
Controlling Petri Net Process Models

Jörg Desel

Angewandte Informatik
Katholische Universität Eichstätt-Ingolstadt, Germany

joerg.desel@ku-eichstaett.de

http://www.informatik.ku-eichstaett.de

Abstract. We present and compare existing formalisms that consider
the control of Petri net process models in the area of business processes
and web services. Control has the aim to force a process to behave in a
desirable way. Process models that behave properly without any control
are often called “sound”. For process models that behave properly when
being controlled, i.e., for controllable processes, there are various related
notions, such as “relaxed soundness” and “weak soundness”. We argue
that both, the usual notion of sound behavior and the usual notion of
control by message passing can be generalized. This way, control synthe-
sis results obtained in the field of automation can be reformulated and
reused for business process models and in the area of web services.

1 Introduction

In the last decades, research on Petri net analysis concentrated on the question
whether a given Petri net model enjoys a desirable property or not. More recently,
people study the question whether a given Petri net model can behave properly, if
its environment behaves accordingly. This question only makes sense if there are
notions of environment and of interface to the considered Petri net model. The
environment might be formulated as a Petri net as well. So the problem depends
on notions of Petri net modules that can be composed, together with interfaces
between Petri nets that express at what parts of the model, and in which way,
the interaction between models can take place, and on proper versus not proper
behavior of a Petri net. In particular, proper behavior can be considered for the
controlled Petri net in separation or for the Petri net within its environment.

Given a Petri net model N with an interface that allows composition with
other net models N ′ via some operator ⊕, one therefore can ask:

1. Does N ⊕N ′ behave properly for some net N ′?
2. Does N behave properly when composed with some net N ′?
3. Does N ⊕N ′ behave properly for any net N ′?
4. Does N behave properly when composed with any net N ′?
5. Can N ′ be automatically generated (synthesized) from N such that N ⊕N ′

behaves properly?
6. Can N ′ be automatically generated (synthesized) from N such that N

behaves properly when composed with N ′?



All these questions are tackled in various papers, assuming various compo-
sition operators ⊕ and various definitions of proper behavior. In this paper, we
will frequently come back to these questions.

In this paper we concentrate on Petri net process models, where the term
“process” refers to business processes. Distinguishing process models from ar-
bitrary system models, characteristic properties of processes and their models
include (see [3, 10]):

– Process models have distinguished start and end states. Beginning with a
start state, each run should eventually end with an end state. However, it is
possible that the behavior of a process has loops, i.e., repetition of states.

– Whereas liveness (every activity can occur from every reachable state) is
a desirable property for system models, process models should not be live,
because in the end state no activity should be allowed to occur.

– Process models are considered to be embedded in information system mod-
els [8]. In contrast to process models, information system models should be
live. The situation is comparable to operating systems and single user pro-
gram executions. Each user program should eventually terminate, but the
operating system – which is also an executable program – should not.

– Whereas a deadlock is a state without successor for general systems, end
states are not considered deadlocks in process models. For information sys-
tem and process models, deadlock freedom is desirable.

– Process models are based on single cases where each case corresponds to a
single run of a process.

– As in reality, several cases can run concurrently. To reflect this situation,
process models might also represent the concurrent run of several process
instances, for example to investigate the usage of shared resources.

A process model may interact with its environment and, consequently, may
have an interface to some other Petri net. This other Petri net influences the
behavior of the process model in such a way that the process behaves properly.
In this sense, the process model is controlled by the environment. This control
happens by means of different kinds of stimulation, depending on the respective
approach. Very often, the control also reacts on the behavior of the process.
Therefore the control must have the possibility to observe the behavior of the
process or at least some aspects of this behavior. Since thus information is flowing
in both directions the process model also controls its environment.

Usually, not all elements of a process can be controlled and not all elements
can be observed. In other words, it is useful to specify a process model together
with its controllable and with its observable elements such that any composition
of this net with a net representing the environment restricts to interaction via
controllable and observable elements. This constitutes the interface definition of
a Petri net process model.

The kind of interaction between a Petri net process model and a model of
its environment varies in different approaches. Moreover, the elements of process
models that can be controlled and those that can be observed are specified in



various ways. Finally, there are different suggestions for desirable behavior and
its specification.

In this paper, we compare some approaches and introduce some relations
between them. In the first section, we provide a rough introduction to Petri net
models of processes and we repeat the definition of soundness. The second section
is devoted to behavioral properties that are related to the soundness property
but require a suitable controlling net ensuring sound behavior. In particular,
the control makes sure that a process does not run into a deadlock. We sketch a
different approach in the third section where control of a process makes sure that
places behave in a bounded way, i.e., that the number of tokens on a place does
not grow arbitrarily. Finally, the fourth section establishes a relation to known
results of controller synthesis in the field of discrete event systems. It is argued
that the composition operation used there is more general than usual message
passing, whence the results in this area can be transferred to business processes.

2 Petri Net Process Models

Unfortunately, the term “process” was and is used in the Petri net research
community in an ambiguous way. Since more than 30 years, a process net is
known to be an occurrence net representing a concurrent run of a net representing
a system. This naming does not nicely match processes in the sense of business
processes [8] and will be avoided in this paper.

One of the first approaches, starting in the late eighties, to model informa-
tion systems and business processes with Petri nets was the INCOME project by
the group of Wolffried Stucky in Karlsruhe, Germany. The INCOME tool devel-
oped in this project was successfully used in industrial practice by the spin-off
PROMATIS. Relevant publications from this project include [14, 18, 19].

R

(x,y)

(x,y)

(x,y)

(x,y)

(x,y)

(x,y)

(a,b)

R‘

…

…

…

… … … …

…

… … … …

…

…

… …
…

…

…

Fig. 1. A high-level Petri net representing a process



The process models used in INCOME are predicate/transition Petri nets (see
Figure 1). These nets have distinguished input and output transitions, represent-
ing the start and the end action of a process. Using high-level tokens, data flow
is thus thoroughly represented. In particular, processes of information systems
including data bases are represented.

Therefore, (some) places represent data base relations (and tokens corre-
sponding tuples), as the places R and R′ in the example indicate. The interface
of the process model to its environment is given by its input- and output tran-
sitions. In this way a process can be viewed as a refinement of a transition.
Additionally, shared places model shared access to data bases.

A model of an information system preferably enjoys nice properties such as
liveness and boundedness (an upper limit for the number of tokens). Within an
information system model, processes can be identified [8], as in Figure 1. The
model of the process, however, is not bounded because the initial transition can
occur arbitrarily.

The INCOME approach concentrated on modelling and simulation of pro-
cesses and information systems in early design phases. Analysis was performed
on the level of the entire information system, i.e., the process net together with
its environment was studied instead of the process net in separation. Therefore,
according to the list of properties in the introduction, Question 3 was considered,
because only the behavior of the composed model was of interest.

In the mid nineties, Wil van der Aalst came up with a different concept of
a Petri net representation of a process [1–3]. His nets – called workflow nets –
are place/transition nets, i.e., data aspects and control aspects are separated.
A run of a workflow net represents a single case, no matter whether in reality
several cases can run concurrently. These runs are assumed to behave without
interference so that they all run properly provided a single case runs properly.

i o

Fig. 2. A sound workflow net

Figure 2 shows a workflow net. As can be seen in the figure, workflow nets
are assumed to have a distinguished input place i (representing that the event
“case started” has happened) and a distinguished output place o (representing
“case completed”). Formally, it is required that every net element of a workflow
net is on a directed path from the input place to the output place. There is only



one initial token, marking the input place. This initial marking is called i. The
intended behavior ends with a marking where only the output place carries one
token, called o.

Instead of analyzing the entire system model embedding the workflow net one
can analyze the workflow net net in separation. So Question 4 from the intro-
duction is considered. Proper behavior is formulated in terms of soundness [3]:

Definition 1. A workflow net is sound if
i) from every marking reachable from i, the marking o is reachable, and
ii) there are no dead transitions.

It can be shown that, as a consequence, o is the only reachable marking
assigning a token to the output place (which was part of the original definition).
Moreover, each sound workflow net is bounded.

A nice observation is that soundness is strongly related to the well-known
notions of liveness and boundedness of general Petri nets [2]. Instead of repre-
senting the entire environment of an information system it suffices to add an
additional transition moving the token from the output place to the input place,
see Figure 3. This transition represents the behavior of the environment in a
satisfactory way, as will be explained next.

i o

Fig. 3. The workflow net with an additional transition

If the workflow net is sound then the additional transition can always become
enabled again (by the marking o) because of property i) of the definition of
soundness. By property ii), every transition can always become enabled. Hence
the extended net is live. It is bounded because its set of reachable markings
coincides with the set of reachable markings of the workflow net. Conversely,
liveness of the extended net implies that from each reachable marking a marking
assigning a token to the output place is reachable. Boundedness implies that
this marking must be o because otherwise tokens can be added arbitrarily to
the net. Liveness also implies that the workflow net has no dead transitions. So
soundness of the workflow net coincides with liveness and boundedness of the
extended net. Therefore, the large amount of Petri net analysis techniques for



liveness and boundedness can be applied for analyzing soundness of workflow
nets. Moreover, if the workflow net happens to be free-choice [7] (which is often
the case), the property soundness is decidable in polynomial time.

There are various more suggestions to model processes with Petri nets. For
example, in [10] the reader can find examples of process nets with a behavior
considering their past. If two transitions of a process strictly occur alternatingly,
one in the first case, the other one in the second etc., different initial states are
necessary. The initial marking of a process net has to have additional tokens
that represent the necessary “memory” of the process.

3 Relaxed and Weak Soundness

In this section, we consider workflow nets that are not sound but behave in a
proper (to be defined) way when being connected to a controlling environment.
First let us consider an example:

a

c

d g

f

e

i o

b

Fig. 4. A workflow net which is not sound

Figure 4 shows a workflow net which is not sound. By firing transitions a,
b and e a marking is reached that enables no transition, i.e. a deadlock. In
particular, the marking o cannot be reached from this marking. However, the
net still has a positive property, formulated in the following definition [5]:

Definition 2. A workflow net is relaxed sound if every transition occurs in some
occurrence sequence leading from i to o.

It is easy to verify that the occurrence sequences a b d f and a c e g of the
example net both lead to the marking o and that every transition occurs in one
of these sequences. Hence this net is relaxed sound.

The example net has two forward branching places representing a choice
between b and c and a choice between d and e. Whenever one of the places is
marked, both output transitions are enabled but firing one of the transitions
disables the other one.



Generally, Petri net choices can represent quite different concepts:

– The choice is done within this process but the respective part of the process
is not modelled. For example, two transition could represent two users that
both could take care of a work item. Any solution is as good as the other
one. This view relates to Question 4 of the introduction: Does N behave
properly for any partner net N ′? In a sound workflow net, we expect that
any other component N ′ which decides which of the conflicting transition
fires would not destroy the desired property.

– The choice depends on data of the case, which is not modelled. There are
different suggestions how to handle data dependent choices. In the INCOME
approach all relevant data is captured in the high-level tokens. This informa-
tion can be reduced to routing information if the only purpose of this data is
to decide choices. If one choice depends on data, another choice can depend
on the same data as well, and this way deadlocks could be avoided. In our
example, it might be the case that either transitions b and d or transitions c
and e are chosen, whence the net can behave in a sound way. This view was
originally taken in [5].

– Similarly, choices can depend on additional pre-conditions of the conflicting
transitions which are not modelled first (see Figure 5). In other words, an
embedding of the process net in a larger net is considered. With this view, we
can ask whether there is an appropriate environment controlling the process
net such that this net behaves soundly (Question 2 of the introduction). It
is easy to see that putting tokens to the other new places instead yields the
other sound run.

a

c

d g

f

e

i o

b

Fig. 5. Enforcing sound behavior by additional places

Now let us consider the next example, shown in Figure 6. This net is not
even relaxed sound because there is no run leading from i to o which includes
an occurrence of transition h. In this example net we have three conflicts. The



addition of respective pre-conditions (Figure 7) shows that it is still possible to
reach o from i.

a

c

d g

f

e

i o

b

h

Fig. 6. A process net which is not relaxed sound...

a

c

d g

f

e

i o

b

h

Fig. 7. ... together with pre-conditions

Definition 3. A workflow net, extended by input places to some of the con-
flicting transitions, is weakly sound if from every marking reachable from i, the
marking o is reachable.

Notice that this definition is very similar to i) in the definition of soundness.
Actually, the original definition of weak soundness employs so-called open work-
flow nets which contain the workflow net together with additional input places
of some of the conflicting transitions [15, 17]. Therefore the definitions of relaxed
soundness and of weak soundness cannot be compared immediately. However,
at least for nets in which no transition can occur more than once, every re-
laxed workflow net can be extended by accordingly marked places such that the
resulting open workflow net is weakly sound.



Whereas relaxed soundness clearly corresponds to Question 2 of the introduc-
tion, one might argue that weak soundness refers to Question 1. There are other
approaches, e.g. [13], where local and global soundness is explicitly distinguished.
Therefore the work described in [13] definitely answers Question 1.

Whereas weak soundness does not explicitly refer to a controller, the closely
related property controllability as used in [21], does. In the application context
of web services, the property is called usability [16]. The term controllability is
used in [6] to characterize relaxed soundness.

4 Weak Boundedness

Although soundness refers to liveness and boundedness, its derivates relax the
liveness condition by assuming that the net remains live if, in case of conflicts,
only the right transitions are chosen. In this section we introduce a related, but
different approach, where liveness is guaranteed but boundedness needs addi-
tional control. This approach stems from the area of schedulability of concur-
rent programs on a chip [4], but can similarly be formulated for processes in our
sense.

i oa b

Fig. 8. A weakly bounded process net

The process net shown in Figure 8 can always reach the marking o. But, if
the upper cycle occurs more often than the lower cycle, then there will be an
arbitrary number of tokens in the places a and b, whence the net is not bounded.
However, this effect can be avoided by firing transitions in the lower cycle at least
as fast as those in the upper cycle.

Definition 4. A workflow net is weakly bounded if there is a bound b such that,
for each occurrence sequence from i to o, there is a permutation of this sequence
(leading from i to o as well) such that the token count on any place does not
exceed b at any intermediate marking.



i oa b

Fig. 9. A process which is not weakly bounded

Figure 9 shows a workflow net which is not weakly bounded. Due to place a the
lower cycle cannot run faster than the upper cycle but to keep place b bounded it
would have to run twice as fast. [4] contains sufficient and necessary conditions
for weak boundedness of a net defined in the other application domain. Since this
definition and the definition of workflow nets is not too different, these results
should be transferable to the domain of business processes and web services.

The upper and the lower cycle of our example process could be viewed as
separate processes which are both started by the occurrence of the only enabled
transition in the figure. These processes communicate via message passing. In
this sense, tokens on the places a and b can be viewed as requests. In this setting,
it is an important question whether the lower process is able to serve all requests.
For the weakly bounded example, the answer is positive. It is negative for the
other example. Notice that this is not a negative property of any of the two
subprocesses; both are fine in separation. Only their combination is ill. In the
weakly bounded case, a scheduler – which is nothing else but an additional net
module controlling processes – can only be applied to the combined process.
Two independent schedulers of the two single processes would not work. In this
sense, weakly bounded process nets are controllable and process nets which are
not weakly bounded are not controllable.

5 Controller Synthesis

Based on previous work in discrete event systems [20, 22, 23, 11], we give in [9]
an overview on our work on controller synthesis. Processes (which are cyclic in
our setting in [9]) are given in terms of Petri nets and communication is based
on events, formalized by means of event arcs. The aim of this section is to show
that the results can be translated to the area of business processes.

Figure 10 (taken from a presentation of Gabriel Juhás) shows how Petri nets
representing web services communicate via event signals, formalized by event
arcs. The meaning of an event arc is as follows: The occurrence rule for the
source transition is the usual one. Assume it is enabled at a marking. If the target



Web Service
k

j

v

u

Output Port
Web Service

Input Port
w

Channel

i

Fig. 10. Web service composition with event arcs

transition is enabled as well, both transitions occur coincidentally (in a step).
Otherwise the source transition occurs alone, as usual. The target transition can
only occur coincidentally with the source transition. See [12] for a translation of
event arcs to nets using inhibitor arcs. This paper also provides a framework for
controller synthesis on the basis of so-called open Petri nets.

The main result of [9] is an algorithm that provides for a given Petri net and a
given specification another Petri net such that the behavior of the composed net
matches the specification. So this approach provides a solution to Question 5
of the introduction. The specification is given in terms of a regular language
(a regular expression, syntactically). The composition operator only uses event
arcs. An event arc can only lead to a controllable event, and it can only start
at an observable event. The composition of modules can be viewed as another
module in the obvious way. The interface, i.e. the controllable and observable
events, of the composed net is the set of transitions which are not controlled
(observed, respectively) by one of the composed modules.

Instead of summarizing the result of [9] in more detail, we roughly explain
why this result can be viewed as a generalization of the synthesis problem of
workflow nets.

First, for workflow nets the desired property is that from each reachable
marking the marking o can be reached. In other words, each run should end
with one of the final transitions which put a token to the place o. If we abstract
from tokens that do not enable any transition, we moreover require that no other
transition is enabled after the occurrence of a final transition. Clearly, this can
be expressed by means of a regular expression.

Second, the usual communication primitives used for process models and web
services is message passing, formalized by a place in the post-set of a sending
transition and in the pre-set of a receiving transition. This communication is
purely asynchronous. In contrast, event arcs provide means to formalize syn-



aa b b

Fig. 11. Translating message passing in event arcs

chronous aspects as well, but in an asymmetric way. However, Figure 11 shows
how message passing can be modelled by means of event arcs: Instead of sending
a message, a signal is sent which forces the receiver to create the message itself.
Messages carrying data, modelled by high-level Petri nets, can be translated
in a similar way because the event arcs can have high-level annotations, just
as regular arcs. Similarly, overwriting of messages etc. can also be modelled by
event arcs, in a similar way as they can be modelled by high-level Petri nets, see
Figure 12.

x x x
y

⊥⊥⊥⊥

x = ⊥⊥⊥⊥

x

Fig. 12. Modelling overwriting of messages

6 Conclusion

Starting with a number of problems related to controllability of Petri nets in
the introduction, we showed that, and how, different approaches to controlling
Petri net process models are related but answer slightly different questions. The
list of mentioned approaches is by far not complete. A first selection criterion



was the popularity of the concepts in process modelling (soundness and relaxed
soundness) or in web services (weak soundness and controllability/usability of
open workflow nets). I added approaches which were (co-)developed in my re-
search group and which might be usable to solve additional problems raised for
process models and web service models.

Since one of the main differences between the mentioned approaches is the
way modules interact which each other, one might ask whether asynchronous
communication is more natural than synchronous communication or whether
asymmetric synchronous communication, as provided by event arcs, is more
natural than real synchronicity, etc. As shown before, message passing can be
translated to asymmetric synchronous communication. Event arcs can also model
mutual dependency between two processes, ensuring that each process can only
proceed after the other one performed a corresponding activity (by sending an
acknowledge via an event arc), see Figure 13.

Fig. 13. Send and acknowledge of a message

So event arcs are quite general, and the quest for the right way of communi-
cation is not a matter of expressivity.

Considering a natural way to model communication, the level of abstraction
plays a significant role. For example, web services are usually assumed to commu-
nicate strictly asynchronously. On a more technical level (i.e., on a lower layer)
asymmetric communication turns out to be realized by means of synchronous
communication primitives. I claim that the signal arc approach provides one of
the most natural views of communication. As mentioned before, it can be re-
stricted to mimic asynchronicity and it can be restricted to mimic synchronicity.

References

1. van der Aalst, W.M.P.: A class of Petri nets for modeling and analyzing business
processes. Computing Science Report 95/26, Eindhoven Univ. of Technology, 1995

2. van der Aalst, W.M.P.: Verification of workflow nets. Application and Theory of
Petri Nets 1997, LNCS 1248, Springer (1997) 407–426



3. van der Aalst, W.M.P., van Hee, K.: Workflow Management – Models, Methods and
Systems. MIT Press (2002)

4. Cong Liu, Kondratyev, A., Watanabe, Y., Desel, J., Sangiovanni-Vincentelli, A.:
Schedulability analysis of Petri nets based on structural properties. Applications of
Concurrency to System Design (ACSD), IEEE (2006) 69–78

5. Dehnert, J., Rittgen, P.: Relaxed soundness of business processes. Conference on
Advanced Information Systems (CAiSE), LNCS 2068, Springer (2001) 157–170

6. Dehnert, J.: Expressing the controllability of business processes. Petri Net Newslet-
ter 61 (2001) 9–17

7. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge Tracts in Theoretical
Computer Science 40, Cambridge University Press (1995)

8. Desel, J., Oberweis, A.: Petri-Netze in der Angewandten Informatik. Wirtschafts-
informatik 38 (4) (1996) 359–367

9. Desel, J., Hanisch, H.-M., Juhás, G., Lorenz, R., Neumair, C.: A guide to mod-
elling and control with modules of signal nets. Integration of Software Specification
Techniques for Applications in Engineering, LNCS 3147, Springer (2004) 270–300

10. Desel, J.: Process modelling using Petri nets. Process-Aware Information Systems
- Bridging People and Software through Process Technology, Wiley (2005) 147–177

11. Hanisch, H.M., Rausch M.: Synthesis of supervisory controllers based on a novel
representation of condition/event Systems. IEEE International Conference on Sys-
tems, Man and Cybernetics 4, 1995, 3069–3074

12. Heckel, R., Chouikha, M.: Control synthesis for discrete event systems – A semantic
framework based on open Petri nets. Transactions of the SDPS 6 (4) (2003) 63–104

13. Kindler, E., Martens, A., Reisig, W.: Inter-operability of workflow applications: lo-
cal criteria for global soundness. Business Process Management: Models, Techniques,
and Empirical Studies, LNCS 1806, Springer (2000) 235–253

14. Lausen, G., Müller, H., Németh, T., Oberweis, A., Schönthaler, F., Stucky, W.:
Integritätssicherung für die datenbankgestützte Software-Produktionsumgebung IN-
COME. Datenbanksysteme in Büro, Technik und Wissenschaft (BTW) Informatik-
Fachberichte 136, Springer (1987) 152–156

15. Martens, A.: On compatibility of web services. Petri Net Newsletter 65, Gesellschaft
für Informatik (2003) 12–20

16. Martens, A.: On usability of web services. 1st Web Services Quality Workshop
(WQW 2003), Rome, Italy, 2003.

17. Martens, A.: Analyzing web service based business processes. Fundamental Ap-
proaches to Software Engineering (FASE’05), LNCS 3442, Springer (2005) 19–33

18. Oberweis, A., Scherrer, G., Stucky, W.: INCOME/STAR: methodology and tools
for the development of distributed information systems. Information Systems 19 (8)
(1994) 643–660

19. Oberweis, A., Sander, P.: Information system behavior specification by high-level
Petri nets. ACM Transactions on Information Systems 14 (4)(1996) 380–420

20. Ramadge, P.J., Wonham, W.M.: The Control of Discrete Event Systems. Proceed-
ings of the IEEE 77 (1989) 1, 81–98

21. Schmidt, K.: Controllability of open workflow nets. Enterprise Modelling and Infor-
mation Systems Architectures (EMISA), LNI 75, Gesellschaft für Informatik (2005)
236–249

22. Sreenivas, R.S., Krogh, B.H.: On condition/event systems with disrete state re-
alizations. Discrete Event Dynamic Systems – Theory and Applications 2 (1991) 1,
209–236

23. Sreenivas, R.S., Krogh, B.H.: Petri net based models for condition/event systems.
1991 American Control Conference 3 (1991) 2899–2904


