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Abstract

This paper aims to find a transformation from persistent Petri nets,
which are a general class of conflict-free Petri nets, into a more re-
stricted class of nets called behaviourally conflict-free nets. In a per-
sistent net, whenever two distinct transitions are simultaneously en-
abled, one cannot become disabled through the occurrence of the
other. In a behaviourally conflict-free net, two distinct transitions
which are simultaneously enabled do not share a common pre-place.
Relying on a series of earlier results which characterise the cyclic struc-
ture of the reachability graphs of persistent nets, we present a partial
solution for transforming persistent into behaviourally conflict-free
nets.

1 Introduction

There exists a hierarchy of Petri net classes [3], all of which can
intuitively be called ‘conflict-free’, and of which marked graphs [5, 6]
are the smallest and persistent nets [8] the largest class. This paper
is concerned with an intermediate class called behaviourally conflict-
free Petri nets. We address the question whether a persistent net can
be transformed into a behaviourally conflict-free net with isomorphic
reachability graph. We prove that under some conditions, such a
transformation can be found.

2 Definitions

A Petri net (S, T, F,M0) consists of two finite and disjoint sets S
(places) and T (transitions), a function F : ((S × T ) ∪ (T × S)) →
N (flow) and a marking M0 (the initial marking). A marking is a
mapping M : S → N. A Petri net is plain if the range of F is {0, 1},
i.e., F is a relation. The pre-set •x of a net element x ∈ S ∪ T is
the set {y ∈ S ∪ T | (y, x) ∈ F}. Similarly, the post-set of x is
x• = {y ∈ S ∪ T | (x, y) ∈ F}.
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The incidence matrix C is an S × T -matrix of integers where the
entry corresponding to a place s and a transition t is, by definition,
equal to the number F (t, s)−F (s, t). A T-invariant J is a vector of
integers with index set T satisfying C · J = 0 where · is the inner
(scalar) product, and 0 is the vector of zeros with index set S. J
is called semipositive if J(t) ≥ 0, for all t ∈ T . The support of a
semipositive T-invariant J , written supp(J), is the set of transitions t
for which J(t) > 0. Two semipositive T-invariants J and J ′ are called
transition-disjoint if ∀t ∈ T : J(t) = 0 ∨ J ′(t) = 0, or, equivalently,
if supp(J) ∩ supp(J ′) = ∅. For a sequence σ ∈ T ∗ of transitions, the
Parikh vector Ψ(σ) is a vector of natural numbers with index set T ,
where Ψ(σ)(t) equals #(t, σ), the number of occurrences of t in σ.

A transition t is enabled (or activated, or firable) in a marking M
(denoted by M [t〉) if, for all places s, M(s) ≥ F (s, t). If t is enabled
in M , then t can occur (or fire) in M , leading to the marking M ′

defined by M ′(s) = M(s) + F (t, s)−F (s, t) (notation: M [t〉M ′). We
apply definitions of enabledness and of the reachability relation to
transition (or firing) sequences σ ∈ T ∗, defined inductively: M [ε〉
and M [ε〉M are always true; and M [σt〉 (or M [σt〉M ′) iff there is
some M ′′ with M [σ〉M ′′ and M ′′[t〉 (or M ′′[t〉M ′, respectively).

A marking M is reachable (from M0) if there exists a transition
sequence σ such that M0[σ〉M . The reachability graph of N , with
initial marking M0, is the graph whose vertices are the markings
reachable from M0 and where an edge (M, t,M ′) labelled with t leads
from M to M ′, iff M [t〉M ′. Figure 1 shows an example where on the
right-hand side, M0 denotes the marking shown in the Petri net on
the left-hand side. The marking equation states that if M [σ〉M ′, then
M ′ = M + C · Ψ(σ). Thus, if M [σ〉M then Ψ(σ) is a T-invariant.

A Petri net with initial marking is k-bounded if in any reachable
marking M , M(s) ≤ k holds for every place s, and bounded if there
is some k such that it is k-bounded. A finite Petri net (and we
consider only such nets in the sequel) is bounded if and only if the
set of its reachable markings is finite. A net with initial marking is
called reversible if its reachability graph is strongly connected.

A net N = (S, T, F,M0) is a marked graph if
∑

t∈T F (s, t) ≤ 1 as
well as

∑
t∈T F (t, s) ≤ 1, for all places s; output-nonbranching (on)

if
∑

t∈T F (s, t) ≤ 1 for all places s; behaviourally conflict-free (bcf) if,
whenever M [t1〉 and M [t2〉 for a reachable marking M and transitions
t1 �= t2, then •t1∩•t2 = ∅; and persistent, if whenever M [t1〉 and M [t2〉
for a reachable marking M and transitions t1 �= t2, then M [t1t2〉.
Directly from this definition, we have

marked graph ⇒ on ⇒ bcf ⇒ persistent.

The aim of this paper is to show that under certain conditions, the
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last implication can ‘essentially’ be reversed. Consider two different
transitions in the post-set of a place and a reachable marking. If the
net is persistent, then

(a) either at most one of the transitions is enabled at the marking
or

(b) both are enabled but the occurrence of any of the transitions
does not disable the other transition (which is in particular the
case if the transitions are concurrently enabled).

If the net is behaviourally conflict-free, then (b) is not possible, i.e.,
at most one of the transitions is enabled at the marking. So our aim
is to investigate conditions, under which forward branching places
with option (b) can be replaced in such a way that the resulting net
has only forward branching places with option (a).

Throughout the paper, we assume all nets to be plain (no arc weights
> 1), T -restricted (transitions have at least one input place and at
least one output place), simply live (every transition can be fired at
least once), and free of isolated places.

s1
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s2

a

c

b

d

M0

a

c

b

d

b

d

a

c

Figure 1: A persistent Petri net and its reachability graph

Figure 1 shows a Petri net which is persistent but not behaviourally
conflict-free. Initially, a and b are enabled and share a common pre-
place s. Observe that in the special case shown in this figure, place
s can actually just be omitted without altering the net’s behaviour.
Unaltered behaviour here (and in the following) means reachability
graph isomorphism. Alternatively, s could be split into two separate
places, with one (or even two) tokens each, one of them connected
only to the left-hand-side cycle, the other connected to the right-
hand-side cycle. In both cases, the net is reduced to a (disconnected)
marked graph. We investigate general circumstances under which
such transformations are possible.
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3 The cyclic behaviour of persistent nets

Two sequences M [σ〉 and M [σ′〉, firable from M and with σ, σ′ ∈ T ∗,
are said to arise from each other by a transposition if they are the
same, except for the order of an adjacent pair of transitions, thus:

σ = t1 . . . tktt
′ . . . tn and σ′ = t1 . . . tkt

′t . . . tn.

Two sequences M [σ〉 and M [σ′〉 are said to be permutations of each
other (from M , written σ ≡M σ′) if they are both firable at M
and arise out of each other through a (possibly empty) sequence of
transpositions.

Theorem 1. Keller [7]

Let N be a persistent net and let τ1, . . . , τm be m firing sequences
starting from some reachable marking M . Then there is also a firing
sequence M [τ〉 such that ∀t ∈ T : Ψ(τ)(t) = max1≤j≤m Ψ(τj)(t).

A transition sequence τ ∈ T ∗ is called cyclic if its Parikh vector is
a T-invariant (which is the case if and only if for all markings M ,
M [τ〉 implies M [τ〉M).

A cyclic transition sequence τ is called decomposable if τ = τ1τ2

such that τ1 and τ2 are cyclic and τ1 �= ε �= τ2. A firing sequence
M [τ〉M ′ is called a cycle if τ is cyclic, i.e. if M = M ′. A cycle
M [τ〉M is called simple if there is no permutation τ ′ ≡M τ such
that τ ′ is decomposable. In other words, a non-simple sequence can
be permuted such that the permuted sequence has a smaller cyclic
subsequence leading from some marking back to the same marking.
In Figure 1, for example, we have that:

abcd is not decomposable
acbd is decomposable, namely by τ1 = ac and τ2 = bd
M0[ac〉M0 is simple
M0[abcd〉M0 is not simple, because of the permutation M0[acbd〉M0.

Figure 2 shows that a simple cycle can contain some transition more
than once.

Theorem 2. A decomposition theorem [1, 2]

Let N , with some initial marking, be bounded, reversible, and persis-
tent. There is a finite set B of semipositive T-invariants such that
any two of them are transition-disjoint and every cycle M [α〉M in the
reachability graph decomposes up to permutations to some sequence of
cycles M [α1〉M [α2〉M . . . [αn〉M with all Parikh vectors Ψ(αi) ∈ B.

B can be constructed by picking simple cycles in the reachability
graph and computing their T-invariants. For example, for Figure 1,
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Figure 2: Another persistent net and its reachability graph

B = {J1, J2} with

J1(a)=J1(c)=1, J1(b)=J1(d)=0; J2(a)=J2(c)=0, J2(b)=J2(d)=1.

For Figure 2, B = {J} with J(a)=1, J(b)=1, and J(c)=2.

Theorem 3. A converse of Theorem 2 [2]

Let N , with some initial marking, be bounded, reversible, and persis-
tent. Let M be a reachable marking. Let J1, . . . , Jm be (not necessar-
ily mutually distinct) T-invariants from B, as in Theorem 2. Then
there is a cycle M [α〉M such that α = α1 . . . αm and Ψ(αj) = Jj, for
all 1 ≤ j ≤ m.

Thus, the reachability graph is covered by simple cycles, any two
of which are either transition-disjoint or have the same Parikh vec-
tor. Moreover, any such simple cycle can be fired from anywhere in
the reachability graph, though the order of firing its transitions may
vary from marking to marking. It is shown in [2] that reversibility
is absolutely needed for these strong results, but that part of the de-
composition properties can be recovered if the premise of reversibility
is dropped.

4 Analysing branching places

From now on, let N be a bounded, reversible, persistent net with
initial marking M0.

Let us consider a place s and the set s• of its output transitions.
By the absence of isolated places and dead transitions and by re-
versibility, s• �= ∅ �= •s and every a ∈ s• is in one of the simple
cycles mentioned in the above theorem. Let Js denote the set of T-
invariants in B such that every one of them contains some transition
in s•. We distinguish two cases.
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Case 1:

|Js| = 1, that is, there is a simple cycle of the reachability graph
containing all transitions in s•. This is certainly the case if |s•| =
1, but it may also be the case if |s•| > 1, as shown in Figure 2.
As a consequence of the decomposability theorem, the simple cycle
γ containing all transitions in s• must also contain all transitions
in •s since if some of them were missing, there would be another
simple cycle through them, which would have to contain at least one
transition in s• in order to restore the marking on s and would thus
not be transition-disjoint with γ. This case will be investigated in
section 5 below.

Case 2:

|Js| > 1, that is, all simple cycles contain proper subsets of s•, and
therefore (with the same reasoning as above), also proper subsets of
•s. An example is shown in Figure 1 where |Js| = 2.

Suppose that Js = {J1, . . . , Jm} with m > 1. Our decomposition
theorems imply that the set {supp(J�) ∩ s• | 1 ≤ � ≤ m} partitions
the set s• and the set {supp(J�) ∩ •s | 1 ≤ � ≤ m} partitions the set
•s. Moreover, none of the sets in these sets is empty (which implies,
in particular, that both s• and •s contain at least m transitions).

Now we will make a connection between finite synchronic distances
and places. Informally, the (asymmetric) synchronic distance be-
tween two sets of transitions A and B indicates how far transitions
from A can ‘run ahead’ of transitions from B. Formally:

asdM(A,B) = max{( ∑
t1∈A

#(t1, τ)
)−( ∑

t2∈B

#(t2, τ)
) | τ ∈ T ∗, M [τ〉}.

If some sequence τ with M [τ〉 actually satisfies

asdM(A,B) =
( ∑

t1∈A

#(t1, τ)
) − ( ∑

t2∈B

#(t2, τ)
)
,

then we call it a witness for the ‘gap’ asdM (A,B).

The maximum can become infinite. For instance, asdM0({a}, {d}) =
∞ in Figure 1 and asdM0({c}, {a}) = ∞ in Figure 2. If the sets A
and B are ‘controlled’ by place s and transition invariant J�, however,
then their synchronic distance is always finite.

Lemma 4. Controlled transition sets by induce finite asd

Let N be a bounded, reversible, persistent net with initial marking
M0, let s be a place of N , let J ∈ Js and let A = supp(J) ∩ (s• \ •s)
and B = supp(J)∩(•s\s•). Then both asdM0(A,B) and asdM0(B,A)
are well-defined finite numbers.

8



Proof: By Theorem 3, there exists an infinite firing sequence

M0[τ〉M0[τ〉M0[τ〉M0 . . .

such that Ψ(τ) = J . In this sequence, the only transitions putting
tokens on s are those of B and the only transitions removing tokens
from s are those of A. In case asdM0(A,B) = ∞, we get a contradic-
tion to the fact that s contains finitely many tokens initially, and in
case asdM0(B,A) = ∞ we get a contradiction to the boundedness of
s. 4

Using this lemma, and keeping Js = {J1, . . . , Jm} in mind, we can
define the numbers

L� = asdM0(supp(J�) ∩ (s• \ •s), supp(J�) ∩ (•s \ s•))

for every 1 ≤ � ≤ m. Let the net N [s] = (T ′, S′, F ′,M ′
0) be defined

from N = (S, T, F,M0) as follows.

• The transitions of N [s] are T ′ = T , the same as the transitions
of N .

• The places of N [s] are S′ = S •∪{s1, . . . , sm}, i.e. the places of
N plus m new places s�, one for each � ∈ {1, . . . ,m}.

• The initial marking M ′
0 is defined as follows: M ′

0(q) = M0(q)
for every q ∈ S, and M ′

0(s�) = L� for every � ∈ {1, . . . ,m}.
• The flow relation is extended as follows:

F ′ = F ∪ {(s�, t) | t ∈ supp(J�) ∩ s•, 1 ≤ � ≤ m}
∪ {(t, s�) | t ∈ supp(J�) ∩ •s, 1 ≤ � ≤ m}.

Theorem 5. Place covering

Let N be a bounded, reversible, persistent net with initial marking
M0, let s be a place with |Js| > 1 and let N [s] be constructed as
above. Then the reachability graphs of N and N [s] are isomorphic.
Moreover, with the numbers L1, . . . , Lm defined above, we have L1 +
. . . + Lm ≤ M0(s).

Proof: For reachability graph isomorphism, we first note that by
construction, every firing sequence of N [s] is also a firing sequence of
N (this is always the case when only places are added).

Conversely, assume that τ is a firing sequence of N which is not a
firing sequence of N [s] and assume that τ is a shortest such sequence.
That is, τ = τ ′t such that τ ′ is a firing sequence both of N and of
N [s] leading to markings M in N (which enables t in N) and M ′ in
N [s] (which does not enable t in N [s]).

Because M ′ does not enable t in N [s], there must be some place q ∈ •t
which is token-empty at M ′, and since by M [t〉 this is not true for
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any of the places of N , q must be one of the newly introduced places
q = s�. By the fact that M ′

0(q) = L� and M ′(q) = 0, transitions in
(q•\•q) must have occurred L� times more often in τ ′ than transitions
in (•q \ q•). But since t is also in s• (but not in •s), τ is a sequence
which is firable in N but contains transitions from supp(J�)∩ (s• \ •s)
L� +1 times more often than transitions in supp(J�)∩ (•s\s•), which
contradicts the definition of L� as an asymmetric synchronic distance.

Thus, a firing sequence of N which is not also a firing sequence of
N [s] does not exist, and we have firing sequence equality, and hence
also reachability graph isomorphism, between N and N [s]. The latter
can be seen as follows. Let two nets N, Ñ with the same transition
set and the same set of firing sequences be given and construct a
relation R between their respective sets of reachable markings by
putting (M,M̃ ) ∈ R iff there is some τ with M0[τ〉M and M̃0[τ〉M̃ .
Then R is surjective because any sequence is firable in Ñ iff it is
firable in N , and it is injective because the marking produced by
a sequence is uniquely determined from the initial marking and the
sequence itself.

Now we prove that the inequality L1 + . . . + Lm ≤ M0(s) holds
true. First, we will show that not only are there witnesses for the
individual gaps L1, . . . , Lm, but there is even a witness realising all
m gaps simultaneously.

Consider the first T-component, J1, and consider any witness for L1,
that is, some sequence M0[τ1〉 satisfying

L1 = max{#(a, τ1)−#(c, τ1)
| a ∈ supp(J1) ∩ (s• \ •s), c ∈ supp(J1) ∩ (•s \ s•)}. (1)

Since τ1 may contain transitions from other T-invariants J2, . . . , Jm,
we will strive to ‘remove’ such transitions. Let M0[τ〉M0 be a cy-
cle whose Parikh vector is larger or equal to the Parikh vector of
the sequence of non-J1-transitions within τ1. Such a cycle exists by
Theorem 3. Since both τ1 and τ are firable from M0, Keller’s the-
orem tells us that also M0[τ〉M0[(τ1−• τ)〉. Let τ̃1 = (τ1−• τ). By the
fact that τ covers all non-J1-transitions from τ1 and because the T-
invariants are transition-disjoint, τ̃1 contains only transitions from J1.
Moreover, τ1 is firable from M0 and realises the gap L1, since non-J1-
transitions do not contribute to formula (1) and τ̃1 has exactly the
same J1-transitions as τ1.

Repeating this procedure for all j from 2 to m, we find individual
witnesses τ̃1, . . . , τ̃m for L1, . . . , Lm, respectively, such that every τ̃j

contains transitions from Jj only. By Theorem 1 again, there is some
sequence τ with Ψ(τ)(t) = max1≤j≤m Ψ(τj)(t) for all t ∈ T . Because
all individual sequences are clean and because the J� are mutually
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transition-disjoint, the sequence τ realises all gaps L1, . . . , Lm simul-
taneously.

Now we prove the desired inequality by contradiction. Assume oth-
erwise, that is, assume that L1 + . . . + Lm > M0(s). By the above,
we can find a witness τ realising all gaps L1, . . . , Lm simultaneously.
Since the sets {supp(J�)∩ (s• \ •s) | 1 ≤ � ≤ m} partition s• \ •s and
the sets {supp(J�)∩(•s\s•) | 1 ≤ � ≤ m} partition •s\s•, this implies
that transitions in s• \ •s have occurred at least M0(s)+1 times more
often in τ than transitions in •s \ s•, creating a negative token count
on s and leading to a contradiction.

Hence the assumption L1 + . . .+Lm > M0(s) is wrong and L1 + . . .+
Lm ≤ M0(s) is true instead. 5

According to the first part of Theorem 5, places s1, . . . , sm can be
added to the net without altering its behaviour. According to the
construction of the s1, . . . , sm and to the second part of Theorem 5,
place s covers the sum of the places s1, . . . , sm in the sense that its
F -connections are exactly the sum of the individual F ′-connections
of the s� and its initial marking is equal to or larger than the sum
of the individual initial markings of the s�. Hence after s1, . . . , sm

are added, s becomes a redundant place and can be omitted without
altering the behaviour of the net. Altogether, we can replace place s
by m places s1, . . . , sm.

While the number of places properly increases by this transformation,
the ‘degree of conflict’, that is, the number

conf-deg =
∑
t∈T

|(•t)•|

decreases. If Case 1 never arises before or during this construction,
conf-deg will eventually be down to |T |, that is, we will get a net
which is output-nonbranching and hence behaviourally conflict-free.

Note that Theorem 5 is also true if |Js| = 1, but does not, in this
case, lead to a reduction of conf-deg.

To sum this section up, if a place s is affected by m simple cycles,
then it can be split into m places, each of which is ‘responsible’ for
one of the cycles.

5 Branching places surrounded by a single simple cycle

In Case 1, when there is a single simple cycle through all transitions
bordering on a place s with two or more output transitions, a similar
analysis and reduction may not necessarily be possible. For instance,
consider the net shown in Figure 3. The transition inscriptions de-
note their values in the only minimal realisable T-invariant, defined
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by the transition counts on one of the cycles of the reachability graph.
In state M ′, the output transitions of place s are concurrently en-
abled. We might consider the subset A = {t6} of s• and the subset
B = {t5} of •s because t5 and t6 occur equally often in a cycle. Note
that both asdM0(A,B) and asdM0(B,A) are finite. Moreover, for the
complementary sets A′ = s•\A = {t7} and B′ = •s\B = {t3, t4}, the
values of asdM0(A′, B′) and asdM0(B′, A′), as well as the other combi-
nations, asdM0(A,B′), asdM0(B′, A), asdM0(A′, B) and asdM0(B,A′),
are finite. We can thus add (up to eight) places reflecting these fi-
nite synchronic distances without changing the behaviour of the net.
Nevertheless, even after addition of all these places, the place s can-
not be removed without changing behaviour, because the sequence
t1t5t6t8t11t2t7 is firable in the net so obtained. As can be seen from
the reachability graph in Figure 3, this sequence is not firable in the
original net.

The same net proves that, in a persistent Petri net, a forward branch-
ing place can have both options (a) and (b) (see section 2). There
are reachable markings that enable only one of the output transi-
tions of place s (namely, the markings reached after the occurrences
of t1t5 and after t2t5, respectively), and there is a reachable marking
(reached after the occurrence of t4) that enables both output transi-
tions concurrently.

The asd approach fails for another reason in the example shown in
Figure 4. The only realisable (minimal and semipositive) T-invariant
assigns 1 to transition c, 3 to transition d and 2 each to transitions
a and b. More concretely, every simple cycle is a permutation of
adzbc′dxadybc. Therefore, we do not find two proper nonempty sub-
sets A ⊆ s• and B ⊆ •s such that transitions in A and transitions in
B occur equally often in a cycle. For example, asdM0(a, c) is infinite.

6 Concluding remarks

This paper is part of a longer-term goal, namely to prove that bounded,
reversible and persistent Petri nets are separable. Separability can
be described informally as follows. Let k denote the greatest com-
mon divisor of the numbers M0(s), for places s and initial marking
M0 of some net. Then the net is (k-)separable if it behaves as k in-
dependent copies of the net arising when M0 is replaced by M ′

0 with
M ′

0(s) = M0(s)/k, for every place s.

We can presently imagine two possible ways of proving this conjec-
ture. One possibility is a direct proof. Another possibility is us-
ing the results in [3, 4], where separability has been proved for live,
bounded, and behaviourally conflict-free nets. In order to be able
to make use of the second avenue, a transformation from persistent
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Figure 3: A third persistent Petri net and its reachability graph

to behaviourally conflict-free nets such as explored in this paper is
needed.

Independently of this connection, we are also looking at ways of
adapting the construction by Ramamoorthy et al. [11] (mentioned
also in Murata [10]) to yield transition-labelled bfc nets which are
bisimilar [9] to a given persistent net.
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