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Examples

Example 1

e The type of p/t-nets is given by 7,, = (N,N x N, 7,,,), where n &3 o/ if and only
ifn > iand n’ = n — i + j. The abelian monoid of local events has the operation
of componentwise addition and the identity element (0,0). The weight function W
attaches a tuple of natural numbers to the arcs (p,t) € P x T of a net of type 7,;. The
first component of the tuple is interpreted as the number of tokens consumed from ¢
in p and the second component as the number of tokens produced from ¢ in p. Then
Definition 3 coincides with the standard occurrence rule of p/t-nets.

o The type of elementary nets is given by 7., = ({0, 1}, {nop,in, out, failure}, e,),
where 7., = {(0,nop,0),(1,nop, 1), (0,0ut,1),(1,in,0)}. The abelian monoid of
local events has the identity element nop and the operation + given by x +y = failure
for z, y # nop. The weight function W attaches a label from {nop, in, out, failure} to
the arcs (p,t) € P x T of anet of type Te,,. The local event nop is interpreted as no arc,
in as an arc ingoing to ¢ (from p), out as an arc outgoing from ¢ (to p) and failure as
not allowed. Then Definition 3 coincides with the occurrence rule of elementary nets.
e The type of pti-nets is given by 7,,; = (N,N x N x N,,, 7,4;) for the a-posteriori
semantics and i (NN x N x N, TE) for the a-priori semantics. The abelian
monoid of local events has the identity element (0,0,w) and the operation + given
by componentwise addition on the first two components and the minimum function on
the third component, i.e. (z,y,2) + (¢',v',2") = (x + 2',y + ¢, min(z, 2)). For the
a-posteriori semantics (n, (4,7,k),n') € 7 if and only if n > ¢, n + j < k and
n' = n — i + j. For the a-priori semantics (n, (i,7,k),n’) € 7o ifand only if n > 4,
n < kand n’ = n — i+ j. The weight function W attaches two natural numbers
and an element in N, to the arcs (p,t) € P x T of a net of type 7p; resp. Tei- The
first two natural numbers are interpreted as for p/t-nets and the element in N, as an
inhibitor weight attached to an inhibitor arc ingoing to ¢ (from p). Then Definition 3



coincides with the occurrence rule of pti-nets equipped with the a-posteriori resp. the
a-priori semantics.

Example 2

Consider the type of nets ({s,s'},{0,1,2},{s BN s, 8 2, s’ s 1, 8,8 9,

s, s 90, s'}), where 0 is the identity element, 1 +1 =2,1+2 =0and 2+ 2 = 1, and
the marked net N = (P,T,W, mg) of this type given by P = {p}, T = {t1,t2},
mo(p) = s, W(p,t1) = 1, W(p,t2) = 2. Then the LPO lpo = ({v1,v2},0,1),
l(v;) = t; fori = 1,2, is enabled in N. The step sequence ¢1to of lpo yields the
final marking m(p) = s, while the step sequence ot of Ipo yields the final marking
m(p) =s #s.

Example 3

Consider the case that an LPO lpo = (V, <,[) enabled w.r.t. a net of some type has
two different final markings, where one enables a transition ¢ and one does not enable ¢.
Then the second statement of Lemma 3 would imply that an LPO Ipo’ = (V U {v}, <
UV x {v}), 1), U'|lv = 1,1I'(v) = t, is enabled, although it is not enabled. An example
for this is the enabled LPO from Example 2, where the final marking given by m(p) = s
enables ¢, but the final marking given by m(p) = s’ does not enable 5.

Example 4

b b
The type of nets ({s,s',5"},{0,a,b,c},{s — & 5 — s",s' — 5" " %

s L 58— o8 -5 s"}), where 0 is the identity element and a + a =
at+b=a+c=b+b=>b+c = c+ ¢ = ¢, satisfies the WISP. Given the marked
net N = (P, T, W, myg) of this type given by P = {p}, T = {ta,ts}, mo(p) = s,
W(p,ts) = a, W(p,tp) = b, the LPOs lpo = ({va, vs}, {(va,vs)}, 1), L(ve) = ta,
l(vp) = tp and Ipo” = ({v}, v} }, { (v}, v2)}, '), U'(v]) = ta, U'(v})) = t, are enabled
in N. Both LPOs comprise of one transition occurrence of ¢, and one of t;, but the
final marking of Ipo is given by m(p) = s”, while the final marking of Ipo’ is given by
m(p) = s

Example 5
Consider a net N = (P, T, W, my) fulfilling the WISP and not fulfilling the ISP, i.e.

there is x1, x5 and a reachable marking m such that m TIEE2 0’ but not m 223, Let

Ipo’ = (V',<’,1’) be an LPO in step form such that m Zleel 1. Then the second
statement of Lemma 8 would imply that an LPO lpo = (V' UV, <" U(V’ x V), 1),
Iy, =1, |V]; = 21 + x2, is enabled, although it is not enabled. An example for this
situation is the type of nets ({s}, {0, 1,2}, {s 9, s}), where 0 is the identity element,

1+41=2,142=0and 2+ 2 = 1 (monoid as in Example 2), and the the marked
net N = (P, T,W,mg) of this type given by P = {p}, T = {t1,t2}, mo(p) = s,



W(p,t1) = 1, W(p,ta) = 2. The LPO Ipo = ({v1,v2},0,1), l(v;) = t; fori = 1,2
is not enabled in IV, because the step sequences t1to and tot; are not enabled in my,
although t; + t2 is enabled in mgq (here m = my in the above notation, i.e. V' = ().

Example 6

o The type of nets in Example 2 does not satisfy the WISP, since s i) s and s =3 s.

e The type of nets in Example 5 satisfies the WISP but not the ISP, since s 2 s but
1)

nots —'.
. . . b
e The type of nets in Example 4 satisfies the WISP but not the PIP, since s @@ s" and
s Q9@
e Combining the previous two types to the type ({s,s’,s"},{0,1,2,a,b,c}, {s -

b b a 0 0 0 .
s — s s — s — §s — s, — §,s" — §"}), where 0 is

the identity element, 1 + 1 = 2,1 4+2 =0,24+2 = landz +y = cforz €
{1,2,a,b,c},y € {a,b,c}, yields an example of a type of nets satisfying the WISP, but
neither the ISP nor the PIP.

o The type of nets not satisfying the PIP from Example 4, satisfies the ISP.

e The type of nets not satisfying the ISP from Example 5, satisfies the PIP. Also the
type 7o in Example 1 satisfies the PIP but not the ISP.

o The types 7p, Ten, and 7,,; in Example 1 satisfy the PIP and the ISP.

1"

Example 7

The types of nets 7, Tpt; and T from Example 1 can be equipped with appropriate
flow maps yielding flow types of nets (note that in each case the set of local states is the
free abelian monoid (N, +,0)):
b fpt(i?j) = (iaj)’
i fpti(i?j7 k) = (i’j)’
o ol k) = (i.3).

Also 7, from Example 1 can be interpreted as a flow type of nets by setting LS =
N D {0,1} and LE = N x N, where (0, 0), (1,0) resp. (0, 1) correspond to nop, in
resp. out and all other local events correspond to failure. The respective flow map is
given by fe,,(4,7) = (4,7). Similar net classes such as nets with read arcs, capacities,
etc. are also covered by flow types of nets.

Example 8

The characteristic of a free abelian monoid is that each element can uniquely up to the
ordering be represented by the elements of a subset of generator elements. The abelian
monoid M = N x N\ {(0,1), (1,0)} with the operation of componentwise addition
does not have such property. The elements (1, 1), (2,0) and (0, 2) cannot be represented
as a sum of other elements of M, and the element (2, 2) can be represented as 2 - (1, 1)
and (2,0) + (0,2). Define 7 = (M, M x M,7) with (n, (i,7),n’) € 7 if and only
ifn > iand n’ = n — i+ j, and define f(i,5) = (4,7). Consider the marked net



of flow type 7 defined by T = {t1,%2,t3,t4}, P = {p}, W(p,t1) = ((0,0),(1,1)),
Wi(p,t2) = ((0,0),(1,1)), W(p,t3) = ((2,0),(0,0)), W(p,ts) = ((0,2),(0,0)),
mo(p) = (0,0). Then the LPO Ipo = ({v1, v2, v3,v4}, {(v1,v3), (v1,v4), (v2, v3), (Va,
v4)}, 1) with [(v;) = t; is enabled in this net. But it is not possible to assign appropriate
token flows to the arcs of the LPO such that the token flow property is fulfilled. This is
because v; and vy each produce the local state (1, 1) yielding together (2, 2), which is
enough to enable v3 and vy in one step consuming (2, 0) resp. (0,2) ((2,0) + (0,2) =
(2,2)). But vs then consumes (1,0) from vy as well as from vq. Since (1,0) ¢ M,
there is no valid distribution of local states to the arcs of Ipo such that the token flow
property is satisfied. This example not only shows the need for generator local states,
but also illustrates the essential concept of token flows that, in order to check the token
flow property for an LPO, an appropriate distribution of the local states produced resp.
consumed by an event to the outgoing resp. ingoing arcs of the event has to be found.

Example 9

Canonical blocking functions for the two types of pti-nets from Example 1 are given by
bpii(n, (i,7,k)) =1 <= n+j < kresp. bﬁi(n, (i,4,k)) = 1 <= n < k in the case
of 7, resp. T



Proofs

Proof of Lemma 1

Let Ipo be enabled, then Ipo’ is enabled, since it is a prefix. Let Ipo” = (V/, <", I') be
a step sequentialization of 1po’, then there is a step sequentialization Ipo, = (V, <, 1)
of Ipo fulfilling v’ <5 ¢ <s v and ccoc ¢ forallv' € V' e, e C,o e V\ (V'UC)
as well as <”"=<, |y xy. The step sequence oy,,, is enabled showing that |C|; is
enabled in the final marking of Ipo’ defined by Ipo”.

If Ipo is not enabled, either every proper prefix of Ipo is enabled or not. In the second
case there is a non-empty co-set of Ipo having a prefix which is not enabled. In the first
case consider a step sequentialization Ipo, of Ipo, such that 0y, = 21 ..., is not
enabled (where x,, not empty). Since every proper prefix of Ipo is enabled, z; ... x,_1
is enabled and x,, is not enabled in the follower marking of z; ...x,_1. Define C as
the set of maximal events of Ipo, (corresponding to the step x,,) and consider the prefix
Ipo’ of Ipo given by the set of events V' \ C. Then Ipo’ is enabled (since it is a proper
prefix of 1po) and |C|; is not enabled in the final marking of Ipo’ given by the step
sequence 7 ...z, _1 of Ipo’.

Proof of Lemma 2

glpo"

(e o!
Given two step sequentializations Ipo’ and Ipo” of Ipo with mg —= m/ and my —=
m', we have to show that m’ = m”.
We consider a fixed order of the events V' = {vy,...,v,} such that v; < v; im-

plies i < j. We show that both m’ and m” coincide with the marking m'’ given by

1(v1)...L(vn ) ) . .
mo (v1).--A{vn) m/”. For this we iteratively transform oy, to [(v1) ... [(v,). Each iter-

ation yields a step sequence o; of Ipo which is enabled (since lpo is enabled) and fulfills
mo — m’ (since WISP holds).

First, we transform oy, to a linear sequence of Ipo. Let oo = 21 ... 2. If 25
(for some %) is not a single event, then x; can be decomposed into two non-empty steps

. T1...Ti—1 z; .
', 2", ie x; = 2 + 2" Let mg = m;_1 and m;_; — m;. According to

the WISP, also m;_1 ﬂ m; (the enabledness is ensured by the enabledness of Ipo).

Steps are decomposed in this way until the resulting step sequence is a linear sequence

t1...t, of Ipo with mg bt "

Let Ipoy;,, = (V; <iin, () be a linearization of Ipo such that o1,,,, = t1...t,. In
Ipoy;,, the nodes {v1,...,v,} are totally ordered respecting the partial ordering given
by <, but possibly in another order than given by the indices 1,...,n. That means it
may be that v; <4, v; and i > j, butonly in the case v; £ v; and v; £ v;,1.e. v; co<v;.
In this situation we switch the positions of the events v; and v; in Ipoy;,, to get in several
steps the linearization v; — v2 — ... — v, of Ipo. The different positions of nodes in
the two linearizations v; — v2 — ... — v, and Ipo,;,, can be related by a permutation
7 such that 7(¢) is the position of the i-th node of Ipoy;,, in v1 — v2 — ... — vy, i.e.
the index of the i-th node of 1poy;,, (m~*(4) is the position of v; in Ipoy;,,).

Let 7 be the permutation on {1,...,n} such that vy <iin V() == i < j.
If m(i) = i foralli € {1,...,n}, we are finished. Otherwise, consider that i is the



first index satisfying (i) # i (obviously 7~ (i) > ). The idea is to “bubble-sort” the
events v, -1(;) from the position 7~ 1(i) backwards to the position 4, and to repeat this
procedure until there is no such . Since 7 was the first index with the property 7 (i) # ¢,
we have j = 7(77 (i) — 1) > i = w(7 (i) implying v; £ v;. Since v; <un
v; and lpoy,,, is a linearization of Ipo, we have v; £ wv;. It follows v; co<v;. Thus,
removing v; <y, v; from <y;, gives a step sequentialization of Ipo. The associated step
sequence ty ... tr—1(;)—2(tr-1(i)—1+tx-13;)) - . . tn is enabled. Moreover, by the WISP,

tr...t_—1,, t__1,. t__1,. t__1,. +t__1,.
a=l()—2 . . Crx—l@y—1la—1() o a1 Tla—10y L
mo — m, m - m’ and M — m/'. Thus the final

marking m/’ is preserved by the associated step sequence 7 .. .tﬂ71(i),2(tﬂfl(i),1 +
tﬂ_l(i)) ... tn. We can further introduce v; <y, v to <y, yielding a linearization of
Ipo having the associated linear sequence &1 . .. tx—1(;)—olr—1()lr—1(i)—1 - - - tn, Where

Le—1pyle—1(—1 . ..
by the WISP m (L7 5 Thus, we have “bubble-sorted” v; to one position

backward preserving the final marking m’ of the associated linear sequence of Ipo.

. . e L(v1)...L(vn
Repeating this procedure sorts each v; to position z. This shows my (v1)---ln) m'.

. . L(v1)...l(vn
Since the same procedure can be applied to Ipo”, we also get my (v1)...4(vn) m/

proving m’ = m”.

Proof of Lemma 3

The first part follows directly from Lemma 1. For the second part, let Ipo be not enabled
in N. Consider a prefix Ipo, = (V},, <, ;) of Ipo (Ipo,, might equal Ipo) which is also
not enabled and minimal with this property, i.e. every proper prefix of Ipo,, is enabled.
By Lemma 1 there is a non-empty co-set C of Ipo,, and a prefix Ipo’ = (V/, </, I") of
C' (within Ipo,) such that either Ipo’ is not enabled or |C|; is not enabled in some final
marking of Ipo’. Since Ipo’ is a proper prefix of Ipo,,, the second case holds. By Lemma
2 the final marking of 1po’ is unique, i.e. each step sequence o of 1po’ is enabled, but
|C|; is not enabled in the follower marking of o, showing the statement.

Proof of Lemma 4

Let (LS, LE, ) fulfill the WISP and let N be of this type. Let m, m’, m” be reach-

. .. r1+x 1T
able markings and 21, x5 be steps of transitions such that m “*=* m/ and m =3

z1+xo) ()W (p,t
m”. By the occurrence rule, for each place p there holds m(p) Zer(F1tm)OWEH

T W (p, + x W(p, X
m!(p) and m(p) =" 2LV ar) T 2OV ). Denoting e; =

ver Ti(t)W (p,t) for i = 1,2, s = m(p), s’ = m'(p) and s = m"(p) we get
m/(p) — s/ — s// — m//(p)'
Let (LS, LE, ) not satisfy the WISP. That means, there are local states s, s, s”

ei1+e ere
and local events e, e, such that s = s’, s =3 s and s’ # s”. We construct a

net N = (P, T, W, myg) of type 7 not satisfying the WISP by P = {p}, T = {t1,t2},
mo(p) = s, W(p,t1) = e1, W(p, t2) = ea.



Proof of Lemma 5

Let (LS, LE, ) fulfill the PIP and let N be of this type. Let m, m’, m” be reachable
markings and x4, ..., 2, and 2}, ..., 2/ be steps of transitions such that m ““5" m/,

’ ’
ZTqy-.-T

m =" m"andx1+...+x, =) +...+x,. Denote e; = >, . x:(t)W(p,t) and
e; = > e Ti()W(p,t), s = m(p), s’ = m/(p) and s” = m” (p). By the occurrence

1---€En

rule, for each place p there holds s LS o and s €
s" =m”(p), since T satisfies PIP.
Let (LS, LE, T) not satisfy the PIP. That means there are local states s, s’,s”, a

multi-set of local events u and two partitions v = uy +. . .4+u,, = uj+...+ul, of u with

! ’
1'“6’!”
—

s". This gives m/(p) = ¢’ =

’ ’
s LSt o s LY M and ¢ # 8, where e; = Y eew, Uile)eande; =3 ui(e)e.
;

We construct a marked net N = (P, T, W, mg) of type 7 not satisfying the PIP by
P ={p}.T = LE.mo(p) =s.W(p,e) =e.

Proof of Lemma 6

Since Ipo is enabled, there is a an enabled step sequence z . ..z, of Ipo. Since Ipo is
enabled, there is a an enabled step sequence .../, of Ipo’. Since |V|; = |V'|/, we
have x1 + ...+, = 2] + ...+ 2. From PIP we get, that both step sequences define
the same final marking.

Proof of Lemma 7

Let (LS, LE, 7) fulfill the ISP and let N be of this type. Let m, m’ be reachable mark-

ings and x1, 2 be steps of transitions such that m “1E82 1/ Then, by the occur-

+ z1+x2)(t)W(p,t .
rence rule, for each place p there holds m(p) Zier (P42} OW @) m/(p). Denoting

ei = > er Ti(t)W(p,t) fori = 1,2, 5 = m(p) and s’ = m’(p) we get that s 23
by the ISP. This gives m =23 m/.
Let (LS, LE,T) not satisfy the ISP. That means there are local states s, s’ and

e1+e- el e
local events eg, es such that s = s’ but not s =3 s’. We construct a net N =

(P, T, W, my) of type 7 not satisfying the ISP by P = {p}, T = {t1,t2}, mo(p) = s,
W(pv tl) = €1, W(pa t2) = €2.

Proof of Lemma 8

Since every cut is a co-set, the first part is shown by Lemma 3. For the second part, let
Ipo be not enabled in N. Consider a prefix Ipo, = (V;, <j, ;) of Ipo which is also not
enabled and minimal with this property, i.e. every proper prefix of Ipo,, is enabled. By
Lemma 1 there is a non-empty co-set C’ of Ipo,, and a prefix Ipo’ = (V', </, 1) of C’
(within lpo,) such that either Ipo” is not enabled or |C”|; is not enabled in the unique
(Lemma 2) final marking of Ipo’. Since Ipo’ is a proper prefix of Ipo,,, the second case
holds. We now extend C’ to a cut C' containing additionally maximal elements of 1po’
and minimal elements of lpo w.rt. V' \ V': Denote D = {v € V\ V' | v/ < v =



veVltandE={veV' |vcocDAN(v<v = v ¢ V')}.Theset C = DUE
is a cut of Ipo fulfilling C’ C C (since C' C D). The prefix Ipo” = (V", <", 1") of
C fulfills V" C V' = V" U E, and therefore is enabled by the minimality property
of Ipo,,. Assume that |C/; is enabled in the unique final marking of Ipo”. By the ISP
also the step sequence |E|;|D|; is enabled in the final marking of Ipo”. The marking
reached through firing |E|; in the final marking of Ipo” is the final marking of Ipo’.
Therefore, since C’ C D, again by the ISP |C”|; is enabled in the final marking of lpo’,
a contradiction. Thus, |C|; is not enabled in the final marking of the enabled prefix Ipo”
of C, i.e. each step sequence o of Ipo” is enabled, but |C|; is not enabled in the follower
marking of o (given by the final marking of Ipo”), showing the statement.

Proof of Lemma 9

Let s,s’,s” be local states, u be a multi-set of local events and u = uy + ... +

Up = uy + ...+ uy, be two partitions of u. Denote e; = ., wu;i(e)e and €] =
K3
’ ’
€1...€ €q...€ e e
> eewu ‘(e)e and let s “=5" s’ and s ——" s”. Denote s = 59 — §] —

. =25 5, = s'. Then, since f; and f, are monoid morphisms, s; = s;_1 + f2(e;) —
file:) = sic1+ f2(3 cu, wil€)e) = f1(Deey, uile)e) = sim1+3_ ¢y, uile) fa(e) —
Y ecu, Wile)fi(e) for each i. Putting all these equations together, we get s’ = s +
Z?:l(ZeEul‘ Z( )fQ( )) Zz 1(Ze€ui ui(e)fl (6)) = S+Ze€u u(e)f2(e)_2e€u
u(e) f1(e). Analogously there holds s” = s+ > ., u(e) f2(e) — > ., ule) fi(e).

Proof of Lemma 10

Each step sequence ¢ = ¥ ...y, corresponding to a step sequentialization of Ipo is
enabled in my, i.e. my 2 my 2> ... L% my,, where (m;_1(p ) D ver vilt) -
W (p,t),m;(p)) € 7. By the flow type of nets definition, we have m;(p) = m;_1(p) —
A er 0i(8) - W,0) + Fo(Syer D) - WD) = mios(p) — Yyer wilt) -
SiW(p, 1)) + > ,cr wilt) - fo(W(p,t)). For the final marking mn,, of Ipo we compute
1 (p) :mo(p)+Z:‘L:1(ZteTyl() 2(W(p, 1)) =320, (Cper (1) fr(W(p, 1))
= mo(p) + D ser VIi(t) - 2(W(p, 1) = X yer VI(E) - LW (p, 1)) = mo(p) +
Yvev oW (P, 1(v)) = X pey [1(W(p, U(v))).

Proof of Theorem 1

Let LS be the free abelian monoid N over the set A. Define Ipo = (V, <, 1) through
V = V' U {Umin, Vmaz }» Y0 € V' 0 Upin < 0 < Umazs L (Vmin) # (VUmaz) and
W Vmin)s {(Vmaz) € L(V'). We will show the theorem by contradiction, i.e. we assume
that there is a place p for which there does not exist a token flow function z,, :<— LS
such that

(1) Y # Vmaz © Ing, (v) = fr(W(p,1(v))).
(i) Outy,(Vmin) = mo(p) and Yo # Upmas @ Outy, (v) = fo(W(p,1(v))).



Denote V' = {vg, ..., vy} such that v; < v; implies i < j, in particular vo = Vinip.
Consider the set X’ of token flow functions which satisfy (i) and Out ., (Vinin) > m0(p)
and Vv # VUmaz @ Outy,(v) > fo(W(p,l(v))). Observe that this set is non-empty,
e.g. the function x,, defined by z,(vmn,v') = fLr(W(p,I(v"))) for every v/ € V',
xp(v/’vmal') = fQ(W(p’l(v/))) for every v o€ V/’ xp(vminavmax) = mO(p) and
zp(v,v") = 0 for every v < v/, v,0v’ € V', is in X. By assumption, none of the
functions in X’ fulfils (4i).

We say that a function x € X does not fulfil (ii) for an index i, if ¢ = 0 and
Outy(v;) > mo(p) orif i > 0 and Out,(v;) > fo(W(p,1(v;))). Denote k, the small-
est index for which a flow function z € X does not fulfil (47). Let X,,;, C X be the
non-empty set of all token flow functions € & which maximize k,, i.e. such that
there holds V', 2" € Xyp 1 ky = kv and Vo € X, Vo' € Xyyp kg < kg Denote
sup = kg for x € Xgyp. By assumption sup < |V| (note that sup = 0 is possible).

Finally, choose a token flow function zy € X, which minimizes Outy, (Vsyp),
i.e. such that there holds Vz € Xy, : Outy(Vsup) £ Outyy (Vsup)-

In the following, we construct from zg a co-set C’ of Ipo’ such that |C’|; is not
enabled in the final marking of the prefix Ipo” = (D', < |p/xpr,l|p/), D' = {v € V' |
v < C'}, of C'. By assumption such prefix is enabled w.r.t. IV, because Ipo’ is enabled.
By Lemma 10, there holds for the final marking m of Ipo”:

m(p) = mo(p) + Y fo(W(p,1(v)) = > f1(W(p,I(v))).

veD’ veD’

To show that |C”]; is not enabled in m we show that there exists no m/ such that
(m(p), > er |C'1(t) - W(p,t),m/(p)) € 7. By the flow type of nets definition it suf-
fices to verify m(p) 2 f1(3 e [C'1i(1) - W(p, 1)) = Xier [C1i(t) - (W (P, 1)) =
2vecr iW(p,U(v))), ie.

(x) mo(p) + Y LWplw) = Y AWEU)) 2 Y LV(p, ().

veD’ veD’ veC’

This contradicts the enabledness of Ipo’. To this end we next define the sets of nodes C”
and D such that D = D" U {vp;n }, D turns out to define the prefix of C” in lpo given
by the nodes smaller than C” and C’ is a co-set.

Consider a € A such that Out,, (vsup)(a) > fa(W(p, {(vsup)))(a) (xesp. Outy,
(Vsup) (@) > mo(p)(a) if sup = 0). Let D be the set of all nodes v € V such that
there exists a sequence of nodes o(v) = vwlv! .. w*v* with v° = vy, and v* = v

satisfying
(C1) Vj #m: wj 75 wm AV £ ™, andl
(C2) Vj: xo(v?,witt)(a) > 0 AvI < w.
Since Outy, (Vsup)(a) > 0, the initial node vy = vy, is in D. Moreover, vgy, € D
(case k = 0). The node vy,00 = vy is not in D, since Upqz 7# Usup and there is no

node w with v,4, < w.
Define

C'={weV\D|IveD: xov,w)(a) >0}



The set C” represents the step of transitions “consuming too much tokens” (of [(vsyy)).
We prove in several steps that C” is a co-set of Ipo’ having the prefix Ipo” as described
before and satisfying (). The idea is that if this is not the case, along the paths o(v)
token flow can be redistributed in such a way that the outtoken flow of v, w.r.t. a is
reduced, while the outtoken flow of v, W.r.t. a’ # a, the intoken flows of all nodes
and the outtoken flows of nodes with index 7 < sup are not changed. However, this is
not possible by the choice of z.

Claim 1: v; € D = j < sup

Assume j > sup. Then it is possible to construct a token flow function z € X,
with Outy (vsyp) < Outy, (Vsyp), Which contradicts the choice of g, as follows: Let

o(v) = vPwlvl ... wkv” and set
vy xv]w])() wo(v),w’)(a) +1
Vi a(v!,w ) (a) = zo(v), w' ) (a) — 1

else : x(v,v')(a’) = zo(v,v")(d’).

Claim 2: (’Uj € D) - zO(Ujv'Umam)(a) =0

From Claim 1 we deduce j < sup. Assume (v, Umaqz)(a) > 0. Then it is possible to
construct a token flow function z € Xy, with Outy(vsyp) < Outy, (Vsyp), Which con-
tradicts the choice of xg, as follows: In the case j < sup, let o(v) = Vwlol . wkok

and set

(V) Vimaz ) (@) = 20(v?, Vymaz) (@) — 1,
z(v?,w’)(a) = zo(v?,w’)(a) + 1,
(
(

Vj:
Vi s a(v?, w ) (a) = zo(v!, W) (a) — 1,

else : x(v,v")(a') = zo(v,v")(a).

In the case j = sup set 2(v/, Vpmaz)(a) = 1o(v?, Vmaz)(a) — 1 and z(v,v")(a') =
xo(v,v")(a’) else.
Claim 2 shows that v, ¢ C’,ie. C' C V.

Claim3:YveV: (Fwel :v<w)<veD

= Let w € C’ with v < w. We construct a sequence o(v) = Uy ... v fulfilling
(C1) and (C2). By the definition of C” there is a node v’ € D with z(v', w)(a) > 0.
Let o(v') = vgypw'vl ... w*v*. In the case v = v/ for j € {0,...,k} it follows
v € D. We distinguish the following remaining cases:

- (35 € {0,...,k} : w/ = w): Denote m the smallest index with w™ = w. Then
veupwlvl .. w™v satisfies (C'1) and (C2).
- (Vj €{0,...,k}: wl # w): vgpwol .. wkv'wo satisfies (C1) and (C2).



«=:Letv € D,wewill findw € C’' withv < w.Ifv = Usup, then there is w = vy,
J > sup, o(Vsup, vj)(a) > 0. By Claim 1, v; ¢ D and consequently w = v; € C".
If v # Vsup, let 0(v) = vgpwiol ... wkvk. By the definition of C’, the node wy, can
either be in C’ or in D, because zo(v*~1,w*)(a) > 0 and v*~! € D. We distinguish

these cases:

—wheC:v=2vF<wheC.

— w* € D: Denote ¥ a maximal node in the set {v' € D | v < v'} w.rt. < (the
set is not empty since w¥ is one of its elements). If T = Vsup, then v < v <
w € C’ (the existence of such w has already been shown). Otherwise let o(v) =
Vsup®' 01 ... WD satisfy (C'1) and (C2). Then @' € D (otherwise & would not
be maximal) and thus @' € C’, because zo(7'~1,%w')(a) > 0 and ¥'~% € D.
Consequently v < 7 < W' € C'.

Claim 3 in particular shows that C” is a co-set, because v < w € C' = v €
D = v ¢ C’. Moreover, itshows D = {v € V | v < C'},ie. D' = D\ {vpmin} =
{veV'|jv< (.

Claim 4: C' satisfies (x)

If sup = 0, i.e. D = {wg}, then (x) means mg(p) # Out,,(vy) (because in this
case forv € C': f1(W(p,1(v))) = Ing,(v) = z¢(vg, v)) — this holds by assumption.
Let sup > 0. According to Claim 1 there holds Out,,(vg) = mo(p) and Vv € D\
{v0, Vsup} : Outyy(v) = fo(W(p,l(v))). More precisely, according to Claim 2, we
have 2,/ iy Zo(vo, v") = mo(p) and Vo € D\ {vo, Vsup} © D<o ey To(v,
V') = fo(W(p,l(v))). Finally, by assumption we have Yo € DU C’ : Ing, (v) =
Fi(W (p,1(v))) and Outy, (Vsup)(a) > fa(W(p, l(vsup)))(a). Altogether we compute
mo()(@)+ % e pr fo(W (0. 10) (@)~ e pr AW (0. 10) (@)~ 3 e 1 (W,
L)) < S (2 20 (0,0)(@)) = S p (S 200 0) (@) — Xy
(0 70 (0s0)(a)) 0.

The last equation holds since each summand xq(v,v")(a) either (i) equals 0, or
(ii) is counted exactly once positively and once negatively: There are only summands
xo(v,v")(a) with v € D. For (v,v") € D x (D U ") case (i) holds according to
Claim 3 and for (v,v’) € D x (V' \ D) with z(v,v") > 0 we have v' € C’ by defini-
tion — that means (ii) holds in each case (i) does not hold. Thus, we have mq(p)(a) +
e LW (@ 0)(@) = Xoep LW U0)) (@) < Xyeer WD, U0)))(a)
showing (*).

Altogether |C”|; is not enabled in the final marking of the prefix Ipo” of C” within
Ipo’. By Lemma 1, Ipo’ is not enabled, a contradiction.

Proof of Lemma 11

Define Ipo = (V, <, 1) through V' = V' U{Vpmin, Umaz }> V0 € V' i Upin < U < Umazs
WVmin) 7# W Vmaz) and L(Vmin), l(Vmaz) ¢ 1(V') and x such that (Ipo, x) fulfills the
token flow property. Assume Ipo’ is not enabled. Consider a prefix Ipo, = (Vp, <p, 1p)



of 1po’ which is also not enabled and minimal with this property, i.e. every proper
prefix of Ipo,, is enabled. By Lemma 1 there is a non-empty co-set C’ of Ipo,, and a
prefix (within lpo,) Ipo” = (V" <" 1") of C’ such that the step of transitions |C’|;
is not enabled in the final marking m of Ipo” (Ipo” is enabled by the minimality prop-
erty of Ipo,,). By Lemma 10 we have m(p) = mo(p) + >, ey f2(W(p,1(v))) —
> wevr J1(W(p,1(v))) for the final marking m of Ipo” for all p € P. Denote V,, =
V" U{vmin}. By the token flow property m(p) = Outy, (Vimin) + >, cyn Oute, (v) —
Dvevn I, (V) = 32 cvn Oy o @p(0:07) = 3 ey (X <y Tp(V) 0)) =
E(v,vf)em(v,;{x(x/\v,m) Tp(v,0') > E(v,m)em(v,gxc/) Tp(v, V") =32, ccr INa, (V)
=2 vecr iW (P, 1)) = fL(3ser |C'[i(2) - W (p,1)). By the required property of
(7, f), we conclude that for m'(p) = m(p) — f1(3_,cr [C'|i(t) - W(p, 1) + fo (D ser
|C"1(t) - W(p, 1)) we have (m(p), > 2yeq [C'i(E) - W(p, 1), m'(p)) € 7. Thus [C”]; is
enabled in m, a contradiction.

Proof of Corollary 1

The “only if” statement follows from Theorem 1 and Lemma 1. The "if” part can be
proven analogously to Lemma 11 additionally regarding the non-blocking property.



