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Abstract

The application of synthesis of Petri nets from languages
for practical problems has recently attracted increasing at-
tention. However, the classical synthesis problems are often
not appropriate in realistic settings, because usually it is not
asked for plain-vanilla Petri net synthesis, but specific ad-
ditional requirements have to be considered. Practitioners
in industry are in need of a library of proper adaptations of
the standard synthesis methods offering solutions for vari-
ous typical requirements in practice. Having this in mind,
we in this paper survey variants of the classical language
based synthesis problems and develop respective solution
algorithms. The presented methods may be seen as a large
repertoire of synthesis procedures covering a lot of typical
settings where synthesis is applicable.

1 Introduction
In early stages of system modelling, scenarios or use

cases are often the most intuitive and appropriate model-
ing concept. However, for the final purposes of modelling,
namely the follow-up with documentation, analysis, sim-
ulation, optimization, design or implementation of a sys-
tem, usually integrated state-based system models are de-
sired. To bridge the gap between the scenario view of a
system and a final system model, automatic construction of
a system model from a specification of the system behav-
ior in terms of single scenarios is an important challenge in
many application areas. In particular, in the field of soft-
ware engineering the step of coming from a user oriented
scenario specification to an implementation oriented state
based model of a software system received much attention
in the last years and offers great potential for automation
[13]. Similar problems also occur in the domains of busi-
ness process design (not only restricted to the well-known
field of process mining [20, 5]), hardware design and con-
troller synthesis. In all these areas a popular choice for a
final system model, especially if concurrency is involved,
are Petri nets and domain specific dialects of Petri nets.

In the field of Petri net theory, algorithmic construc-

tion of a Petri net model from a behavioral specification is
known as synthesis [12, 2]. The classical synthesis prob-
lem is the problem to decide whether, for a given behav-
ioral specification, there exists an unlabeled Petri net, such
that the behavior of this net coincides with the specified be-
havior. In the positive case a synthesis algorithm usually
constructs a witness net. Theoretical results in the literature
mainly differ in the Petri net class and the model for the
behavioral specification considered. Synthesis can be ap-
plied to various classes of Petri nets, including elementary
nets [12], place/transition nets (p/t-nets) [2] and inhibitor
nets [15]. On the one hand, the behavioral specification can
be given by a transition system or by a step transition sys-
tem [2], referred to as synthesis up to isomorphism. On the
other hand, synthesis can be based on a language, the so
called synthesis up to language equivalence. A language
models scenarios of the searched net. As languages, finite
or infinite sets of scenarios given by occurrence sequences,
step sequences [9, 1, 2] or partially ordered runs [14, 6] can
be considered. In this paper we restrict ourselves to syn-
thesis of a Petri net from a language. The theoretical basis
of Petri net synthesis is the so called theory of regions. All
approaches to Petri net synthesis based on regions of lan-
guages roughly follow the same idea (see e.g. [2, 14]):
→ Let L be the specified language. Instead of solving the
synthesis problem (is there a net with the behavior specified
by L?) and then – in the positive case – synthesizing a wit-
ness net, first a net is constructed from L.
→ The construction starts with the transitions T taken from
the action names of L.
→ The behavior of the net is restricted by the addition of
places (including their connections to transitions of the net
and their initial markings).
→ Places not generating dependencies which contradict the
language specification L are candidates to be added to the
net. If the behavior of a net consisting of the set of transi-
tions T and one place p includes the behavior specified by
L, then p is such candidate place. These candidate places
are called feasible w.r.t. L. Adding all feasible places yields
the so called saturated feasible net NL, which includes the
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behavior specified by L and has minimal additional behav-
ior. The language L(NL) generated by NL represents the
best upper approximation to L by a Petri net language.
→ The set of feasible places w.r.t. L is structurally defined
by so called regions of L. Each region r of L yields a cor-
responding feasible place pr and each feasible place p cor-
responds to some region r of L.
→ In literature, there are several region definitions for vari-
ous types of languages, e.g. [9, 1, 2, 14, 6, 15]. In all cases
a region r of L can be given by a vector of integer numbers
and the set of all regions is given as the set of solutions of
an inequality system AL · r ≥ c.
→ When all, or sufficiently many, regions r are identified,
all places pr of the synthesized net are constructed. The
crucial point is that the set of all regions is in general infi-
nite, whereas in most cases finite sets of regions suffice to
represent NL. The synthesized net N is some finite repre-
sentation of NL.
→ If the behavior L(N) of N coincides with the behavior
specified by L, then the synthesis problem has a positive an-
swer; otherwise there is no net having the behavior specified
by L, i.e. the synthesis problem has a negative answer.

Recently, we examined the detailed analogies and dif-
ferences in synthesis approaches based on regions of lan-
guages. We identified two different types of regions, called
transition regions and token flow regions, and two differ-
ent principles of computing from the (infinite) set of all
regions a finite Petri net representing the saturated feasi-
ble net, namely the separation computation and the basis
computation [15]. Instead of solving the synthesis prob-
lem for a certain net class and a certain language specifica-
tion, we presented a framework for region based synthesis
of Petri nets from languages, which integrates almost all
approaches known in literature and filled several remain-
ing gaps [15]. The framework has four dimensions defining
a synthesis setting: Petri net class, language type, region
type and computation principle (see Figure 1). The first
two dimensions define the synthesis problem, while the lat-
ter two determine a solution principle. Given a language
type and a Petri net class, usually all four combinations of
region type and computation principle yield a solution algo-
rithm for the respective synthesis problem. The region type
together with the language type and the Petri net class de-
termines the inequality system AL · r ≥ c defining the set
of regions. A synthesis algorithm then only depends on this
inequality system and on the computation principle. The
two principles of separation and basis computation are ap-
plicable for almost all inequality systems in the same way,
i.e. with the central ideas of each of the two computation
principles nearly all synthesis settings can be solved. This
systematic classification of synthesis approaches has been
developed for the standard classical synthesis problem.

In this paper, we consider variants of the classical lan-
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Figure 1. Synthesis framework.

guage based synthesis problem varying the problem param-
eters by either relaxing or additionally restricting the re-
quirements on the synthesized net. The problem variants
cover aspects relevant for different applications of Petri net
synthesis in practice. We formulate six main variants as
well as several interesting versions of these variants. For
all presented variants we show solution algorithms. That
means, this paper poses and solves a lot of interesting syn-
thesis questions going beyond the classical synthesis prob-
lem. Although the motivations come from practical exam-
ples we still restrict ourselves to formal problems that have
to be further tuned to practical applicability. In particu-
lar, runtime and memory consumption of some of the al-
gorithms may be problematic in large realistic settings.

The considered variants can in most cases be solved by
appropriate modifications of the solution algorithms for the
classical synthesis problem. We exemplarily develop algo-
rithms to solve the variants in the setting of the synthesis
of a p/t-net (net class) from a finite language of occurrence
sequences (language type) using transition regions (region
type), whereas we apply both separation and basis compu-
tation (computation principle). For each variant, we high-
light the main ideas of the two computation principles such
that, similarly as for the classical synthesis problem (see
[15]), the solution algorithms in our standard synthesis set-
tings can in most cases easily be adapted to other synthesis
settings, i.e. to other net classes such as inhibitor nets, to
other language types such as partial languages and to the re-
gion type of token flow regions. Again, switching to other
synthesis settings by changing net class, language type or
region type only changes the inequality system AL · r ≥ c
defining regions, but the algorithmic ideas depending on
the computation principle stay the same (apart from some
adjustments). That means, as sketched in Figure 1, con-
sidering different variants of the classical synthesis prob-
lem may be seen as a fifth dimension added to the synthesis
framework presented in [15]. Note that the example settings
considered in this paper are restricted to finite languages
and adaptations of the synthesis algorithms to finitely rep-
resented infinite languages entail several difficulties not dis-
cussed here (requiring considerations going beyond [15]).
In the case of occurrence sequences an overview how to
deal with infinite languages is described in [9] and in [6]
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a synthesis approach for infinite partial languages is shown
(see the last paragraph of the example to Problem 1 in the
Appendix for an outlook on infinity). But anyway for typ-
ical applications of language based Petri net synthesis the
finite case is often sufficient, since most system specifica-
tions occurring in practice define finite languages.

Altogether, we present a broad survey of variants of the
classical language based synthesis problem. Each variant,
although presented in our example settings, is discussed in
the context of the general framework shown in Figure 1 by
highlighting the crucial ideas of the two computation prin-
ciples. The variants presented in this paper are either not
solved in the literature so far, or they are only solved in
one specific synthesis setting (in contrast to the general dis-
cussion in this paper considering the ideas of both compu-
tation principles in the example setting as far as possible
and supporting the adaptation to other net classes, language
types and region types). The following table (for details see
the respective sections) shows by references which variants
have already been discussed in literature in some specific
setting, where we only distinguish the computation princi-
ple used (also references where a similar problem is dis-
cussed in literature possibly in some other context indepen-
dently from region theory are shown in the column ”sim-
ilar prob. lit.”). The check marks indicate which variants
are solved in this paper applying the respective computa-
tion principle

separation basis similar
Variant comp. comp. prob.

lit. here lit. here lit.
Bound - X [8] X -

Version 1 - X - X -
Version 2 - X - X [17]

Place Bound - X - - [7, 20]
Version 1 - X - - [7]
Version 2 [9] X - X [20]

Identifying States - X - X -
Version 1 - X - X [2]

Best Upper Approx. - X [9] X -
Best Lower Approx. - X - (X) -

Version 1 - X - (X) -
Opti. Min. Weights - X - - [20]

Version 1 - X - - -
Version 2 - X - - [7, 11]

The paper is structured as follows: The classical
synthesis problem is explained in our standard settings
with both computation principles in Section 2. In Section
3, solution algorithms for the considered variants of the
classical problem are developed for separation and basis
computation. To support the reviewing procedure, we give
additional information in an Appendix which is helpful but
not necessary for understanding the paper. For the inter-
ested reader, we also provide the Appendix as a technical

report on our homepage (http://www.informatik.ku-
eichstaett.de/mitarbeiter/mauser/techreports/variants.pdf).
In the Appendix, the two algorithms to solve the classical
synthesis problem are presented in detailed pseudo-code
and for the classical problem as well as for each considered
variant an example including more detailed motivation
of the problem is provided. Readers interested in certain
variants can look up these examples to gain deeper insights.

2 Classical Synthesis Problem
We start with basic notions. A p/t-net N is a triple

(P, T, W ), where P is a (possibly infinite) set of places, T
is a finite set of transitions satisfying P ∩ T = ∅, and W :
(P×T )∪(T×P ) → N is an (arc) weight function defining
the flow relation (N denotes the non-negative integers). A
marking of a net N is a function m : P → N ∈ NP (called
multi-set over P ) assigning m(p) tokens to a place p ∈ P .
A marked p/t-net is a pair (N, m0), where N is a p/t-net,
and m0 is a marking of N , called initial marking. A transi-
tion t is enabled to occur in a marking m of a p/t-net N , if
m(p) ≥ W (p, t) for each p ∈ P . In this case, its occurrence
leads to the marking m′(p) = m(p) + W (t, p) −W (p, t),
abbreviated by m

t−→ m′. A finite sequence of transitions
σ = t1 . . . tn ∈ T ∗, n ∈ N, is called an occurrence se-
quence enabled in a marking m and leading to mn, de-
noted by m

σ−→ mn, if there exists a sequence of mark-
ings m1, . . . , mn such that m

t1−→ m1
t2−→ . . .

tn−→ mn.
Given a marked p/t-net (N, m0), the set of all occurrence
sequences enabled in m0 is denoted by L(N, m0). The
set L(N, m0) ⊆ T ∗ is a language over the alphabet T .
The language L(N, m0) is prefix closed, i.e. if t1 . . . tn ∈
L(N, m0) then each proper prefix t1 . . . ti, i < n, (denoted
by t1 . . . ti < t1 . . . tn) is also in L(N, m0). The commuta-
tive image of a sequence of transitions σ ∈ T ∗ is the mul-
tiset [σ] ∈ NT whose respective entries [σ](t) count the
number of occurrences of t ∈ T in σ.

In our standard setting, the synthesis starts with a pre-
fix closed finite language of occurrence sequences L ⊆ T ∗

over a fixed finite alphabet (of transitions) T [9, 5] (see the
Appendix for an example).
Problem 1 (Classical Synthesis Problem). Given L, de-
cide whether there exists a p/t-net (N, m0) fulfilling
L(N, m0) = L and compute such net in the positive case.

As stated, in the standard synthesis setting of this paper,
we apply the region type called transition region for com-
puting places of the synthesized net. A transition region
directly specifies the arc weights of arcs connected to the
place defined by a region and the initial marking of the place
defined by a region [15, 5]. Denoting T = {t1, . . . , tn}, a
region of L is a tuple r = (r0, . . . , r2n) ∈ N2n+1 satisfying
(∗) r0 +

∑n
i=1([w](ti) · ri − [wt](ti) · rn+i) ≥ 0

for every wt ∈ L (w ∈ L, t ∈ T ). Every region r of L
defines a place pr via m0(pr) := r0, W (ti, pr) := ri and

3



W (pr, ti) := rn+i for 1 6 i 6 n. The place pr is called
corresponding place to r. Regions exactly define so called
feasible places: If (N, mp), N = ({p}, T,Wp) is a marked
p/t-net with only one place p (Wp, mp are defined accord-
ing to the definition of p), the place p is called feasible (w.r.t.
L), if L ⊆ L(N,mp), otherwise non-feasible. That means,
feasible places do not prohibit behavior specified by L. A
central theorem establishes that each place corresponding
to a region of L is feasible w.r.t. L and each place feasible
w.r.t. L corresponds to a region of L [9, 5].

The set of regions can be characterized as the (infinite)
set of non-negative integral solutions of a homogenous lin-
ear inequality system AL · r ≥ 0 [5] with integer coeffi-
cients. The matrix AL encodes property (∗). It consists of
rows awt satisfying awt · r ≥ 0 ⇔ (∗) for each wt ∈ L.
Note that (∗) only depends on [w] and t, i.e. awt may be
equal for different wt ∈ L. Of course such duplicate rows
are omitted from AL.

To compute a finite net, we first use the principle of sep-
aration computation. The idea behind this strategy is to add
such feasible places to the constructed net, which separate
specified behavior from non-specified behavior. For each
w ∈ L and each t ∈ T such that wt 6∈ L, one searches
for a feasible place pwt, which prohibits the occurrence of
wt. Such wt is called wrong continuation and the set com-
prising of all wrong continuations is denoted by WC. A
feasible place pwt prohibiting a wrong continuation wt is
called separating feasible place w.r.t. wt. If there is such a
separating feasible place for wt ∈ WC, it is added to the
net. The number of wrong continuations (and thus the num-
ber of places) is bounded by |L| · |T |. The constructed net
(N, m0) containing one separating feasible place for each
wrong continuation, for which such place exists, is finite.
Separating feasible places are computed through separat-
ing regions. A region r of L is a separating region w.r.t. a
wrong continuation wt if
(∗∗) r0 +

∑n
i=1([w](ti) · ri − [wt](ti) · rn+i) < 0.

In [9, 5, 1] it is shown that a separating feasible place w.r.t.
a wrong continuation wt corresponds to a separating re-
gion w.r.t. wt and vice versa. A separating region r w.r.t.
wt ∈ WC can be calculated (if it exists) as a non-negative
integer solution of a homogenous linear inequality system
with integer coefficients of the form AL ·r ≥ 0,bwt ·r < 0,
where the vector bwt is defined in such a way that bwt ·r <
0 ⇔ (∗∗). Note that (∗∗) only depends on [w] and t, i.e.
bwt may be equal for different wrong continuations wt. Of
course in this case only one such wt has to be considered. If
there exists no non-negative integer solution of the system
AL · r ≥ 0,bwt · r < 0, there exists no separating region
w.r.t. wt, and thus no separating feasible place prohibit-
ing wt. If there exists a non-negative integer solution, any
such solution defines a separating feasible place prohibit-
ing wt. In order to decide the solvability of the inequality

system and to compte a solution in the positive case several
linear programming solvers, such as the Simplex method,
the method by Khachyan or the method of Karmarkar, can
be applied [19]. It is important here that the homogeneity
of the system enables the use of such solvers searching for
rational solutions, since multiplying with the common de-
nominator of the entries of a rational solution yields an inte-
ger solution. The methods of Khachiyan (ellipsoid method)
and Karmarkar (interior point method) need only polyno-
mial runtime [19]. The Simplex algorithm is exponential
in the worst case, but probabilistic and experimental results
[19] show that it has a fast average runtime.

The final synthesis algorithm Algorithm 1 to solve Prob-
lem 1 works as follows [5] (see the Appendix for detailed
pseudo-code): Each wrong continuation is processed. For
a wrong continuation the solvability of the corresponding
inequality system is decided. If there is no solution, the
synthesis problem has a negative answer. If there exists a
solution, one such solution is chosen and the correspond-
ing separating feasible place is added to the net. If there
is such a separating feasible place for every wrong contin-
uation, it was shown in [9, 5] (by proving that it is enough
to prohibit the set of wrong continuations of L in order to
prohibit all w 6∈ L) that the synthesis problem has a posi-
tive answer and the constructed net is a respective witness
net. Choosing a solver running in polynomial time, the syn-
thesis algorithm has a polynomial time consumption [1, 5].
This basic synthesis procedure is optimized by the follow-
ing principle: For not yet considered wrong continuations,
that are prohibited by feasible places already added to the
constructed net, we do not have to calculate a separating
feasible place. Therefore, we choose a certain ordering of
the wrong continuations. We first add a separating feasible
place for the first wrong continuation (if such place exists).
Then, we only add a separating feasible place for the sec-
ond wrong continuation, if it is not prohibited by an already
added feasible place, and so on.

Instead of the separation computation, we can also use
the principle of basis computation to compute a finite net.
The idea here is to add a finite subset of the infinite set of
feasible places to the constructed net, such that this sub-
set restricts the behavior of the net in the same way as
the set of all feasible places. The set of solutions of the
system AL · r ≥ 0, r ≥ 0 defines a pointed polyhedral
cone. Since all values in AL are integral, there always ex-
ists a minimal set of integer solutions {y1, . . . ,yn}, such
that each solution x is a non-negative linear combination of
{y1, . . . ,yn} of the form x =

∑n
i=1 λiyi for real numbers

λ1, . . . , λn > 0 [19]. This set is unique up to dilation and
given by the rays of the cone. It can be computed e.g. by the
algorithm of Chernikova, which has exponential runtime in
the worst case. The problem is that the size of {y1, . . . ,yn}
may be exponential, but it is of reasonable size for most
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practical examples. We call the elements of this set basis
regions. It is shown in [9, 5] that the saturated feasible
net has the same set of occurrence sequences as the finite
net (N,m0) consisting only of feasible places correspond-
ing to basis regions. Thus, (N, m0) represents a best upper
approximation to L, i.e. L ⊆ L(N,m0) and ∀(N ′m′

0) :
(L ⊆ L(N ′,m′

0)) =⇒ (L(N, m0) ⊆ L(N ′,m′
0)). Conse-

quently, either (N, m0) solves the synthesis problem posi-
tively or the problem has a negative answer. It remains to
check whether (N,m0) solves the synthesis problem pos-
itively or not. For this one can either compute L(N, m0)
(which is finite [5]) and test whether L(N, m0) ⊆ L (per-
formance: |L(N, m0)| ≈ |L| = size of input), or one can
check whether each wrong continuation of L is not enabled
in (N, m0).

The final synthesis algorithm Algorithm 2 to solve Prob-
lem 1 works as follows [5] (see the Appendix for detailed
pseudo-code): The set of basis regions of AL ·r ≥ 0, r ≥ 0
is computed, and the finite set of feasible places correspond-
ing to basis regions is added to the net. For the resulting net
(N, m0) it is checked whether L(N,m0) = L or not. In the
positive case the synthesis problem has a positive answer
and (N,m0) is a respective witness net. In the negative
case the synthesis problem has a negative answer.

3 Variants of the Classical Synthesis Problem
In this section we discuss variants of the classical synthe-

sis problem accounting for typical requirements on a system
model going beyond the classical synthesis question. Since
the variants considered cover a wide field of problems, the
solution methods presented in this section can be seen as a
large repertoire of synthesis approaches applicable in vari-
ous practical settings.

3.1 Bound Variant
Instead of specifying a language and asking whether the

language can exactly be reproduced by a net, one can spec-
ify two languages representing a lower and an upper bound
for the behavior of a net. It is asked whether there is a net
having more behavior than specified by the first language,
but less behavior than specified by the second one (see the
Appendix for an example). This variant is useful in prac-
tice in the frequent situations of incomplete specifications,
since it is possible to specify some range of tolerance for
the behavior of the synthesized net. The variant is partic-
ularly relevant in the application field of control synthesis
[8, 11] (see e.g. [10, 16, 4, 11] for refined versions of the
supervisory control problem).

Problem 2 (Bound Variant). Given L,L′, L ⊆ L′, decide
whether there exists a marked p/t-net (N,m0) fulfillingL ⊆
L(N, m0) ⊆ L′ and compute such net in the positive case.

The bound variant can be solved by considering regions
w.r.t. L as before (nets only having feasible places w.r.t L

are candidates), but wrong continuations resp. the set inclu-
sion test is considered for L′. Using Algorithm 2 the bound
variant is solved in [8] considering a regular language and
pure nets or p/t-nets. Regarding the best upper approxima-
tion property of (N,m0), it is clear that if in Algorithm 2 the
test whether L(N,m0) ⊆ L is replaced by a test whether
L(N, m0) ⊆ L′, the algorithm solves Problem 2. More ef-
ficiently, Problem 2 can be solved by changing Algorithm
1 as follows: for each wrong continuation wt ∈ WC w.r.t.
L′ it is searched for a separating region. If there is no such
separating region, there are two cases: Either w ∈ L (it
always holds ε ∈ L), then the formulated problem has a
negative answer, or w 6∈ L, then w is considered as a wrong
continuation by adding it to the set WC. If and only if the
first case never occurs, a positive answer to the synthesis
problem having (N, m0) as a witness can be deduced anal-
ogously as for Algorithm 1, since in this case some prefix
of each wrong continuation w.r.t. L′ is separated. For ex-
ample, if L = {a, ab, abc, b},L′ = {a, ab, abc, b, ba}, the
L′-wrong continuation bac cannot be separated, but its pre-
fix ba 6∈ L can be separated.

Version 1: In practical applications an upper bound L′
is often specified indirectly by a set L̃ representing a set
L̃ = {w | ∃w′ ∈ L̃ : w′ prefix of w} of unwanted behav-
ior. The upper bound L′ is then given by the complement of
L̃. The lower bound L is given as usual by a specification of
wanted behavior. In this paper, L̃ is finite. But the respective
upper bound L′ may be infinite. In the case of Algorithm 2,
instead of checking whether L(N,m0) ⊆ L′, one can test
whether for some w ∈ L̃, there holds w ∈ L(N,m0). In
the positive case, the bound variant has a negative answer
(by the best upper approximation property of (N, m0)). In
the negative case, it has a positive answer having (N, m0)
as a witness. In the case of Algorithm 1, instead of consid-
ering wrong continuations w.r.t. L′, the set of occurrence
sequences that have to be separated is directly given by L̃.

Version 2: In some applications, behavioral bounds are
given by a conformance measure µ appropriately scaling
the degree of conformance of a language and a p/t-net.
Then, a value µ0 specifies a lower conformance bound.
Given a language L, a p/t-net (N, m0) fulfilling L ⊆
L(N, m0) and respecting the conformance bound through
µ((N, m0),L) ≥ µ0 may be searched. While L defines
the lower behavioral bound, the conformance bound can be
seen as an upper bound for the behavior of the searched
net. Examples for conformance measures are shown in
[17]. In the case µ is monotonic for upper approxima-
tions of the language in the sense that for L ⊆ L(N, m0),
L ⊆ L(N ′,m′

0), L(N, m0) ⊆ L(N ′,m′
0) there holds

µ((N, m0),L) ≥ µ((N ′, m′
0),L), the formulated problem

can be solved as follows: Start computing a best upper ap-
proximation (N, m0) to L as shown later on, and then ac-
complish a conformance test whether µ((N, m0),L) ≥ µ0.
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In the case of a synthesis algorithm that adds feasible places
stepwise such as Algorithm 1, the conformance test can also
be accomplished in each step of the algorithm, and if the test
is positive, the so far computed net solves the problem.

3.2 Place Bound Variant
A crucial requirement in practice is synthesizing com-

pact, manually interpretable reference models [20]. In par-
ticular, Petri nets having a small number of components are
desired. Thus, an interesting problem is whether there exists
a net having at most a specified number of places, which has
the specified behavior (see the Appendix for an example).
Problem 3 (Place Bound Variant). Given L and a bound
b ∈ N\{0}, decide whether there exists a p/t-net (N, m0) =
(P, T, W,m0), |P | ≤ b, fulfilling L(N,m0) = L and com-
pute such net in the positive case.

Using Algorithm 1 the problem can basically be solved
by partitioning the set of wrong continuations to b sets
WC1, . . . ,WCb. If for one such partition (there are expo-
nentially many of these partitions) it is possible to separate
the b sets of wrong continuations each by one feasible place,
the synthesis problem has a positive answer, otherwise a
negative answer. An advantage of this approach is that still
standard (polynomial) linear programming techniques can
be applied to small problem instances.

But it is also possible to apply a more advanced tech-
nique following ideas developed in [7]. Although, as stated
in [7], the approach in [7] is not a region based synthesis
procedure, the presented principle of considering an integer
linear programming problem can also be used in our set-
ting of regions of languages. The place bound variant can
be solved by solving the following system: AL · ri ≥ 0,
i ∈ {1, . . . , b} | −k · swt,i + bwt · ri < 0, i ∈ {1, . . . , b},
wt ∈ WC | ∑b

i=1 swt,i ≤ b − 1, wt ∈ WC | ri ∈ N2n+1,
i ∈ {1, . . . , b} | k ∈ N | swt,i ∈ {0, 1}, i ∈ {1, . . . , b},
wt ∈ WC. The vectors ri represent b regions by the in-
equalities AL · ri ≥ 0. If swt,i = 0 then the constraint
−k·swt,i+bwt·ri < 0 is active yielding the usual constraint
to separate the wrong continuation wt by the region ri. If
swt,i = 1 the constraint can be easily verified by choosing
the variable k large enough, thus resulting in a redundant
constraint. Moreover, the condition

∑b
i=1 swt,i ≤ b − 1

implies that at least one swt,i is equal to zero, i.e. for each
wrong continuation wt one constraint is active ensuring that
wt is separated by one of the regions ri. This guarantees
that if there is a solution of the system, all wrong continu-
ations are separated by one of the b feasible places corre-
sponding to r1, . . . , rb, i.e. we have a solution net to Prob-
lem 3. Conversely, if Problem 3 has a solution net, the
integer linear programming problem has a solution as fol-
lows: ri can be chosen such that each place of the net cor-
responds to one ri. Furthermore, set swt,i = 0 if the place
corresponding to ri separates wt, and otherwise swt,i = 1.

Choosing k large enough, this ensures that all constraints
−k · swt,i + bwt · ri < 0 are satisfied. Since every wrong
continuation is separated by one place of the net, the con-
straint

∑b
i=1 swt,i ≤ b− 1 is fulfilled.

The arising integer linear programming problem can be
solved by standard methods [19] (solving a series of usual
linear programming problems) such as branch and bound al-
gorithms or the cutting-plane (Gomory) method. Both have
exponential runtime in the worst case, but in practice they
are often fast. There are also heuristics to compute approx-
imate solutions in polynomial time. The presented inequal-
ity system is large, which may cause performance problems.
But state of the art integer linear programming solvers are
very efficient, such that also large problems can be handled.

Lastly, concerning Problem 3, Algorithm 2 is only use-
ful as a kind of pre-processing: Instead of defining the set
of feasible places by solutions of an inequality system, they
can be given as linear combinations of the places corre-
sponding to basis regions.

Version 1: An algorithm solving the place bound prob-
lem can be used to construct a net with a minimal number
of places solving the synthesis problem. First it has to be
checked if the synthesis problem is solvable. In the positive
case one decides whether the place bound variant is solv-
able for b = 0, then for b = 1, then for b = 2 and so on.
The smallest b giving a positive answer, yields the solution
to the formulated problem and the algorithm terminates.

Again following ideas in [7], the version of the synthesis
problem optimizing the number of places can also be solved
by an integer linear programming problem. If the classical
synthesis problem is solvable, then consider the number b
of places of a solution net and solve the following problem:
AL · ri ≥ 0, i ∈ {1, . . . , b} | −k · swt,i + bwt · ri < 0,
i ∈ {1, . . . , b}, wt ∈ WC |∑b

i=1 swt,i ≤ b− 1, wt ∈ WC

| k · zi −
∑2n

j=0 ri
j ≥ 0, i ∈ {1, . . . , b} | ri ∈ N2n+1,

i ∈ {1, . . . , b} | k ∈ N | zi, swt,i ∈ {0, 1}, i ∈ {1, . . . , b},
wt ∈ WC | min!

∑b
i=1 zi. The inequality system is the

same as before with additional binary variables zi and in-
equalities k · zi −

∑2n
j=0 ri

j ≥ 0. If zi = 1 this constraint
is trivially fulfilled by choosing k large enough. In the case
zi = 0 the constraint is only satisfied if ri = 0, i.e. the place
defined by ri is the redundant zero place. Additionally, the
integer linear program minimizes

∑b
i=1 zi. Therefore, as

many as possible ri are set to zero such that the correspond-
ing places can be omitted from the computed net. Thus,
solving this problem yields a net solving the synthesis prob-
lem and having a minimal number of places.

Version 2: A relaxed and simpler problem is construct-
ing a net solving the synthesis problem which has no sub-net
also solving the synthesis problem. This can be achieved by
answering the usual synthesis problem and in the positive
case exploring all places of the synthesized net in an arbi-
trary order. In the case of Algorithm 1 for each place it
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is checked whether the place can be removed and still all
wrong continuations are separated by the remaining places.
Note that choosing another ordering of exploring the places
may lead to a net with a smaller number of places [9]. Actu-
ally, the proposed procedure means to check for each place
if it is implicit. Searching for implicit places can also be ap-
plied in the case of Algorithm 2. Heuristics to find implicit
places can be used to construct approximate solutions.

3.3 Identifying States Variant
In a system specification, there may be partial informa-

tion about states of the system, e.g. error states and nor-
mally terminating states. Typically, it is specified that some
executions yield the same state (example in the Appendix).
Such information can be integrated in synthesis methods.

Problem 4 (Identifying States Variant). Given L and pair-
wise disjoint L1, . . . ,Ll ⊆ L, decide whether there exists a
p/t-net (N, m0) fulfilling L(N, m0) = L such that the oc-
currence of each σ ∈ Lj leads to the same marking for all
j ∈ {1, . . . , l}, and compute such net in the positive case.

The additional requirements define additional restric-
tions for regions. Fix σj ∈ Lj for each j ∈ {1, . . . , l}.
Then for each σ 6= σj , σ ∈ Lj , add two rows sσ =
(sσ,0, . . . , sσ,2n) and−sσ to matrix AL, such that sσ ·r ≥ 0
and −sσ · r ≥ 0 if and only if the occurrence of σ and σj

lead to the same number of tokens in pr:

sσ,i =





0 for i = 0
[σ](ti)− [σj ](ti) for i = 1, . . . , n
−[σ](ti−n) +[σj ](ti−n) for i = n + 1, . . . , 2n

Considering this extended matrix AL, Algorithm 1 and
2 solve Problem 4.

Version 1: The state variant can be generalized by not
only specifying equal states but also separated states. That
means, for certain pairs (Li,Lj) the two markings defined
by Li and Lj are specified to be different. For this the
marking in one place separating these two states has to
be different. In the case of Algorithm 1 feasible places
separating such states can be computed similarly as fea-
sible places separating wrong continuations, i.e. for each
such pair of states it is tried to solve the inequality system
AL · r ≥ 0, r ≥ 0 considered in this subsection together
with (instead of bw · r < 0) an inequality ensuring that
the resulting feasible place separates the two states (defined
by rows similar to sσ). Concerning Algorithm 2, the net
(N, m0) computed with the inequality system of this sub-
section is a candidate to solve the problem, i.e. it is suffi-
cient to check if for each specified pair (Li,Lj) of different
markings, the two final markings given by the occurrence
of σi and σj in the net (N,m0) are different. If this is
not the case, no feasible place satisfying the requirement
of Problem 4 separates these two states, since each such
feasible place is a non-negative linear combination of the

places of (N,m0). Consequently, the problem has a nega-
tive answer. Completely specifying which states are equal
and which states are separated yields the classical problem
of synthesis up to isomorphism [2].

3.4 Best Upper Approximation
The previous synthesis problems do not require the com-

putation of a net, if exact synthesis is not possible. But
typical applications ask for the construction of a reasonable
system model from arbitrary specifications. For this pur-
pose, synthesis of (best) approximate solutions is appropri-
ate. Thereby, synthesizing upper approximations to specifi-
cations is useful, because in many applications of net syn-
thesis the behavior explicitly specified by a language should
definitely be included in the language of the synthesized
model. Best upper approximations ensure that only nec-
essary additional behavior is added to the synthesized net.
Thus, computing a best upper approximation may be seen as
a natural completion of the specified language by a Petri net.
Generally, in applications often approximate system models
are sufficient and sometimes upper approximations to spec-
ifications are even desired, since system specifications in
practice are typically incomplete. Formally, we here con-
sider synthesis algorithms generating a net having the least
net language (w.r.t. set inclusion) larger than the specified
language [9] (example in the Appendix). This in particular
shows that such least net language exists uniquely [9, 5].

Problem 5 (Best Upper Approximation Variant). Given L,
compute a marked p/t-net (N,m0) fulfilling L ⊆ L(N, m0)
and (∀(N ′m′

0) : (L(N, m0) \ L(N ′,m′
0) 6= ∅) =⇒ (L 6⊆

L(N ′,m′
0))).

As shown in Section 2, the first part of Algorithm 2
(without the check whether L(N, m0) = L) already solves
Problem 5. But computing the complete basis often leads to
performance problems. The net (N, m0) computed with Al-
gorithm 1 in general does not solve Problem 5, but (N, m0)
is an upper approximation to L, i.e. L ⊆ L(N,m0). The
reason is that even if there is no feasible place prohibit-
ing a wrong continuation w, there might be one prohibit-
ing wt – but such places are not added to (N,m0). For
example, given L = {b, a, aa, aab}, the wrong continua-
tion ab cannot be separated, but the sequences aba and abb
can be separated. Therefore, the following adaptation of
Algorithm 1 is necessary to solve Problem 5: If there is
no feasible place prohibiting a wrong continuation w, for
each transition t try to construct a feasible place prohibit-
ing wt by considering wt as a wrong continuation, and if
there is no such place, for each t′ try to construct a feasible
place prohibiting wtt′, and so on. In this algorithm the set
of wrong continuations WC may grow, but the algorithm
terminates: A sequence in which a transition t occurs more
often than the maximal number of occurrences of t in a se-
quence of L can always be separated by the feasible place
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p defined by W (p, t) = 1, W (p, t′) = 0 for t′ ∈ T \ {t},
W (t′, p) = 0 for t′ ∈ T , m0(p) = max{[w](t) | w ∈ L}.
Thus, the length of a sequence added to WC is bounded
by

∑
t∈T max{[w](t) | w ∈ L} + 1, and by construction

no sequence is added twice to WC. The net (N,m0) com-
puted by the sketched adaptation of Algorithm 1 fulfills the
best upper approximation property, since every sequence in
L(N, m0) \ L cannot be prohibited by a feasible place, i.e.
such sequence is included in the behavior L(N ′,m′

0) of ev-
ery net (N ′, m′

0) fulfilling L ⊆ L(N ′,m′
0).

This adaptation of Algorithm 1 of course still solves the
classical synthesis problem. Consequently it may be prob-
lematic for infinite languages, since there are examples in
literature, e.g. general context-free languages [9], where
Problem 5 is solvable by computing basis regions, but the
classical synthesis problem is undecidable.

3.5 Best Lower Approximation
Although upper approximations are more common, there

are also practical examples requiring the synthesis of lower
approximations. Lower approximations are nets having
only behavior specified by the given language. This is use-
ful in the case the specification is complete, i.e. all behav-
ior not specified in the language is faulty behavior. A best
lower approximation is a lower approximation having maxi-
mal behavior in the sense that no other lower approximation
includes a larger number of occurrence sequences specified
by the language (see the Appendix for an example). In Petri
net theory, best lower approximations exhibit some diffi-
culties compared to best upper approximations. In partic-
ular, there is no unique largest net language smaller than a
specified language, e.g. L = {b, a, aa, aab} is no p/t-net
language, but {b, a, aa} and {a, aa, aab} are both p/t-net
languages.

Problem 6 (Best Lower Approximation Variant). Given L,
compute a marked p/t-net (N,m0) fulfilling L ⊇ L(N, m0)
and (∀(N ′m′

0) : (|L(N ′,m′
0)| > |L(N, m0)|) =⇒ (L 6⊇

L(N ′, m′
0))).

This problem can obviously be solved by solving the
classical synthesis problem for each prefix closed subset of
L. There are subsets with a maximal number of elements
for which Algorithm 1 resp. 2 yields a positive answer. A
net computed in such a case is a best lower approximation.

Using Algorithm 1 the problem can be solved a lot more
efficiently by applying the following procedure: First apply
Algorithm 1 and in doing so store all wrong continuations
that cannot be separated. The computed net is the starting
point. It only remains to separate the stored wrong contin-
uations. For this adapt Algorithm 1 by substituting WC
by the set of stored wrong continuations. Apply this adap-
tation of Algorithm 1 to all prefix closed subsets of L in
decreasing order (w.r.t. the number of elements) until dis-
covering some subset yielding a positive answer. The places

computed in such case supplement the places of the starting
net. This yields a net with maximal behavior separating all
wrong continuations. The algorithm is more efficient be-
cause the set of stored wrong continuations is usually small.

The problem can also be encoded in an integer linear pro-
gram: k ·zwt +awt ·rvu ≥ 0, wt ∈ L, vu ∈ WC | −k ·(1−
zwt +

∑
w′t′<wt zw′t′)+awt ·rvu < 0, wt ∈ L, vu ∈ WC,

wt < vu | −k · (∑wt<vu zwt) + bvu · rvu < 0, vu ∈ WC
| zw′t′ ≤ zwt, w′t′ < wt ∈ L | rvu ∈ N2n+1, vu ∈ WC |
k ∈ N | zwt ∈ {0, 1}, wt ∈ L | min!

∑
wt∈L zwt. There is

one vector rvu defining a place for each wrong continuation
vu. All wrong continuations have to be separated by places
such that the resulting net is a lower approximation. A
wrong continuation is also prohibited if some prefix is sep-
arated. The constraints−k · (∑wt<vu zwt)+bvu · rvu < 0
require that vu is separated by rvu or that zwt = 1 for
some prefix wt of vu (in the second case the constraint is
redundant, because k can be chosen arbitrarily large). If
zw′t′ = 1, then for all wt > w′t′ we have zwt = 1 by
the constraints zw′t′ ≤ zwt. If zwt = 1 the constraints
−k · (1 − zwt +

∑
w′t′<wt zw′t′) + awt · rvu < 0 ensure

that wt is separated by rvu, where wt < vu ∈ WC, or
that zw′t′ = 1 for some prefix w′t′ of wt (in the second
case and in the case zwt = 0 the constraint is redundant,
because k can be chosen arbitrarily large). It is possible to
use rvu to separate wt, because rvu is not longer needed to
separate vu, i.e. rvu separates the minimal prefix wt of vu
with zwt = 1. Since all words wt with zwt = 1 are sep-
arated directly or indirectly by separating some prefix, we
do only require sequences wt with zwt = 0 to be enabled
by the constraints k · zwt + awt · rvu ≥ 0. Altogether, the
places corresponding to rvu, vu ∈ WC, prohibit all wrong
continuations, i.e. the resulting net is a lower approxima-
tion to L, and all wt ∈ L with zwt = 1 are prohibited while
all wt ∈ L with zwt = 0 are enabled. The objective func-
tion min!

∑
wt∈L zwt minimizes the number of prohibited

sequences wt ∈ L, such that the resulting net is a best lower
approximation to L.

Version 1: A weaker problem emerges by replac-
ing (|L(N ′,m′

0)| > |L(N,m0)|) by (L(N ′,m′
0) )

L(N, m0)) in Problem 6. Then one searches for a lower ap-
proximation having maximal behavior w.r.t. set inclusion,
not w.r.t. the number of elements (for infinite languages
only this version is reasonable). This problem can be solved
analogously.

3.6 Optimization

As stated before, a major challenge in Petri net synthe-
sis is the creation of concise, readable nets. A promising
approach to generate such nets is linear programming. A
problem that can be solved by linear programming methods
is minimizing arc weights and initial markings of places [7]
(example in the Appendix). This problem is exemplarily
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considered here, but also other objective functions are pos-
sible. In literature, objective functions for guiding the con-
struction of Petri nets have been considered in [7, 5, 20].

Problem 7 (Minimal Weights Variant). Given L, de-
cide whether there exists a p/t-net (N, m0) fulfilling
L(N, m0) = L and in the positive case, compute such
p/t-net (N, m0) = (P, T, W,m0) satisfying additionally
max{m0(p) +

∑
t∈T (W (p, t) + W (t, p)) | p ∈ P} ≤

max{m0(p)+
∑

t∈T (W (p, t)+W (t, p)) | p ∈ P ′} for all
(N ′, m′

0) = (P ′, T,W ′,m′
0) fulfilling L(N ′,m′

0) = L.

This problem can be solved by adding to the inequal-
ity systems considered in Algorithm 1 the linear objec-
tive function min!

∑2n
i=0 ri. That means, instead of just

computing one arbitrary solution of the considered inequal-
ity systems, a solution optimizing the objective function is
computed. This ensures that a place p constructed to sep-
arate a wrong continuation has a minimal value m0(p) +∑

t∈T (W (p, t)+W (t, p)) among all such places. Thus, the
requirement of Problem 7 is satisfied. Actually, the com-
puted net even fulfills stronger requirements, because lo-
cally for each considered wrong continuation a ”minimal”
place is computed. The arising integer linear programming
problems can be solved by standard integer linear program-
ming solvers. Note that, while in Algorithm 1 it is possible
to apply rational solvers, this is not any more the case here,
because multiplying an optimal rational solution vector by
the common denominator of the vector entries may lead to
a non-optimal integer solution w.r.t the objective function.

As in the case of the place bound variant, for opti-
mization, computing basis regions is only useful as a pre-
processing step.

Version 1: Using optimization, it is also possible to
consider bounds for objective functions, e.g. a bound b
for m0(p) +

∑
t∈T (W (p, t) + W (t, p)) (for each place

p). To decide the synthesis problem under this require-
ment, the above optimization algorithm is changed as fol-
lows: If some optimal separating region does not fulfill
r0 + . . . + r2n ≤ b, the decision problem has a negative
answer and the corresponding place is not added.

Version 2: Also, global optimization over a set of places
is possible. By considering each partition WC = WC1 ]
. . .]WCa of the set of wrong continuations, trying to sepa-
rate the a sets of wrong continuations each by one region r,
and regarding the objective function min!

∑2n
i=0 ri in each

case, the synthesis problem can be solved yielding in the
positive case an optimal net w.r.t. the global objective func-
tion min!

∑
p∈P (m0(p) +

∑
t∈T (W (p, t) + W (t, p))).

Such global optimization problems can also be tackled
by integer linear programming. One can proceed simi-
larly as in the case of Problem 3. There are only two dif-
ferences: First, we allow as many places as wrong con-
tinuations. This is the maximal number of places, which
may be necessary (smaller numbers are then also possible,

because all-zero regions are possible and the correspond-
ing places can be omitted). Second, we simply add a re-
spective objective function to the integer linear program-
ming problem. Considering the global objective function∑

p∈P (m0(p) +
∑

t∈T (W (p, t) + W (t, p))), the system
looks as follows: AL · ri ≥ 0, i ∈ {1, . . . , |WC|} |
−k · swt,i + bwt · ri < 0, i ∈ {1, . . . , |WC|}, wt ∈ WC

| ∑|WC|
i=1 swt,i ≤ |WC| − 1, wt ∈ WC | ri ∈ N2n+1,

i ∈ {1, . . . , |WC|} | k ∈ N | swt,i ∈ {0, 1}, i ∈
{1, . . . , |WC|}, wt ∈ WC |min!

∑|WC|
i=1

∑2n
j=0 ri

j .
Developing good synthesis methods using optimization

is one of the main tasks for better practical applicability
of synthesis [11]. On the one hand, arc weights and ini-
tial markings of places (or similar parameters characterizing
the complexity of a net) have to be considered as structural
costs that have to be minimized as shown in this section.
On the other hand, behavior of the net that is not spec-
ified by the language (or some other unwanted behavior)
yields behavioral costs, i.e. instead of solving a certain ex-
act synthesis problem, one may impose costs for additional
unwanted behavior. Thus, places with small arc weights (to
yield small structural costs) separating many wrong contin-
uations (to reduce behavioral costs) are desired. Also other
kinds of costs may be considered, e.g. for communication in
distributed components or for relaxing a conformance mea-
sure. This leads to complex optimization (also non-linear)
problems and games with equilibria. It is mainly asked for
heuristical procedures and approximate solutions. Exam-
ples in literature regarding costs are [4, 18, 16].

4 Conclusion
We also examined several further interesting variants of

the synthesis problem. We in particular considered the
problems listed in the following (see the Appendix for ex-
amples). The first five problems are simple modifications of
the classical synthesis problem and can be solved straight-
forwardly. In the case of the last two problems, modularity
and simplification of synthesis, so far there are no general
satisfying solutions and still theoretical work on these topics
has to be done. Together with the open questions concerned
with optimization in synthesis (Subsection 3.6) these prob-
lems are major challenges for future research in Petri net
synthesis. In the view of the application of synthesis in real
industrial applications modularity, simplification and opti-
mization determine key success criteria.

Predefined Places/Net: Prior to the actual design of
a system model, often some information about certain re-
sources or a complete model of some part of the system (e.g.
a plant that has to be controlled or a known part of a busi-
ness process) are already provided. Formally, this means
that some places of the Petri net are already (partly) prede-
fined and have to be regarded by a synthesis algorithm.
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Set of Languages: Instead of taking an individual lan-
guage as input, one can specify a finite set of languages
allowing for some tolerance or some uncertain information.
Then the problem is to decide whether there is a net hav-
ing the behavior specified by one of the languages in the
set. An interesting generalization of this problem is to con-
sider an infinite set of languages represented by some finite
representation yielding a problem similar to [3].

Specific Requirements: Many properties for synthe-
sized nets can be encoded in the inequality systems of the
synthesis algorithms (similar as in [7, 20]), e.g. restrictions
of arc weights by certain values, restrictions of markings in
certain system states, structural restrictions to nets of cer-
tain types such as free-choice nets, marked graphs or state
machines, fulfillment of transition invariants or correctness
properties such as soundness of workflow nets (important in
the field of business process design). Note that constraints
yielding inhomogeneous systems cause problems [5], be-
cause on the one hand the standard approach to compute ba-
sis regions is no more applicable (but possibly some adapted
techniques), and on the other hand rational solvers cannot
any more be used but integer solvers have to be applied.

Bounded Nets: In literature often synthesis of bounded
nets is considered [1, 14, 5] (also relaxed versions of bound-
edness [10]). For applications also bounds by certain values
may be reasonable, e.g. if the places model resources.

Distributable Nets: Since Petri nets are interesting for
the modeling of distributed systems, synthesis of so called
distributable nets [10, 8, 11] has practical relevance.

Modularity: A major problem in many applications of
synthesis is modularity. Languages occurring in practice
can be large, such that the considered inequality systems
may become unsolvable large. Therefore, adequate ap-
proaches to divide a language into modular parts and to rea-
sonably apply synthesis to the smaller parts are desired [11].

Simplification: Variants simplifying the synthesis pro-
cedure are of interest. Such approaches are mostly heuris-
tic and cannot be formulated as exact problems. We are
in particular interested in simplifications improving the per-
formance of the algorithms and supporting the generation
of clear, small and concise models. The field of process
mining [20, 5] is a well-known example where simplified
synthesis methods play an important role.

Although major language based synthesis problems are
covered by the presented variants, the overview given is in-
comprehensive. There are of course further possible vari-
ants. Most variants discussed in the literature so far, are
mentioned in the paper.
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Appendix

Algorithm 1

1: solvable ← true
2: AL ← EmptyMatrix
3: for all wt ∈ L do
4: awt ← EmptyV ector
5: for i = 0 to 2n do
6: if i = 0 then
7: awt,i ← 1
8: end if
9: if i ∈ {1, . . . , n} then

10: awt,i ← [w](ti)
11: end if
12: if i ∈ {n + 1, . . . , 2n} then
13: awt,i ← −[wt](ti−n)
14: end if
15: end for
16: if AL.notContainsRow(awt) then
17: AL.addRow(awt)
18: end if
19: end for
20: WC ← L.getWrongContinuations()
21: (N, m0) ← (∅,L.getAlphabet(), ∅, ∅)
22: for all wt ∈ WC do
23: if wt.isOccurrenceSequenceOf((N, m0)) then
24: bwt ← EmptyV ector
25: for i = 0 to 2n do
26: if i = 0 then
27: bwt,i ← 1
28: end if
29: if i ∈ {1, . . . , n} then
30: bwt,i ← [w](ti)
31: end if
32: if i ∈ {n + 1, . . . , 2n} then
33: bwt,i ← −[wt](ti−n)
34: end if
35: end for
36: r ← Solver.getIntegerSolution(AL·r ≥ 0, r ≥ 0,bwt·

r < 0)
37: if r 6= null then
38: pr ← r.correspondingP lace()
39: (N, m0).addP lace(pr)
40: else
41: solvable ← false
42: end if
43: end if
44: end for
45: return [solvable, (N, m0)]

Algorithm 1: Solves Problem 1

Algorithm 2

1: AL ← EmptyMatrix
2: for all wt ∈ L do
3: awt ← EmptyV ector
4: for i = 0 to 2n do
5: if i = 0 then
6: awt,i ← 1
7: end if
8: if i ∈ {1, . . . , n} then
9: awt,i ← [w](ti)

10: end if
11: if i ∈ {n + 1, . . . , 2n} then
12: awt,i ← −[wt](ti−n)
13: end if
14: end for
15: if AL.notContainsRow(awt) then
16: AL.addRow(awt)
17: end if
18: end for
19: BasisRegions ← AL.getBasisRegions()
20: (N, m0) ← (∅, T, ∅, ∅)
21: for all r ∈ BasisRegions do
22: pr ← r.correspondingP lace()
23: (N, m0).addP lace(pr)
24: end for
25: L(N, m0) ← (N, m0).getOccurrenceSequences()
26: solvable ← L(N, m0).isIncludedIn(L)
27: return [solvable, (N, m0)]

Algorithm 2: Solves Problem 1

Example: Problem 1
In the 1990s it was recognized on a broad front that re-

quirements engineering the elicitation, documentation and
validation of requirements - is a fundamental aspect of soft-
ware development and requirements engineering emerged
as a field of study in its own right. Scenarios, firstly in-
troduced by Jacobson’s use cases, proved to be a key con-
cept for writing system requirement specifications. Impor-
tant advantages of using scenarios in requirements engi-
neering include the view of the system from the viewpoint
of users, the possibility to write partial specifications, the
ease of understanding, short feedback cycles, the possibili-
ties to directly derive test cases and the possibility to derive
scenarios from log files recorded by information systems.
Modeling software systems by means of scenarios received
much attention over the past years. Several methodologies
to bridge the gap between the scenario view of a system and
state-based system models, which are closer to design and
implementation, have been proposed (see e.g. [13]). Us-
ing scenarios is not only useful in software engineering to
specify the requirements of a system but also in other ap-
plication domains. The main reason for modeling scenarios
of a system is that the instance level of scenarios is the sim-
plest and most intuitive modeling concept. We assume that
in many settings the domain experts know scenarios of the
system to be modeled better than the system as a whole.
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Therefore, a typical situation is that the behavior of some
software system, hardware system or business process is
specified by scenarios. In this general setting, an interest-
ing, fully-automated approach to derive an integrated state-
based model of the system from the given specification is
language based Petri net synthesis. The classical language
based synthesis problem asks whether there is a net hav-
ing the behavior given by the specified scenarios and in the
positive case it requires the construction of such net. In the
simplest setting a scenario is now given by a finite sequence
of events, where each event models the occurrence of some
action given by a transition of the net (actions may occur
more than once).

Given the possible actions a, b, c, d, e, it may be specified
the set of scenarios {abbe, acde, adce}. Since the set of oc-
currence sequences of a Petri net is always prefix closed,
the resulting specification is given by the prefix closure
L = {a, ab, abb, abbe, ac, acd, acde, ad, adc, adce}. Then,
the first question is whether there is a p/t-net (N, m0) hav-
ing L as its set of occurrence sequences. Since this is true,
a synthesis algorithm also has to compute a net (N, m0)
with L(N,m0) = L. Such net is for instance given by
(N, m0) = ({p1, p2, p3, p4}, {a, b, c, d, e},W,m0), where
the non-zero values of W are given by W (p1, a) = 1,
W (a, p2) = 2, W (p2, b) = 1, W (p2, c) = 2, W (a, p3) =
2, W (p3, b) = 1, W (p3, d) = 2, W (b, p4) = 1, W (c, p4) =
1, W (d, p4) = 1, W (p4, e) = 2 and m0(p1) = 1,
m0(p2) = m0(p3) = m0(p4) = 0. But this solution
is of course not unique. The place p2 could for example
be replaced by the two places p5, p6 with W (p5, b) = 1,
W (p5, c) = 2, m0(p5) = 2, W (a, p6) = 1, W (b, p6) = 1,
W (p6, b) = 1, W (p6, c) = 1, m0(p6) = 0 or by the place
p7 given by W (a, p7) = 4, W (p7, b) = 2, W (p7, c) = 4,
m0(p7) = 0. A net containing all these places is also a solu-
tion. In fact, there are infinitely many nets solving Problem
1. In particular, each linear combination of feasible places
yields a feasible place which can be added to a solution net,
e.g. p7 = 2 ∗ p2.

If we shorten the third scenario and con-
sider the set {abbe, acde, adc}, i.e. L =
{a, ab, abb, abbe, ac, acd, acde, ad, adc}, we get the situa-
tion that there is no p/t-net (N, m0) with L(N, m0) = L.
In this case a synthesis algorithm not necessarily computes
a net.

Finally, it remains to mention that the considerations on
the classical synthesis problem presented in this paper are
restricted to finite languages. Synthesis from finitely repre-
sented infinite languages requires some additional consid-
erations. In the case of languages of occurrence sequences
considered in our example synthesis setting, an overview
how to deal with certain classes of infinite languages is de-
scribed in [9]. Namely, semi-linearity of the so called ”right
derivatives” of a class of infinite languages can be exploited

to enable the computation of a finite set of basis regions
similarly as in Algorithm 2. This semi-linearity property
is e.g. fulfilled by regular and context-free languages. For
a separation computation in the case of an infinite language
usually some kind of basis computation has to be performed
in advance to get finite inequality systems. Semi-linearity
of the so called ”complements of the right derivatives” then
potentiates considering only finitely many wrong continua-
tions. This semi-linearity property is e.g. fulfilled by reg-
ular and deterministic context-free languages. Similar con-
siderations are also valid for step languages. Concerning
languages of partially ordered runs, we show in [6] a way to
deal with infinite languages represented by ”regular LPO-
expressions”. Namely, it is shown that an iteration operator
can be encoded by a finite number of inequalities. More
general infinite languages of partially ordered runs are dis-
cussed in the workshop paper ”Towards Synthesis of Petri
Nets from General Partial Languages” presented by Lorenz
at the AWPN 2008 in Rostock. The principles sketched
in this paragraph can basically be used for an adaptation
of synthesis algorithms for finite languages to respective
classes of infinite languages. But there are still several open
problems concerned with synthesis from infinite languages
which is a field of our current research.

Example: Problem 2
When specifying the scenario behavior of a system,

sometimes this is not exactly possible. Such situation may
arise due to design alternatives or design latitude for the
system, due to incomplete information about the system or
due to uncertainty w.r.t. the behavior of the system. This is
particularly relevant in early design phases when the infor-
mation about the behavior of the system is often vague and
one aims to model a prototype of the system. In these cases,
it may be desirable to specify some range of tolerance for
the behavior of the system. That means, one is interested in
specifying to the best of ones knowledge the minimal and
the maximal possible behavior of the system by two lan-
guage specifications L ⊆ L′. It is searched for a system
model exhibiting at least the scenarios of L and at most the
scenarios of L′.

It is stated in [8] that this bound problem is relevant in
theory and practice of controller synthesis, since this is a
typical situation where there is some latitude for the be-
havior of the target system. In the simplest case the lan-
guage bounds specify the minimal and maximal expected
behavior of a plant given by a net (Np,mp) fulfilling L ⊆
L(Np,mp). It is searched for a net (Nc,mc) controlling
this plant such that L ⊆ L((Np,mp) × (Nc,mc)) ⊆ L′,
where (Np, mp)× (Nc,mc) is the net obtained by amalga-
mating (Np,mp) and (Nc,mc) on transitions. This prob-
lem is solved by solving the bound variant of the synthe-
sis problem. If it has a positive answer, the computed net
(N, m0) is an appropriate controller, otherwise there exists
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no controller.
If we for example consider L =

{a, ab, abb, ac, acd, acde, ad, adc} ⊆ L′ =
{a, ab, abb, abbe, ac, acd, acde, ad, adc, adce} (L′ is
the language from the example to Problem 1), the bound
variant of course has a positive answer, since Problem 1
for L′ has a positive answer. All nets solving Problem 1
for L′ including e.g. the net (N,m0) from the example
to Problem 1 are solution nets to the considered bound
problem. But the bound problem has additional solution
nets. If we for instance omit (i.e. set weight to zero) the
arc from transition b to the place p4 in the net (N, m0), the
resulting net has L ∪ {adce} ⊂ L′ as its set of occurrence
sequences and thus also solves the bound problem. Note
that there is no p/t-net having L or L ∪ {abbe} ⊂ L′ as its
set of occurrence sequences.

If we consider the case that L, L′ specify the minimal
and maximal expected behavior of a plant (Np,mp) ful-
filling L ⊆ L(Np,mp), then to control the plant we just
have to add the places of a solution net for the respective
bound problem to (Np, mp), e.g. the places p1, p2, p3 and
p4 of (N, m0). This works for every plant, but depending
on (Np,mp) some of the places may be unnecessary, e.g.
if (Np,mp) already contains p2 or contains p5, p6 (see the
example to Problem 1), adding p2 is redundant.

Example: Problem 3
Important aims in many application fields of formal

modeling with Petri nets are automatical analysis of the
models by algorithms, simulation of the models by respec-
tive engines or even final implementation of the models e.g.
by translating them to program code or hardware building
blocks. Due to performance issues in these cases the size of
the models must typically not exceed a certain upper limit or
range. There are also applications in which Petri net models
are not only intended to be automatically processed, but also
manual inspection and analysis of the models is required. In
such situation a very important goal is to generate models
which are not too complex, i.e. restricted in terms of its
number of components, because practitioners and analysts
in industry are interested in controllable and interpretable
reference models, which can quickly be understood also by
domain experts or managers unexperienced in modeling. In
particular, if the models are automatically generated by syn-
thesis, readability is crucial to allow fine tuning and main-
tenance of the models by hand.

As a consequence, a typical requirement for the synthe-
sis of Petri net models is an upper bound for the size of the
models. While the number of transitions of the model is
given by the number of activities in the behavioral specifi-
cation, i.e. in the language, a natural possibility is to restrict
the number of places of the model. That means, besides the
language specification, also an upper bound b for the num-
ber of places is specified. Such bound may often depend

on the size of the system to be modeled, which can e.g. be
measured by the number of activities of the system (occur-
ring in the specified language) or by the size of the specified
language.

If we consider the language L =
{a, ab, abb, abbe, ac, acd, acde, ad, adc, adce} from
the example to Problem 1 and the bound b = 4, the bound
problem is solvable and the net (N, m0) from the example
to Problem 1 is a solution net having 4 places. Replacing
in (N, m0) the place p2 by the two places p5, p6 (see
the example to Problem 1) yields a net which solves the
classical synthesis problem w.r.t. L but not the bound
problem w.r.t. L and b = 4, because it has 5 places. If we
consider the language L and the bound b = 3, the bound
problem has a negative answer, i.e. there is no net with 3 or
less places having the set of occurrence sequences L.

Example: Problem 4
Many kinds of specification techniques allow to model

explicit information about system states (see e.g. UML).
A language only allows to specify the scenario-behavior of
a system. Scenarios describe the observable behavior of a
system, i.e. the occurrence of activities of the system, on
the simplest and most obvious level of single instances of
system executions (without considering branching behavior
or system states). Therefore, scenarios represent the most
intuitive and clear view on a system by users and can easily
be specified. A motivation given in the example to Problem
1 for considering language based synthesis is to support the
step of translating a user oriented scenario specification to
an implementation oriented state based model of a system.
A typical situation here is that a user not only knows the
scenarios of the system but a user often also has partial im-
plementation information about states of the system. Then,
the user specification serving as the input for a synthesis al-
gorithm comprises both a languageL and information about
states which can be given by indicating which elements of
the language yield the same states, i.e. by specifying pair-
wise disjoint subsets L1, . . . ,Ll ⊆ L .

Note that if two occurrence sequences v, w ofL are spec-
ified to entail the same state (v, w ∈ Li for some i), then
the follow-up behavior of a system fulfilling the specifica-
tion is the same for both occurrence sequences, since it only
depends on the reached system state. That means, the iden-
tifying states problem can only have a solution if within L
the residual behavior after each of the two occurrence se-
quences v, w is specified to be equal. The residual behavior
of w within L is given by {x | wx ∈ L}.

A typical example for specifying a system state is to de-
termine a unique final state of the system. Given the lan-
guage L = {a, ab, abb, abbe, ac, acd, acde, ad, adc, adce}
from the example to Problem 1 one can specify
that the three maximal occurrence sequences L1 =
{abbe, acde, adce} all lead to the same state. This identi-
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fying states problem is solvable and the net (N,m0) from
the example to Problem 1 is a solution net. After the occur-
rence of each of the occurrence sequences inL1 all places of
N are empty, i.e. the three sequences yield the same mark-
ing. Adding the place p6 to (N, m0) (see the example to
Problem 1) yields a net which solves the classical synthesis
problem w.r.t. L but not the identifying states problem w.r.t.
L and L1, because after the occurrence of abbe there is one
token in p6, while after the occurrence of acde and adce the
place p6 is unmarked. If we consider the language L and
want to identify the states of the occurrence sequences L1

and additionally the occurrence sequences L2 = {ac, ad},
the identifying states problem has a negative answer, since
the specified residual behavior of ac is {d, de} and the spec-
ified residual behavior of ad is {c, ce}. Such different resid-
ual behavior is not possible if both occurrence sequences
yield the same marking.

Example: Problem 5
The synthesis problems considered so far have been de-

cision problems. If the problems have a positive answer,
the solution algorithms presented compute witness nets. In
the case the problems have a negative answer, nothing is
required for the computed nets. But for practical applica-
tions of synthesis algorithms the main focus usually lies in
the construction of a system model from a given specifi-
cation, not in the decision of the synthesis problem. That
means, applications typically require the computation of a
net, whether or not some synthesis problem has a positive
answer. The previous synthesis problems do not require the
computation of a net being a reasonable system model, if
the problems have a negative answer. Actually, in these
cases they do not even require computing a net at all. But
specifications which cannot exactly be fulfilled are not sel-
dom in realistic settings. The question here is which kind
of net should be computed if a synthesis problem has a neg-
ative answer. This may depend on a concrete application
context. An appropriate possibility to also compute a rea-
sonable system model in the case an exact synthesis solution
is not possible is to consider (best) approximations. Regard-
ing the classical synthesis problem, Problem 1, a natural
synthesis question focusing on computing a reasonable net
(without posing a decision question) in all possible situa-
tions is to construct a Petri net whose set of occurrence se-
quences in some sense is a best approximation to the given
language (among all Petri net languages). Then, if the clas-
sical synthesis problem has a positive answer still an exact
solution is computed and in the negative case an in some
sense best solution candidate is computed.

In Petri net theory (best) upper approximations have nice
properties. The infinite saturated feasible net represents a
best upper approximation by a Petri net to the given lan-
guage. We consider the problem of generating a finite net
having the least net language w.r.t. set inclusion larger than

the specified language (such language is unique), i.e. a fi-
nite best upper approximation to the language by a Petri
net. Synthesizing an upper approximation from a behav-
ioral specification given by a language is in many cases rea-
sonable. If the language is explicitly specified by an expert,
one can assume that it usually contains only real desired be-
havior of the target system, since in this case there is no
danger of noise in the specification and through reviewing
the specification it should be possible to avoid the speci-
fication of wrong behavior. Thus, the specified language
should definitely be included in the language of the synthe-
sized model. The construction of a best upper approxima-
tion ensures that only such additional behavior is added to
the synthesized net, which is necessary to create a Petri net
model. A best upper approximation can be seen as a natural
completion of the specified language by a Petri net. Gen-
erating such a net with more behavior than specified by the
language is usually a reasonable approach. The reason for
this is that in practice even in high quality system specifi-
cations some desired system behavior may have been for-
gotten. This can have several reasons and can in general
not be detected by reviewing or similar inspections of the
language. That means, the specified language may often be
incomplete. In some application fields there are additional
reasons justifying approximate solutions and in particular
upper approximations, e.g. in process mining [20, 5]. Be-
sides, also from a pure theoretical point of view, the synthe-
sis of best Petri net approximations makes sense, because
important decision problems are decidable for Petri nets.

If we consider the specification L =
{a, ab, abb, abbe, ac, acd, acde, ad, adc} (see the example
to Problem 1) the classical synthesis problem has no exact
solution. The net (N, m0) from the example to Problem 1
is a best upper approximation by a Petri net to L having one
additional occurrence sequence adce. Each net having the
same behavior as (N,m0) is also a best upper approxima-
tion and each best upper approximation is given by such net.
Given L = {a, ab, abb, abbe, ac, acd, acde, ad, adc, adce},
the net (N,m0) exactly solves the classical synthesis
problem and therefore is a best upper approximation.

Example: Problem 6
In the example to Problem 5 it is explained that in gen-

eral the synthesis of a best approximation to a specified lan-
guage is reasonable. Besides upper approximations we can
also consider lower approximations which are nets having
only behavior specified by the given language. A best lower
approximation is a lower approximation having a maximal
number of occurrence sequences (such set of occurrence se-
quences in general is not unique). That means, the number
of occurrence sequences specified by the language but not
included in the behavior of the net is minimal among all
lower approximations. Then again, if the classical synthesis
problem has a positive answer a best lower approximation
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is an exact solution and in the negative case it represents an
in some sense best solution candidate.

There are realistic settings in which a best lower approx-
imation is particularly desirable, e.g. compared to a best up-
per approximation. This is the case if it is more problematic
to compute a system model which allows behavior not spec-
ified by the language than to leave specified behavior from
the synthesized model. That means, the system specifica-
tion is complete in the sense that all behavior not specified
in the language is faulty behavior which has to be prohib-
ited under any circumstances. Such situation may occur in
safety critical systems, such as medic systems or (embed-
ded) traffic systems, where behavior not explicitly allowed
by the specification can have fatale consequences. Also, in
systems having only few (but possibly long) executions it
may be very likely that all desired behavior is considered in
a specification and all not specified behavior causes errors.
If in such cases an implementation of the specification (by
a Petri net) is not directly possible it is better to leave some
of the desired behavior of the specification, i.e. to restrict
the functionality of the system, than to add faulty behav-
ior to the system. A best lower approximation reduces the
desired behavior of the specification as few as possible. In
general, it can even be useful to compute lower approxima-
tions, i.e. to omit some behavior of a specification from a
system model, since due to human failability manual spec-
ifications may include unnecessary or even wrong behavior
in particular if the specification has been developed under
pressure of time and due to disturbing influences automati-
cally generated specifications may contain noise.

If we consider the specification L =
{a, ab, abb, abbe, ac, acd, acde, ad, adc} from the example
to Problem 5 the classical synthesis problem has no exact
solution. The net resulting from omitting the arcs between
c resp. d and p4 from (N, m0) (see example to Problem
1) is a best lower approximation by a Petri net to L having
L \ {acde} as its set of occurrence sequences. The net re-
sulting from adding (loop) arcs in both directions between c
and p3, i.e. W (c, p3) = 1 and W (p3, c) = 1, to (N, m0) is
also a best lower approximation by a Petri net to L having
L \ {adc} as its set of occurrence sequences. The set of all
best lower approximations is given by the set of nets having
the same behavior as one of the two previous nets. Given
L = {a, ab, abb, abbe, ac, acd, acde, ad, adc, adce}, the
net (N,m0) exactly solves the classical synthesis problem
and therefore is a best lower approximation.

Example: Problem 7
As explained in the example to Problem 3, a crucial chal-

lenge for applying Petri net synthesis in industrial settings
is the creation of concise, clearly readable nets. Thereby,
for readability, the complexity of the single components is
often more important than the number of components. If the
functionality of each single component gets clear on the first

glance, usually a model can nicely be analyzed and modu-
larly looking at local parts of interest within the model is
supported. Since in the Petri net synthesis approach places
are the determinant for the behavior of the system, the aim
is to synthesize in some sense simple places. An interesting
approach here is to minimize the arc weights and the ini-
tial markings of places. On the one hand smaller numbers
of tokens and arc weights are simpler to understand and on
the other hand this supports zero arc weights reducing the
branching of places. That means, the synthesized places
exhibit few complexity in the sense that complicated token
ratios are avoided and few transitions are interrelated with
one place. To achieve this the construction of the places of
the synthesized net is guided by a respective objective func-
tion.

Considering the specification L =
{a, ab, abb, abbe, ac, acd, acde, ad, adc, adce}, the net
(N, m0) from the example to Problem 1 solves the minimal
weights problem, since each of the four places p1, p2, p3

and p4 cannot be replaced by a combination of simpler
places each having a smaller sum of arc weights and initial
marking. The optimization approach ensures that such
simple net as (N, m0) is computed and no unnecessary
complicated places are introduced. For instance, multiplici-
ties of places such as p7 instead of p2 and other too complex
places such as p7 with the weight W (p7, c) changed from
4 to 3 or the place p4 extended with an additional arc
from e to p4, i.e. W (e, p4) = 1, are ruled out. Given the
language L = {a, ab, abb, abbe, ac, acd, acde, ad}, the
net resulting from adding (loop) arcs in both directions
between c and p3, i.e. W (c, p3) = 1 and W (p3, c) = 1,
to (N, m0) solves the classical synthesis problem (see
Example to Problem 7) but it is not optimal. The sum of
the arc weights and the initial marking of the modified p3

is 7. The same behavior can be generated by replacing
the modified p3 by the original p3 together with the addi-
tional place p8 defined by W (a, p8) = 1, W (c, p8) = 1,
W (p8, c) = 1, W (p8, d) = 1. Both places are simpler,
since the sum of the arc weights and the initial marking of
p3 is 5 and the sum of p8 is 4. The resulting net solves the
minimal weights problem. Note that the minimal weights
problem does not regard the complexity of nets arising
from a huge number of places, e.g. in the first exam-
ple L = {a, ab, abb, abbe, ac, acd, acde, ad, adc, adce}
the net resulting from replacing p2 by p5 and p6 in
(N, m0) is also optimal and in the second example
L = {a, ab, abb, abbe, ac, acd, acde, ad} the optimal net
has more places (and even a higher overall sum of initial
markings and arc weights of all places) than the initially
proposed net. This problem is tackled in Version 2 of
Problem 7.

Example: Conclusion
Predefined Places/Net: Besides a behavioral specifi-
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cation of a system by a language, there may already be
fixed parts of a system model. This for instance happens
if a system is not designed from scratch but a prior sys-
tem model has to be updated or if some components of
a system are already known. Then, for an actual synthe-
sis algorithm not only the transitions are a priori given by
the language but also some places (defined by their arc
weights and their initial marking) are predefined. To ac-
count for this it is only necessary to check whether all
predefined places are feasible. In the positive case the
usual synthesis algorithms Algorithm 1 and 2 are applica-
ble, whereas concerning Algorithm 1 the predefined places
can be used to separate wrong continuations. Otherwise
the problem has no solution. If we consider the language
L = {a, ab, abb, abbe, ac, acd, acde, ad, adc, adce} from
the example to Problem 1, there may for instance some of
the places of (N, m0) be predefined. They are feasible and
it is only necessary to add the remaining places to get a syn-
thesis solution. If a non-feasible place such as p2 with the
weight W (p2, b) changed to 2 is predefined, there is no so-
lution net. It is also possible that some places are only partly
predefined. That means one specifies a certain place, but
not all parameters (arc weights, initial marking) are estab-
lished. Additionally, certain properties may be constituted,
e.g. the marking of the place after certain net behavior. It
is searched for one respective feasible place. For this, one
has to find one solution of the usual inequality system defin-
ing regions whereas some parameters are no more variables,
but already fixed, and additional properties are integrated
by additional inequalities. An example for such situation is
some place modeling a warning lamp in a production pro-
cess. Given L, one may require a feasible place which is
marked when the process is finished, i.e. after each of the
maximal occurrence sequences abbe, acde, adce, and un-
marked otherwise. That means, the place has no predefined
arc weights, but it is demanded that the place is marked in
every final marking of certain occurrence sequences trig-
gering the warning and unmarked otherwise. The place p9

given by W (e, p9) = 1 and m0(p9) = 0 is such place. It is
a final place of the process. Requiring such place is also in-
teresting when interpreting L as the behavior of a business
process.
Set of Languages: To allow for some tolerance or to con-
sider some uncertain information in synthesis applications
one can specify a finite set of alternative languages each
modeling possible behavior of the target system. This prob-
lem is a refinement of the bound problem and therefore can
be motivated in the same way (see example to Problem 2).
In order to decide whether there is a net having the behav-
ior specified by one of the languages in the given set, one
can apply the synthesis algorithms Algorithm 1 and 2 to
each of the languages. Given the set {L,L′} of the two lan-
guages L = {a, ab, abb, abbe, ac, acd, acde, ad, adc, adce}

andL′ = {a, ab, abb, abbe, ac, acd, acde, ad, adc} from the
example to Problem 1, the set of solution nets is given by
all nets having L as its set of occurrence sequences, includ-
ing e.g. (N,m0), since there is no net having the behavior
specified by L′.
Specific Requirements: To increase the expressivity of
language specifications one may allow to not only specify a
language but additionally certain properties for the system
to be modeled. A lot of such properties can be regarded
by the inequality systems of the synthesis algorithms Al-
gorithm 1 and 2. There are many requirements useful in
practice, e.g. structural restrictions to nets of certain types.
For example restricting arc weights by certain values can
be achieved by adding inequalities limiting variables of the
regions. Restricting the marking in certain system states,
where a state is given by the final marking of an element of
the language, can be achieved by adding inequalities limit-
ing respective final markings given as linear combinations
of the variables of the regions. A transition invariant can be
defined by an equation setting an appropriate linear com-
bination of the variables of the regions to zero. For in-
stance, in order to synthesize a sound workflow net from
L = {a, ab, abe, ac, acd, acde, ad, adc, adce}, one has to
require that all arc weights are at most one, one has to guar-
antee the construction of an initial and a final place w.r.t. the
maximal occurrence sequences abe, acde, adce as shown in
the predefined places problem, and for each place except
the initial and final place it has to be required that the final
marking of the empty and the maximal occurrence sequence
is zero. This synthesis problem is solvable, e.g. by the net
(N, m0) = ({p1, p2, p3, p4, p5, p6}, {a, b, c, d, e},W,m0),
where the non-zero values of W are given by W (p1, a) = 1,
W (a, p2) = 1, W (p2, b) = 1, W (p2, c) = 1, W (a, p3) =
1, W (p3, b) = 1, W (p3, d) = 1, W (b, p4) = 1, W (c, p4) =
1, W (p4, e) = 1, W (b, p5) = 1, W (d, p5) = 1,
W (p5, e) = 1, W (e, p6) = 1 and m0(p1) = 1, m0(p2) =
m0(p3) = m0(p4) = m0(p5) = m0(p6) = 0.
Bounded Nets: An important requirement for nets in Petri
net theory is boundedness. Boundedness is relevant in
theory and application to avoid overflow of places, to al-
low the application of analysis methods for bounded nets
and sometimes also for system design purposes. Also,
k-boundedness of places by certain values k is useful in
some settings. In our finite case, if the synthesis prob-
lem has a positive answer, the resulting nets are always
bounded. In the negative case, due to the best upper ap-
proximation property, the net resulting from Algorithm 2 is
bounded. It is easy to introduce boundedness also in Al-
gorithm 1: Add for every transition t the feasible place p
defined by W (p, t) = 1, W (p, t′) = 0 for t′ ∈ T \ {t},
W (t′, p) = 0 for t′ ∈ T , m0(p) = max{[w](t) | w ∈ L}.
To consider boundedness by a certain value (e.g. one-
safe nets), the bound has to be integrated to the inequal-
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ity systems by an additional inequality for each state de-
fined by a final marking of an occurrence sequence of the
language (as described in the last paragraph). The net
(N, m0) from the example to Problem 1 realizes the lan-
guage L = {a, ab, abb, abbe, ac, acd, acde, ad, adc, adce}
and is bounded by k = 2. There is no one-safe net having
the set of occurrence sequences L.
Distributable Nets: Petri nets allow modeling of true con-
currency. Thus, an important application field of Petri
nets is modeling of highly-concurrent or distributed sys-
tems. For such systems distributed architectures of Petri
nets are applied. The basic Petri net modeling formalism
for distributed systems are distributable nets. Distributable
nets consist of distributed components, also called loca-
tions, where transitions in one component may only con-
sume tokens from places in the same component, but they
may produce tokens also in places of other components
for communication. Since competitions for tokens are lo-
cal, distributable nets consist of local components com-
municating by asynchronous message passing. Given a
partition of the set of transitions of a language to dis-
tributed components, the set of feasible places of one com-
ponent can be defined by ensuring the formulated restric-
tions for places of this component through leaving vari-
ables representing forbidden arcs (to transitions of other
components) in the inequality systems. Then, the places
of the different components can be computed separately us-
ing standard methods. If we consider the language L =
{a, ab, abb, abbe, ac, acd, acde, ad, adc, adce} from the ex-
ample to Problem 1 and consider the distributed compo-
nents given by the sets of transitions {a}, {b, c, d} and {e},
the net (N,m0) is a distributable net solving the synthesis
problem. The place p1 belongs to the component {a}, the
places p2, p3 to the component {b, c, d} and the place p4

to the component {e}. Dividing the component {b, c, d} to
two components {b} and {c, d} is not possible, because to
model the conflict between b and c, d a place having an arc
to both b and c resp. d is necessary, but such place would
then belong to both components.
Modularity: In practice there are examples of very large
language specifications. Automatically generated spec-
ifications can typically become very large, but in huge
projects also manually developed system specifications may
be large. Regarding synthesis from such languages the al-
gorithms may run into performance problems or troubles
w.r.t. the complexity of the generated nets. An approach
to solve such problems is to consider smaller problem in-
stances by dividing a language into modular parts. Basi-
cally there are three possibilities to divide a language: First,
the set of transitions can be partitioned. Then, each set of
the partition defines a smaller language by projecting the
original language to the considered transitions. Second,
the language can simply be partitioned. Third, the maxi-

mal occurrence sequences of the language can be divided.
For example each maximal occurrence sequence can be de-
composed to a fixed number of sequential parts. Then all
first parts, all second parts, etc each define a smaller lan-
guage. Heuristics to achieve a reasonable division of the
language are important in all cases. The generated modular
parts of the language either represent alternative behavior
(second case), or sequential parts of the complete behav-
ior (third case), or preferably concurrent components of the
behavior, that have to be synchronized by additional com-
munication (first case). Of course, also a combination of
the three cases is possible. The modular parts either have
disjoint transition sets (first case) or overlapping transition
sets (second and third case). Given modular parts of a lan-
guage, the simplest approach is to synthesize separately a
net for each part. If the transition sets of the parts are over-
lapping, this causes label splitting, but only in a restricted
way according to the modular division. If the parts model
alternative behavior, a non-deterministic choice at the be-
ginning is introduced leading to the initial marking of one
of the modular nets. If the parts model sequential behav-
ior, the first modular net builds the starting point. Then, the
other modular nets have to be sequentially appended. For
each possible final marking of a prior modular net, there is a
non-deterministic choice to change the marking to the initial
marking of the next modular net (this may cause problems
with sub-states). Often adding additional connecting places
to combine the sequential components is necessary here. If
the parts model concurrent behavior, the modular nets are
independently arranged. Possibly some communication has
to be introduced, which is a challenging task. The problem
of modularity has not yet received much attention (outside
supervisory control [10]) and there are a lot of open ques-
tions. As an example assume the division of the maximal
occurrence sequences abbe, acde, adce of the languageL =
{a, ab, abb, abbe, ac, acd, acde, ad, adc, adce} by truncat-
ing the final e in each case. Then the first language is
given by L′ = {a, ab, abb, abb, ac, acd, acd, ad, adc, adc}
and the second language is given by L′′ = {e}. Let the
net synthesized from L′ be the net (N,m0) from the exam-
ple to Problem 1 without transition e, which means that the
place p4 is replaced by a final place p′4 with two tokens in
the final marking given by W (b, p′4) = 1, W (c, p′4) = 1,
W (d, p′4) = 1 and m0(p′4) = 0. Let the net synthe-
sized from L′′ be given by ({p′′4}, {e},W ′,m′

0), where
W ′(p′′4 , e) = 1 and m′

0(p
′′
4) = 1. Then, to sequentially

combine the two nets the initial marking is removed from
the second net (m′

0(p
′′
4) = 0) and a transfer transition t,

given by W (p′4, t) = 2, W ′(t, p′′4) = 1 is introduced to al-
low to change the final marking of the first net to the initial
marking of the second net.
Simplification: Approaches to improve the performance
of synthesis algorithms and to support the generation of
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clear, non ”spaghetti”-like models are of particular rele-
vance. These two problems are the main obstacles for ap-
plying synthesis in industrial settings interested in formal
modeling with Petri nets. Since in many applications, as
explained in several of the previous examples, exact syn-
thesis is not essential, approaches simplifying the synthesis
procedure w.r.t. the above problems are of interest. We
only sketch some possible examples for such approaches
here. Examples include: Simply neglecting some (less rel-
evant) words or transitions of the language or simplifying
cyclic behavior within the language. Adding additional con-
currency to the nets (which may be reasonable according
to some external information source) by modifying the in-
equality systems. Applying heuristics to only add the most
”important” places or to neglect too complex places (having
high arc weights); this is especially reasonable in combina-
tion with optimization algorithms. Simplifying places by
reducing arc weights to one or by completely deleting some
arcs connecting relatively independent transitions. Also,
pre-processing of the language before applying a synthesis
algorithm and post-processing of the synthesized net is im-
portant in this context to possibly simplify the synthesis pro-
cedure and to improve the resulting net. Concerning the lan-
guage L = {a, ab, abb, abbe, ac, acd, acde, ad, adc, adce}
from the example to Problem 1, one can for example leave
all occurrence sequences containing b, if the action b is not
so important. The resulting behavior can be reproduced
by the very simple net without arc weights (larger than
one) (N, m0) = ({p1, p2, p3, p4, p5}, {a, c, d, e},W,m0),
where the non-zero values of W are given by W (p1, a) =
1, W (a, p2) = 1, W (p2, c) = 1, W (a, p3) = 1,
W (p3, d) = 1, W (c, p4) = 1, W (p4, e) = 1,W (d, p5) = 1,
W (p5, e) = 1 and m0(p1) = 1, m0(p2) = m0(p3) =
m0(p4) = m0(p5) = 0. If b should not completely
be omitted, we can simplify the cyclic behavior of b by
deleting its repetitions. The resulting language L =
{a, ab, abe, ac, acd, acde, ad, adc, adce} can be realized by
the net without arc weights given by adding the transi-
tion b and connections W (p2, b) = 1, W (p3, b) = 1,
W (b, p4) = 1, W (b, p5) = 1 to (N, m0).
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