, BDLM07]. To
still allow the same refinement procedure for transitions as shown in [Des08], it has to be
ensured that never a second instance of some subprocess is started (by an initial transi-
tion) before a prior instance of the same subprocess is finished (by a final transition). This
can be achieved by adding to a transition t, before it is refined, a self-loop place pt with
W (pt, t) = W (t, pt) = m0(pt) = 1. This place in particular prohibits auto-concurrency.
Refining t by a subprocess, the place pt has an outgoing arc with weight one to every input
transition of a subprocess and an ingoing arc with weight one from every output transition
of a subprocess (see Figure 4). Then input and output transitions of the subprocess oc-
cur strictly alternatingly, i.e. it is not possible that two input transitions occur without an
intermediate output transition.

Formally, the refinement steps in our setting are defined as follows: We consider one main
process. A subprocess refines a transition (to which a self-loop place was added) of another
process (either of the main process or of another subprocess). It replaces the transition,
the transition’s input places are connected to the input transitions of the subprocess with
arcs having the same weights, whereas the output transitions are connected to the output
places of the transition by arcs having the same weights (see Figure 4). Hence, the external
behaviour of a subprocess resembles the behaviour of a transition, with the difference that
first the input tokens are consumed and later the output tokens are produced. The order of
refinement does not matter.
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Figure 4: Top: Two abstract processes. Bottom: The refinement of the left process w.r.t. t and the
right process.



Technical part (refinement) A process is a connected p/t-net (P, T,W,m0) with two
distinguished sets of input and output transitions Ti, To ⊆ T .

Let N = (P, T,W,m0) be a process with a transition t and let N t = (P t, T t,W t,mt
0)

be a process with input transitions T ti and output transitions T to . Assume w.l.o.g. that the
elements of P and of P t as well as of T and of T t are disjoint. The refinement of N w.r.t.
transition t and process N t is defined as (P ∪P t ∪{pt}, T ∪T t \{t},WN,Nt ,m0 ∪mt

0),
where WN,Nt is defined by WN,Nt |P×(T\{t})∪(T\{t})×P = W |P×(T\{t})∪(T\{t})×P ,
WN,Nt |P t×T t∪T t×P t = W t, WN,Nt(p, ti) = W (p, t),WN,Nt(to, p) = W (t, p) for
p ∈ P, ti ∈ T ti , to ∈ T to , W (pt, ti) = W (to, pt) = 1 for ti ∈ T ti , to ∈ T to , andWN,Nt = 0
else.

It only remains to tune the considered synthesis algorithm to the definition of processes
regarded in our approach, i.e. the sets of input and output transitions have to be regarded
in the synthesis algorithm to create reasonable process models.

That means, from the set of activities of the process, firstly the sets of input transitions Ti
and output transitions To have to be defined. To ensure that a process starts with an input
transition, finishes with an output transition and in between no input and output transitions
occur, we require for the specification given by the composed run R that

• every non-empty LPO (V,<, l) in the set of runs Lpo(R) of R contains exactly one
event v0 ∈ V labelled by an input transition of the process (l(v0) ∈ Ti). The event
v0 is called initial event.

• the initial event v0 of every non-empty LPO (V,<, l) ∈ Lpo(R) is a unique minimal
event, i.e. it fulfills v0 < v for every v ∈ V \ {v0},

• every LPO (V,<, l) in the set of runs Lpo(R) of R, which is not prefix of an-
other LPO in Lpo(R), called maximal LPO of Lpo(R), contains exactly one event
vmax ∈ V labelled by an output transition of the process (l(vmax) ∈ To). The event
vmax is called final event.

• the final event vmax of every maximal LPO (V,<, l) ∈ Lpo(R) is a unique maximal
event, i.e. it fulfills v < vmax for every v ∈ V \ {vmax}.

In the running example of the business process of an insurance company, the only input
transition is ”Receive Claim” and the only output transition is ”Complete Claim”. In this
case, the formulated requirement is fulfilled by our example composed run shown in Figure
2.

A further problem is that one subprocess may be invoked multiple times. Every occurrence
of the refined transition in the superprocess initiates the subprocess.

The simplest solution for this problem is to synthesize the net of the subprocess from R?

instead of R. This exactly models that the behaviour given by R can occur arbitrarily
often. Thus, if in the synthesized net the execution of one maximal run of Lpo(R) is
finished by an output transition, a state of the process is reached, in which the behaviour
given by R (starting with an input transition) is again enabled, i.e. after one execution
of the sub-process the initial marking (or some behaviourally equivalent marking) of the



subprocess is restored. Since the input transitions of the subprocess are connected to
the input places of the refined transition, the behaviour of the supernet ensures that the
input transitions are only enabled again, if the refined transition would be enabled again.
Therefore, the subprocess still has to be enabled by the surrounding process. It can be
invoked multiple times and each time the same behaviour is possible. Thus, the subprocess
behaves as expected.

But also more intricate solutions are possible for the problem. First ingoing arcs from a
place of the subprocess to an input transition of the subprocess can easily be omitted in
the synthesis algorithm (respective variables are omitted). This ensures that each time the
refined transition would be enabled, the initial transitions of the subprocess are enabled.
Additionally, the marking of the subprocess after certain maximal runs of Lpo(R) can
be established in the synthesis algorithm (by modifying respective inequation systems
[BDLM07]). In this approach, it is again possible to constitute that the marking reached
after the execution of a maximal run coincides with the initial marking of the process.
This is the standard case. But it is also possible to define other follower markings after one
invocation of the subprocess and to vary the follower markings w.r.t. the actually executed
maximal run. This models that the subprocess has a memory, which runs have actually
been executed in prior invocations of the subprocess.

A memory can also be introduced by modelling several behaviours of the subprocess de-
pending on the memory given by prior executed behaviour. That means the memory is
modelled in the specification by the composed run R. To enable this, the requirements
formulated for R have to be changed. It has to be allowed that maximal runs of Lpo(R)
are a sequential composition of runs, which fulfill the properties required before, i.e. an
event labelled by an output transition can directly be followed by an event labelled by an
input transition. Thus, it can be specified for each execution of the subprocess ending with
an output transition, which follower behaviour is then possible in the subprocess. Again
the follower behaviour has to be invoked from the surrounding net.

An example of a subprocess with memory is shown in Figure 4. In the first invocation
of the subprocess, only the sequence cd is executable, in a second invocation only ab is
possible and in a third one again cd, and so on.

4 Case Study

In this section we briefly illustrate the proposed synthesis procedure by a small case study.
We use our toolset VipTool, which has respective synthesis functionalities. The refine-
ment aspects of the business process design procedure of [Des08] are not supported by
VipTool. Thus we consider the generation of a main process to show the applicability
of the synthesis algorithm. Since so far also the concept of composed runs is not imple-
mented, we can only consider a specification given by a collection of alternative single
runs, i.e. only the + operator is supported. The alternative runs depicted in the screenshot
of Figure 5 model the same behaviour as given by the composed run of Figure 2, except
that not an arbitrary iteration of the activity ”Ask Additional Queries” is possible, but the



Figure 5: Screenshot of VipTool showing the user interface of the editor for partially ordered runs.

repetition is restricted to two times. This set of alternative runs forms the specification of
the considered workflow of processing a claim in an insurance company.

There are six possible runs: All start by receiving a claim submitted by a client (activ-
ity ”Receive Claim”), followed by two concurrent activities ”Assign Claim Expert” and
”Register Claim”. The first one models the assignment of a claim expert in charge for this
claim, the latter is concerned with the registration of the client and the loss form. Then
concurrently reserves for the claim are established (activity ”Set Aside Reserves”) and the
evaluation of the claim is started. The evaluation begins with two concurrent activities
”Check Damage” and ”Check Insurance”. ”Check Damage” represents checking validity
of the clients insurance, ”Check Insurance” models checking of the damage itself. Sce-
nario 4-6 model the situation that both checks are evaluated positively, meaning that an
acceptance letter is sent (activity ”Send Acceptance Letter”) after the two checks. If one
evaluation is negative, the company sends a refusal letter. Thus, the activity ”Send Refusal
Letter” is performed after the two ”Check” activities if one is evaluated negatively (sce-
nario 1). If a negative evaluation of one ”Check” activity already causes sending a refusal
letter, while the other ”Check” activity has not been performed yet, this second ”Check”
activity has to be disabled (i.e. it does not occur in a respective scenario), since it is no
more necessary (scenario 2 and 3). In the case an acceptance letter is sent (scenario 4-6),
either (scenario 4) the damage is immediately estimated (activity ”Estimate Damage”) and
then payed (activity ”Pay Damage”), or additional queries to improve estimation of the
loss (activity ”Ask Additional Queries”) are asked one (scenario 5) or two (scenario 6)



Figure 6: Screenshot of VipTool showing the user interface of the editor for Petri nets.

times before the damage is estimated. If the evaluation of the claim (including possibly
paying the damage) and the activity ”Set Aside Reserves” are finished, the process can be
completed by the activity ”Complete Claim”.

Figure 6 shows the net damageReport.pnml automatically created with the synthesis algo-
rithm of VipTool from the specification depicted in Figure 5. The net represents a very
compact model of the described complex business process. An algorithm of VipTool to
check, whether the set of runs of the synthesized net damageReport.pnml coincides with
the specified set of runs (scenarios 1-6) yields a positive answer (the synthesis algorithm
only ensures a best upper approximation).

The example illustrates that directly designing a Petri net model of a business process is
often challenging, while modelling runs and synthesizing a net is easy. Manually devel-
oping a complex Petri net such as the net damageReport.pnml for the described workflow
is an error-prone task. But the design of the six runs 1-6 is straightforward, in particular
if the concepts of scenario integration by composed runs are used (this supports that the
single runs can be modelled by domain experts). A Petri net is automatically created from
the specification by the synthesis algorithm.



5 Conclusion

In [Des08], general ideas for the application of Petri net synthesis in business process
design were presented. In this paper, we showed a concrete procedure to design a process
model using synthesis methods.

This workshop contribution constitutes a first proposal of the approach. The paper did not
elaborate all aspects of the procedure in detail. A lot of work still has to be done. In partic-
ular methods tuning the synthesis algorithms to better practical applicability are important.
This mainly concerns complexity and the size of the synthesized nets. Such methods are
already discussed in the context of process mining [BDLM07, vdA07]. An advantage in
our setting is that the presented refinement approach helps to keep the single processes
small. Finally, results from practical application and evaluation will be important for fur-
ther development. More precisely, the suggested novel approach to design business pro-
cesses is based on several assumptions, but we believe that it could be helpful in many
cases. However, this research is still in an initial phase and we do not have experiences
from real applications. Future work includes defining of success criteria and empirical re-
search. In particular, it would be interesting to identify and characterize settings in which
our approach is superior to other approaches.
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