
Executability of Scenarios in Petri Nets

Robert Lorenz ∗

Lehrstuhl für Angewandte Informatik, Katholische Universität

Eichstätt-Ingolstadt, 85071 Eichstätt, Germany

Gabriel Juhás

Faculty of Electrical Engineering and Information Technology, Slovak University

of Technology, Bratislava, Slovakia

Robin Bergenthum, Jörg Desel, Sebastian Mauser

Lehrstuhl für Angewandte Informatik, Katholische Universität

Eichstätt-Ingolstadt, 85071 Eichstätt, Germany

Abstract

In this paper we show that it can be tested in polynomial time whether a scenario
is an execution of a Petri net. This holds for a wide variety of Petri net classes,
ranging from elementary nets to general inhibitor nets. Scenarios are given by causal
structures expressing causal dependencies and concurrency among events. In the
case of elementary nets and of place/transition nets, such causal structures are
partial orders among transition occurrences. For several extended Petri net classes,
the extension of partial orders to stratified order structures is considered.

The algorithms are based on the representation of the non-sequential behaviour
of Petri nets by so called token flow functions and a characterization of Petri net
executions called token flow property. This property allows nontrivial transforma-
tions into flow optimization problems which can be solved in polynomial time. The
paper is a revised, consolidated and extended version of the conference papers [1,2]
and includes parts of the habilitation thesis [3].

Key words: Place/Transition Petri Net, Inhibitor Net, Partial Order, Stratified
Order Structure, Partial Order Semantics, Causal Semantics

∗ Corresponding author.
Email addresses: robert.lorenz@ku-eichstaett.de (Robert Lorenz),

gabriel.juhas@stuba.sk (Gabriel Juhás), robin.bergenthum@ku-eichstaett.
de,joerg.desel@ku-eichstaett.de,sebastian.mauser@ku-eichstaett.de

(Robin Bergenthum, Jörg Desel, Sebastian Mauser).

Preprint submitted to Elsevier 16 October 2008

1 Introduction

Specifications of concurrent systems are often formulated in terms of scenarios
expressing causal dependencies and concurrency among events. In other words,
it is often part of the specification that some scenario should or should not
be an execution of the system. Thus, it is natural to consider the following
problem:

Input: A concurrent system model and a scenario.
Problem: Is the scenario an execution of the system model?

In this paper we consider Petri net models of concurrent systems. Petri nets
allow an explicit representation and a distinction of concurrency and nonde-
terminism. They have a concise graphical representation and support a variety
of formal analysis methods. Therefore, they are one of the best established for-
malisms for the study of concurrency and for the modeling of real distributed
systems in many application areas, such as communication networks [4], web-
services [5], manufacturing systems [6] and business processes [7].
We consider the problem for several net classes. As it turns out, the solution is
straightforward for elementary nets but becomes complicated and non-trivial
for place/transition Petri nets (p/t-nets) and their extensions.
An important variant of p/t-nets are Petri nets with inhibitor arcs. Petri nets
with inhibitor arcs “are intuitively the most direct approach to increase the
modeling power of Petri nets” [8] and have been found appropriate in var-
ious application areas [9]. In fact, it is well known that such nets are even
equivalent to Turing-machines (w.r.t. their sequential behaviour), and thus
several decision problems, such as the reachability problem, which are decid-
able for p/t-nets, are undecidable for nets with inhibitor arcs. Therefore, it is
an interesting and important question, whether the considered problem can
be (efficiently) solved for such nets.

Transforming the above question to Petri net models, we ask whether a given
scenario is a possible execution of a given Petri net. There are different ways
to represent executions of Petri nets, depending on the considered semantics.
The most prominent concepts are sequential semantics, step semantics, pro-
cess semantics and causal semantics. Sequential and step semantics are given
by sets of occurrence sequences of single transitions resp. concurrent steps
of transitions. They can be obtained by simply iterating the occurrence rule,
thus there is a straightforward test on executability of such sequences in lin-
ear time. The problem is that occurrence sequences of single transitions lack
any information about independence and causality (Figure 1 (e)). Therefore,
as soon as concurrency of events is specified, occurrence sequences of single
transitions cannot be used for specification of scenarios. Occurrence sequences
of concurrent steps of transitions allow to specify causal dependency and con-

2

currency of events only in a restricted way (Figure 1 (d)).
Process semantics are given by sets of process nets ([10–14]), which are Petri
nets representing transition occurrences by events (transitions of process nets)
with explicit pre-, post- and side-conditions (places of process nets). These con-
ditions represent token occurrences (in places of the original net) and other
causal dependencies (for example context arcs) (Figure 1 (b)). Process nets
can represent arbitrary concurrency relations between events, and their defin-
ing properties can be verified in linear time. On the other side, process nets
are not very suitable for specification purposes for two reasons. First, condi-
tions are labeled by names of places of the model specified. Hence, it is not
possible to specify that two events have to occur in some order, but it is rather
necessary to state which place is responsible for establishing this order. So the
specification includes already details of an implementation. The second disad-
vantage is that a process net determines the precise causality between events.
Hence it is not possible to specify a scenario with two events that may either
occur (causally) ordered or concurrently.

a

c

3

b

2

2

p1 p2

p3

p4

(a) p/t-net N

a

c

b

p1 p2

p3

p4

b2b1

e2e1

c

p4

b3 b4 b5 b6 b7

b8 b9

e3 e4

p3 p3 p3 p3

(b) process net K of N

a

c

be2e1

ce4e3

(c) LPO corresponding to K, not corresponding
to some step occurrence sequence

a

c

be2e1

ce4e3

(d) LPO corresponding to the step occurrence
sequence (a+b)(2c) of N

a

c

be2e1

ce4e3

(e) LPO corresponding to the occurrence
sequence abcc of N

Fig. 1. A place/transition-net (p/t-net) together with executions w.r.t. different
semantics. Each execution corresponds to a partial order of events labeled by tran-
sition names (representing transition occurrences), a so called labeled partial order

(LPOs).

These problems can be overcome by considering causal semantics. Causal se-
mantics are given by sets of appropriate causal structures expressing arbitrary
concurrency relations among events. In the case of p/t-nets, the causal struc-
tures are partial orders of events labeled by transition names (representing
transition occurrences), so called labeled partial orders (LPOs)(Figure 1 (c)-
(e)). 1 Such a partial order between events we interpret as follows: If two events

1 These LPOs are called pomsets (partially ordered multisets) in [15] and partial

words in [16].

3

e1 and e2 labelled by transitions t1 and t2 respectively are ordered (e1 < e2)
then t1 may occur before t2 or both may occur concurrently (concurrent oc-
currence includes sequential occurrence). If e1 and e2 are not ordered, then
concurrent execution of t1 and t2 is demanded. That means, an LPO describes
a possible observation of an execution where possibly not all concurrency is
observed. Thus, a quite natural way to specify scenarios of a p/t-net is in
terms of LPOs, which can (or cannot) be executions of the p/t-net. There are
three equivalent characterizations of executions of p/t-nets, where only the
third one leads to a polynomial test whether a given LPO is an execution:

(i) An LPO is enabled w.r.t. a p/t-net, if, for each cut of the LPO, the marking
reached by firing all transitions corresponding to events smaller than the cut
enables the multi-set of transitions given by the cut (a cut is a maximal set of
independent nodes). Unfortunately no efficient algorithm can immediately
test LPOs to be enabled because the number of cuts grows exponentially
with the size of the LPO in general.

(ii) Process nets can be translated to LPOs by removing all conditions and
keeping the partial order for the events (Figure 1 (c)). We call such LPOs
runs. An LPO is executable in a p/t-net, if it sequentializes (adds causality
to) a run (Figure 1 (c)-(e)). 2 There is no efficient test whether an LPO is
executable, too. This is because with the number of choices also the number
of runs grows exponentially with the size of the p/t-net in general (the p/t-
net belongs to the input of the considered problem).

(iii) In [1] we introduced the so called token flow property of LPOs. We showed
that an LPO is enabled (resp. executable) if and only if it satisfies the token
flow property w.r.t. a given p/t-net. We developed a polynomial algorithm
to test LPOs to fulfil the token flow property, based on a transformation onto
a flow maximization problem. The algorithm runs in time O(q · n · g(n, e)),
where n and e are the number of nodes and edges of the LPO, q is the
number of places of the p/t-net and g(n, e) is the polynomial time bound
of the flow maximization algorithm applied [19].
In [3] an even faster algorithm is presented, running in time O(q · g(n, e)).
But, in comparison to the first algorithm which exhibits a counter example
in the negative case, this faster algorithm returns less information about the
reasons of a negative answer originating from the structure of the p/t-net
or of the LPO.

In the case of Petri nets with inhibitor arcs there are two different causal
semantics leading to different causal structures representing executions. Ac-
cording to the so-called a-posteriori semantics, executions are given by LPOs.
They can be defined as enabled LPOs analogously as in the p/t-net case.
In the a-priori semantics, as observed in [20,21], executions can be formally
given as labeled stratified order structures (LSOs), a proper generalization of

2 It was shown in [17,18] that an LPO is enabled if and only if it is executable.

4

LPOs. 3 In [21] the most general notion of such nets, so called PTI-nets are
considered. The authors develop process semantics for such nets together with
associated causal semantics given in terms of executable LSOs. As discussed in
[14], for this process semantics and causal semantics the important equivalence
of executable and enabled LPOs does not carry over to LSOs and PTI-nets.
That means, if one introduces the notion of enabled LSOs as a proper gener-
alization of enabled LPOs in the obvious way, then there are LSOs which are
enabled but not executable. Therefore, in [14] a modified definition of process
semantics is proposed leading to the equivalence of the notions of enabled and
executable LSOs. The existence of such a process semantics justifies to use
enabled LSOs as causal semantics of PTI-nets in this paper. Obviously, analo-
gously to the case of LPOs, the notions of enabled and executable LSOs again
do not lead to efficient algorithms. In [2] we defined the token flow property
of LSOs w.r.t. PTI-nets as a generalization of the respective notion for LPOs
and p/t-nets and show its equivalence to the notions of executions of enabled
respectively executable LSOs. The polynomial algorithm is then again devel-
oped from the token flow property. It turns out that it can be based on an
algorithm for the LPO case and needs an additional check of inhibitor con-
straints. This additional check is performed through a transformation onto a
flow minimization problem, which allows efficient solution methods, running
in time g(n, e), too.
In Figure 2, the relationship between the different characterizations of execu-
tions is depicted for p/t-nets (left part) and PTI-nets w.r.t. a-priori semantics
(right part).

„enabled“ „executable“

„token flow property“

p/t-nets

[1] Juhas, Lorenz, Desel 2005

Polynomial test

[17] Kiehn 1988, [18] Vogler 1992

„enabled“ „executable“

„token flow property“

PTI-nets (a-priori semantics)

[2] Lorenz, Mauser, Bergenthum 2007

Polynomial test

[14]Juhas, Lorenz, Mauser 2007

Fig. 2. Theorems in literature.

In the conference paper [1] we presented a polynomial algorithm to answer
the executability problem, when the system is given by a p/t-net. In the

3 Stratified order structures were originally introduced independently in [22] (under
the name prossets) and in [23] (under the name composets).

5

habilitation thesis [3] an alternative and faster algorithm is proposed, several
possibilities to optimize both algorithm are discussed and applications are
described. In the conference paper [2] these results are extended to p/t-nets
with weighted inhibitor arcs (PTI-nets), the most general notion of Petri nets
with inhibitor arcs, w.r.t. the a-priori semantics. In this paper we subsume
these results in a consolidated and revised version. Moreover, we adapt the
theory also for PTI-nets w.r.t. the a-posteriori semantics and give a brief
overview on further net classes.
In the case of p/t-nets, the surprising message might not be the existence of
polynomial algorithms but the fact that this is not a trivial problem.

In fact, for elementary Petri nets or 1-safe p/t-nets there exists an immediate
algorithm to decide the problem because a unique corresponding process net
can be constructed from an LPO – if it exists: Given an LPO, we start by
constructing the minimal conditions of the process given by the initial marking
of the net. Then we iteratively choose a minimal event of the LPO, try to
append it to the maximal conditions of the so far constructed process together
with its post-conditions and remove it from the LPO. Since in elementary
nets a place can be marked by at most one token, there is always at most
one possibility to append such an event. If it is not possible to append the
event or if token flow adds order to the LPO through appending the event,
the LPO is no execution. The crucial point for p/t-nets is that due to their
non-safeness there is always the choice between several tokens from the same
place (in particular, there is not a unique process net corresponding to a given
LPO, i.e. an LPO can sequentialize different runs).

On the other side, in the case of PTI-nets the result is quite surprising, because
for many Petri net problems the extension by inhibitor constraints complicates
the solution by several degrees or even leads to undecidability.

The structure of the remainder of this paper is as follows. In Section 2, we con-
sider the executability problem for p/t-nets. We start with a brief discussion
of causal semantics of p/t-nets (Subsection 2.1), then introduce the charac-
terization of executions of p/t-nets called token flow property (Subsection 2.2)
and present two polynomial algorithms to test the token flow property of a
given LPO (Subsection 2.3). We also provide several heuristics to improve
the time bounds of the algorithms (Subsection 2.4), compare the algorithms
concerning efficiency and the possibility of fault analysis (Subsection 2.5) and
briefly discuss related variants of the executability problem (Subsection 2.6).
In Section 3, we discuss causal semantics of PTI-nets (Subsection 3.1) and gen-
eralize the theory to PTI-nets w.r.t. the a-priori semantics (Subsection 3.2)
and the a-posteriori semantics (Subsection 3.3). That means we generalize the
notions of LPOs enabled resp. fulfilling the token flow property w.r.t. p/t-nets
to LSOs (LPOs) enabled resp. fulfilling the token flow property w.r.t. PTI-nets
and present a polynomial algorithm to test the token flow property of a given

6

LSO (LPO). Finally, in Section 4 we give an overview of the solution of the
executability problem for the classes of elementary nets, elementary nets with
(mixed) context (in the a-posteriori and a-priori semantics), p/t-nets with
capacities (in the weak and strong semantics) and p/t-nets with unweighted
inhibitor arcs (in the a-posteriori and a-priori semantics). Some conclusion
and outlook on future work are given in Section 5.

7

2 Place/transition-nets

In this section we consider the problem of the executability of scenarios for
place/transition-nets. We use N to denote the nonnegative integers. Given a
finite set A, the symbol |A| denotes the cardinality of A. A multi-set over A
is a function m : A → N. For an element a ∈ A the number m(a) determines
the number of occurrences of a in m. NA is the set of all multi-sets over A.
A directed graph G is a tuple G = (V,→), where V is a finite set called its set
of nodes and →⊆ V × V is a binary relation over V called its set of arcs. As
usual, given a binary relation →, we also write a → b instead of (a, b) ∈→.
For v ∈ V and W ⊆ V we denote by •v = {v′ ∈ V | v′ → v} the preset of v,
and by v• = {v′ ∈ V | v → v′} the postset of v. •W =

⋃

w∈W
•w is the preset

of W and W • =
⋃

w∈W w• is the postset of W . A sequence of nodes v0 . . . vn

(n ∈ N) with vi−1 → vi for i ∈ {1, . . . , n} is a path from v0 to vn. A path is
simple if no node occurs twice. A path v0 . . . vn with v0 = vn is a cycle.

A partial order is a directed graph (V, <), where <⊆ V × V is an irreflexive,
transitive binary relation. A labeled partial order (LPO) is a triple (V, <, l),
where (V, <) is a partial order, and l is a labeling function on V (Figure 1
(c)-(e)). In this paper, a partial order is interpreted as “earlier than”-relation
between events, which can be observed during an execution of a system.
Two different nodes (events) v, v′ ∈ V are called independent if v 6< v′ and
v′ 6< v. By co< ⊆ V × V we denote the set of all pairs of independent nodes
of V . A co-set is a subset S ⊆ V fulfilling ∀x, y ∈ S : x co< y. A cut is a
maximal co-set. For a co-set S and a node v ∈ V \ S we write v < S (v > S),
if ∃s ∈ S : v < s (∃s ∈ S : v > s), and v co< S, if ∀s ∈ S : v co< s. A node v
is called maximal if v• = ∅, and minimal if •v = ∅.
A subset W ⊆ V is called closed if ∀v, v′ ∈ V : (v ∈ W ∧ v′ < v) =⇒ v′ ∈ W.
For a closed subset W ⊆ V , the partial order (W, < |W×W) is called prefix of
(V, <), defined by W (as usual R|A denotes the restriction of a relation R onto
a set A). The closure of a subset W is given by the set W ∪ {v ∈ V | ∃w ∈
W : v < w}. The closure of a subset defines a prefix of a partial order. The
node set of a prefix equals the closure of the set of its maximal nodes.
By ⋖ ⊆< we denote the the smallest subset <′ of < which fulfils (<′)+ =<
(as usual R+ denotes the transitive closure of a relation R), called the skeleton
(or Hasse diagram) of <.
Given two partial orders po1 = (V, <1) and po2 = (V, <2), we say that po2 is
a sequentialization of po1 if <1⊆<2.
We use all notations defined for partial orders also for LPOs. If lpo = (V, <, l)
and l : V → X, then for a subset W ⊆ V , we define the multi-set l(W) ⊆ NX

by l(W)(x) = |{v ∈ W | l(v) = x}|.

A net is a triple (P, T, F), where P is a finite set of places, T is a finite set of
transitions, satisfying P ∩T = ∅, and F ⊆ (P ∪T)× (T ∪P) is a flow relation.

8

The presets and postsets of (sets of) places and transitions are defined w.r.t.
the directed graph (P ∪ T, F). For simplicity, we consider only nets in which
every transition has a nonempty preset and postset.
A place/transition-net (shortly p/t-net) N is a quadruple (P, T, F, W), where
(P, T, F) is a net, and W : F → N \ {0} is a weight function. We extend
the weight function W to pairs of net elements (x, y) ∈ (P × T) ∪ (T × P)
satisfying (x, y) 6∈ F by W ((x, y)) = 0.
A marking of a p/t-net N = (P, T, F, W) is a function m : P → N. A marked
p/t-net is a pair (N, m0), where N is a p/t-net, and m0 is a marking of N ,
called initial marking. Figure 1 (a) shows a marked p/t-net.

A multi-set (step) of transitions τ ∈ NT is enabled to occur in a marking m of
N if m(p) ≥

∑

t∈T τ(t)W ((p, t)). If a step of transitions τ is enabled to occur
in a marking m, then its occurrence leads to the new marking m′ defined by
m′(p) = m(p) −

∑

t∈T τ(t)(W ((p, t)) − W ((t, p))). We write m
τ

−→ m′ to ex-
press that τ is enabled to occur in m and that its occurrence leads to m′.
A finite sequence of transition steps σ = τ1 . . . τn, n ∈ N, is called step occur-
rence sequence enabled in m0 and leading to mn if there exists a sequence of
markings m1, . . . , mn such that m0

τ1−→ m1
τ2−→ . . .

τn−→ mn. The marking mn

is said to be reachable from the marking m0.
An occurrence net is a net O = (B, E, G) such that | •b|, |b• | 6 1 for every
b ∈ B, and G+ is a partial order on B ∪ E. Places of an occurrence net are
called conditions and transitions of an occurrence net are called events. The
set of conditions which are minimal (maximal) according to G+ is denoted by
Min(O) (Max(O)). Clearly, Min(O) and Max(O) are cuts w.r.t. G+.
A process of (N, m0) is a pair K = (O, ρ), where O is an occurrence net
and ρ : B ∪ E → P ∪ T is a labeling function with (i) ρ(B) ⊆ P and
ρ(E) ⊆ T , (ii) ∀e ∈ E, ∀p ∈ P : |{b ∈ •e | ρ(b) = p}| = W ((p, ρ(e)))
and ∀e ∈ E, ∀p ∈ P : |{b ∈ e• | ρ(b) = p}| = W ((ρ(e), p)) and (iii)
∀p ∈ P : |{b ∈ Min(O) | ρ(b) = p}| = m0(p) (Figure 1 (b)).

2.1 Causal semantics of p/t-nets

In this subsection we briefly summarize known notions and results concerning
the causal semantics of p/t-nets. As mentioned in the Introduction, executions
of p/t-nets are represented as enabled LPOs or executable LPOs.
The notion of executable LPOs is based on so called runs associated to a
process net K = (O, ρ) of a marked p/t-net (N, m0). The run of (N, m0)
representing K is defined as the LPO lpoK = (E, G+|E×E, ρ|E) . A run is said
to be minimal if it is not a sequentialization of another run. 4 An LPO (V,≺, l)

4 In an elelementary net, having only arc weights and markings of value 0 and 1,
every run is minimal.

9

is executable in (N, m0) if there is a run (V, <, l) of (N, m0) with <⊆≺, and
minimal executable if it is a minimal run.
An LPO lpo = (V,≺, l) is called enabled (to occur) w.r.t. (N, m0) if for every
cut S of lpo and every p ∈ P :

m0(p) +
∑

v∈V ∧v≺S

(W ((l(v), p)) − W ((p, l(v)))) ≥
∑

v∈S

W ((p, l(v))).

Its occurrence leads to the marking m′(p), given by

m′(p)= m0(p) +
∑

v∈V

(W ((l(v), p)) − W ((p, l(v))))

= m0(p) +
∑

t∈T

l(V)(t)(W ((t, p)) − W ((p, t))).

We write m0
lpo
−→ m′ in this case. This definition can be equivalently formu-

lated with cosets instead of cuts.
An equivalent characterization of enabled LPOs is through step occurrence
sequences. A step sequence of transitions σ = τ1 . . . τn can be identified with
the LPO lpoσ = (V,≺, l), where V =

⋃n
i=1 Vi is a disjoint union and l : V → T

with l(Vi)(t) = τi(t), and ≺=
⋃

i<j Vi × Vj. An LPO is enabled if and only
if each step sequence sequentializing the LPO is a step occurrence sequence
of (N, m0). An enabled LPO is said to be minimal enabled if it is not the
sequentialization of another enabled LPO.
It is clear by definition that if an LPO is enabled w.r.t. a marked p/t-net
(N, m0) and its occurrence leads to m′, then every sequentialization of this
LPO is enabled w.r.t. (N, m0) and leads to m′, too. Moreover, it can be easily
shown that runs are enabled. This directly implies that executable LPOs are
always enabled. The important result completing the relationship between en-
abled LPOs, runs and executable LPOs was proven in [17,18]. It states that if
an LPO is enabled w.r.t. (N, m0), then it is also executable in (N, m0). This
implies in particular that the set of minimal runs of a marked p/t-net equals
the set of its minimal enabled LPOs. Enabled resp. executable LPOs are also
called executions in this paper, minimal enabled LPOs are called also minimal
executions. Figure 1 (c) shows a run of a p/t-net, which is not minimal. The
LPOs shown in the parts (d) and (e) sequentialize this run.

2.2 Token flow property

In this subsection we briefly restate the definitions and main results of the
conference paper [1] concerning the characterization of Petri net executions
by token flow functions. Since the focus of this paper is on algorithms, we omit
the proofs here (they can be found in [1]).

10

From the last subsection we have that an LPO is executable if and only if
it is enabled. As argued in the Introduction, these two notions of executions
are not appropriate to deduce efficient algorithms for a test on executability.
Therefore, we introduce the so called token flow property of LPOs w.r.t. a
marked p/t-net (N, m0). The token flow property is based on a new repre-
sentation of the non-sequential behaviour of p/t-nets by so called token flow
functions. In [1] we show that an LPO fulfils the token flow property w.r.t
(N, m0) if and only if it is executable in (N, m0). In the next subsections we
present polynomial tests of LPOs to check if they fulfil the token flow prop-
erty. In the positive case, these tests compute a run of (N, m0) sequentialized
by this LPO.

Fix a marked p/t-net (N, m0), N = (P, T, F, W), and a place p ∈ P . Given
an LPO lpo = (V,≺, l) with l(V) = T we assign non-negative integers to its
edges through a so called token flow function. The aim is to find a token flow
function χ assigning values χ((v, v′)) to edges (v, v′) in such a way that there
is a process with exactly χ((v, v′)) post-conditions of v labeled by p which
are also pre-conditions of v′. Thus, such a token flow function of lpo abstracts
from the individuality of conditions of a process and encodes the flow relation
of this process by natural numbers. That means in particular that χ((v, v′))
equals the number of tokens which are first produced by the transition l(v)
and then consumed by the transition l(v′). It is possible to assign the value 0
to an edge. An LPO fulfils the token flow property, if there exists such a token
flow function for every place p. In the positive case, the LPO sequentializes
the run corresponding to the process encoded by the token flow functions.
In order to simplify the formal definition of the token flow property, we define
an extension of lpo = (V,≺, l) by adding an initial node which is smaller than
all nodes from V and is labeled by a new label. It represents a transition
producing the initial marking and helps to avoid several case distinctions in
the formal definitions.

Definition 1 (Token flow function) An LPO lpo0 = (V 0,≺0, l0), where
V 0 = (V ∪ {v0}), v0 /∈ V , ≺0=≺ ∪({v0} × V), and l0(v0) /∈ l(V), l0|V = l, is
called 0-extension of lpo = (V,≺, l).
We define In(v, χ) =

∑

v′≺v χ((v′, v)) and Out(v, χ) =
∑

v≺v′ χ((v, v′)) for a
function χ :≺0→ N and v ∈ V 0.
A function χ :≺0→ N is a token flow function of lpo, if it satisfies (Tff)
∀v, v′ ∈ V 0 : l(v) = l(v′) =⇒ In(v, χ) = In(v′, χ). In(v, χ) is the intoken
flow of v w.r.t. χ and Out(v, χ) is the outtoken flow of v w.r.t. χ.

This definition differs from that in [1]. While in [1] token flow functions were
defined as general as possible, we here additionally require property (Tff).
This is more intuitive and does not restrict the setting or change the ar-
gumentations, since (Tff) is implicitly contained in the token flow property
defined below. Each process K = (O, ρ), O = (B, V, G) of (N, m0) defines so

11

a

c

b

p1 p2

p3

p4

b2b1

e2e1

c

p4

b3 b4 b5 b6 b7

b8 b9

e3 e4

p3 p3 p3 p3

(a) process net K1 of N

a

c

be2e1

c
e4e3a

c

b

p1 p2

p3

p4

b2b1

e2e1

c

p4

b3 b4 b5 b6 b7

b8 b9

e3 e4

p3 p3 p3 p3

(b) process net K2 of N

(c) Canonical token flow function
w.r.t. K1 and p3

v0

2 2

0 00 0

a

c

be2e1

c
e4e3

v0

1 1

0 00 0

1 1

(d) Canonical token flow function
w.r.t. K2 and p3

Fig. 3. Two processes (parts (a) and (b)) of the p/t-net N from Figure 1 (a) and
the two corresponding runs (parts (c) and (d)) with annotated canonical token flow
function w.r.t. the place p3.

called canonical token flow functions χp :≺0→ N of the run (V,≺, l) represent-
ing this process via χp((v, v′)) = |{b ∈ B | ρ(b) = p ∧ b ∈ v• ∩ •v′}| for each
place p (denote v•

0 = Min(O)) (Figure 3). Canonical token flow functions
obviously fulfil (Tff). By definition, the intoken flow and the outtoken flow
of an event w.r.t. a canonical token flow function respect the weight function
and the initial marking of (N, m0). This property is called token flow property
(Figure 4).

Definition 2 (Token flow property) Let W ((l(v0), p)) = m0(p) for each
place p ∈ P . Then lpo = (V,≺, l) fulfils the token flow property (TFP) w.r.t.
(N, m0) if for all p ∈ P there is a token flow function χp :≺0→ N satisfying
(IN) ∀v ∈ V : In(v, χp) = W ((p, l(v))) and (OUT) ∀v′ ∈ V 0 : Out(v′, χp) 6

W ((l(v′), p)).

If for some fixed place p there is such a token flow function χp, we also say
that lpo fulfils the TFP w.r.t. p.

a

c

be2e1

c
e4e3

(a) Token flow function χ
fulfilling (IN) and (OUT) w.r.t. p3

v0

2 1

0 00 0

a

c

be2e1

c
e4e3

v0

2

0 00 0

21

(b) Token flow function χ not fulfilling (OUT) w.r.t. p3,
since Out(e2,χ)=4 > 2=W((b,p3))

Fig. 4. LPOs fulfilling the TFP (part (a)) and not fulfilling the TFP (part (b)) w.r.t.
the p/t-net N from Figure 1 (a).

12

Theorem 3 ([1]) An LPO is executable if and only if it fulfils the token flow
property.

2.3 Polynomial Algorithms

In this subsection we will present two polynomial approaches to test a given
LPO for the TFP. While the second one has a faster runtime, the first one
allows a better fault analysis in case an LPO fails to be an execution. Both
algorithms are based on flow theory (see for example [24]).

2.3.1 Iterative Procedure

To describe the algorithm, which was also presented in the conference paper
[1], we fix a marked p/t-net (N, m0), N = (P, T, F, W), an LPO lpo = (V,≺
, l) with l(V) = T , a 0-extension lpo0 = (V 0,≺0, l0) of lpo and a place p.
The algorithm is based on an iterative procedure w.r.t. a fixed total ordering
V 0 = {v0, v1, . . . , vn} with vi ≺0 vj ⇒ i < j. In the case lpo fulfils the
token flow property w.r.t. p, the algorithm constructs a token flow function
χp fulfilling (IN) and (OUT) w.r.t. p. In the case that lpo does not fulfil the
TFP w.r.t. p, a prefix of lpo is computed,

• which is enabled w.r.t. p,
• and whose subsequent cut of events represents a multi-set of transitions

which are not concurrently enabled w.r.t. p after the occurrence of the prefix.

This proves the correctness of the algorithm. Moreover, the computation of
such prefixes allows a detailed fault analysis.
The algorithm starts with an initial token flow function χp

0 fulfilling (IN) for
all events and iteratively modifies this token flow function in such a way that
(OUT) is satisfied for a growing set of nodes, while (IN) remains preserved
for all nodes (w.r.t. the fixed place p). We denote by χp

i the token flow function
computed after i subsequent modifications of χ0 and by max(χp

i) the greatest
index k such that χp

i satisfies (OUT) w.r.t. the events v0, . . . , vk−1. If p is
clear from the context, we write for short χi = χp

i and max(i) = max(χp
i). χi

is modified by a polynomial procedure Mod(χi) which returns a token flow
function χi+1 with the following formal properties:

(Mod1) ∀v′ ∈ V : In(v′, χi+1) = In(v′, χi).
(Mod2) ∀k < max(i) : Out(vk, χi+1) 6 W ((l(vk), p)).
(Mod3) Out(vmax(i), χi+1) 6 Out(vmax(i), χi).

Notice that an initial token flow function always exists. For example define
χ0 :≺0→ N by χ0((v, v′)) = W ((p, l(v′))) for v = v0 and χ0((v, v′)) = 0 else

13

(Figure 5 (a)). It is easy to see, that χ0 fulfils property (Tff). The algorithm
terminates, if either

(T1) χi fulfils property (OUT) for all nodes – in this case χi is a token flow
function showing that lpo fulfils the TFP w.r.t. the considered place p, or

(T2) max(i) = max(i − 1) – in this case we will prove in Theorem 11 that
lpo is not enabled w.r.t. (N, m0).

Algorithm 1 summarizes the described technique.

Algorithm 1 (Tests whether lpo fulfils the TFP w.r.t. p)
Step 1: Compute an initial token function χp

0 and set i = 0 (i ∈ N).

Step 2: Repeat as long as χp
i does not fulfil (OUT) and max(χp

i) > max(χp
i−1):

Compute χp
i+1 = Mod(χp

i) and increase i by one.

Step 3: Return true, if and only if χp
i fulfils (OUT).

This algorithm has to be applied for every place p ∈ P . χp
i fulfils (OUT) if and

only if max(i) = n + 1. Since vn always satisfies (OUT), Mod() is repeated
at most n times.

The modification of χi is based on flow theory.
A flow network is a tuple (G, c, s, t), where G = (V, E) is a directed graph,
c : E → N is the capacity function, s ∈ V is the unique node with •s = ∅
called source and t ∈ V is the unique node with t• = ∅ called sink. For a
compact representation we extend the capacity function c to pairs of nodes
(x, y) ∈ (V × V) \ E by c((x, y)) = 0.
A flow f in a flow network is a function f : E → N satisfying ∀e ∈ E :
f(e) 6 c(e) (capacity constraint) and ∀v ∈ V \ {s, t} :

∑

v′∈ •v f((v′, v)) =
∑

v′∈v• f((v, v′)) (flow conservation property). The value |f | =
∑

v′∈s• f((s, v′))
of a flow f is the outgoing flow of the source. It can be equivalently computed
as the ingoing flow of the sink. A maximal flow is a flow with maximal value
among all flows.
The Maximal Flow Problem is to compute the value of a maximal flow in a flow
network. This problem can be solved in polynomial time by explicit construc-
tion of a maximal flow. The best algorithms (based on different methods) have
time complexity O(n3) [25,26], O(ne log(n2/e)) [26] and O(ne + n2(log c∗)1/2)
[27], where n is the number of nodes, e the number of arcs and c∗ the maximal
capacity of an arc of the flow network.
Without loss of generality in this paper we only consider flows such that there
is no cycle with positive flow in the flow network.

The aim of the modification of χi is to decrease the outtoken flow of vmax(i).
This can be done by decreasing the token flow on some edge (vmax(i), v). Since
this decreases the intoken flow of v, we have to increase the token flow on
another ingoing edge (v′, v) of v (by the same amount) in order to ensure

14

(IN). This in turn increases the outtoken flow of v′, i.e. we have redistributed
outoken flow from vmax(i) to v′. If this contradicts (Mod2), we can try the
same for v′ and so on.
We will represent the amount of change of χi by a flow in an appropriate
flow network associated to lpo and χi. In a natural way, the flow conservation
property will ensure that intoken and outoken flows are not changed on “inter-
mediate” nodes. The basic idea of the construction is that the flow, computed
so far, can still be increased if and only if χi can still be modified decreasing
the outtoken flow of vmax(i), i.e. the minimal possible outtoken flow of vmax(i)

can be computed through a maximal flow in the flow network.
Edges in lpo are represented in the flow network in original and in reversed
order. Flow on edges in original order will be substracted from the token flow
given by χi, flow on edges in reversed order will be added. On edges of lpo with
positive value of χi token flow can be substracted. Therefore, such edges are
also drawn in the flow network. Besides, on all edges token flow can be added.
Therefore, all edges of lpo are drawn in reversed order in the flow network. In
order to preserve the properties (Tff), (IN) and (OUT), each event v of lpo is
split into a node (v, out) (reflecting the outtoken flow of v) and a node (v, in)
(reflecting the intoken flow of v) of the flow network. The node (vmax(i), out)
serves as the source of the flow network.

Definition 4 (Associated flow network) Denote the residue of v w.r.t.
χi R(v, χi) = W ((l(v), p)) −Out(v, χi). The flow network (G, c, s, t), G =
(W, E), associated to lpo and χi is defined by W = (V × {in, out}) ∪ {t},
s = (vmax(i), out), E = Elpo ∪ Elporev ∪ Eupper ∪ Elower and c : E → N, where

Elpo = {((vj, out), (vl, in)) | j 6 max(i), χi((vj , vl)) > 0},

Elporev = {((vl, in), (vj, out)) | j 6= max(i), vj ≺
0 vl},

Eupper = {((vj, out), t) | j > max(i)},

Elower = {((vj, out), t) | j < max(i)},

c(e)= χi((vj , vl)) if e = ((vj , out), (vl, in)) ∈ Elpo,

c(e)= Out(vmax(i), χi) if e = ((vl, in), (vj, out)) ∈ Elporev,

c(e)= Out(vmax(i), χi) if e = ((vj , out), t) ∈ Eupper,

c(e)= R(vj, χi) if e = ((vj , out), t) ∈ Elower.

As mentioned, a flow on edges in Elpo is subtracted from χi. Therefore the
flow through such edges is bounded by the value of χi. If there is a non-zero
flow, the outtoken flow of vmax(i) is decreased by this flow.
A flow on edges in Elporev is added to χi. The the capacity Out(vmax(i), χi) on
such edges is chosen not to restrict the maximal possible flow. An important
characterization of maximal flows considers so called minimal flow cuts. A flow

15

cut is a pair of sets X, Y ⊆ V with X ∪ Y = V , X ∩ Y = ∅, s ∈ X and t ∈ Y .
The capacity of a flow cut is c(X, Y) =

∑

x∈X, y∈Y, x→y c((x, y)). The famous
maximal flow-minimal flow cut theorem states that the maximum flow in a flow
network equals the minimum capacity of a flow cut in this flow network. 5 The
capacity Out(vmax(i), χi) is the capacity of the flow cut ({s}, W \ {s})).
If for an event vj with j 6= max(i) there is no flow from (vj, out) to the sink
t, then by construction and from the properties of flows we get that these
modifications of χi do not change the intoken flow or the outtoken flow of vj .
If there is a flow from (vj , out) to t, the outtoken flow of vj is increased. If
j > max(i) (flow on an edge in Eupper), such edges need no restrictive capacity
bound. On the other hand, if j < max(i) (flow on an edge in Elower), the flow
is restricted by R(vj , χi) in order not to violate (OUT). Figure 5 (b) shows
an associated flow network.
We now formally define how to modify χi by a flow in the associated flow
network.

Definition 5 (Modified token flow function) For a flow f in (G, c, s, t),
define the token flow function χf modifying χi w.r.t. f as follows:

• χf((vj , vl)) = χi((vj , vl))−f(((vj, out), (vl, in))) if ((vj, out), (vl, in)) ∈ Elpo,
• χf((vj , vl)) = χi((vj , vl))+f((vl, in), (vj, out)) if ((vl, in), (vj, out)) ∈ Elporev,
• χf((v, v′)) = χi((v, v′)) else.

The following lemma shows, that the presented modification yields the in-
tended properties.

Lemma 6 Let f be a flow in (G, c, s, t). Then χf satisfies (Mod1)-(Mod3)
with Out(vmax(i), χf) = Out(vmax(i), χi) − |f |.

PROOF. Denote ≺lpo= {(v, v′) ∈≺0| ((v, out), (v′, in)) ∈ Elpo} and ≺lporev=
{(v, v′) ∈≺0| ((v′, in), (v, out)) ∈ Elporev}. Property (Mod1) follows from the
following computation for (v′, in) ∈ W , using the second defining property of
flows (ingoing and outgoing flow of each node coincide):

∑

v≺lpov′
f(((v, out), (v′, in))) =

∑

µ∈ •(v′,in)

f((µ, (v′, in)))

=
∑

µ∈(v′,in)•

f(((v′, in), µ))

=
∑

v≺lporevv′
f(((v′, in), (v, out))).

5 We use the term flow cut here instead of the usual term cut in order to get not
cconfused with cuts in partial orders.

16

We get In(v′, χf) = In(v′, χi) for v′ ∈ V because In(v′, χf) = In(v′, χi) +
∑

v≺lporevv′ f(((v′, in), (v, out)))−
∑

v≺lpov′ f(((v, out), (v′, in))). Analogously we

deduce (Mod2) from the following computation for (v, out) ∈ W \{(v0, out)}:

∑

v≺lporevv′
f(((v′, in), (v, out))) = f(((v, out), t)) +

∑

v≺lpov′
f(((v, out), (v′, in))),

For k < max(i) this implies Out(vk, χf) = Out(vk, χi)+
∑

v′≺lporevvk
f(((v′, in),

(vk, out)))−
∑

vk≺lpov′ f(((vk, out), (v′, in))) = Out(vk, χi)+ f(((vk, out), t)) 6

Out(vk, χi) + R(vk, χi) = W ((l(vk), p)). The equation

(∗) Out(vk, χf) = Out(vk, χi) + f(((vk, out), t))

we will reuse in the proof of Lemma 8 (ii).
With the definition of |f | we get:

Out(vmax(i), χf)= Out(vmax(i), χi) −
∑

vmax(i)≺lpov′
f(((vmax(i), out), (v′, in)))

= Out(vmax(i), χi) −
∑

µ∈(vmax(i),out)•

f(((vmax(i), out), µ))

= Out(vmax(i), χi) − |f |.

The function χf is a token flow function, because (Mod1) implies (Tff). �

We are now able to formally introduce the procedure Mod(χi):

Algorithm 2 (Procedure Mod(χi) = χi+1)
Step 1: Compute the flow network (G, c, s, t) associated to lpo and χi.

Step 2: Compute a maximal flow f in (G, c, s, t).

Step 3: Return χi+1 = χf (Figure 5 (c)).

The final verification procedure Algorithm 3 applies Algorithm 1 to each place
p ∈ P with integrated procedure Mod().

Algorithm 3 (Tests, if lpo is an execution of (N, m0))
Step 1: Repeat for all places p ∈ P :

Step 1.1: Compute an initial token function χp
0 and set i = 0 (i ∈ N).

Step 1.2:Repeat as long as χp
i does not fulfil (OUT) and max(χp

i) > max(χp
i−1):

Step 1.2.1: Compute the flow network (G, c, s, t) associated to lpo and χp
i .

Step 1.2.2: Compute a maximal flow f in (G, c, s, t).

Step 1.2.3: Compute χf , set χp
i+1 = χf and increase i by one.

Step 2: Return true if and only if χp
i fulfils (OUT) for each p ∈ P .

17

a

c

be2e1

c
e4e3

Vmax(0)

0 0

0 02 2

0 0

(a) Initial token flow function
χ0 w.r.t. p3

2/22/2

4/3 4/1

a

c

be2

c
e4e3

V0

2 1

0 00 0

0 1

s

t

out-node

in-node

0/0 0/0

4/1 4/0

4/14/2

capacity
flow

(b) Flow network associated to χ0
with maximal flow f

(c) Modified token flow function
χ1 w.r.t. f

e1

4/04/0

Fig. 5. Application of Mod(χ0) for the p/t-net N shown in Figure 1 (a). Observe
that χ1 fulfils the token flow property w.r.t. p3.

It remains to prove the correctness of this algorithm. Lemma 6 says that lpo
fulfils the TFP w.r.t. the place p, if the loop of Algorithm 1 terminates because
χi satisfies (OUT) (case (T1)). Thus, if Algorithm 3 returns true, lpo is an
execution. Algorithm 3 returns false, if the loop in Algorithm 1 terminates for
some place because max(i) = max(i − 1) for some i (case (T2)). In this case
we show that lpo is not an execution, using the equivalent characterization
of executions as enabled LPOs. That means, we construct a cut C of lpo
such that m0(p)+

∑

v∈V ∧v≺C(W ((l(v), p))−W ((p, l(v)))) <
∑

v∈C W ((p, l(v)))
(Figure 6 (b)).
This cut C is constructed in several steps. First we define the set of nodes
Df(χi, p) which turns out to define a prefix enabled w.r.t. p. Next we define
the set of nodes Cf(χi, p) which turns out be the co-set having Df (χi, p) as
its set of smaller events. We will prove, that after the occurrence of the prefix
given by Df(χi, p) the step given by Cf(χi, p) is not enabled. Finally we extend
the co-set Cf(χi, p) to the cut C(χi, p) with the same set of smaller events.
Since Cf(χi, p) is not enabled, also C(χi, p) is not enabled, i.e. C(χi, p) will
be the searched cut.

Definition 7 (Critical coset (cut)) Let f be a maximal flow of the network
associated to lpo and χi. Assume that χf does not fulfil (OUT) for the node
vmax(i). Let Df (χi, p) be the set of all nodes v ∈ V 0 such that there exists
a sequence of nodes σ(v) = v0w1v1 . . . wkvk with v0 = vmax(i) and vk = v
satisfying (C1) ∀j 6= m : wj 6= wm ∧ vj 6= vm and (C2) ∀j : χf(v

j , wj+1) >
0 ∧ vj ≺0 wj. Then the set

Cf(χi, p) = {w ∈ V \ Df(χi, p) | ∃v ∈ Df(χi, p) : χf((v, w)) > 0}

is called critical coset (w.r.t. χi and p). The set

C(χi, p) = {w ∈ V \ Df(χi, p) | (v ≺0 w) =⇒ (v ∈ Df (χi, p))}

is called critical cut (w.r.t. χi and p).

18

a

c

be1

c
e4e3

v0

2

0 00 0

2

(b) Modified token flow function χ1=χ2.
It does not fulfil (OUT) w.r.t. p3.

Cf(χ2,p3)

Df(χ2,p3)

a

c

be2e1

c
e4e3

Vmax(0)

0

0 02 2

0

(a) Initial token flow function
χ0 w.r.t. p3

Vmax(1)

Fig. 6. An LPO which is not an execution of the p/t-net N shown in Figure 1 (a)
with computed token flow functions and critical coset.

For a node v ∈ Df(χi, p) and a corresponding sequence σ(v) = v0w1v1 . . . wkvk

it holds ∀j 6 k : vj ∈ Df(χi, p) and wj 6∈ Df (χi, p) ⇐⇒ wj ∈ Cf(χi, p) (1 6

j 6 k).
We first show that Df (χi, p) defines a prefix enabled w.r.t. p and that Cf(χi, p)
is a coset having Df (χi, p) as its set of smaller events. Moreover, the next
lemma prepares the computation of the marking of p after the ocurrence of
the prefix.
For this we use the characterization of maximal flows through so called flow
augmenting paths. Some of the maximal flow algorithms are based on the idea
to iteratively increase the flow along such flow augmenting paths (starting
with the 0-flow). This idea was first proposed in [28] (leading to a pseudo-
polynomial O(ef ∗)-algorithm, where f ∗ denotes the value of a maximal flow,
and improved for example in [25], where an O(n3)-algorithm is presented).
Flow augmenting paths are defined in a so called residual network (Gf , cf , s, t),
Gf = (V, E→), of (G, c, s, t) w.r.t. a flow f , defined by the set of edges E→ =
{(v, v′) ∈ V × V | (v, v′) ∈ E ∨ (v′, v) ∈ E} and the residual capacity function
cf : E→ → N given by cf((v, v′)) = c((v, v′))−f((v, v′)) if (v, v′) ∈ E∧(v′, v) 6∈
E, cf ((v, v′)) = f((v′, v)) if (v, v′) 6∈ E ∧ (v′, v) ∈ E and by cf ((v, v′)) =
c((v, v′)) − (f((v, v′)) − f((v′, v))) if (v, v′), (v′, v) ∈ E. A flow augmenting
path of N w.r.t. f is a simple path v0 . . . vn from s = v0 to t = vn in (V, E→)
with cf ((vi−1, vi)) > 0 for i ∈ {1, . . . , n}.
In [28] it is proven that there is no flow augmenting path of the flow network
w.r.t. f if and only if f is maximal. Moreover, it is shown there that in flow
networks with integer capacities there are always integer maximal flows.

Lemma 8 Let f be a maximal flow of the network associated to lpo and χi.
Assume that χf does not fulfil (OUT) for the node vmax(i). It holds:

(i) vj ∈ Df(χi, p) =⇒ j 6 max(i).
(ii) (vj ∈ Df(χi, p) ∧ j 6= max(i)) =⇒ R(vj , χf) = 0.
(iii) (∃w ∈ Cf(χi, p) : v ≺0 w) ⇐⇒ v ∈ Df(χi, p).

19

PROOF. To prove (i) and (ii) we assume the converse and deduce that then
there is a flow augmenting path w.r.t. f in the associated flow network – this
is a contradiction to the maximality of f .
Since by assumption |f | < Out(vmax(i), χi) (and since there is no positive flow
along cycles) also f(e) < Out(vmax(i), χi) for each edge e.

ad (i): Let vj ∈ Df(χi, p), σ(vj) = v0w1v1 . . . wkvk with j > max(i) and
m be the smallest index satisfying vm = vl for l > max(i). We claim that
then (v0, out)(w1, in)(v1, out) . . . (wm, in)(vm, out)t is a flow augmenting path
w.r.t. f in the associated flow network. To prove this, we must show that
(v0, out)(w1, in)(v1, out) . . . (wm, in)(vm, out)t is a path in the residual network
(Gf , cf , s, t), Gf = (W, Ef), of (G, c, s, t) w.r.t. f satisfying

• cf(((v
l−1, out), (wl, in))) > 0 (1 6 l 6 m),

• cf(((w
l, in), (vl, out))) > 0 (1 6 l 6 m),

• cf(((v
m, out), t)) > 0.

From the definitions we get ((wl, in), (vl, out)) ∈ Elporev, i.e.

cf (((w
l, in), (vl, out)))> c(((wl, in), (vl, out))) − f(((wl, in), (vl, out)))

= Out(v0, χi) − f(((wl, in), (vl, out))) > 0.

Moreover, we get ((vl−1, out), (wl, in)) ∈ Elpo, i.e.

cf(((v
l−1, out), (wl, in)))

> c(((vl−1, out), (wl, in))) − f(((vl−1, out), (wl, in)))

= χi((v
l−1, wl)) − f(((vl−1, out), (wl, in)))

= χf((v
l−1, wl)) > 0.

Finally, ((vm, out), t) ∈ Eupper, i.e.

cf (((v
m, out), t)) > c(((vm, out)), t) − f(((vm, out), t))

= Out(v0, χi) − f(((vm, out), t)) > 0.

ad (ii): Let vj ∈ Df (χi, p) and σ(vj) = v0w1v1 . . . wkvk with j 6= max(i)
and R(vj , χf) 6= 0. According to (i) we have j < max(i). Since χf satisfies
(Mod2), it follows R(vj , χf) > 0. We claim that (v0, out)(w1, in)(v1, out)
. . . (wk, in)(vk, out)t is a flow augmenting path w.r.t. f in the associated flow
network. We show that

• cf(((v
l−1, out), (wl, in))) > 0 (1 6 l 6 k),

• cf(((w
l, in), (vl, out))) > 0 (1 6 l 6 k),

• cf(((v
k, out), t)) > 0.

20

As above we deduce cf (((w
l, in), (vl, out))) > 0 and cf(((v

l−1, out), (wl, in))) >
0. Finally, we get (the fourth equation follows from the computation (∗) in
the proof of Lemma 6)

cf (((v
k, out), t)) > c(((vk, out), t)) − f(((vk, out), t))

= R(vk, χi) − f((vk, out), t)

= W ((l(vk), p)) − Out(vk, χi) − f((vk, out), t)

= W ((l(vk), p)) − Out(vk, χf)

= R(vk, χf) > 0.

ad (iii) =⇒: Let w ∈ Cf(χi, p) with v ≺0 w. We construct a sequence σ(v) =
vmax(i) . . . v fulfilling (C1) and (C2). By the definition of Cf(χi, p) there is a
node v′ ∈ Df(χi, p) with χf ((v

′, w)) > 0. Let σ(v′) = vmax(i)w
1v1 . . . wkvk. In

the cases v = v′ or v = vj for j ∈ {0, . . . , k} it follows v ∈ Df(χi, p). We
distinguish the following remaining cases:

• (∃j ∈ {0, . . . , k} : wj = w): vmax(i)w
1v1 . . . wjv satisfies (C1) and (C2).

• (∀j ∈ {0, . . . , k} : wj 6= w): vmax(i)w
1v1 . . . wkv′wv satisfies (C1) and (C2).

ad (iii) ⇐=: Let v ∈ Df (χi, p) and σ(v) = vmax(i)w
1v1 . . . wkvk. We will find

w ∈ Cf(χi, p) with v ≺0 w. For this, we distinguish the following cases:

• v = vmax(i): By assumption it holds vmax(i) ≺0 Cf(χi, p) since vmax(i) has
positive outtoken flow.

• wk ∈ Cf (χi, p): v = vk ≺0 wk ∈ Cf(χi, p).
• wk ∈ Df (χi, p): Let v be a maximal node in the set {v′ ∈ Df(χi, p) | v ≺0 v′}

w.r.t. ≺0 (the set is not empty since wk is one of its elements). Let σ(v) =
vmax(i)w

1v1 . . . wlvl satisfy (C1) and (C2). Then wl 6∈ Df(χi, p) (otherwise
v would not be maximal) and thus v ≺0 v ≺0 wl ∈ Cf(χi, p).

�

Property (iii) of the last lemma directly implies that Cf (χi, p) is a coset and
that Df (χi, p) ⊆ V defines a prefix. From Property (i) we deduce easily that
the prefix defined by Df (χi, p) is enabled.
The following straightforward lemma shows that C(χi, p) is the extention of
the coset Cf (χi, p) to a cut with the same set of smaller events.

Lemma 9 It holds:

(i) Cf(χi, p) ⊆ C(χi, p).
(ii) v ≺0 Cf(χi, p) ⇐⇒ v ≺0 C(χi, p).
(iii) C(χi, p) is a cut.

21

PROOF. ad (i): Let w ∈ Cf(χi, p) and v′ ≺0 w. We have to show that v′ ∈
Df(χi, p). For this we construct a sequence σ(v′) = vmax(i) . . . v′ satisfying (C1)
and (C2). By definition there is a node v ∈ Df(χi, p) with χf((v, w)) > 0. Let
σ(v) = vmax(i)w

1v1 . . . wkvk. If v = vj for some j then clearly v′ ∈ Df (χi, p). Let
v 6= vj for all j: If w = wj for some j then we set σ(v′) = vmax(i)w

1v1 . . . wjv′,
otherwise we set σ(v′) = vmax(i)w

1v1 . . . wkvkwv′.

ad (ii): According to Lemma 8 (iii) it holds v ∈ Df(χi, p) =⇒ v ≺0 Cf(χi, p).
Therefore, it is enough to show that v ≺0 Cf(χi, p) =⇒ v ≺0 C(χi, p) =⇒
v ∈ Df (χi, p). The first implication follows from Cf(χi, p) ⊆ C(χi, p), the
second one follows from the definition of C(χi, p).

ad (iii): By definition C(χi, p) is a coset. It remains to show that C(χi, p) is
maximal. Let v 6∈ C(χi, p). We will prove that then there is a node w ∈ C(χi, p)
with v ≺0 w or w ≺0 v. We distinguish the following cases:

• v ∈ Df (χi, p): From (i) and Lemma 8 (iii) we deduce v ≺0 w for some
w ∈ C(χi, p).

• v 6∈ Df(χi, p): The set of nodes v′ ≺0 v with v′ ∈ Df(χi, p) is not empty
because v0 ∈ Df(χi, p) according to Lemma 8 (iii). Since v 6∈ C(χi, p), by the
definition of C(χi, p) there must be a node v′ ≺0 v with v′ 6∈ Df(χi, p). Let m
be the smallest index with vm 6∈ Df(χi, p) and vm ≺0 v. Then vm ∈ C(χi, p)
by the definition of C(χi, p) (otherwise there would be a smaller index).

�

We finally compute that after occurrence of the prefix defined by Df (χi, p),
the step given by the cut C(χi, p) is not enabled.

Lemma 10 It holds for C = C(χi, p):

m0(p) +
∑

v≺C

(W ((l(v), p)) − W ((p, l(v)))) −
∑

v∈C

W ((p, l(v))) < 0.

PROOF. We first consider the coset C = Cf(χi, p). The token flow function
χf has the following properties:

• W ((l(vmax(i)), p)) < Out(vmax(i), χf) =
∑

vmax(i)≺0v′ χf ((vmax(i), v
′)).

• ∀v ∈ Cf (χi, p) ∪ Df(χi, p) : W ((p, l(v))) = In(v, χf) =
∑

v′≺0v χf((v
′, v)).

• ∀v ∈ Df (χi, p) \ {vmax(i)} : W ((l(v), p)) = Out(v, χf) =
∑

v≺0v′ χf ((v, v′))
(Lemma 8 (ii)).

With m0(p) = W ((l(v0), p)) it is enough to show

22

m0(p) +
∑

v≺C

(W ((l(v), p)) − W ((p, l(v)))) −
∑

v∈C

W ((p, l(v)))<

∑

v≺0C

(
∑

v≺0v′

χf ((v, v′)) −
∑

v′≺0v

χf((v
′, v))) −

∑

v∈C

∑

v′≺0v

χf ((v
′, v))= 0.

The inequation is clear by the above considerations. We claim that in the
second sum each summand χf ((v, v′)) either (i) equals 0, or (ii) is counted ex-
actly once positively and once negatively. For (v, v′) ∈ Df (χi, p)× (Df(χi, p)∪
Cf(χi, p)) case (ii) holds according to Lemma 8 (iii). For (v, v′) ∈ Df(χi, p)×
(V 0 \Df(χi, p)) with χf((v, v′)) > 0 we have v′ ∈ Cf(χi, p) by definition. That
means (ii) holds in each case (i) does not hold.
Since C(χi, p) extends Cf(χi, p) to a cut with the same set of smaller events,
the statement follows. �

Theorem 11 Let f be a maximal flow of the network associated to lpo and χp
i

for some place p. Assume that χf does not fulfil (OUT) for the node vmax(χp

i
).

Then there is a cut C ⊆ V of lpo, such that m0(p)+
∑

v∈V ∧v≺C(W ((l(v), p))−
W ((p, l(v)))) <

∑

v∈C W ((p, l(v))).

2.3.2 Direct Transformation

In this subsection we present another polynomial algorithm to test whether
an LPO fulfils the TFP. It is proposed in [3] to improve the performance. It is
based on a direct transformation of the LPO into a flow network. As for the
previous algorithm, in the case that lpo fulfils the TFP this new algorithm
constructs respective token flow functions for every place. Throughout this
subsection we use the same notations as in the last one. For each place p we
will construct a flow network (G, c, s, t) associated to lpo (and p) and define
a natural number M(lpo, p) such that lpo fulfils the TFP w.r.t. p if and only
if the value of a maximum flow in (G, c, s, t) equals M(lpo, p).

The idea of the construction of (G, c, s, t) is to compute a token flow function
satisfying (IN) and (OUT) (if such a token flow function exists) by a maximal
flow in (G, c, s, t), G = (W, E). That means in particular that the outtoken
flow of a node of lpo equals the flow outgoing some corresponding node of
(G, c, s, t). Also the intoken flow of a node of lpo equals the flow ingoing some
corresponding node of (G, c, s, t). Since in the flow network the ingoing flow
of a node equals its outgoing flow, one node of lpo is split into two nodes of
(G, c, s, t), one to represent the corresponding outtoken flow and the other to
represent the corresponding intoken flow. To ensure (IN) and (OUT), the
outgoing flow and the ingoing flow of a node of (G, c, s, t) are restricted by
appropriate capacities. An edge of lpo corresponds to an edge of (G, c, s, t)
between a node representing the outtoken flow and a node representing the
intoken flow. Figure 7 shows such a flow network.

23

a

c

be2e1

c
e4e3

V0

2 1

0 00 0

0 1

2/2

3/3

s

t

out-node
in-node

0/0
0/0

4/0

capacity
flow

(b) Associated flow network with
maximal flow f corresponding to χ

0/0
2/14/0

4/0 4/0

4/2 4/1 4/14/0

0/0
0/0

2/2

(a) Enabled LPO with token flow
function χ fulfilling (IN) and (OUT) w.r.t. p3

Fig. 7. Associated flow network with maximal flow corresponding to a token flow
function fulfilling (IN) and (OUT) w.r.t the p/t-net N shown in Figure 1 (a).

Definition 12 (Associated Flow Network) We denote M = M(lpo, p) =
∑

v∈V W (p, l(v)). The flow network (G, c, s, t), G = (W, E), associated to lpo
and p is defined by W = (V 0 × {in, out}) ∪ {s, t}, E = Es ∪ Elpo ∪ Et and
c : E → N, where:

Es = {(s, (v, out)) | v ∈ V 0}, c(e) = W (l(v), p) if e = (s, (v, out)) ∈ Es,

Elpo = {((v, out), (v′, in)) | v ≺0 v′}, c(e) = M if e ∈ Elpo,

Et = {((v, in), t) | v ∈ V 0}, c(e) = W (p, l(v)) if e = ((v, in), t) ∈ Et.

A flow on an edge ((v, out), (v′, in)) ∈ Elpo can be interpreted as the number of
tokens produced by transition l(v) in place p, which are consumed by transition
l(v′). That means each flow in (G, c, q, t) has an analogous interpretation as a
token flow function χp :≺0→ N of lpo, defined by

χp((v, v′)) = f(((v, out), (v′, in))).

χp can be considered as a “possible” token flow function of lpo.
Since the flow on an edge (s, (v, out)) ∈ Es is at most the number of tokens
transition l(v) produces in place p, the outgoing flow of a node (v, out) also
can not exceed this number. Therefore χp always fulfils property (OUT).
Since the flow on an edge ((v, in), t) ∈ Et is at most the number of tokens
transition l(v) consumes from place p, the ingoing flow of a node (v, in) cannot
exceed this number. Thus, χp fulfils property (IN) of the TFP, if the flow on
each edge ((v, in), t) ∈ Et equals the number of tokens transition l(v) consumes
from place p, i.e. equals the capacity on this edge. In this case, χp moreover
satisfies (Tff). That means, if a maximal flow in (G, c, q, t) saturates all edges
to the sink (equals M(lpo, p)) this maximal flow defines a token flow function
satisfying (IN) and (OUT) w.r.t. p. The algorithm works as follows:

24

Algorithm 4 (Tests, whether lpo is an execution of (N, m0))
Step 1: Repeat for each place p ∈ P :

Step 1.1: Compute the flow network (G, c, q, t) associated to lpo and p.

Step 1.2: Compute a maximal flow fp in (G, c, q, t).

Step 2: Return true if and only if |fp| = M(lpo, p) for each place p.

Theorem 13 An LPO fulfils the TFP w.r.t. the place p of a marked p/t-
net (N, m0) if and only if the value of a maximal flow of the associated flow
network equals M(lpo, p).

PROOF. “if”-part: Shown in the paragraph before Algorithm 4. “only if”-
part: Fix a place p and let χp :≺0→ N be a token flow function fulfilling (IN)
and (OUT) w.r.t. p. We claim that the function f : E → N, defined as follows,
is a maximal flow in (G, c, s, t), G = (W, E), with value |f | =

∑

v∈V W (p, l(v)):

f(e) =



























Out(v, χp) if e = (s, (v, out)) ∈ Es,

χp((v, v′)) if e = ((v, out), (v′, in)) ∈ Elpo,

In(v′, χp) if e = ((v′, in), t) ∈ Et.

Directly from this definition we get that for each node the ingoing flow equals
the outgoing flow defined by f . From (IN) and (OUT) and the definition of
the capacity function we deduce f(e) 6 c(e) for each edge e as follows:

f((s, (v, out))) = Out(v, χp)
(OUT)

6 W (l(v), p) = c((s, (v, out)))

f(((v, out), (v′, in))) = χp((v, v′))
(IN)

6 W (p, l(v′)) 6 M(lpo, p)

= c(((v, out), (v′, in)))

f(((v′, in), t)) = In(v′, χp)
(IN)
= W (p, l(v′)) = c(((v′, in), t))

Moreover, |f | =
∑

v′∈V 0 f(((v′, in), t)) =
∑

v′∈V 0 W (p, l(v′)) = M(lpo, p). The
flow is maximal, since it saturates the capacity of the cut (W \ {t}, {t}) of
(G, c, s, t). �

2.4 Optimization of the Algorithms

In this subsection we briefly sketch several possibilities to optimize the Algo-
rithms 3 and 4 (see [3] for more details).

The first optimization only concerns Algorithm 3. The computation of the
maximal flow f in the flow network associated to a token flow function χi

25

and a place p should terminate as soon as Out(vmax(i), χf) = Out(vmax(i), χi)−
|f | = W ((l(vmax(i)), p)). That means only the excess of the outtoken flow of
vmax(i) should be redistributed. In this case the critical node vmax(i) is exactly
saturated and thus already satisfies (OUT). This can be achieved by bounding
the maximal possible flow by the value R(vmax(i), χi). This bound can directly
be implemented into the maximal flow algorithm by adding a new source and
appropriately restricting the ingoing flow of the old source (vmax(i), out).

The second optimization only concerns Algorithm 3, too. It is desirable to re-
distribute the excess outtoken flow of vmax(i) in each iteration step as uniform
as possible among edges (vj , vl) with j > max(i) in order to produce as few
as possible excess outtoken flow of such nodes vj. In other words, R(vj , χi+1)
should be as small as possible. This way less nodes get under-saturated and
thus also less nodes get over-saturated and less exceed of outtoken flow overall
(which must be redistributed in subsequent iteration steps) is produced. There
are several possibilities to implement this. First, it is possible to modify χi in
two steps, first at most saturating nodes vj (this can be achieved by appropri-
ate capacities) and then (if necessary) distribute remaining excess outtoken
flow of vmax(i). The second possibility is to introduce costs for flow which over-
saturates a node vj and to compute the maximal flow with minimal costs (this
can be done in polynomial time, too). The same idea can also be applied to
the initial token flow function (up to now we start with a big exceed of the
outtoken flow of the initial node v0).

The last optimization applies to both, Algorithm 3 and Algorithm 4. In general
there are edges (v, v′) of lpo which only allow token flow 0 w.r.t. some place
p, since this edge does not structurally appear in the p/t-net, that means
p 6∈ l(v)• ∩ •l(v′) for v 6= v0 and p 6∈ •l(v′) ∩ {p | m0(p) > 0} for v = v0.
Such edges of course can be omitted in the construction of the flow network
associated to lpo and p in both algorithms.

2.5 Comparing the Algorithms

In this subsection we compare the two Algorithms 3 and 4 w.r.t. their time
complexity and w.r.t. the information they return in case an LPO is not an
execution in order to allow fault analysis.

Algorithm 4 returns less information about LPOs, which are not executions,
than Algorithm 3. To illustrate this, let lpo be not an execution of (N, m0)
and let p be a place such that lpo does not fulfil the TFP w.r.t. p. Then
Algorithm 3 (applied to p) terminates for some i after the i-th iteration because
max(i) = max(i − 1). As described, from χi we are able to construct the set
Df(χi, p) defining a prefix of lpo and the cut C(χi, p) of lpo. We showed that

26

the prefix defined by Df(χi, p) is enabled w.r.t. p. Moreover, C(χi, p) is a
cut in lpo subsequent to this prefix and C(χi, p) is not enabled w.r.t. p after
firing the prefix. Thus, C(χi, p) can be interpreted as a “bottleneck” of the
“resource” p (notice that the prefix is not uniquely determined – it depends
on χi and on the chosen total ordering of the nodes of lpo).
Algorithm 4 computes a “possible” token flow function χp for each place p.
By construction χp fulfils (OUT) w.r.t. each node, but not necessarily (IN).
Since the computation of the maximal flow need not respect the order of the
nodes given by lpo, it is possible that there are two nodes v, v′ with v ≺ v′,
where χp satisfies (IN) w.r.t. v′, but not w.r.t. v.

a

b

2

2
1

2

v0

0 4/1

4/1

s

t

2/2

1/1

2/1

2/2
4/1

ae1

be2

1

1

v0

1 ae1

be2

Fig. 8. From left to right: A marked p/t-net, an LPO with token flow function
computed by Algorithm 3, the same LPO with token flow function computed by
Algorithm 4, the associated flow network used by Algorithm 4 with maximal flow.

Thus, it is in general not possible to construct from χp an enabled prefix of
lpo followed by a cut representing a “bottleneck” of the “resource” p. This
is illustrated in Figure 8. The left part shows a marked p/t-net, the middle
part shows an LPO annotated by two different token flow functions, and the
right part shows the flow network associated to the net annotated by pairs of
capacity and flow values for some maximal flow (used for Algorithm 4). The
LPO is not an execution w.r.t. the grey place of the net. The maximal flow in
the flow network corresponds to the right token flow function in the middle
part. This token flow function does not define a maximal prefix which is an
execution, since (IN) is satisfied w.r.t. the b-labeled node but not w.r.t. the
a-labeled node, while the a-labeled node precedes the b-labeled node in the
LPO. On the other side, the left token flow function in the middle part defines
such a maximal prefix (consisting of the a-labeled node). Note that Algorithm
3 would compute this left token flow function.

In order to use Algorithm 4 for the computation of enabled maximal prefixes
similar as in Algorithm 3, there are in principle two possibilities to modify
Algorithm 4 (both increasing the runtime by one order in the number of nodes
of the LPO).

• It would be possible to test iteratively bigger and bigger prefixes for en-

27

abledness.
• It would be possible to force Algorithm 4 to consider the nodes in some order

respecting the LPO by using flow costs for nodes and computing maximal
flows with minimal costs (this problem also has polynomial solutions [29]).

We discuss the time complexity of the presented algorithms w.r.t. the number
of edges e of the LPO, the number of nodes n of the LPO, the number of
places q of the marked p/t-net and the maximal arc weight w of the marked
p/t-net. We will compare the application of several maximal flow algorithms
in the Algorithms 3 and 4. For both algorithms the constructed flow networks
have O(e + n) edges and O(n) nodes.
First, consider Algorithm 3. The maximal flow fi in some iteration step i is
bounded above by R(vmax(i), χi) = Out(vmax(i), χi) − W ((l(vmax(i)), p)). The
node vmax(i) has maximally n − max(i) successor nodes. Moreover, according
to (IN), χi((v, v′)) is bounded above by W ((p, l(v′))) for each edge (v, v′).
Therefore, fi 6 (n−max(i)) ·w−W ((l(vmax(i), p))) 6 n ·w. The same applies
to the maximal capacity value ci of an edge in the flow network. In other words,
fi and ci linearly depend on n and w. The chosen maximal flow algorithm is
applied for each place at most n times (in the worst case, max(i) increases
by one in each iteration step). The construction of the flow network in each
iteration step and the computation of χi+1 take at most O(e) time steps.
Thus the maximal flow algorithm dominates. We deduce the following time
complexities of Algorithm 3 applying different maximal flow algorithms: (i)
O(qwen2) [28], (ii) O(qn4) [26], (iii) O(qen2 log(n2/e)) [26] and (iv) O(qen2 +
qn3(log wn)1/2) [27]. For LPOs with “few” edges (e 6 O(n)) and small w
(compared to n) version (i) is most efficient. In particular, this is the case if w
can be considered as a constant in applications. For flow networks with “many”
edges (e = O(n2)) the versions (ii)-(iv) are more efficient. If O(n) < e < O(n2),
in most cases version (iv) is most efficient. Overall, which version is most
efficient depends on the relationship of e to n.
Consider now Algorithm 4. The maximal flow fi in the associated flow network
is bounded from above by M(lpo, p) 6 w · n. The same holds for the value
ci of the maximal capacity of an edge. Thus, an analogous argumentation as
before yields the following time complexities applying different maximal flow
algorithms: (i) O(qwen) [28], (ii) O(qn3) [26], (iii) O(qen log(n2/e)) [26] and
(iv) O(qen + qn2(log wn)1/2) [27].

2.6 Variants of Executions

In this subsection we briefly discuss other variants of executions. Instead of
asking, whether a given LPO sequentializes a run (i.e. whether it is an execu-
tion), we could also ask whether this LPO equals a run. Such LPOs we call
strict executions. We could even be more restrictive and ask, whether the LPO

28

equals a minimal run. Such LPOs are called minimal executions. Finally, it
is possible to consider the reverse direction and ask whether a given LPO is
sequentialized by a run. This problem is a generalization of the so called legal
firing sequence problem (where one asks whether a given multi-set of transi-
tions can be ordered to an enabled firing sequence), which was proven to be
NP-hard ([30]).

2.6.1 Minimal Executions

For the test of minimal executions we presented the following polynomial
algorithm (see [1]). Applying one of the Algorithms 3 or 4 yields one of the
following three results:

• lpo = (V,≺, l) is not an execution. In this case lpo is not a minimal execu-
tion, too.

• lpo is an execution and for the run (V, <, l) defined by the computed token
flow functions it holds <(≺. In this case, lpo is not a minimal execution.

• lpo is an execution and for the run (V, <, l) defined by the computed token
flow functions it holds ≺=<. In this case lpo could be a minimal execution,
but there could be also another run (V, <′, l) with <′(≺.

Thus, it is enough to consider the last case. For this case there is a simple
strategy to test whether there is a run (V, <′, l) with <′(≺, namely simply to
test whether some LPO (V, <′, l) with <′(≺ is an execution. Indeed, it is not
necessary to consider all such LPOs, but only those which differ from lpo w.r.t.
one skeleton edge. Formally, these are LPOs of the form lpox = (V,≺x, l),
where x is a skeleton edge and ≺x=≺ \{x}. It is easy to verify that ≺x is
again transitive and therefore lpox is indeed an LPO. Algorithm 5 shows the
procedure to test minimal executions.

Algorithm 5 (Tests whether lpo is a minimal execution of (N, m0))
Step 1: Test if lpo is an execution of (N, m0).

Step 2: Repeat for each edge x ∈≺·: Test if lpox is an execution of (N, m0).

Step 3: Return true if and only if lpo is an execution and no lpox is an
execution of (N, m0).

In the case, lpo is a minimal execution (i.e. a minimal run), it computes
canonical token flow functions. Clearly, this algorithm runs in polynomial time,
since the loop is passed through at most e times.

Theorem 14 Let lpo be an execution of (N, m0). Then lpo is a minimal
execution if and only if lpox = (V,≺x, l) is not an execution of (N, m0) for
each x ∈≺·.

29

2.6.2 Strict executions

The test of strict executions is more problematic, since not all runs of a p/t-
net are minimal. Thus, even if lpo = (V,≺, l) equals a run, the Algorithms 3
or 4 possibly compute token flow functions, which define a run (V, <, l) with
<(≺.
A similar problem is, when given an LPO and a marked p/t-net, to find
a run of this p/t-net which sequentializes the given LPO. This problem is
a generalization of the so called legal firing sequence problem which has no
efficient solution.
One possibility to test an LPO to be a strict would be to strengthen the TFP
in some way and to find a polynomial test of this stronger property. Observe
that if lpo is an execution and (V, <, l) is the run defined by the computed
token flow functions χp for each place p, then <=≺ holds if and only if for
each skeleton edge e there is a place p with χp(e) > 0. That means, lpo is
a strict execution if and only if there exists a family of token flow functions
X = {χp | p ∈ P} such that χp satisfies the TFP w.r.t. p and for each skeleton
edge e there is a place p with χp(e) > 0 (for example, the family of canonical
token flow functions of a run is such a family). Unfortunately, computing
such a family of token flow functions by maximal flows through appropriate
flow networks does not longer yield an efficient algorithm in general. The
problem is the additional requirement

∑

p∈P χp(e) > 1 for skeleton edges e.
That means, in the associated flow network we must also consider capacity
bounds for the sum of several flows, each of which additionally has individual
capacity bounds. This gives a so called multicommodity maximal flow problem,
which was proven to be NP-hard in most variants ([31]). On the other hand,
the instances we consider are restricted in some way compared to the most
general version of multicommodity maximal flow problems. For example, all
flows have the same source and the same sink. Moreover, there are no cycles
in flow networks we consider (at least in the case of Algorithm 4). Whether
these restrictions lead to polynomial algorithms is an open question.

30

3 PTI-nets

In this section we consider the problem of the executability of scenarios for
PTI-nets, that means p/t-nets extended by weighted inhibitor arcs. Executions
of such nets are given by more complex causal structures than LPOs, namely
so-called stratified order structures. Their definition is based on relational
structures. A relational structure (rel-structure) is a triple S = (V,≺, ⊏),
where V is a set (of events), and ≺⊆ V × V and ⊏⊆ V × V are binary
relations on V . A rel-structure S ′ = (V,≺′, ⊏′) is an extension of another rel-
structure S = (V,≺, ⊏), written S ⊆ S ′, if ≺⊆≺′ and ⊏⊆⊏′.
A rel-structure S = (V,≺, ⊏) is called stratified order structure (so-structure),
if the following conditions are satisfied for all u, v, w ∈ V :(C1) u 6⊏ u, (C2)
u ≺ v =⇒ u ⊏ v, (C3) u ⊏ v ⊏ w ∧ u 6= w =⇒ u ⊏ w and (C4)
u ⊏ v ≺ w∨u ≺ v ⊏ w =⇒ u ≺ w. In Figures, ≺ is graphically expressed by
solid arcs and ⊏ by dashed arcs. According to (C2), a dashed arc is omitted,
if there is already a solid arc. Moreover, we omit arcs, which can be deduced
by (C3) and (C4) (see Figure 9 (b), (c)).
It is shown in [20], that (V,≺) is a partial order. Therefore, so-structures are
a generalization of partial orders and describe finer causalities than partial
orders. In the context of this paper, ≺ represents an “earlier than”-relation,
while ⊏ models a “not later than”-relation between events.
An so-structure S = (V,≺, ⊏) is called total linear if co ≺ = (⊏ \ ≺) ∪ idV .
The set of all total linear extensions (or linearizations) of an so-structure S is
denoted by lin(S) (see Figure 9 (c)).
A subset W ⊆ V is called ⊏-closed, if ∀v, v′ ∈ V : (v ∈ W ∧ v′ ⊏ v) =⇒
v′ ∈ W. For W ⊆ V ⊏-closed the so-structure SW = (W,≺|W×W , ⊏ |W×W) is
called prefix of S defined by W . If additionally (u ≺ v =⇒ u ∈ W) for some
v ∈ V \ W , then SW is called prefix of S enabling v.
A labeled so-structure (LSO) is a so-structure S = (V,≺, ⊏) together with a
set of labels T and a labeling function l : V → T . We use the notations defined
for so-structures also for LSOs. As for LPOs, for l : V → T and U ⊆ V we
define the multi-set l(U) ⊆ NT by l(U)(t) = |{v ∈ U | l(v) = t}|.

A PTI-net N is a quadruple (P, T, F, W, I), where (P, T, F, W) is a p/t-net,
and I : P ×T → N∪{ω} is the weighted inhibitor relation. If I(p, t) 6= ω, then
(p, t) ∈ P × T is called (weighted) inhibitor arc, and p is an inhibitor place of
t. We define n < ω for n ∈ N. A marking of a PTI-net N = (P, T, F, W, I)
is a function m : P → N. A marked PTI-net is a pair (N, m0), where N is a
PTI-net, and m0 is a marking of N , called initial marking. Figure 9 (a) shows
a marked PTI-net.
A transition t can be executed, if in addition to the enabling conditions of p/t-
nets, every inhibitor place p of t carries at most I((p, t)) tokens. In particular,
if I((p, t)) = 0, then p must be empty. I((p, t)) = ω means, that t can never
be prevented from occurring by the presence of tokens in p. There are two

31

a

c

3

b

2

2

p1 p2

p3

p4

(a) PTI-net N

(b) Execution S1 w.r.t. the
a-priori semantics

d3

a

c

be2e1

ce4e3

d e5 a

c

be2e1

ce4e3

d e5

a

c

be2e1

ce4e3

d e5 a

c

be2e1

ce4e3

d e5

(c) Execution S2 w.r.t. the a-priori
semantics corresponding to
the step sequence (a+d+b)(2c)

(d) Execution lpo1 w.r.t. the
a-posteriori semantics

(e) Execution lpo2 w.r.t. the a-posteriori
semantics corresponding to the
step sequence (d+b)(a)(2c)

„earlier than“

„not later than“
p5

p6

Fig. 9. A PTI-net with inhibitor arc (p3, d) having weight 3 and executions of this
net w.r.t. different semantics.

different semantics of PTI-nets concerning the order of the test of inhibitor
restrictions and the production and consumption of tokens.
According to the a-priori semantics of PTI-nets, the inhibitor test for en-
abledness of a transition precedes the consumption and production of to-
kens in places. Thus, a multi-set (a step) of transitions τ is (synchronously)
enabled to occur in a marking m w.r.t. the a-priori semantics, if m(p) ≥
∑

t∈T τ(t)W ((p, t)) and m(p) ≤ I((p, t)) for each place p and transition t ∈ τ .
According to the a-posteriori semantics of PTI-nets, the inhibitor test for
enabledness of a transition need not precede the consumption and produc-
tion of tokens in places. It is even possible that the production of tokens
precedes the consumption and the inhibitor test. Thus, a multi-set of transi-
tions τ is enabled to occur in a marking m w.r.t. the a-posteriori semantics, if
m(p) ≥

∑

t∈T τ(t)W ((p, t)) and m(p) +
∑

t∈T τ(t)W ((t, p)) ≤ I((p, t)) for each
place p and transition t ∈ τ .
The occurrence of a (possibly empty) step of transitions τ (in the a-priori
or a-posteriori semantics) leads to the new marking m′, defined by m′(p) =
m(p) −

∑

t∈T τ(t)(W ((p, t)) − W ((t, p))) for every p ∈ P . We write m
τ

−→ m′

to express, that τ is enabled to occur in m, and that its occurrence leads to
m′. A finite sequence of steps σ = τ1 . . . τn, n ∈ N, is called a step occurrence
sequence enabled in a marking m and leading to mn, if there exists a sequence
of markings m1, . . . , mn such that m

τ1−→ m1
τ2−→ . . .

τn−→ mn. In this case we
write m

σ
−→ mn

3.1 Causal Semantics

Up to now, there is not a unique acknowledged process semantics of nets
with inhibitor arcs w.r.t. a-priori- or a-posteriori-semantics, but only several

32

proposals [20,21,14,32,12,33]. We omit to present these process semantics here
and base the definition of causal semantics on step semantics (see also the
Introduction). That means, in this subsection we lift the notions of enabled
LPO and token flow property (TFP), known for LPOs w.r.t. p/t-nets, to the
setting of PTI-nets.

For the a-posteriori semantics, executions of PTI-nets are given by LPOs.
That means, causal semantics can be given as in the case of p/t-nets by iden-
tifying step occurrence sequences with LPOs (Figure 9 (e)). We call an LPO
lpo = (V,≺, l) enabled (to occur) w.r.t. a marked PTI-net in the a-posteriori
semantics if each finite step sequence σ = τ1 . . . τn which sequentializes lpo is a
step occurrence sequence of the PTI-net in the a-posteriori semantics (Figure
9 (d) and (e)). We say that the occurrence of lpo leads to the marking m′(p)
given by m′(p) = m(p) +

∑

v∈V (W ((l(v), p)) − W ((p, l(v)))).

For the a-priori semantics executions of PTI-nets are given by LSOs. The
notion of enabled LPOs can be straightforwardly extended to enabled LSOs
using step occurrence sequences. As in the LPO-case, a step sequence of tran-
sitions σ = τ1 . . . τn can be identified with the LSO Sσ = (V,≺, ⊏, l) de-
fined by V =

⋃n
i=1 Vi and l : V → T with l(Vi) = τi, ≺=

⋃

i<j Vi × Vj and
⊏= ((

⋃

i Vi × Vi)∪ ≺) \ idV (Figure 9 (c)). Such LSOs are total linear (be-
cause co ≺ =

⋃n
i=1 Vi × Vi). The other way round, each total linear LSO (of

transition occurrences) can be identified with a step sequence of transitions.
Therefore, we call an LSO S = (V,≺, ⊏, l) with l : V → T enabled (to occur)
w.r.t. a marked PTI-net in the a-priori semantics, if each finite step sequence
σ = τ1 . . . τn with Sσ ∈ lin(S) is a step occurrence sequence of the PTI-
net. We say, that the occurrence of S leads to the marking m′(p), given by
m′(p) = m(p) +

∑

v∈V (W ((l(v), p)) − W ((p, l(v)))). It is easy to check, that
the LSOs from Figure 9 (b) and (c) are indeed enabled LSOs w.r.t. the shown
PTI-net.

3.2 A-priori Semantics

For the development of the TFP and the polynomial test of the TFP w.r.t.
PTI-nets, we first consider their a-priori semantics. The content of this sub-
section was presented in [2].

3.2.1 Token Flow Property

In this subsection we extend the notions of token flow function and TFP,
known for LPOs and p/t-nets, to the setting of PTI-nets w.r.t. the a-priori
semantics. Fix a marked PTI-net (N, m0), N = (P, T, F, W, I), a place p of
N and an LSO S = (V,≺, ⊏, l) with l : V → T . Assume, that S is enabled

33

to occur w.r.t. (N, m0). Since the inhibitor relation I of (N, m0) restricts the
behaviour of the underlying p/t-net (N ′, m0) = (P, T, F, W, m0), S is also
enabled w.r.t. (N ′, m0). In a p/t-net, transitions which can be executed as
one step also can be executed in arbitrary order. Therefore, also the LPO
lpoS = (V,≺, l) underlying S is enabled w.r.t. the p/t-net (N ′, m0). Altogether,
we get that the enabledness of lpoS w.r.t. the p/t-net (N ′, m0) is a necessary
condition for the enabledness of S w.r.t. (N, m0). That means, the TFP for S
w.r.t. (N, m0) includes the TFP for lpoS w.r.t. (N ′, m0). Since the “not later
than”-relation of S does not describe the flow of tokens (token flow always
produces an “earlier than”-relation between transition occurrences), a token
flow function of S w.r.t. a place can be given by a token flow function of
lpoS . As argued above, if S is enabled then for each place p there is such
a token flow function χp satisfying (IN) and (OUT). The other way round
the existence of such token flow functions is not enough to ensure that S is
enabled. This is because the execution of a prefix of S still might produce too
many tokens in a place p (according to χp), disabling a subsequent transition,
which tests p via an inhibitor arc. In other words, the maximal number of
tokens (according to χp) produced in p after the occurrence of a prefix should
not exceed the inhibitor weights. To ensure this, we require that token flow
functions fulfil an additional property. This property implies that each marking
enabling some event, which is reachable through the execution of a prefix,
respects the inhibitor relations of the corresponding transition to all places.
In order to efficiently compute the maximal number of tokens (according to χp)
produced in p after the occurrence of a prefix, it is convenient to use slightly
different notions of 0-extensions of LPOs, token flow functions and the TFP
for LPOs. The new notion of 0-extensions also adds a new maximal event v⋆,
which is interpreted as an event consuming the final marking reached after
the occurrence of an LPO, to LPOs. Token flow functions are then defined
on these new 0-extensions leading to a slightly different but equivalent notion
of the TFP. Namely, we require now that the outtoken flow of each node
equals the correspnding arc weight in the net. Then the old concept of token
flow functions can be translated into the new one (and vice versa) via the
identification χ((v, v⋆)) = R(v, χ).

Definition 15 (Equivalent TFP) Let lpo = (V,≺, l) be an LPO. Then an
LPO lpo0 = (V 0,≺0, l0), where V 0 = (V ∪ {v0, v

⋆}), v0, v
⋆ /∈ V , ≺0=≺

∪({v0} × V) ∪ ((V ∪ {v0}) × {v⋆}), and l0(v0) 6= l0(v⋆), l0(v0), l
0(v⋆) /∈ l(V),

l0|V = l, is called 0-extension of lpo.
A function χ :≺0→ N is called token flow function of lpo, if it satisfies (Tff)
∀v, v′ ∈ V 0 : l(v) = l(v′) =⇒ In(v, χ) = In(v′, χ).
Denote W ((l(v0), p)) = m0(p) for each place p ∈ P . Then lpo fulfils the to-
ken flow property (TFP) w.r.t. (N, m0) if for all p ∈ P there is a token flow
function χp :≺0→ N satisfying (IN) ∀v ∈ V : In(v, χp) = W ((p, l(v))) and
(OUT) ∀v′ ∈ V ∪ {v0} : Out(v′, χp) = W ((l(v′), p)).

34

Assume, that we have given a (new) token flow function χp on the edges of
lpo0

S , satisfying (IN) and (OUT) for some place p. How can we compute from
χp the number of tokens in this place after the execution of some prefix of S?
Let V ′ define a prefix. The values of χp on edges between events in V ′ corre-
spond to tokens, which are produced and consumed by events in this prefix.
The values of χp on edges from events in V ′ to events in V \V ′ corresponds to
tokens, which are produced by events in V ′ and remain in p after the execution
of the prefix. Thus, the marking of the place after the execution of the prefix
is given by the sum of the values of χp on such edges (Figure 10 (a)).

a

c

be2e1

c
e4e3

d e5

v0

v*

000

0 0
0

2 2

1 0

0

00

Prefix S of S1 enabling e5 with
maximal final marking w.r.t. p3

(a) Execution S1 with token flow function χ.

0

a

c

be2e1

c
e4e3

d e5

v0

v*

0/2
0/0

2/2

0/2

0/0 0/0 0/0 0/0

0/0

0/0

0/00/0

0/0
0/0

0/0

capacityflow

Flow cut corresponding to S
with capacity 2

(b) Flow network associated to χ and e5
with annotated minimal flow

Fig. 10. (New) 0-extension of the LSO S1 from Figure 9 (b) with associated flow
network. S1 is enabled w.r.t. the PTI-net N from Figure 9 (a).

Definition 16 (Final marking) Let S ′ = (V ′,≺′, ⊏′, l′) be a prefix of S and
χ : V 0 → N be a token flow function of (V,≺, l). The final marking mS′(χ) of
S ′ (w.r.t. χ) is defined by mS′(χ) =

∑

u∈V ′∪{v0}, v 6∈V ′, u≺0v χ((u, v)).

If a token flow function fulfils (IN) and (OUT) then the final marking of a
prefix in fact does not depend on the concrete distribution of the token flow
given by this token flow function, but only on the nodes belonging to the prefix.
In this case, the final marking can be computed (independently from the token
flow function) also by mS′(χ) = m0(p) +

∑

t∈T l(V ′)(t)(W ((t, p))−W ((p, t))).

Definition 17 (Token flow property) An LSO S = (V,≺, ⊏, l) fulfils the
token flow property w.r.t. (N, m0), if for every place p ∈ P there exists a token
flow function χp :≺0→ N, satisfying (IN), (OUT) and
(FIN) For all v ∈ V and all prefixes S ′ enabling v: mS′(χp) 6 I((p, l(v))).

Observe that the definition of the TFP is inherent exponential in the size of
the LSO, since it involves in general exponentially many prefixes of the LSO
(condition (FIN)). Nonetheless, as will be explained in Subsection 3.2.2, the

35

test of condition (FIN) can be transformed into a flow optimization problem,
which can be solved in polynomial time. The following lemma and theorem
show that the TFP is an equivalent notion of executions.

Lemma 18 Let S = (V,≺, ⊏) be an so-structure, V ′ ⊆ V and v ∈ V \ V ′.
Then, V ′ defines a prefix of S enabling v, if and only if there is a linearization
S ′ ∈ lin(S), such that V ′ defines a prefix of S ′ enabling v.

PROOF. if: Let S ′ = (V,≺′, ⊏′) ∈ lin(S) and let V ′ ⊂ V define a prefix of
S ′ enabling v. Consider nodes u′ ∈ V ′ and u ∈ V with u ⊏ u′. Since S ′ is an
extension of S, this implies u ⊏′ u′. Because V ′ defines a prefix of S ′, we get
u ∈ V ′. Thus, V ′ also defines a prefix of S. Let further v′ ≺ v. Again, since S ′

is an extension of S, this implies v′ ≺′ v, and therefore we have v′ ∈ V ′. Thus,
V ′ defines in fact a prefix enabling v.

only if: Let V ′ define a prefix of S enabling v. We construct a linearization
S ′ = (V,≺′, ⊏′) of S, such that V ′ also defines a prefix of S ′ enabling v. For
this, let V0 ⊆ V ′ be the set of all nodes, which are minimal w.r.t. ≺ in S. Then,
consider the restriction of S onto the node set V \ V0 and let V1 ⊆ V ′ be the
set of all nodes, which are minimal w.r.t. ≺ in this new so-structure. Following
this technique, we define inductively Vn ⊆ V ′ as the set of nodes, which are
minimal w.r.t. the restriction of ≺ onto the node set V \ (

⋃n−1
i=0 Vi), as long as

V ′ \ (
⋃n−1

i=0 Vi) 6= ∅. Let N be minimal with the property V ′ \ (
⋃N−1

i=0 Vi) = ∅.
We further define VN ⊆ V as the set of nodes, which are minimal w.r.t. the
restriction of ≺ onto the node set V \ (

⋃N−1
i=0 Vi), and so on (note that v ∈ VN ,

because V ′ defines a prefix enabling v).
We now can define S ′ through ≺′=

⋃

i<j Vi×Vj and ⊏′= ((
⋃

i Vi×Vi)\idVi
)∪ ≺′.

By construction, S ′ is a total linear so-structure. It remains to show that
≺⊆≺′, ⊏⊆⊏′, ((u ∈ V ′ ∧ w ⊏′ u) =⇒ w ∈ V ′) and (v′ ≺′ v =⇒ v′ ∈ V ′).
Let u, v ∈ V with u ≺ v: Since V ′ defines a prefix of S, it is not possible that
v ∈ V ′ and u 6∈ V ′. Suppose u, v ∈ V ′, u, v ∈ V \ V ′ or u ∈ V ′ and v 6∈ V ′. By
construction there must be i < j with u ∈ Vi and v ∈ Vj. This gives u ≺′ v.
Let u, v ∈ V with u ⊏ v: Since V ′ defines a prefix of S, it is not possible that
v ∈ V ′ and u 6∈ V ′. Suppose u, v ∈ V ′ or u, v ∈ V \ V ′: Let u ∈ Vi and v ∈ Vj .
Assume, that v is minimal w.r.t. ≺ in an earlier step than u. Then in this
step, there holds u′ ≺ u but u′ 6≺ v. This contradicts (C4). Therefore either u
and v are minimal in the same step or u is minimal in a step earlier than v.
This gives u ⊏′ v. Suppose u ∈ V ′ and v 6∈ V ′: Then by construction, there
must be i < j with u ∈ Vi and v ∈ Vj. This gives u ≺′ v.
Let u ∈ V ′ and w ⊏′ u: Then by construction w ∈ Vi and u ∈ Vj for some
i < j < N or u, w ∈ Vi for some i < N . This implies w ∈ V ′.
Let v′ ∈ V with v′ ≺′ v: Since by construction v ∈ VN , there is i < N with
v′ ∈ Vi ⊆ V ′. �

36

Theorem 19 S is enabled w.r.t. (N, m0) (a-priori semantics) if and only if
it fulfils the TFP w.r.t. (N, m0).

PROOF. only if: Let S be enabled w.r.t. (N, m0). Then (V,≺, l) is enabled
w.r.t. (P, T, F, W, m0), that means for each p ∈ P , there is a token flow function
χp :≺0→ N of (V,≺, l), satisfying (IN) and (OUT). We claim, that each χp

also fulfils (FIN).
Let v ∈ V and S ′ be a prefix of S defined by V ′ which enables v′. By Lemma
18, there is a linearization Slin of S, such that V ′ defines a prefix S ′

lin of Slin

which enables v. There is a step occurrence sequence σ = τ1 . . . τn of (N, m0)
with Sσ = Slin. Since prefixes are downward ⊏-closed, a prefix σ′ = τ1 . . . τm

(m < n) of σ with l(v) ∈ τm+1 and Sσ′ = S ′
lin (up to isomorphism) must exist.

The statement follows from m′(p) = mS′(χp) for the marking m′ reached after
the execution of σ′, since m′(p) ≤ I((p, t)) for each place p and each transition
t ∈ τm+1 by the definition of step occurrence sequences.

if: Let S fulfil the TFP w.r.t. (N, m0), and let χp be a token flow function
satisfying (IN), (OUT) and (FIN) w.r.t. the place p. Consider a sequence
of transition steps σ = τ1 . . . τn such that Sσ is a linearization of S. We show
inductively that, if σk = τ1 . . . τk is a step occurrence sequence, then τk+1 is a
transition step, enabled in the marking m′ reached after the execution of σk

for 0 6 k 6 n − 1.
Observe that σ is a step occurrence sequence of the p/t-net (P, T, F, W, m0),
since (V,≺, l) satisfies the token flow property on the p/t-net level and σ
sequentializes (V,≺, l). That means, m′(p) ≥

∑

t∈τk+1
τk+1(t)W ((p, t)) is always

satisfied. It remains to verify that m′(p) ≤ I((p, t)) for each place p and each
transition t ∈ τk+1. We have that Sσk

= (Vk,≺k, ⊏k, lk) is a prefix of Sσ. By
Lemma 18, Vk also defines a prefix Sk of S. Fix t ∈ τk+1 and p ∈ P and let
v ∈ V with l(v) = t, such that Sσk

is a prefix which enables v. Then, also Sk

is a prefix which enables v (Lemma 18). As above, the statement follows from
m′(p) = mSk

(χp), since mSk
(χp) 6 I((p, l(v)) by (FIN). �

3.2.2 Polynomial Test

In this section, we give a polynomial algorithm to test whether an LSO S =
(V,≺, ⊏, l) with l(V) = T fulfils the TFP w.r.t. a marked PTI-net (N, m0).
In the case, that S fulfils the TFP, the algorithm constructs respective token
flow functions for every place satisfying (IN), (OUT) and (FIN).
Algorithm 3 tests in polynomial time, whether for each place there is a token
flow function satisfying (IN) and (OUT). If such token flow functions do not
exist, then the LSO does not fulfil the TFP. In the positive case, Algorithm 3
generates such token flow functions. Either these token flow functions satisfy
(FIN), or the LSO does not fulfil the TFP, since the final marking of a prefix

37

w.r.t. a place p only depends on the initial marking m0(p) and the arc weights
W ((p, t)) and W ((t, p)) for t ∈ T , but not on the concrete distribution of the
token flow. That means, for different token flow functions χp and χ′

p, satisfying
(IN) and (OUT) for a place p, the values mS′(χp) and mS′(χ′

p) coincide. Thus,
either χp and χ′

p both fulfil (FIN), or both do not fulfil (FIN). It remains to
test property (FIN) for the computed token flow functions χp satisfying (IN)
and (OUT). For this, it is enough to compute for each node v the maximum
of the values mS′(χp) over all prefixes S ′ enabling v and to compare this
maximum with the value I((p, l(v))).

Definition 20 (Inhibitor value) The inhibitor value Inh(v, χ) of an event
v w.r.t. a token flow function χ is defined by Inh(v, χ) = max{mS′(χ) |
S ′ is a prefix enabling v}.

A straightforward way to compute the inhibitor value of some node v is to
enumerate all prefixes enabling this node and compute the final markings of all
these prefixes. Unfortunately, this is not efficient, since there may be exponen-
tially many prefixes in the number of nodes. Another possible formalization of
the problem is as follows: The final marking of a prefix is defined as the sum
over the values of the token flow function on edges leaving the prefix. These
edges separate the node set of the prefix from the subsequent nodes. Formally,
this separation is a flow cut through S (resp. lpoS), partitioning the set of
nodes of S into two node sets. Interpreting lpoS as a flow network and the
values of the token flow function as lower capacity bounds for flows through
this network, the final marking of a prefix is given as the capacity of some
flow cut, and the inhibitor value of some node can be seen as the maximum
capacity of flow cuts of the network.
Such a maximum capacity can be efficiently computed through considering
flow networks with lower capacities and minimal flows through such networks.
This variant of flow optimization problems can be seen as the reversed max-
imal flow problem. It can be proven analogously that in such networks there
is no flow decreasing path w.r.t. a flow f if and only if f is minimal and that
the minimal flow equals the maximal capacity of a cut. Moreover, solution
algorithms of the maximal flow problem based on flow augmenting paths can
easily be adapted (for example the algorithm from [25]). This can be briefly
seen as follows:

Fix a flow network (G, c, s, t), G = (W, E) and consider flows f in (G, c, s, t)
satisfying ∀(v, v′) ∈ E : f((v, v′)) > c((v, v′)). The capacity of a flow cut (S, T)
in (G, c, s, t) is defined by c((S, T)) =

∑

v∈S, w∈T, (v,w)∈E c((v, w)) if (T×S)∩E =
∅ and c((S, T)) = 0 else. The residual network (G, cf , s, t), G = (W, Ef), w.r.t.
a flow f is defined as follows: For (v, v′) ∈ E define cf ((v, v′)) = f((v, v′)) −
c((v, v′)) and set Ef = {(v, v′) ∈ W × W | ((v, v′) ∈ E ∧ cf ((v, v′)) > 0) ∨
((v′, v) ∈ E)}. A flow reducing path w.r.t. a flow f in the residual network is
a simple path from source to sink of the residual network. Then it holds:

38

Theorem 21 The following statements are equivalent: (i) f is a minimal
flow, (ii) There is no flow reducing path in the residual network w.r.t. f , (iii)
There is a flow cut (S, T) with (T × S) ∩ E = ∅ and c((S, T)) = |f |.

PROOF. (i) =⇒ (ii): Let f be a minimal flow and assume there is a flow
reducing path in the residual network. Then along this flow reducing path the
flow f can be reduced. This contradicts the minimality of f . The reduction is
as follows. For edges (v, v′) ∈ E, if (v, v′) belongs to the path then reduce the
flow on this edge by 1, if (v′, v) belongs to the path then augment the flow
on this edge by 1. Then by construction the modified flow still satisfies the
capacity constraint. Also the second defining property of flows, saying that the
flow ingoing a node equals the flow outgoing a node, is still satisfied: Either
the flow ingoing (outgoing) a node is once reduced and once augmented by 1
(along the path) or ingoing and outgoing flow of a node are both reduced or
both augmented by 1 (along the path). Moreover |f | is reduced by 1 since this
is the case for the flow ingoing the sink.
(ii) =⇒ (iii): Assume there is no flow reducing path in the residual network
w.r.t. f . We define a flow cut (S, T) as follows: S = {w ∈ W | there is a simple
path from s to w in the residual network w.r.t. f} and T = W \S. It follows

that f((u, v)) = c((u, v)) for each edge (u, v) ∈ E∩ (S×T), because otherwise
(u, v) ∈ Ef , i.e. v ∈ S. Moreover, we deduce E∩(T×S) = ∅, because otherwise
(v, u) ∈ Ef , i.e. u ∈ S, for each (u, v) ∈ E ∩ (T × S). It is easy to see that
|f | =

∑

e∈E∩(S×T) f(e)−
∑

e∈E∩(T×S) f(e) (for each flow cut (S, T)). This gives
c((S, T)) = |f |.
(iii) =⇒ (i): Finally, if there is a flow cut (S, T) with |f | = c((S, T)) then f
must be minimal since |f | =

∑

e∈E∩(S′×T ′) f(e)−
∑

e∈E∩(T ′×S′) f(e) > c((S ′, T ′))
for all flow cuts (S ′, T ′) (because c((S ′, T ′)) = 0 in the case E∩ (T ′×S ′) 6= ∅).
In particular, it holds |f | = c((S, T)) if and only if (S, T) is a flow cut with
maximal capacity and f is a minimal flow in the flow network. �

To compute a minimal flow in a flow network with lower capacities, first we
compute an arbitrary (feasible) flow of the flow network satisfying the lower
capacity constraint by a transformation into a maximal flow problem [24].
Then we can use for example an adaption of the algorithm from [25] using
flow reducing paths instaed of flow augmenting paths to reduce the flow step
by step. This takes maximal O(n3) time.

Altogether, the maximum capacity can be computed efficiently through its
correspondence to minimal flows. We now construct formally the flow network
(Figure 10 (b)). For this we interpret S as a flow network. We first omit the
“not later than”-relation as follows. We can glue events of S, which are in a
symmetric “not later than”-relation. If u ⊏ v but v 6⊏ u, then there might be
prefixes containing u but not v, and there might be prefixes, which contain or

39

do not contain both events u and v together. Since the same holds if u ≺ v,
we replace remaining “not later”-than relations by “earlier than”- relations.
We do not want to consider all flow cuts of this flow network, but only those,
corresponding to prefixes enabling v. Therefore, we only define (lower) capacity
constraints on edges leaving a prefix enabling v.

Definition 22 (Associated flow network) Let v ∈ V and χ :≺0→ N be a
token flow function of S. Let further U be the set of all the nodes occurring
in prefixes enabling v including v0 and define [u] = [u]⊏ = {w ∈ V 0 | w =
u ∨ (w ⊏0 u ∧ u ⊏0 w)} for u ∈ V 0.
Define the flow network (G, c, s, t), G = (W, E), associated to χ and v by
W = {[u] | u ∈ V 0}, s = [v0] (= {v0}), t = [v⋆] (= {v⋆}), E = {([u], [w]) |
u ⊏0 w} and c(([u], [w])) =

∑

u′∈[u],w′∈[w], u′≺0w′ χ((u′, w′)) if u ∈ U ∧ w 6≺ v
and c(([u], [w])) = 0 else.
Let V ′ define a prefix of S. Then the flow cut (SV ′ , TV ′) corresponding to V ′

is defined by SV ′ = {[v] | v ∈ V ′ ∪ {v0}} and TV ′ = W \ SV ′.

Observe, that the associated flow network is well-defined. That means for u′ ∈
[u] and w′ ∈ [w], we have u ⊏0 w =⇒ u′ ⊏0 w′ and c(([u], [w])) = c(([u′], [w′])).
The following lemma states, that the final marking of prefixes enabling v can
be computed by capacities of flow cuts in the associated flow network.

Lemma 23 Let S ′ = (V ′,≺′, ⊏′, l′) be a prefix enabling an event v. Let further
χ be a token flow function of S, and (G, c, s, t), G = (W, E), be the flow
network associated to χ and v. Then mS′(χ) = c((SV ′ , TV ′)).

PROOF. Since {w | w ≺ v} ⊆ V ′ ⊆ U , we have for each u ∈ V ′ ∪ {v0}
and w 6∈ V ′ ∪ {v0} that c(([u], [w])) =

∑

u′∈[u], w′∈[w], u′≺0w′ χ((u′, w′)) . The
statement is now an easy computation. Just observe, that (TV ′ ×SV ′)∩E = ∅
since w 6⊏0 u for [u] ∈ SV ′ , [w] ∈ TV ′ . �

Since flow cuts which do not correspond to prefixes enabling v do not have
bigger capacities than flow cuts corresponding to such prefixes, we get:

Theorem 24 Let v be a node, and χ :≺0→ N be a token flow function of
lpoS . Let further (G, c, s, t), G = (W, E), be the flow network associated to χ
and v. Then Inh(v, χ) = max{c((S, T)) | (S, T) flow cut of (G, c, s, t)}.

PROOF. Let (S, T) be a flow cut of (G, c, s, t) not corresponding to a prefix
enabling v. We have to show that there is a flow cut corresponding to a
prefix enabling v which has a bigger capacity. Then the statement follows
from Lemma 23. There are two cases to distinguish.
First, let (S, T) not correspond to a prefix of S = (V,≺, ⊏, l). In this case

40

VS =
⋃

[u]∈S\[v0][u] does not define a prefix of S. That means, that there is
u ∈ VS and w 6∈ VS with w ⊏ u. By the definition of VS, it is not possible that
also u ⊏ w (because then [w] = [u]). Therefore, by the definition of E, we get
([w], [u]) ∈ E. This implies c((S, T)) = 0.
Second, let (S, T) = (SV ′, TV ′) correspond to a prefix S ′ = (V ′,≺′, ⊏′, l′) not
enabling v. We claim that then there is a prefix S0 = (V0,≺0, ⊏0, l0) enabling
v such that c((SV ′ , TV ′)) 6 c((SV0, TV0)). Observe that the intersection and the
union of two node sets, which both define prefixes (enabling v) always defines
a prefix (which enables v) again. This implies, that there is a maximal prefix
which enables v (it equals U) and also a minimal prefix which enables v defined
by the set U ′ = {u ∈ V | u ≺ v}. In particular, the intersection V ′′ = V ′ ∩ U
defines a prefix S ′′. Then c((SV ′ , TV ′)) 6 c((SV ′′ , TV ′′)), since c(([u], [w])) = 0
if u 6∈ U (only such edges count for the flow cut (SV ′ , TV ′) but not for the
flow cut (SV ′′ , TV ′′)), and there may be edges ([u], [w]) ∈ E with u ∈ V ′′ and
w ∈ V ′ \ V ′′ (these edges count for (SV ′′, TV ′′) but not for (SV ′ , TV ′)). Finally,
V0 = V ′′∪U ′ defines a prefix enabling v with c((SV ′′ , TV ′′)) 6 c((SV0 , TV0)). This
follows, since c(([u], [w])) = 0 if w ≺ v (only such edges count for (SV ′′, TV ′′)
but not for (SV0 , TV0)), and there may be edges ([u], [w]) ∈ E with u ∈ V0 \V ′′

(these edges count for (SV0 , TV0) but not for (SV ′′, TV ′′)). �

Thus, inhibitor values can be computed through the maximal capacity of a
flow cut in an appropriate flow network. This maximal capacity equals the
minimal flow through this network. This minimal flow can be computed in
polynomial time (an explanation of the main arguments can be found in the
Appendix). If p is a place, for which there is a token flow function satisfying
(IN) and (OUT), then the inhibitor value w.r.t. this token flow function must
be computed for each node of the LSO. A comparison of these inhibitor values
and the weights of the inhibitor arcs of the net decides if (FIN) is fulfilled.
Thus, the polynomial test of the TFP looks formally as follows:

Algorithm 6 (Tests, whether S fulfils the TFP w.r.t. (N, m0).)
Step 1: Repeat for each place p ∈ P :

Step 1.1: If (V,≺, l) fulfils the TFP w.r.t. (P, T, F, W, m0) and p do the follow-
ing (let χp be the computed token flow function): Repeat for each node v ∈ V :

Step 1.1.1: Compute the flow network (G, c, s, t) associated to χp and v.

Step 1.1.2: Compute the value M(p, v) of a minimal flow in (G, c, s, t).

Step 2: Return true if and only if (V,≺, l) fulfils the TFP w.r.t. (P, T, F, W, m0)
and p for each p ∈ P and M(p, v) 6 I((p, l(v)))) for each p ∈ P and each
v ∈ V .

41

3.3 A-posteriori Semantics

It is easy to adapt the considerations of the last subsection to the case of
a-posteriori semantics. We simply use a different notion of final marking to
reflect the more restrictive occurrence rule. For the efficient computation of
inhibitor values then a modified version of associated flow networks is used.

3.3.1 Token flow property

If lpo is enabled w.r.t. a PTI-net in the a-posteriori semantics, then for each
place p there is a token flow function χp satisfying (IN) and (OUT). The
existence of such token flow functions is not enough to ensure that lpo is
enabled. This is because the execution of a prefix of lpo still might produce too
many tokens in a place p (according to χp), disabling a subsequent transition
step, which tests p via inhibitor arcs. As in the case of a-priori semantics,
the number of tokens in a place which is not allowed to exceed an inhibitor
weight (in order not to disable transition steps subsequent to a certain prefix)
is denoted as final marking of a prefix. It consists of the token flow on edges
leaving the prefix and the token flow produced by the subsequent cut of the
prefix.

Definition 25 (Final marking) Let lpo′ = (V ′,≺′, l′) be a prefix of (V,≺, l)
and χ : V 0 → N be a token flow function of (V,≺, l).
The cut CV ′ = Clpo′ = {v ∈ V \ V ′ | (w ≺0 v) =⇒ (w ∈ V ′)} is called
subsequent cut of lpo′.
The final marking of lpo′ (w.r.t. χ) is defined by
mlpo′(χ) =

∑

u∈V ′∪{v0}, v 6∈V ′, u≺0v χ((u, v)) +
∑

v∈Clpo′
Out(v, χ).

As in the case of a-priori semantics, if a token flow function fulfils (IN) and
(OUT) then the final marking of a prefix in fact does not depend on the
concrete distribution of the token flow given by this token flow function, but
only on the nodes belonging to the prefix. In this case, the final marking can be
computed through mlpo′(χ) = m0(p) +

∑

t∈T l(V ′)(t)(W ((t, p)) − W ((p, t))) +
∑

t∈T l(Clpo′)(t)W ((t, p)), since
∑

v∈Clpo′
Out(v, χ) =

∑

t∈T l(Clpo′)(t)W ((t, p)).

The notion of the TFP now is as in the case of a-priori semantics (apply
Definition 17 to LPOs).

Theorem 26 lpo is enabled w.r.t. (N, m0) (a-posteriori semantics) if and
only if it fulfils the TFP w.r.t. (N, m0).

PROOF. The proof is analogous to the proof of Theorem 19 in the case of
a-priori semantics. We need that Lemma 18 is also valid for LPOs, i.e. that
V ′ ⊆ V defines a prefix of lpo enabling a node v ∈ V if and only if there is a

42

step sequentialization lpo′ of lpo, such that V ′ defines a prefix of lpo′ enabling
v. This holds since lpo can be considered as LSO S = (V,≺, ⊏, l) with ≺=⊏.
If σ = τ1 . . . τn denotes the step sequence representing lpo′ as constructed
in the proof of Lemma 18 and mk denotes the marking reached after the
execution of τ1 . . . τk, we deduce mk(p) +

∑

t∈T τk+1(t)W ((t, p)) = mlpo′(χp),
since l(CV ′)(t) = τk+1(t). The statement now follows from:

• If lpo is enabled, then mk(p) +
∑

t∈T τk+1(t)W ((t, p)) ≤ I((p, t)) for each
t ∈ τk+1.

• If lpo fulfils the TFP, then mlpo′(χp) ≤ I((p, l(v))) for each v ∈ Clpo′.

�

3.3.2 Polynomial Test

The idea to derive a polynomial algorithm to test whether an LPO fulfils
the TFP w.r.t. a marked PTI-net (N, m0) in the a-posteriori semantics is the
same as in the case of the a-priori semantics. We define an associated flow
network, such that final markings of prefixes can be computed as capacities
of flow cuts in the flow network. For this, we use the same notion of inhibitor
values as before, just relating it to the modified notion of final markings. In
this modified notion, the capacity of a flow cut not only need to count the
token flow leaving a prefix lpo′, but additionally need to count the token flow
produced by the subsequent cut Clpo′ . To count the token flow leaving lpo′ we
first construct a flow network as in the case of a-priori semantics (Figure 11
(a)). To count the token flow produced by Clpo′ we add additional nodes to
this network in order to add this token flow to the capacity of cuts (Figure
11).

e2e1

a

(a) Part of an associated flow
network in the case of
a-priori semantics

e3 e4

u

e2e1

e3 e4

u

hu
b

c d

a b

c d

00

c+d

(b) New nodes hu in the
case of a-posteriori
semantics (c) Different possible flow cuts

(ii) enables u,
capacity a+b

(i) enables u,
capacity a+b+c+d

(iv) not enables u,
capacity 0

(iii) not enables u,
capacity a

Fig. 11. Construction of the associated flow network in the case of a-posteriori
semantics from the associated flow network in the case of a-priori semantics and
several possible new flow cuts.

43

Definition 27 (Associated flow network) Let χ :≺0→ N be a token flow
function of lpo = (V,≺, l). Let further Umin be the smallest prefix enabling v
and Umax be the largest prefix enabling v.
Define the flow network (G, c, s, t), G = (W, E), associated to χ and v, by
W = V 0 ∪ H, s = v0, t = v⋆, E =≺0 ∪F and c = d ∪ e, where

• H = {hu | u ∈ (Umax ∪ CUmax) \ Umin}.
• F = {(hu, u) | hu ∈ H} ∪ {(w, hu) | hu ∈ H, w ∈ •u}.
• d :≺0→ N is given by d((u, w)) = χ((u, w)) if (u ∈ Umax ∪ {v0} ∧ w 6≺ v)

and d((u, w)) = 0 else.
• e : F → N is given by e((hu, u)) = Out(u, χ) and e((w, hu)) = 0.

Let V ′ define a prefix of lpo. Then the flow cut (SV ′, TV ′) corresponding to V ′

is defined by SV ′ = V ′ ∪ {v0} ∪ {hu | u ∈ CV ′ ∪ V ′} and TV ′ = W \ SV ′.

Lemma 28 Let lpo′ = (V ′,≺′, l′) be a prefix enabling a node v. Let further χ
be a token flow function of lpo and (G, c, s, t), G = (W, E), be the flow network
associated to χ and v. Then mlpo′(χ) = c((SV ′ , TV ′)).

PROOF. Easy computation using (x, y) ∈ E ∩ (SV ′ × TV ′) ⇔ (x ≺0 y ∧ x ∈
V ′∪{v0}∧y ∈ V \V ′)∨(x = hu∧y = u∧u ∈ CV ′)∨(x ∈ •v∩(V ′∪{v0})∧y =
hu ∧ u 6∈ (V ′ ∪ CV ′)) (Figure 11 (c)). �

Theorem 29 Let v be a node, and χ be a token flow function of lpo = (V,≺
, l). Let further (G, c, s, t), G = (W, E), be the flow network associated to χ
and v. Then Inh(v, χ) = max{c((S, T)) | (S, T) flow cut of (G, c, s, t)}.

PROOF. The proof is analogous to the proof of Theorem 24 in the case of
a-priori semantics. The idea is to show that, if (S, T) is a flow cut of (G, c, s, t)
not corresponding to a prefix enabling v, then there is a flow cut corresponding
to a prefix enabling v with bigger capacity. Then the statement follows from
Lemma 28. In comparison to the proof of Theorem 24 we now must account
for flow cuts separating the hv-nodes from other nodes in different ways.
For a flow cut (S, T) of (G, c, s, t) we set V ′ = S ∩ V 0, S ′ = S ∩ V 0 and
T ′ = V 0 \ S. Then by construction (S ′, T ′) is a flow cut of the associated flow
network in the case of a-priori semantics. We can distinguished the following
cases.
If V ′ does not define a prefix of lpo, then analogous as in the case of a-priori
semantics it follows that there are nodes u ∈ S ′ ⊆ S and w ∈ T ′ ⊆ T with
(w, u) ∈≺0⊆ E, i.e. c((S, T)) = 0.
Let lpo′ = (V ′,≺, l) be a prefix of lpo. Consider first the case S 6= SV ′ (for
the definition of SV ′ see Definition 27). That means, there holds one of the
following statements:

44

(i) ∃v′ ∈ V ′ : hv′ 6∈ S: In this case we deduce (hv′ , v
′) ∈ (T × S) ∩ E, i.e

c((S, T)) = 0.
(ii) ∃v′ ∈ CV ′ : hv′ 6∈ S: In this case we deduce c((S ∪ {hv′}, T \ {hv′})) =

c((S, T)) + c((hv′ , v
′)) > c((S, T)) (Figure 11 (c)(i),(c)(ii)).

(iii) ∃v′ ∈ T ′ \ CV ′ : hv′ ∈ S: In this case we deduce (w, hv′) ∈ (T × S) ∩ E for
some w ∈ •v′, i.e c((S, T)) = 0 (Figure 11 (c)(iv)).

Assume now that lpo′ = (V ′,≺, l) is a prefix of lpo with S = SV ′ . If lpo′

does not enable v, then analogously as in the case of a-priori semantics, it
follows that there is a prefix enabling v whose corresponding flow cut has a
bigger capacity than (S, T) (Figure 11 (c)(iii)). If lpo′ enables v, then (S, T)
corresponds to a prefix enabling v. �

The algorithm looks as in the last paragraph, just relating to the different
notion of associated flow network.

45

4 Other Net Classes

In this Section we briefly discuss how to adapt the presented theory to the
net classes of elementary nets, elementary nets with (mixed) context (in the
a-posteriori and a-priori semantics), p/t-nets with capacities (in the weak
and strong semantics) and p/t-nets with unweighted inhibitor arcs (in the
a-posteriori and a-priori semantics).

The construction for elementary nets (as mentioned in the Introduction) can
also be applied to elementary nets with (mixed) context, that means to elemen-
tary nets extended by read arcs and/or (unweighted) inhibitor arcs. Processes
of such nets are defined w.r.t. their so called complementation (adding a com-
plement place for each place in order to get a contact free net). Processes
additionally contain read arcs between events and conditions to reflect the
read and inhibitor arcs of the net. To represent inhibitor arcs, read arcs con-
nected to complement places are used. Read arcs in a process directly refer
to read and inhibitor arcs in the net. The run corresponding to a process is
given by an LPO in the case of a-posteriori semantics, and by an LSO in the
case of a-priori semantics. Given an LPO lpo (LSO S), we try to construct a
process whose corresponding run is sequentialized by lpo (S) in the same way
as above. Again there is always at most one possibility to append an event. If
it is not possible to append the event or if appending the event produces order
not existent in lpo (S), lpo (S) is no execution. The only difference is, that
now several possibilities to generate order between events have to be checked,
because not only token flow generates order (“earlier than”), but also context
relations generate order (“earlier than” or “not later than”, depending on the
considered semantics, see Figure 12). Obviously, this construction again needs
linear time.

(a) process:

(b) a-posteriori causality:

(c) a-priori causality:

Fig. 12. Causality relations between events corresponding to the relation between
these events in process nets.

Clearly, the theory presented in this paper can be applied to p/t-nets with
unweighted inhibitor arcs (that means having the weight 0), since they are
a special case of PTI-nets. We simply have to check if the inhibitor value of
events exceeds the value 0 w.r.t. inhibitor places. It is not necessary to apply a
flow minimization algorithm here, because the maximal capacity of a flow cut
in the associated flow network is 0 if and only if all capacities are 0. Therefore,
it is enough to construct the associated flow network and to check the capacity
function.

46

Finally, let us consider p/t-nets with capacities, i.e. p/t-nets where each place
p has an upper (capacity) bound K(p) ∈ N for the number of tokens which it
can carry. There are several semantics of such nets.

• According to weak semantics [34] (resp. capacities of type E2 given in [35]),
given a marking m enabling a transition t, t first consumes the tokens given
by W ((p, t)) yielding an intermediate marking m(p)−W ((p, t)) in places p
and then produces the tokens given by W ((t, p)) yielding the marking m(p)−
W ((p, t)) + W ((t, p)). There are two concurrent step semantics for weak
capacities to distinguish, namely asynchronous concurrent step semantics
and synchronous concurrent step semantics.
· A multi-set (a step) of transitions τ is asynchronous enabled to occur in

a marking m if m(p) ≥
∑

t∈T τ(t)W ((p, t)) and K(p) ≥ m(p) −
∑

t∈T

τ ′(t)(W ((p, t)) − W ((t, p))) for each place p and each multi-set of transi-
tions τ ′ with ∀t ∈ T : τ ′(t) 6 τ(t). This ensures that if a step is enabled
to occur, also all sub-steps are enabled to occur. In other words, the tran-
sition occurrences in such a step are concurrent (Figure 13 (c)).

· A multi-set (a step) of transitions τ is synchronous enabled to occur in
a marking m if m(p) ≥

∑

t∈T τ(t)W ((p, t)) and K(p) ≥ m(p) −
∑

t∈T

τ(t)(W ((p, t)) − W ((t, p))) for each place p. It is not required that if a
step is enabled to occur, also all sub-steps are enabled to occur. The
transitions in such a step need not be concurrent and it is possible to
distinguish concurrent and synchronous behavior (Figure 13 (e)).

• According to the strong semantics [34] (resp. capacities of type E1 given in
[35]), given a marking m enabling a transition t, t can consume and produce
tokens in any order, i.e. it behaves either as in the case of weak semantics or
it first produces tokens given by W ((t, p)) yielding an intermediate marking
m(p) + W ((t, p)) and then consumes tokens given by W ((p, t)) yielding
the marking m(p) − W ((p, t)) + W ((t, p)). The concurrent step semantics
in this case is defined as follows: A multi-set (a step) of transitions τ is
strong enabled to occur in a marking m if m(p) ≥

∑

t∈T τ(t)W ((p, t)) and
K(p) ≥ m(p) +

∑

t∈T τ(t)W ((t, p)) for each place p (Figure 13 (a)).

In [35] it is shown, that given a p/t net with capacities with an initial mark-
ing m0, for the strong semantics and for the asynchronous weak semantics
there exists a transformation into a marked p/t net with the same number of
transitions, such that the step sequences of the net with capacities and the
transformed net without capacities are equal. 6 The processes and runs of the
transformed net provide then the non-sequential semantics of the p/t-net with
capacities. We deduce that in both cases causal semantics can be given equiv-
alently as enabled LPOs or as executable LPOs (as defined for p/t-nets). To
test whether a given LPO is an execution of such a p/t-net with capacities, we

6 For strong capacities, the transformation is analogous to the complementation of
elementary nets, while for weak capacities the transformation is more complicated.

47

2

2
6

2

2
4

2

2
3

(e) N3: (a+b) synchronous weak enabled,
not asynchronous weak enabled

(c) N2: (a+b) synchronous weak enabled,
not strong enabled

(a) N1: (a+b) strong enabled

a b a b a b

a be1 e2

v*

v0
2 1

21

a be1 e2

v*

v0
2 1

21

a be1 e2

v*

v0

2 1

21

a be1 e2

v*

v0
2 1

21

0a be1 e2

v*

v0
2 1

21

0

0
0

0
a be1 e2

v*

v0
2 1

21

0

00

21

0

0

(b) Flow network w.r.t.
strong semantics,
Final marking = 6

(d) Flow network w.r.t.
asynchronous weak semantics,
Final marking = 4

(f) Flow network w.r.t.
synchronous weak semantics,
Final marking = 3

Fig. 13. Enabledness of the step (a + b) w.r.t. different semantics and p/t-nets with
varying capacities. The step (a+b) is represented in case (a) and (c) by an LPO ((b)
and (d) upper part), in case (c) by an LSO ((f) upper part). In each case a token
flow and a prefix defining a maximal final marking is shown. Finally, the associated
flow network is illustrated together with the flow cut corresponding to the prefix
((b), (d), (f) lower part).

can apply the verification algorithm developed for p/t-nets to the transformed
net.
But it is also possible to characterize enabled LPOs in these cases (strong and
asynchronous weak semantics) directly through an adapted TFP w.r.t. the
original net. Clearly this adapted TFP again includes the TFP for p/t-nets.
Additionally we have to account for the capacity constraints. These are very
similar to the inhibitor constraints in the case of PTI-nets. We just replace
inhibitor bounds by capacity bounds and require that some appropriately de-
fined final marking of a prefix should not exceed the capacity bound. Finally,
we construct a flow network, such that final markings correspond to capacities
of flow cuts in this network.
For the asynchronous weak semantics the definition of final markings and the
associated flow network is very similar as for PTI-nets w.r.t. the a-priori se-
mantics. Observe that the capacity constraint of the step occurrence rule can
be translated into the requirement that the number of tokens in a place after
the occurrence of an arbitrary prefix (according to some token flow function
fulfilling (IN) and (OUT) w.r.t. some place) should not exceed the capacity
bound of the considered place. Note here, that each step of transition occur-
rences corresponds to such a prefix and vice versa in the sense that the prefix
enables the step in the LPO (this way sub-steps are included in a natural

48

way). That means, the final marking of a prefix can be defined as for PTI-nets
w.r.t. the a-priori semantics (remember that LPOs are special LSOs). The
only difference is, that we do not consider the inhibitor values of all events
of the LPO lpo, but only the inhibitor value of lpo as a whole. This inhibitor
value is defined as the maximum over all final markings of prefixes of lpo. It
can be computed as the maximal capacity of a flow cut in an associated flow
network. This flow network is defined analogously as for PTI-nets w.r.t. the
a-priori semantics (applied to LPOs) with the only difference that the capac-
ity of all edges is computed from the token flow function and no capacity is
explicitly set to 0 (Figure 13 (d)).
For the strong semantics the definition of final markings and the associated
flow network is very similar as for PTI-nets w.r.t. the a-posteriori seman-
tics. Observe that the capacity constraint of the step occurrence rule can be
translated into the requirement that the number of tokens in a place after
the occurrence of an arbitrary prefix lpo′ of the given LPO increased by the
number of tokens produced by the subsequent step Clpo′ should not exceed
the capacity bound of the considered place. That means, the final marking of
a prefix can be defined as for PTI-nets w.r.t. the a-posteriori semantics. As
for the asynchronous weak semantics we continue by considering the inhibitor
value of lpo as a whole, defined as the maximum over all final markings of
prefixes of lpo. It can be computed as the maximal capacity of a flow cut in
an associated flow network. This flow network is defined analogously as for
PTI-nets w.r.t. the a-posteriori semantics (applied to LPOs) with the only
difference that for all nodes v a node hv is added and the capacity of all edges
not relating to a node hv is computed as a sum of token flows (Figure 13 (b)).
The synchronous weak semantics executions are given by LSOs, since here con-
current and synchronous occurrence of transitions can be distinguished. En-
abled LSOs are defined in the same way as for PTI-nets using (synchronous)
step occurrence sequences. Enabled LSOs can be equivalently characterized
through an adapted token flow property which can be defined analogously as
in the case of asynchronous weak semantics. That means the definition of fi-
nal markings and the associated flow network is the same as for asynchronous
weak semantics, just applied to general LSOs (Figure 13 (f)).

49

5 Conclusion

In this paper we have presented several polynomial algorithms to verify par-
tially ordered executions of Petri nets for several Petri net classes including
p/t-nets, p/t-nets with inhibitor arcs and p/t-nets with capacities. These al-
gorithms are based on the new formal concept of token flow functions to rep-
resent non-sequential semantics of Petri nets. For p/t-nets we implemented
the presented algorithms into the tool VIPtool.
The presented verification concept cannot be compared directly to verification
concepts presented so far in literature: Whereas we ask whether a given sce-
nario represents valid behaviour of a given net, usually there are constructed
behaviour models of a given net (such as the reachability graph or the unfold-
ing), which are then verified to fulfil certain requirements (given for example
by temporal formulas) [36,37].
The paper summarizes, consolidates and extends two conference papers. In
[1], for the first time the new concept of token flow functions was presented
for p/t-nets, leading to polynomial algorithms to verify executions and mini-
mal executions of p/t-nets. The content of [1] is presented in this paper in a
consolidated manner. It is extended by a second more efficient algorithm, a
discussion of possible optimizations, a comparison of the algorithms concern-
ing time complexity and fault analysis and a discussion of strict executions. In
[2] we extended the theory to inhibitor nets considering their a-priori seman-
tics. These considerations are extended in this paper by also examining their
a-posteriori semantics and different semantics of p/t-nets with capacities.

Acknowledgements

This paper was supported by the project SYNOPS of the German Research
Council.

50

References

[1] G. Juhás, R. Lorenz, J. Desel, Can I Execute My Scenario in Your Net?,
in: G. Ciardo, P. Darondeau (Eds.), ICATPN, Vol. 3536 of Lecture Notes in
Computer Science, Springer, 2005, pp. 289–308.

[2] R. Lorenz, S. Mauser, R. Bergenthum, Testing the Executability of Scenarios in
General Inhibitor Nets, in: ACSD, IEEE Computer Society, 2007, pp. 167–176.

[3] R. Lorenz, Szenario-basierte Verifikation und Synthese von Perinetzen: Theorie
und Anwendungen, Habilitation (2006).

[4] J. Billington, M. Diaz, G. Rozenberg (Eds.), Application of Petri Nets to
Communication Networks, Advances in Petri Nets, Vol. 1605 of Lecture Notes
in Computer Science, Springer, 1999.

[5] B.-H. Schlingloff, A. Martens, K. Schmidt, Modeling and Model Checking Web
Services., Electr. Notes Theor. Comput. Sci. 126 (2005) 3–26.

[6] M. Zhou, F. D. Cesare, Petri Net Synthesis for Discrete Event Control of
Manufacturing Systems., Kluwer, 1993.

[7] W. van der Aalst, K. van Hee, Workflow Management: Models, Methods, and
Systems., MIT Press, Cambridge, Massachsetts, 2002.

[8] J. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall, 1981.

[9] S. Donatelli, G. Franceschinis, Modelling and Analysis of Distributed Software
using GSPNs, in: Petri Nets (2), Vol. 1492 of LNCS, 1998, pp. 438–476.

[10] U. Goltz, W. Reisig, The Non-Sequential Behaviour of Petri Nets., Information
and Control 57 (2/3) (1983) 125–147.

[11] U. Montanari, F. Rossi, Contextual Nets, Acta Inf. 32 (6) (1995) 545–596.

[12] N. Busi, G. M. Pinna, Process Semantics for Place/Transition Nets with
Inhibitor and Read Arcs, Fundam. Inform. 40 (2-3) (1999) 165–197.

[13] H. C. M. Kleijn, M. Koutny, Process Semantics of General Inhibitor Nets, Inf.
Comput. 190 (1) (2004) 18–69.

[14] G. Juhás, R. Lorenz, S. Mauser, Complete Process Semantics for Inhibitor
Nets, in: J. Kleijn, A. Yakovlev (Eds.), ICATPN, Vol. 4546 of Lecture Notes in
Computer Science, Springer, 2007, pp. 184–203.

[15] V. Pratt, Modelling Concurrency with Partial Orders., Int. Journal of Parallel
Programming 15 (1986) 33–71.

[16] J. Grabowski, On Partial Languages., Fundamenta Informaticae 4 (2) (1981)
428–498.

[17] A. Kiehn, On the Interrelation Between Synchronized and Non-Synchronized
Behaviour of Petri Nets., Elektronische Informationsverarbeitung und
Kybernetik 24 (1/2) (1988) 3–18.

51

[18] W. Vogler, Modular Construction and Partial Order Semantics of Petri Nets.,
Vol. 625 of Lecture Notes in Computer Science, Springer, 1992.

[19] A. Goldberg, S. Rao, Beyond the Flow Decomposition Barrier., Journal of the
ACM 45 (5) (1998) 783–797.

[20] R. Janicki, M. Koutny, Semantics of Inhibitor Nets., Inf. Comput. 123 (1) (1995)
1–16.

[21] H. C. M. Kleijn, M. Koutny, Process Semantics of General Inhibitor Nets, Inf.
Comput. 190 (1) (2004) 18–69.

[22] H. Gaifman, V. R. Pratt, Partial Order Models of Concurrency and the
Computation of Functions, in: LICS, IEEE Computer Society, 1987, pp. 72–
85.

[23] R. Janicki, M. Koutny, Invariants and Paradigms of Concurrency Theory, in:
E. H. L. Aarts, J. v. Leeuwen, M. Rem (Eds.), PARLE (2), Vol. 506 of Lecture
Notes in Computer Science, Springer, 1991, pp. 59–74.

[24] D. Jungnickel, Graphs, Networks and Algorithms., 2nd Edition, Vol. 5 of
Algorithms and in Mathematics, Springer, 2000.

[25] V. Malhotra, M. Kumar, S. Maheshwari, An o(|v|3) Algorithm for Finding
Maximum Flows in Networks., Information Processing Letters 7 (6) (1978) 277–
278.

[26] A. Goldberg, R. Tarjan, A New Approach to the Maximum-Flow Problem.,
Journal of the ACM 35 (4) (1988) 921–940.

[27] R. Ahuja, J. Orlin, R. Tarjan, Improved Time Bounds for the Maximum Flow
Problem., SIAM Journal on Computing 18 (5) (1989) 939–954.

[28] L. Ford, D. Fulkerson, Maximal Flow Through a Network., Canadian Journal
of Mathematics 8 (1956) 399–404.

[29] R. Ahuja, A. Goldberg, J. Orlin, R. Tarjan, Finding Minimum-cost Flows by
Double Scaling., Mathematical Programming 53 (1992) 243–266.

[30] T. Watanabe, Y. Mizobata, K. Onaga, Legal Firing Sequence and Related
Problems of Petri Nets., in: PNPM, IEEE Computer Society, 1989, pp. 277–286.

[31] R. Ahuja, T. Magnanti, J. Orlin, Network Flows - Theory, Algorithms, and
Applications., Prentice-Hall, 1993.

[32] N. Busi, G. M. Pinna, Non sequential semantics for contextual p/t nets, in:
J. Billington, W. Reisig (Eds.), Application and Theory of Petri Nets, Vol.
1091 of Lecture Notes in Computer Science, Springer, 1996, pp. 113–132.

[33] N. Busi, G. M. Pinna, Comparing Truly Concurrent Semantics of Contextual
Place/Transition Nets, Fundam. Inform. 44 (2) (2000) 209 – 244.

[34] J. Desel, W.Reisig, Place/Transition Petri Nets, in: W. Reisig; G. Rozenberg
(Ed.), Petri Nets, Vol. 1491 of Lecture Notes in Computer Science, Springer,
1998, pp. 123–174.

52

[35] R. Devillers, The Semantics of Capacities in P/T Nets, in: Advances in Petri
Nets 1989, Vol. 424 of LNCS, 1989, pp. 128–150.

[36] J. Esparza, K. Heljanko, Implementing LTL Model Checking with Net
Unfoldings., in: M. B. Dwyer (Ed.), SPIN, Vol. 2057 of Lecture Notes in
Computer Science, Springer, 2001, pp. 37–56.

[37] C. Schröter, S. Schwoon, J. Esparza, The Model-Checking Kit., in: W. M. P.
van der Aalst; E. Best (Ed.), ICATPN, Vol. 2679 of Lecture Notes in Computer
Science, Springer, 2003, pp. 463–472.

53

