
Symbolic Abstraction and Deadlock-Freeness

Verification of Inter-Enterprise Processes

Kais Klai1, Samir Tata2, and Jörg Desel3

1 LIPN, CNRS UMR 7030, Université Paris 13
99 avenue Jean-Baptiste Clément, F-93430 Villetaneuse, France

kais.klai@lipn.univ-paris13.fr
2 Institut TELECOM, CNRS UMR Samovar

9 rue Charles Fourier 91011 Evry, France
Samir.Tata@int-edu.eu

3 Department of Applied Computer Science
Catholic University of Eichstätt-Ingolstadt, 85071 Eichstätt, Germany

joerg.desel@ku-eichstaett.de

Abstract. The design of complex inter-enterprise business processes
(IEBP) is generally performed in a modular way. Each process is de-
signed separately from the others and then the whole IEBP is obtained
by composition. Even if such a modular approach is intuitive and fa-
cilitates the design problem, it poses the problem that correct behavior
of each business process of the IEBP taken alone does not guarantee
a correct behavior of the composed IEBP (i.e. properties are not pre-
served by composition). Proving correctness of the (unknown) composed
process is strongly related to the model checking problem of a system
model. Among others, the symbolic observation graph based approach
has proven to be very helpful for efficient model checking in general.
Since it is heavily based on abstraction techniques and thus hides de-
tailed information about system components that are not relevant for
the correctness decision, it is promising to transfer this concept to the
problem rised in this paper: How can the symbolic observation graph
technique be adapted and employed for process composition? Answering
this question is the aim of this paper.

1 Introduction

Business process composition and cooperation are two important research fields
in the business process domain. The questions, what properties of a process has
to be public so that potential partners can collaborate with the process with-
out risking to have an ill-designed composed process, and what is the minimum
necessary to be published, is a hot topic in the literature since many years (e.g.
[2,14,13,9]). Also, one has to make sure that the composition of the processes has
the desired behaviour. The importance of dealing with such inter-enterprise busi-
ness processes (IEBP for short) on one hand and business process composition on
the other hand is reflected in the literature by numerous publications [18,4,19,15].

In general, an IEBP can be considered as the cooperation of several local
processes designed separately. The activities of each process are formally of two
kinds: internal activities and cooperative activities (interface activities). IEBP
are often too large for formal analysis, and the details of the components are
hidden to the public so that no party knows the entire process definition. There-
fore, we defend the idea that the analysis should be on the local business process
and, if necessary, on an abstraction of the composition partner or of the IEBP.
In this paper, we propose a two steps abstraction technique: In the first step, an
abstraction of each local process is built locally using a new variant of symbolic
observation graphs (SOG for short) [6]. This abstraction has two advantages:
the analysis of the corresponding process can be reduced to the analysis of its
abstraction, and such an abstraction hides the internal structure and organiza-
tion of the process, which is a desired requirement in the IEBP context. In the
second step, the abstraction of the IEBP is obtained by composing the local
abstractions (SOGs), leading to a global abstraction on which the analysis can
be performed efficiently.

One of the most important properties an IEBP should enjoy is deadlock-
freeness. In other words, assuming that the components itself are deadlock-free,
it is undesirable that these components block each other. Taking the view of a
single component, we want to identify situations where the other component is
waiting for some message or action from this component while this component
is waiting for some message or action from the other component. In such a
situation, the other component does not do any visible action. However, since
only the interface behaviour is visible, it is possible that internal actions of the
other component do occur. So this behaviour, usually known as livelock, is as
bad as deadlock behaviour. Hence, in this paper, we extend the deadlock notion
by considering a deadlock state every state from which no cooperative action
is possible in the future. One can check the deadlock-freeness on each SOG
using efficient symbolic algorithms [6] (i.e. algorithms based on set operations).
Since the deadlock freeness property is not preserved by composition, we supply
a new algorithm for checking deadlock freeness of the synchronized product
of the local SOGs. This algorithm is based on local information that can be
made available once before the composition process. The deadlock freeness of
the product guarantees correct cooperation between the underlying processes
(i.e. a deadlock-free cooperation).

The composition of SOGs is immediately suitable for synchronous interorga-
nizational processes. It can moreover be used for checking whether a coopera-
tion between two processes, that communicate asynchronously, is deadlock-free.
To this end, one can define an additional component that represents the asyn-
chronous channel and has two observed actions: receive and send. Now the send
action of the first component synchronizes with the receive action of the channel
whereas the receive action of the second component synchronizes with the send
action of the channel.

This paper is organized as follows. Section 2 adapts the structure of the
symbolic observation graph in order to abstract business processes. Section 3

constitutes the core of the paper and shows how to build the symbolic observation
graph of an IEBP and how to establish whether processes can be composed
(or can collaborate) safely by checking the deadlock-freeness of the obtained
composition of SOGs. A case study is used throughout these sections in order to
illustrate our approach. Section 4 relates our work to other approaches. Finally,
Section 5 summarizes the results and mentions some aspects of future work.

2 Process Abstraction

In this section, we show how the structure of the symbolic observation graph [6]
(SOG) is used to abstract business processes. In [6], the authors have introduced
the SOG as an abstraction of the reachability graph of concurrent systems and
showed that the verification of an event-based formula of LTL \ X (Linear-
time Temporal Logic minus the next operator) on the SOG is equivalent to the
verification on the original reachability graph. The construction of the SOG is
guided by the set of actions occurring in the formula to be checked. Such actions
are said to be observed while the other actions of the system are unobserved.
The SOG is defined as a graph where each node is a set of states linked by
unobserved actions and each arc is labeled with an observed action. Nodes of
the SOG are called meta-states and may be represented and managed efficiently
using decision diagram techniques (BDDs for instance [1]). In practice, due to
the small number of actions in a typical formula, the SOG has a very moderate
size and thus the time complexity of the verification process is negligible w.r.t.
the building time of the SOG (see [6,8,7] for experimental results).

We propose to use a SOG to abstract a business process. The collaboration
actions are observed while the internal ones are not. We will establish that such
an abstraction is especially efficient for loosely coupled IEBPs.

2.1 Notations and preliminary results

The technique presented in this paper applies to different kinds of process models
that can map to labeled transition systems, e.g. workflow Petri nets (WF-nets).
For sake of simplicity and generality, we chose to present it for labeled transition
systems, since this formalism is rather simple.

Definition 1 (Labeled Transition System).
A labeled transition system (LTS for short) is a 5-tuple 〈Γ,Act ,→, I, F 〉 where:

– Γ is a finite set of states ;
– Act is a finite set of actions ;
– →⊆ Γ × Act × Γ is a transition relation ;
– I ⊆ Γ is a set of initial states;
– F ⊆ Γ is a set of final states.

In this paper, we distinguish LTS observed actions, denoted by a subset Obs ,
from unobserved actions, denoted by the subset UnObs (with Obs∪UnObs = Act

and Obs∩UnObs = ∅). Observed actions can represent cooperative (or interface)
actions, while unobserved actions represent internal actions.

The following notations are used in this paper:

– For s, s′ ∈ Γ and a ∈ Act , we denote by s a
−→s′ that (s, a, s′) ∈→.

– s a
−→ means that ∃s′ ∈ Γ s.t. s a

−→s′. If σ = a1a2 · · · an is a sequence of ac-
tions, σ denotes the set of actions occurring in σ, while |σ| denotes its length.
Moreover, s σ

−→s′ denotes that ∃s1, s2, · · · sn−1 ∈ Γ : s a1−→s1−→· · · sn−1
an−→s′.

s ∗
−→s′ denotes that s′ is reachable from s (i.e. ∃σ ∈ Act

∗ s.t. s σ
−→s′) and

s ∗
−→T s

′ holds if σ is included in some subset of actions T .

– The set Enable(s) denotes the set of actions a such that s a
−→. For a set of

states S, Enable(S) denotes
⋃

s∈S
Enable(s).

– π = s0
a1−→s1

a2−→· · · is used to denote a path of an LTS. π = s0
a1−→· · · an−→sn

is said to be a run if sn ∈ F (i.e. sn is a final state).

– A finite path C = s1
a1−→s2

a2−→· · ·
an−1

−→sn is said to be a cycle if sn = s1.
If {a1, . . . an−1} ⊆ UnObs then C is said to be a livelock.

– s 6→, for s ∈ (Γ \ F), denotes that s is a dead state i.e. 6 ∃a ∈ Act : s a
−→.

– s 6⇒, for s ∈ (Γ \ F), denotes that no observed action can be enabled in the
future starting from s, i.e., 6 ∃o ∈ Obs , τ ∈ UnObs

∗ : s τ o
−→.

If s 6⇒, for s ∈ (Γ \ F), one can either reach a dead state using unobserved
actions only, or a livelock. Such a livelock is said to be a strong livelock. In this
paper we assume that a strong livelock behaviour is equivalent to a deadlock.
In contrast, a cycle with states from which one can execute an observed action
(possibly via an unobserved sequence) is said to be a weak livelock.

For checking LTL properties, livelock and deadlock behaviours have exactly
the same interpretation. However, in the context of inter-organizational pro-
cesses, we claim that only a strong livelock should be viewed as a deadlock, but
not a weak livelock.

The set of states Dead contains the states from which no action is enabled
or from which no observed action is enabled in the future, i.e., Dead := {s ∈
(Γ \ F) | s 6⇒} (we distinguish "dead" and "Dead"). The following definition
characterizes deadlocks and strong livelocks in an homogenous way. We define a
particular mapping applied to states of an LTS called Observed behaviour.

Definition 2 (Observed behaviour mapping).
Let T = 〈Γ,Obs ∪ UnObs,→, I, F 〉 be an LTS. The mapping λT : (Γ \F) → 2Obs

is defined by: λT (s) = {o ∈ Obs | ∃s′ ∈ Γ s.t. s ∗
−→UnObss

′ ∧ s′ o
−→}. T is

Deadlock free iff λT (s) 6= ∅ for each state s in (Γ \ F)

Informally, for each (non final) state s of an LTS T , the observed behaviour of
s, λT (s), stands for the set of observed actions which can be executed from s,
possibly via a sequence of unobserved actions. This set is empty for a state s if
and only if s is a Dead state.

The observed behaviour mapping can be extended to sets of states: Given a
set of states γ and a set of observed actions ψ, λ(γ) = ψ iff ∀s ∈ γ, λ(s) = ψ.

The observed behaviour of a given state can be computed by the following
two steps. First, compute Sat(s), i.e., all the states reachable from s by exe-
cuting unobserved actions only. Once such a set is saturated (no new state can
be reached), the observed behaviour of s is Enable(Sat(s)) ∩ Obs . One can im-
prove the computation of Sat(s) by storing the observed behaviours of already
computed states.

2.2 Running example

The example used in this paper is an adaptation of the one given in [18] which is
inspired by electronic bookstores. In [18], local processes are modeled by workflow
nets. Here, we use the "private" workflows of the involved models. Moreover, we
modify these models, by removing some internal behaviours, in order to get
manageable LTSs. There are four processes, modeling a customer, a bookstore,
a publisher and a shipper. c1 (resp. b1, p1, s1) is the initial state of the customer’s
(resp. bookstore’s, publisher’s, shipper’s) LTS.

The customer (Figure 1(a)) behaves as follows: First, he sends an order
to a bookstore (c_order). Then the customer may receive a negative answer
(c_reject) or be informed that his order is going to be handled (c_accept).
After order handling, either the customer receives from a shipper the ordered
book (ship) and from the bookstore a bill (c_bill), or he receives the bill first
and then the book. After receiving the book and the bill the customer makes a
payment (c_pay). Finally, the customer returns (c_init) to his initial state to
order other books.

c_order

c_accept

c_pay

c_reject

 (a)
(Customer)

s_order c_bill

(b)
(Bookstore)

(c)
(Publisher)

(d)
(Shipper)

b_notifys_reject

s_accept

c_bill

b_order

b_accept b_reject

c_accept

b_order

b_accept

b_reject

c_order

c_reject

ship

ship c_bill

c_init
b_order

update_c_profile

inform_marketing

update_c_profile

monitor

_paymnent

monitor

_shipment

c_pay

b_init

chek_warehouse

lock_inventory

replenish

mouve_book_to

_release_buffer

p_inform

send _book

chek_availiability

_trucks

assignment

routing

p_init

s_reject
s_accept

ship

b_notify

s_order

send _book

s_init

re-assignment

p_inform

c1

c2

c3

c4
c5

c6

c7

b1

b2

b3 b4

b5

b6

b7

b8

b9

b10 b11

b12

b13

b14

b15

p1

p2

p3

p4

p5

p6 p7

p8

p9

s1

s2

s3

s4

s5

s6

s7 s8

s9

Fig. 1. LTS of a customer, a bookstore, a publisher and a shipper.

Figure 1(b) illustrates the bookstore’s LTS that has no books in stock. There-
fore, when the bookstore receives an order for a book, it transfers it to a pub-
lisher (b_order) and updates the customer profile (update_c_profile). Then
it informs the marketing department. If the bookstore receives a negative an-
swer (b_reject), i.e. its order was rejected, then it sends a negative response to
the customer (c_reject). Otherwise, i.e. the bookstore receives a positive an-
swer (b_accept), the customer is informed (c_accept) and the bookstore sends
a request to a shipper (s_order). If the bookstore receives a negative answer
(s_reject), it searches another shipper. This process is repeated until a ship-
per accepts (s_accept). When this happens, the bookstore informs the pub-
lisher (p_inform). After that, the bookstore waits for the shipper’s notification
(b_notify) and sends the bill to the customer (c_bill). Hence, the bookstore
processes the payment (c_pay). Finally, after the payment or after an order
reject the bookstore returns to its initial state (b_init).

Figure 1(c) presents the publisher’s LTS. When receiving an order from a
bookstore, the publisher evaluates the order and can either accept it (b_accept)
or reject it (b_reject). After that, when the publisher is informed (p_inform)
that a shipper was found, he sends the book to the shipper (send_book). Fi-
nally, after shipment or a request reject, the publisher returns to its initial state
(p_init).

Figure 1(d) presents the shipper’s LTS. Notice that the original LTS contains
19 nodes and 31 arcs; here we present a reduced version of the graph. When
receiving a request from a bookstore (s_order), the shipper evaluates the request
and either accepts (s_accept) or rejects (s_reject) the shipping request. In case
the shipper receives a book from the publisher (send_book), he ships the book to
the customer (ship) and then notifies the bookstore (b_notify). After shipment
or request reject, the shipper returns to its initial state (s_init).

For each LTS of Figure 1, initial states are those having (no source) input
arcs while final states are represented with double circles. The observed actions
represent, for each component, the collaborative ones and are those labeling
dotted arcs. None of these LTSs contains a Deadlock state.

2.3 The symbolic observation graph

In this subsection, we first define formally what a meta-state is, before providing
a formal definition of a SOG associated with an LTS and a set of observed
actions. Our definitions are different from those given in [7] because, first, we
do not distinguish deadlocks from strong livelocks (we do not pay attention to
weak livelocks). Then, we distinguish final meta-states from others and, finally,
the observed behaviour of the states belonging to a meta-state is stored in this
meta-state (as a set of sets of observed actions). Meta-states have associated
boolean attributes d and f which indicate whether a meta-state is Dead or not
and whether it is final or not.

Definition 3 (Meta-state).
Let T = 〈Γ,Act ,→, I, F 〉 be a labeled transition system with Act = Obs∪UnObs.
A meta-state is a tuple M = 〈S, d, f, λ〉 defined as follows:

1. S is a nonempty subset of Γ satisfying:
(a) ∀s ∈ S ∃i ∈ I, ∃σ ∈ Act

∗ s.t. i σ
−→s ;

(b) ∀s ∈ S, ∀s′ ∈ Γ, ∀σ ∈ UnObs
∗ : s σ

−→s′ ⇒ s′ ∈ S ;
2. d ∈ {true, false}. d = true iff ∃s ∈ S \ F s.t.λT (s) = ∅;
3. f ∈ {true, false}. f = true iff S ∩ F 6= ∅;
4. λ = {ψ ⊆ Obs} s.t. ψ ∈ λ iff ∃γ ⊆ S s.t. λ(γ) = ψ.

From now on, M.S, M.d, M.f and M.λ denote the corresponding attributes of
a given meta-state M . Moreover, we introduce the following set of output states
of M : Out(M)={s ∈ M.S | ∃o ∈ Obs : s o

−→}. Notice that if the set Out(M) is
empty, then M necessarily contains a Dead state.

Definition 4 (Symbolic Observation Graph).
The symbolic observation graph (SOG(T)) associated with an LTS
T = 〈Γ,Obs ∪UnObs,→, I, F 〉 is a 4-tuple 〈Γ ′,Act

′,→′, I ′〉 such that:

1. Γ ′ is a finite set of meta-states;
2. Act

′ = Obs;
3. →′⊆ Γ ′ × Act

′ × Γ ′ is a transition relation such that:
(a) For M,M ′ ∈ Γ ′ and a ∈ Act

′ : M a
−→

′
M ′ if and only if:

i. ∀s ∈M.S, s′ ∈ Γ : s a
−→s′ ⇒ s′ ∈M ′.S,

ii. ∀o ∈ Out(M ′)∃s ∈M.S, ∃s′ ∈M ′.S s.t. s a
−→s′ ∧ s′ ∗

−→UnObso,
iii. M ′.d = true⇒

(∃l ∈ M ′.S s.t. λT (l) = ∅) ∧ (∃s ∈ M.S, ∃s′ ∈ M ′.S s.t. s a
−→s′ ∧

s′ ∗
−→UnObs l).

iv. M ′.f = true⇒
(∃f ∈M ′.S∩F s.t. ∀s ∈M.S, ∀s′ ∈M ′.S : s a

−→s′ ⇒ s′ ∗
−→UnObsf).

(b) ∀s, s′ ∈ Γ ∀a ∈ Obs

(s a
−→s′ ⇒ ∃M,M ′ ∈ Γ ′ : s ∈M.S, s′ ∈M ′.S ∧M a

−→M ′),
4. I ′ = {M0}, where the meta-state M0 satsifies I ⊆M0.S.

Point 3a of the above definition requires explanation. An edge, labeled a, in
the SOG is allowed between two meta-states M and M ′ iff: (3(a)i) each state
s′ ∈ Γ reachable from some state s ∈ M.S, by action a, belongs to M ′.S. If
S′ = {s′ ∈ M ′.S | ∃s ∈ M.S ∧ s a

−→s′}, then (3(a)ii) implies that each output
state of M ′ is reachable from at least one state of S′ (using unobserved actions
only), while (3(a)iii) implies that when the Deadlock attribute of M ′ is true then
one state l satisfying λT (l) = ∅ in M ′.S is reachable from at least one state of
S′ using unobserved actions only. Finally, (3(a)iv) implies that if M ′ is a final
meta-state, then some final state s ∈ M ′.S is reachable from each state of S′

(defined below).
Figure 2 illustrates the SOGs associated with the LTSs of Figure 1. Final

meta-state are represented by dotted circles. The SOG of the customer is iso-
morphic to its corresponding LTS (since all its actions are observed) while the
SOG of the bookstore contains 12 nodes and 14 arcs (versus 15 nodes and 21 arcs
in its corresponding LTS), the SOG of the publisher contains 5 nodes and 6 arcs
(versus 9 nodes and 10 arcs in its corresponding LTS) and the SOG of the shipper

contains 6 nodes and 7 arcs (versus 19 nodes and 31 arcs in its corresponding
LTS). All of these SOGs are Deadlock-free. We give below the composition of
some meta-states:
- C1.S = {c1}, C2.S = {c2}, C3.S = {c3}, C4.S = {c4},
- B2.S = {b2, b3}, B3.S = {b4, b5, b6}, B4.S = {b8}, B6.S = {b9},
- P1.S = {p1}, P2.S = {p1, p3}, P3.S = {p4, p5, p6, p7}, P5.S = {p9, p1},
- S1.S = {s1}, S2.S = {s2, s3}, S3.S = {s4}, S4.S = {s5, s6, s7}.

Definition 5 (Deadlock-freeness property of a SOG).
An SOG 〈Γ,Act ,→, I〉 is said to be Deadlock-free iff 6 ∃M ∈ Γ s.t. M.d = true.

The following result establishes that the Deadlock-freeness of a SOG is equivalent
to the Deadlock-freeness of the corresponding LTS.

Proposition 1. Let T = 〈Γ,Act = Obs ∪ UnObs,→, I, F 〉 be a labeled transi-
tion system and let SOG(T) be the corresponding SOG. Then T is Deadlock-free
if and only if SOG(T) is Deadlock-free.

Proof. The proof follows from Definition 3 and Definition 4: For each state s
of T there exists a meta-state M of SOG(T) containing s. Conversely, for each
meta-state M , all states s in M.S are reachable from some initial state of I in
the LTS T .

c_order

c_accept

c_pay

c_reject

 (a)
(Customer’s SOG)

s_order

c_pay

c_bill

(b)
(Bookstore’s SOG)

(c)
(Publisher’s SOG)

s_reject

s_accept

ship

b_notify

(d)
(Shipper’s SOG)

b_notify

s_order

s_reject

s_accept

send _book

C1

C2

C3

C5

C6

C7

c_bill

b_order

b_accept

b_reject

B2

B3

B4

B5

B6

B7 B9

B10
c_accept

B11
b_order

b_accept

b_reject

P1

P2

P4

send _book

S1

S2

S3

S4

S5

c_order

B1

c_reject

ship

C4

ship c_bill

c_order

c_order B12

P5

b_order
s_order

S6

P3

p_inform

B8

p_inform

Fig. 2. A Symbolic Observation Graph

We claim that the SOG technique is suitable for abstracting processes for
several reasons: First, the SOG allows to represent the language of the process

projected on the cooperative transitions (i.e. the local behaviors are hidden)
in addition to some particular internal behavior which can be relevant for the
environment (Deadlock existence). It is a valid abstraction of a given process
W because it preserves its privacy while supplying sufficient and necessary in-
formation to be known by a potential partner of W . The second reason is that
this abstraction is suitable for checking whether two process represented by their
SOGs can be interconnected (see Section 3). Moreover, given a process, its SOG
is built once and might be reused as long as local changes do not change its
structure. Finally, the reduced size of the SOG (in most cases) makes the build-
ing and verification of the synchronized product of SOGs much cheaper than the
building of the synchronized product of the original LTSs, especially when the
involved models are loosely coupled.

3 Composition and Deadlock-Freeness Verification

This section constitutes the core of the paper. Starting from several LTSs which
synchronize over a common set of actions, it shows how to synchronize the cor-
responding SOGs so that the obtained graph is Deadlock-free if and only if the
synchronized product of the original LTSs is Deadlock-free.

We start with the standard method for synchronizing two LTSs, namely
building their synchronized product. Each state of the resulting transition system
is a pair of states, the first component indicating the respective state of the
first LTS, the second component indicating the respective state of the second
LTS. Each LTS can still do its private activities autonomously, i.e., only one
component of the pair representing a state of the composed LTS is changed by
such an action. For common activities, however, both components of the state are
changed synchronously. Figure 3 shows a simple example of two LTSs (Module
A and Module B) and their synchronization A×B.

3.1 Synchronization of LTSs

In the following, we define the synchronized product of two LTSs. The synchro-
nized product of n LTSs (for n > 2) can be built by iterative multiplication.

Definition 6 (LTS synchronized product).
Let Ti = 〈Γi,Act i,→i, Ii, Fi〉, i = 1, 2 be two LTSs. The synchronized product

of T1 and T2 is the LTS T1 × T2 = 〈Γ,Act ,→, I, F 〉 given by:

1. Γ = Γ1 × Γ2 ;
2. Act = Act1 ∪ Act2 ;
3. → is the transition relation, defined by:

∀(s1, s2) ∈ Γ : (s1, s2)
a

−→(s′
1
, s′

2
) ⇔

s1
a

−→1s
′
1
∧ s2

a
−→2s

′
2

if a ∈ Act1 ∩Act2

s1
a

−→1s
′
1
∧ s2 = s′

2
if a ∈ Act1 \Act2

s1 = s′
1
∧ s2

a
−→2s

′
2

if a ∈ Act2 \Act1

4. I = I1 × I2;

A1

A2 A3

A4

a b

c d

e

(a) Module A

×

B1

B2 B3

B4

a’ b’

c d

e

(b) Module B

=

A1B1

A1B3A3B1A2B1 A1B2

A2B3A2B2 A3B2 A3B3

A4B4

a
ba’

b’

a’
b’ a’ b’
a b

b
a

c d

e

(c) A×B

Fig. 3. Synchronized product of two LTSs

5. F = F1 × F2.

The set of states is reduced to reachable states only, i.e. Γ = {(s1, s2) ∈ Γ1×Γ2 |
∃(i1, i2) ∈ I1 × I2, ∃σ ∈ Act

∗ : (i1, i2)
σ

−→(s1, s2)}. Similarly, the set of actions
is reduced to those that can effectively take place in the synchronized product:
Act = {a ∈ Act1 ∪Act2 | ∃s, s′ ∈ Γ, (s, s′) a

−→}.
It is well known that the Deadlock-freeness property is not preserved by

composition. Given two Deadlock-free LTSs T1 and T2, their synchronized prod-
uct is not guaranteed to be Deadlock-free. Figure 3 illustrates such a situation,
where two modules (Figure 3(a) and Figure 3(b)) without Dead states lead, by
synchronization over the set of observed actions {c, d, e}, to a synchronized
product (Figure 3(c)) containing two Dead states ((A2, B3) and (A3, B2)).

We characterized Deadlock-freeness of an LTS by considering the observed
behaviour of its states. In the following proposition, given a synchronized product
T of two LTSs T1 and T2, we show how one can deduce the observed behaviour
mapping λT from λT1

and λT2
. This avoids the analysis of the paths of the

synchronized product when such an analysis was already done locally in each
involved LTS.

Proposition 2 (Observed behaviour mapping of an LTS synchronized
product).
Let T = 〈Γ,Act = Obs ∪ UnObs,→, I, F 〉 be the synchronized product of two
LTSs, Ti = 〈Γi,Act i = Obsi ∪ UnObsi,→i, Ii, Fi〉, i = 1, 2. Assume that Act1 ∩
Act2 = Obs1 = Obs2. Then the observed behaviour mapping, named λT , satisfies
∀(s1, s2) ∈ Γ : λT (s1, s2) = λT1

(s1) ∩ λT2
(s2).

Proof. Let (s1, s2) be a state of T .
Let us demonstrate that ∀o ∈ Obs , o ∈ λT (s1, s2) ⇔ o ∈ λT1

(s1) ∩ λT2
(s2).

Let o ∈ λT (s1, s2). Then there exists σ ∈ UnObs
∗ s.t. (s1, s2)

σo
−→(s′

1
, s′

2
). Let σ1

and σ2 be the projection of σ on UnObs1 and UnObs2, respectively. Knowing
that UnObs1∩UnObs2 = ∅, we get that (s1, s2)

σo
−→(s′

1
, s′

2
) means that in T1 and

T2, s1
σ1o
−→s′

1
and s2

σ2o
−→s′

2
hold respectively. Thus, o ∈ λT1

(s1) ∩ λT2
(s2).

The synchronized product of the LTSs of Figure 1 contains 111 nodes and 264
edges and is too big to be presented here. It is Deadlock-free, like the different
component LTSs.

3.2 Synchronization of SOGs

The above result allows to define the meta-state product M = M1 × M2: a
meta-state obtained by synchronizing two meta-states M1 and M2. Especially,
the corresponding Deadlock attribute,M.d, can be computed by using the locally
computed observed behaviours. Again, the meta-state product between n (n > 2)
meta-states can be easily deduced.

Definition 7 (Meta-state product).
Let Ti = 〈Γi,Obsi ∪ UnObsi,→i, Ii, Fi〉, i = 1, 2 be two LTSs T = T1 × T2 =
〈Γ,Obs ,→, I, F 〉. Let Mi = 〈Si, di, fi, λi〉 be a meta-state of SOG(Ti). The prod-
uct meta-state M = 〈S, d, f, λ〉 = M1 ×M2 is defined by:

– S = S1 × S2,
– d =true iff ∃(s1, s2) ∈ Γ : (λT (s1, s2) = ∅),
– f =true iff f1 = true and f2 = true,
– λ = {ψ ⊆ Obsi ∪ UnObsi} s.t. ψ ∈ λ iff ∃γ ⊆ Γ : λ(γ) = ψ.

Apart from dealing with meta-states instead of singular states, the definition
of the synchronized product between two SOGs is identical to the synchronized
product of two LTS (Definition 6).

Figure 4 shows the synchronized product of the SOGs of Figure 2. It con-
tains 21 nodes and 24 edges (versus 111 nodes and 264 edges in the original
synchronized LTS). The obtained SOG is not Deadlock-free (like each indepen-
dent SOG).

The construction of the symbolic observation graph of a synchronized prod-
uct of modules consists in first building the SOGs of the individual processes and
then synchronizing them. Notice that the construction of the synchronized prod-
uct of the SOGs aims mainly at establishing whether the underlying processes
can collaborate safely (without being in a Deadlock). Checking the Deadlock-
freeness of such a synchronized product is reduced to verifying that no (product)
meta-state contains a Deadlock (∀M : M.d = false) and that there exists a final
(product) meta-state (∃M : M.f = true).

Algorithm 1 implements the synchronized product of two symbolic observa-
tion graphs. This algorithm is very similar to the construction of the synchronized
product of LTSs. Function metastate (M1×M2) constructs the meta-state prod-
uct (M1 ×M2).S. It assumes that the attributes of M1 and M2 are computed
locally as well as the observed behaviours of their states. Then, it computes
M.d following Definition 7. In Subsection 3.3 an efficient way of computing the
deadlock attribute of the product meta-state is discussed.

c_order

C1 B1 P1 S1

c_reject

b_order

b_reject b_accept

c_accept

s_order
s_reject

s_accept

send_book

ship

b_notify

c_bill

c_pay

c_order

C2 B2 P1 S1

C2 B3 P2 S1

C2 B5 P5 S1 C2 B4 P3 S1

C3 B7 P3 S2

C3 B6 P3 S1

C3 B9 P4 S3

C3 B9 P5 S4

C5 B9 P5 S5

C5 B10 P5 S6

C6 B11 P5 S6

C7 B12 P5 S6

C3 B6 P3 S6

C7 B12 P5 S1

C3 B6 P3 S6

s_order

C2 B2 P5 S6

C2 B3 P2 S6

b_order

C2 B4 P3 S6

C2 B5 P5 S6

b_accept

b_reject

c_reject
c_accept

s_order

c_order

C3 B8 P3 S3
p_inform

Fig. 4. Synchronized product between SOGs

In the following, we establish the main result of this paper: given two LTSs,
checking the Deadlock-freeness property on their synchronized product is equiv-
alent to checking it on the synchronized product of the corresponding SOGs.

Proposition 3. Let Ti = 〈Γi,Act i = Obsi ∪ UnObsi,→i, Ii〉 (i ∈ {1, 2}) be two
LTSs with Act1 ∩ Act2 ⊆ (Obs1 ∩ Obs2). Then SOG(T1 × T2) and SOG(T1) ×
SOG(T2) are isomorphic.

Proof. Follows from the construction.

Corollary 1. Let Ti (i ∈ {1, 2}) be two LTSs, let T be their synchronized prod-
uct, let SOG(Ti) be the SOGs of Ti and let G be their synchronized product. Then
the following property holds: T is Deadlock-free ⇔ G is Deadlock-free.

Proof. Consequence of Proposition 1 and Proposition 3.

3.3 Checking Deadlock-freeness on a SOGs synchronized product

According to the above results, the verification of Deadlock-freeness in a meta-
state product is achieved by using the local observed behaviour mappings (i.e.
λT1

and λT2
). If we assume that Γ1 and Γ2 are the sets of states of the original

LTSs T1 and T2 respectively, then the complexity of the Deadlock-freeness check-
ing is polynomial with respect to the number of states in Γ1 and Γ2. However, in
terms of efficiency, computing the value of these mappings for each state could
reduce drastically the application of the SOG technique. In fact, the efficiency of
this technique comes from the fact that it is suitable for symbolic implementation
(based on set operations).

Algorithm 1: Synchronized product of 2 SOGs

Require: SOG(T1,Obs1) and SOG(T2,Obs2)
Ensure: SOG(T1,Obs1)× SOG(T2,Obs2)
1: Waiting ← metastate(I1 × I2)
2: while Waiting 6= ∅ do

3: choose M = M1 ×M2 ∈Waiting

4: for all a ∈ Act ′1 ∩Act ′2 do

5: if M1
a

−→1M
′

1 ∧M2
a

−→2M
′

2 then

6: metastate(M ′

1 ×M ′

2)
7: arc(M, a, M ′

1 ×M ′

2)
8: end if

9: end for

10: for all a ∈ Act ′1 \Act ′2 do

11: if M1
a

−→1M
′

1 then

12: metastate(M ′

1 ×M2)
13: arc(M, a, M ′

1 ×M2)
14: end if

15: end for

16: for all a ∈ Act ′2 \Act ′1 do

17: if M2
a

−→2M
′

2 then

18: metastate(M1 ×M ′

2)
19: arc(M, a, M1 ×M ′

2)
20: end if

21: end for

22: Waiting ←Waiting \ {M}
23: end while

In the following, we propose two sufficient conditions for the existence of a
Dead state within a meta-state product. Both conditions can be checked sym-
bolically.

Proposition 4. Let SOG(Ti), for i = 1, 2, be two SOGs corresponding to Ti =
〈Γi,Obsi ∪UnObsi,→i, Ii〉. Let Mi = 〈Si, di〉 be a meta-state of SOG(Ti) and
let M = 〈S, d〉 = M1 ×M2 be the product meta-state obtained by synchronizing
M1 and M2. Then the following properties holds:

1. M1.d = true ∨M2.d = true⇒M.d = true

2. Out(M1) = ∅ ∨Out(M2) = ∅ ⇒M.d = true

Proof. Observe that both conditions imply ∃(s1, s2) ∈M1.S ×M2.S : λT1
(s1) ∩

λT2
(s2) = ∅.

In case the sufficient conditions of Proposition 4 are not satisfied, the follow-
ing proposition establishes that the Deadlock-freeness of a meta-state product
M = M1 ×M2 can be achieved by considering the projection of the λ mappings
on the output states of M1 and M2 only instead of all states in M1.S and M2.S,
respectively. The number of output states (states enabling observed actions) is
in general reduced with respect to the number of states of the system. This

does not change the worst complexity of the observed behaviour mapping com-
putation. However, in practice, it could significantly reduce the time and space
consumption during the computation.

Proposition 5.
Let SOG(Ti), be two SOGs corresponding to LTSs = 〈Γi,Obsi ∪ UnObsi,→i, Ii〉,
for i = 1, 2. Let Mi = 〈Si, di〉 be a meta-state of SOG(Ti) and let M = 〈S, d〉 =
M1×M2 be the product meta-state obtained by synchronizing M1 and M2. When
both conditions 1 and 2 of Proposition 4 are not satisfied, then the following
property holds:
M.d = true iff ∃(s1, s2) ∈ Out(M1.S) ×Out(M2.S) s.t. λT1

(s1) ∩ λT2
(s2) = ∅.

Proof. First, if M.d = true then ∃(s1, s2) ∈M1.S×M2.S : λT1
(s1)∩λT2

(s2) = ∅.
Otherwise Mi.d 6= true (for i = 1, 2) whence from s1 (resp. s2) one can reach
an output state s′

1
(resp. s′

2
) of M1 (resp. M2), with λT1

(s′
1
) ⊆ λT1

(s1) (resp.
λT2

(s′
2
) ⊆ λT2

(s2)). Then, λT1
(s′

1
) ∩ λT2

(s′
2
) = ∅, which proves the proposition.

To resume, the Deadlock attribute of a product meta-state can be deduced when
one of the involved meta-states contains a Dead state. Otherwise, we only need
to consider the observed behaviour of the output states.

4 Related work

The importance of dealing with business processes on one hand and business
process composition on the other hand is reflected in the literature by several
publications.

In [17] the authors present various composition alternatives and their ability
to preserve relaxed soundness [3]. The aim of this work was to analyze a list
of significant composition techniques in terms of WF-nets and to prove that
the composition of relaxed sound models is again relaxed sound. Hence, using
these composition techniques does not preserve the deadlock-freeness property.
In order to verify this property one has to explore the composed model, even
though the component models are deadlock free. The approach we have presented
in this paper allows verifying the deadlock-freeness property on the composition
of abstract models (SOG).

In [5], the authors propose an approach for services retrieval based on behav-
ioral specification. The idea consists in reducing the problem of service behavioral
matching to a graph matching problem and then adapting existing algorithms for
this purpose. The complexity of graph matchmaking algorithm used is O(m2∗n2)
in the best case and O(mn ∗n) in the worst case where m is the number of nodes
of the request graph and n is the number of nodes of the advertised graph [5].
It is obvious that this approach is not suitable for workflow matching and com-
position when the number of advertised abstractions increases.

Another approach for workflow matchmaking was proposed in [10][11][12].
It assumes that two workflows match if they are equivalent. To reach this end,
the author introduces the notion of communication graph c-graph and usabil-
ity graph. If the u-graph of a workflow is isomorphic to the c-graph of another

workflow, then the two workflows will be considered equivalent. However, the
complexity of c-graph construction is exponential [10] in terms of the number of
nodes. Moreover, it is well known that the subgraph isomorphism detection prob-
lem is NP-complete (see for example [16]). It is also obvious that this approach is
not suitable for workflow matching when the number of advertised abstractions
increases whereas the complexity of our matching algorithm is O(m∗n∗ l) where
m and n are the number of meta-states of the corresponding abstractions to be
matched and l is the number of the common cooperative transitions.

5 Conclusion

This paper addresses the problem of the abstraction and verification of inter-
organizational processes. To preserve privacy of participating processes in an
inter-organization process and to enhance verification, we have used the no-
tion of symbolic observation graph to represent process abstractions. We have
in addition shown how to build the symbolic observation graph of a compos-
ite (or inter-organizational) process and established whether processes can be
composed (or can collaborate) safely by checking the deadlock freeness of the
obtained symbolic observation graph. Our developed approach can be used for
process advertisement, discovery and interconnection.
Several future works are envisaged. The first one would be to implement a tool
for the abstraction and the Deadlock-freeness verification of inter-organizational
processes. The extension of this work to checking LTL \X properties is direct
since, by detecting divergent behaviours (Deadlocks) inside meta-state, the set
of maximal paths is preserved. Moreover, we already started working on devel-
opping a graph-based registry for abstract process advertisement and discovery.
We are going to extend process descriptions by ontology-based semantic descrip-
tions. Our developed algorithms for service matching will be coupled with our
presented algorithms to support semantic advertisement and discovery of pro-
cesses for process composition at design time and for intra-enterprise use and
for process cooperation to support inter-organizational processes.

References

1. Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision
diagrams. ACM Computing Surveys, 24(3):293–318, 1992.

2. Tevfik Bultan, Jianwen Su, and Xiang Fu. Analyzing conversations of web services.
IEEE Internet Computing, 10(1):18–25, 2006.

3. Juliane Dehnert and Peter Rittgen. Relaxed soundness of business processes. In
CAiSE ’01: Proceedings of the 13th International Conference on Advanced Infor-
mation Systems Engineering, volume 2068 of Lecture Notes in Computer Science,
pages 157–170, London, UK, 2001. Springer-Verlag.

4. Paul Grefen, Karl Aberer, Yigal Hoffner, and Heiko Ludwig. Crossflow: Cross-
organizational workflow management in dynamic virtual enterprises. International
Journal of Computer Systems Science & Engineering, 15(5):277–290, 2000.

5. Daniela Grigori, Juan Carlos Corrales, and Mokrane Bouzeghoub. Behavioral
matchmaking for service retrieval. In ICWS ’06: Proceedings of the IEEE In-
ternational Conference on Web Services, pages 145–152, Washington, DC, USA,
2006. IEEE Computer Society.

6. Serge Haddad, Jean-Michel Ilié, and Kais Klai. Design and evaluation of a symbolic
and abstraction-based model checker. In Farn Wang, editor, ATVA, volume 3299
of LNCS, pages 196–210. Springer, 2004.

7. Kais Klai and Laure Petrucci. Modular construction of the symbolic observation
graph. In Jonathan Billington, Zhenhua Duan, and Maciej Koutny, editors, ACSD,
pages 88–97. IEEE, 2008.

8. Kais Klai and Denis Poitrenaud. Mc-sog: An ltl model checker based on symbolic
observation graphs. In Kees M. van Hee and Rüdiger Valk, editors, Petri Nets,
volume 5062 of Lecture Notes in Computer Science, pages 288–306. Springer, 2008.

9. Niels Lohmann, Peter Massuthe, Christian Stahl, and Daniela Weinberg. Analyzing
interacting ws-bpel processes using flexible model generation. Data Knowl. Eng.,
64(1):38–54, 2008.

10. Axel Martens. On Usability of Web Services. In Coral Calero, Oscar Daz, and
Mario Piattini, editors, Proceedings of 1st Web Services Quality Workshop (WQW
2003), Rome, Italy, 2003.

11. Axel Martens. Analyzing web service based business processes. In Maura Cerioli,
editor, FASE, volume 3442 of Lecture Notes in Computer Science, pages 19–33.
Springer, 2005.

12. Axel Martens. Simulation and Equivalence between BPEL Process Models. In Pro-
ceedings of the Design, Analysis, and Simulation of Distributed Systems Symposium
(DASD’05), Part of the 2005 Spring Simulation Multiconference (SpringSim’05),
San Diego, California, April 2005.

13. Axel Martens, Simon Moser, Achim Gerhardt, and Karoline Funk. Analyzing
compatibility of bpel processes. In AICT-ICIW ’06: Proceedings of the Advanced
Int’l Conference on Telecommunications and Int’l Conference on Internet and Web
Applications and Services, page 147, Washington, DC, USA, 2006. IEEE Computer
Society.

14. Peter Massuthe and Karsten Wolf. An Algorithm for Matching Nondeterministic
Services with Operating Guidelines. Informatik-Berichte 202, Humboldt Universi-
tat zu Berlin, 2006.

15. Victor Pankratius and Wolffried Stucky. A formal foundation for workflow compo-
sition, workflow view definition, and workflow normalization based on Petri nets. In
APCCM ’05: Proceedings of the 2nd Asia-Pacific conference on Conceptual mod-
elling, pages 79–88, Darlinghurst, Australia, Australia, 2005. Australian Computer
Society, Inc.

16. Ronald Read and Derek Corneil . The Graph Isomorphism Disease. Graph Theory,
1:339–363, 1977.

17. Juliane Siegeris and Armin Zimmermann. Workflow model compositions preserving
relaxed soundness.. In 4th International Conference on Business Process Manage-
ment, volume 4102 of Lecture Notes in Computer Science, pages 177–192, Vienna,
Austria, 2006. Springer-Verlag.

18. W.M.P. van der Aalst and M. Weske. The p2p approach to interorganizational
workflows. In Proceedings of the 13th International Conference on Advanced In-
formation Systems Engineering, pages 140–156. Springer-Verlag, 2001.

19. Andries van Dijk. Contracting workflows and protocol patterns. In Business Pro-
cess Management, volume 2678 of Lecture Notes in Computer Science, pages 152–
167. Springer, 2003.

