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Abstract. This contribution suggests a novel approach for a systematic and au-
tomatic generation of process models from example runs. The language used for
process models is place/transition Petri nets, the language used for example runs
is labelled partial orders. The approach adopts techniques from Petri net synthe-
sis and from process mining. In addition to a formal treatment of the approach, a
case study is presented and implementation issues are discussed.

1 Introduction

Business process modelling and management has attracted increasing attention in recent
years [1–3]. However, little attention has been paid to the first phases of business process
modelling, i.e., to the question of how to derive a valid process model in an informal
setting.

The usual approach to process model construction and validation is shown on the
left hand side in Figure 1. A domain expert edits a formal process model. Simulation
tools generate single runs of that process model which can also be viewed as formal
objects, such as occurrence sequences representing possible sequential occurrences of
activities or occurrence nets representing occurrences of activities and their causal or-
dering. Then the expert checks whether these runs correspond to possible executions of
the intended process. In the negative case, he changes the process model and iteratively
repeats the simulation.

In this paper, we consider Petri net process models. There are many simulation tools
that are able to generate sequential runs. Our VipTool generates and visualizes causally
ordered occurrence nets [4, 5].

The aim of this paper is to suggest a proceeding in the opposite direction. We call
causally ordered executions of the process to be modelled scenarios. We assume that
the domain experts know some or all scenarios of the process to be modelled better
than the process itself. Actually, experts might also know parts of the process model
including parts of its branching structure, but in this case scenarios can be derived from
this partially known process model. Experience shows that in various application areas
processes are specified in terms of example scenarios (an evidence are the commonly
used sequence diagrams in UML to specify scenarios).
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In a first step, an expert formalizes the scenarios, yielding formal runs. In other
words, he provides formal models of the scenarios. In our setting, the scenarios are for-
malized in terms of labelled partial orders representing occurrences of process activities
and their mutual order relation. In a second step, a process model is automatically gen-
erated from these formal runs. For this step, we apply algorithms developed for Petri
net synthesis [6–8] and for process mining [9, 10]. This procedure is shown on the right
hand side of Figure 1.

Fig. 1. Old and new approach.

The synthesized process model has at least the specified runs, but it might have
additional runs. In a third step, additional runs are generated and presented to the expert.
Runs that also represent legal scenarios are added to the set of runs specifying the
process. If a run represents a behaviour which was not intended then the process model
is changed accordingly.

In the following section we provide the necessary formalism to specify runs. The
partial order approach taken in this paper avoids to consider all possible orderings of
concurrent occurrences of activities as it was necessary in a sequential approach. How-
ever, in case of branching due to alternatives, the number of necessary example runs
can be quite large (or even infinite). Therefore, we develop a term based specification
of runs in section 3, where the atoms of the terms are comparably small labelled partial
orders. Section 4 deals with the synthesis of a p/t-net process model from such term
specification. In section 5 we tackle the problem of hierarchical process definitions.
Section 6 provides a case study supported by our tool VipTool. In section 7 we discuss
related work.

2 Specifying Runs

The core idea of our approach is to specify behaviour of a process in terms of single
runs, playing the role of example runs of the process. Therefore, the process model to
be generated should at least have the behaviour given by these runs.

We claim that modelling a single run is an easy and intuitive task, also for domain
experts unexperienced in modelling. There are many possibilities to describe scenarios
(also textual descriptions are adequate) and formalization of scenarios in terms of runs
is relatively easy (on this level of single instances). Using scenarios in requirements
engineering has received significant attention in the last years in the field of software
modelling (see section 7). In this paper we focus on scenarios to model business pro-
cesses. In this area, scenarios do not necessarily have to be designed from scratch. In



many cases it is possible to exploit already existing descriptions of scenarios supported
by the business process. In an enterprise, typical sources of scenario descriptions are log
files recorded by information systems (process mining focuses on this source of infor-
mation), process instructions for employees or textual and formal process descriptions
from some requirements analysis.

In the first step of the design approach, single runs of the process are identified. This
leads to a preferably complete description of the behaviour of the process. In this paper,
we consider labelled partial orders (LPOs) to specify single runs formally. LPOs are a
very general formalism and most languages used in practice can be mapped to LPOs.

Definition 1 (labelled partial order). A labelled partial order (LPO) is a triple lpo =
(V,<, l), where V is a set of events, < is an irreflexive and transitive binary relation on
V , and l : V → T is a labelling function with set of labels T .

The behaviour specified by an LPO includes its so called prefixes and sequential-
izations. An LPO (V ′, <′, l′) is called a prefix of another LPO (V,<, l) if V ′ ⊆ V ,
(v′ ∈ V ′∧v < v′) =⇒ (v ∈ V ′),<′=< ∩ (V ′×V ′) and l′ = l|V ′ . An LPO (V,<′, l)
is called a sequentialization of another LPO (V,<, l) if <⊆<′.

Two LPOs (V,<, l) and (V ′, <′, l′) are called isomorphic if there is a bijective map-
ping ψ : V → V ′ such that l(v) = l′(ψ(v)) for v ∈ V , and v < w ⇐⇒ ψ(v) <′ ψ(w)
for v, w ∈ V . Isomorphic LPOs model the same behaviour. Therefore, we consider
LPOs only up to isomorphism, i.e., isomorphic LPOs are not distinguished.

An LPO models a single run by specifying ”earlier than”-dependencies between
events, where an event represents an occurrence of the process activity given by its
label. LPOs offer the following advantages in process modelling compared to sequential
approaches where behaviour is given in terms of occurrence sequences [4]:
• A natural and intuitive representation of the behaviour of processes: Since concur-
rency plays an important role in process models, it is appropriate to model concurrency
also in single runs of a process. In particular, instead of considering sequential runs and
detecting the concurrency relation from a set of runs, it is easier and more intuitive to
work with partially ordered runs.
• An efficient representation of the behaviour of processes: A single LPO represents a
set of sequential runs, which can be quite large (exponential in the number of transition
occurrences) in the presence of concurrency.
• A high degree of expressiveness: First, considering sequential runs, concurrency can-
not be distinguished from non-deterministic resource sharing. Second, LPOs explicitly
model causal dependencies between transition occurrences, which allows the explicit
modelling of the flow of objects and of information in processes (this is not even im-
plicitly possible with sequential runs).
• Efficient analysis algorithms for business process models: In many cases, analysis
techniques applied to LPOs are more efficient than those working on sequential runs [5,
11].

We start our process generation procedure with a collection of LPOs (runs) repre-
senting scenarios of the process. An example of such a set of LPOs is shown in Figure
2 for the workflow triggered by a damage report in an insurance company. In all shown
runs, a received claim is negatively evaluated and a refusal letter is sent. In the first run,



the refusal letter is sent after the damage and the insurance of the client was checked. In
runs 2 and 3 only one check is performed before the negative evaluation and the sending
of the refusal letter. In all runs, after the assignment and the registration of the claim,
reserves are set aside.

Fig. 2. Example for a collection of LPOs representing scenarios of a process.

Before formalizing scenarios, the domain expert should specify initial and final con-
ditions for the considered process (see [12]) or some other kind of reference to the en-
vironment of the process in order to embed the process into its context. Moreover, he
should identify the possible activities because they appear as labels in the runs. This is
of particular importance when more than one expert provides example runs, because all
occurrences of the same activity have to be labelled by the same activity name.

3 Composed Runs

In case of large processes the procedure of considering complete runs as described in the
previous section may still be difficult for domain experts. In particular, it suffers from
the fact that the number of runs that have to be specified might grow exponentially with
the number of alternatives and can be even infinite if the process contains loops. Also,
single example runs may become very large and difficult to handle. The problem can
be solved by partly incorporating the process structure in the specification. The idea is
that it is possible for a domain expert to only specify parts of runs, called run segments,
which can be as small as desired and also can be used to locally specify alternative or
iterative parts of runs (avoiding the explicit specification of all alternative runs). Com-
plete runs are then given by specifying appropriate compositions of run segments. This
possibility to modularly develop runs by means of run segments makes the specification
of runs easier, faster and more intuitive for domain experts. Sometimes such approach
is even necessary, e.g. for complete specifications in the case of iterations or if some
domain expert actually only knows parts of runs.

Figure 3 depicts a run segment showing the registration process, several run seg-
ments describing possible evaluation procedures of the claim, a run segment modelling
the payment of the insurance company and the three singleton runs for building re-
serves, gathering information for the payment by asking queries and the completion of
the workflow. In this section, we specify a set of runs by means of such run segments.

Run segments can be related in four ways:



Fig. 3. Example for a collection of run segments in terms of LPOs.

– A run segment LPO2 occurs after another segment LPO1 (sequence).
– Either LPO1 occurs or LPO2 but not both (alternative).
– A run segment LPO1 can recur arbitrarily often (iteration).
– Two segments LPO1 and LPO2 occur concurrently (concurrency).

Similar to the approach for scenario integration based on statecharts in [13], higher
level structures of runs are built by concatenating and nesting blocks according to the
relationships sequence (;), alternative (+), iteration (∗), and concurrency (||). For the
run segments of Figure 3, we assume that they are related as depicted in Figure 4 to
faithfully model the underlying workflow. That means, the workflow starts with the
”Registration” of the claim. Then one of the evaluation runs is performed concurrently
to the subprocess of setting aside reserves for the claim. The four possibilities of evalu-
ation are alternatives. The run modelling the positive case is a sequential composition of
the three single run segments ”Positive Evaluation”, ”Queries” and ”Payment”. Asking
additional queries can be iterated arbitrarily often until a sufficient degree of informa-
tion is reached. Finally, after the execution of all other run segments, the process is
finished by the run segment ”Completion”. Figure 4 uses a graphical representation of
the four composition templates for runs by means of a block structure ( ; -composition
is depicted by arcs, +, ∗ and || by respective symbols). Since the binary composition
operators are associative, the readability of the graphical representation is improved by
composing more than two blocks in figures (e.g. the +-composition of the four alterna-
tive evaluation possibilities). We call such a behavioural specification generated by the
composition of single run segments a composed run. Composed runs nicely integrate
modular scenario specifications (run segments) which may be given by different experts
and support the specification of infinite behaviour (by the iteration operator).

Since single run segments are given by LPOs, the semantics of a composed run R
is defined as a set of LPOs Lpo(R) modelling possible behaviour each, called the set of
runs defined by a composed run. The set of runs defined by the composed run depicted
in Figure 4 comprises the runs shown in Figure 2 and the infinite set of runs illustrated
in Figure 5 (activity ”Ask Additional Queries” can be iterated).



Fig. 4. A composed run over the set of run segments depicted in Figure 3 (screenshot of VipTool).

Definition 2 (composed run). Given a finite set of single run segmentsA, a composed
run over A is inductively defined as follows:
Each single run segment lpo ofA and the empty LPO λ = (∅, ∅, ∅) are composed runs.
Let R1 and R2 be composed runs. Then R1;R2 (sequential composition), R1 + R2

(alternative composition), (R1)∗ (iteration) and R1 ‖ R2 (concurrent composition)
are composed runs.

Assume two LPOs lpo1 = (V1, <1, l1), lpo2 = (V2, <2, l2) with disjoint sets of
events. We define:

– lpo1; lpo2 := (V1 ∪ V2, <1 ∪ <2 ∪ (V1 × V2), l1 ∪ l2),
– lpo1 ‖ lpo2 := (V1 ∪ V2, <1 ∪ <2, l1 ∪ l2),
– lpo0

1 := λ and lpon1 := lpon−1
1 ; lpo1 for n > 0.

The set of runs Lpo(R) of a composed run R over A is a possibly infinite set of LPOs.
Given a composed run R, we first inductively define a set of LPOs K(R) represented
by R. The set Lpo(R) is the prefix and sequentialization closure of K(R). We set
K(λ) = {λ} and K(lpo) = {lpo} for lpo ∈ A. For composed runs R1 and R2,

– K(R1 + R2) = K(R1) ∪K(R2),
– K(R1;R2) = {lpo1; lpo2 | lpo1 ∈ K(R1), lpo2 ∈ K(R2)},
– K((R1)∗) = {lpo1; . . . ; lpon | lpo1, . . . , lpon ∈ K(R1), n ∈ N+} ∪ {λ},
– K(R1 ‖ R2) = {lpo1 ‖ lpo2 | lpo1 ∈ K(R1), lpo2 ∈ K(R2)}.

A problem excluded so far is that some runs may overlap. That means, the knowl-
edge about one run segment may be distributed on several experts, each knowing only
a part of the segment. In the simplest case these parts can be treated as single run seg-
ments that can be composed as shown above. But this is not possible if the parts contain
common events. Then they have to be fused to one single run segment. The situation
of runs having common events occurs if several experts have different views to one



Fig. 5. Infinite set of runs of the composed run of Figure 4, where the claim is positively evaluated.

process execution, i.e. they observe different subsets of all events of the respective run,
whereas respective other parts of the run are hidden.

We propose the following concept to fuse run segments. Given several parts of one
segment, first the involved people have to determine which events observed by one ex-
pert coincide with which events observed by another expert. This problem has to be
solved by an appropriate communication between the experts and is part of the spec-
ification process. The experts have to agree on a fusion equivalence relation, defined
on the set of events of all parts of the considered run segment, such that different ob-
servations of one event are equivalent. Obviously, only events having the same label
(referring to the same activity) can be equivalent. Also, the orderings given by different
observations must not contradict each other. This has to be ensured in an adjustment
phase by the modelers. The fusion of the parts is then given by a new LPO, which has
an event for each equivalence class. If two events are ordered in some part of the run
segment, then their respective classes are ordered in this LPO. Thus, each dependency
observed (respectively modelled) by some expert is regarded in the fused run segment.
No further dependencies are introduced. Conversely, we assume concurrency between
events if no expert detected any dependency. This is motivated by the idea that parts of
one run observed by different experts tend to be concurrent.

Fig. 6. Two possible parts of the run segment ”Registration” shown in Figure 3.



A simple example is shown in Figure 6. Assume that the run segment ”Registration”
of Figure 3 is not given directly, but rather by two parts of the run segment, as shown in
Figure 6. If the two events labelled by ”Receive Claim” coincide, the described fusion
approach generates the fused run ”Registration” of Figure 3.

Definition 3 (fusion). Assume LPOs lpoi = (Vi, <i, li), i ∈ {1, . . . , n} with pairwise
disjoint sets of events, modelling different parts of one run segment.

An equivalence relation ∼ on
⋃n
i=1 Vi fulfills the fusion requirement if

v ∼ v′, v 6= v′, v ∈ Vi, v′ ∈ Vj =⇒
i 6= j ∧ li(v) = lj(v′) ∧ ∀v′′ ∈ Vi, v′′′ ∈ Vj , v′′ ∼ v′′′ : (v <i v′′ =⇒ v′′′ 6<j v′).

In this case, the fused LPO of lpoi = (Vi, <i, li), i ∈ {1, . . . , n} w.r.t. ∼ is defined by
lpo = (V,<, l), where
• V = {[v]∼ | v ∈

⋃n
i=1 Vi},

• [v]∼< [v′]∼⇐⇒ (∃v′′∈ [v]∼, v′′′∈ [v′]∼, i ∈ {1, . . . , n} : v′′, v′′′ ∈ Vi, v′′ <i v′′′),
• l([v]∼) = li(v) (for v ∈ Vi).

The fused LPO is well defined because of the fusion requirement.

4 Synthesizing a Process Model

The next step in the design approach starts with a specification of a process by means of
a composed run. The aim is to automatically create a Petri net model from the composed
run. Petri net based models are the standard to compactly represent processes in the
area of workflow design and Petri nets offer a huge repertoire of analysis methods.
Formally, the composed run is defined as a term over the alphabet of single run segments
employing the composition operators ; , + , ∗ and || . In [6], we show how to synthesize
a place/transition net (p/t-net) from such a term.

The activities of the process are modelled by the transitions of the synthesized Petri
net. The places together with their connections to the transitions and their markings
define dependencies between the activities. As usual, places are drawn as circles, tokens
in places represent the initial marking, transitions are drawn as rectangles and the flow
relation as arcs annotated with values of the weight function (arcs with weight 0 are not
drawn, the weight 1 is not shown). Note that events of a composed run having the same
label model different occurrences of the same transition. Therefore, it is not possible to
convert a composed run into a Petri net the naive way by adding places in between run
segments and within run segments putting places in between ordered events.

A run of a p/t-net N is given by an LPO with event labels referring to transitions,
such that the events can occur, respecting the concurrency and dependency relations
of the LPO. Thus, a run describes executable behaviour of the net in the sense that
the transition occurrences given by the events are possible in the net, only using the
dependencies specified by the run for the flow of tokens. The set of all runs of N is
denoted by Lpo(N).

Definition 4 (p/t-net). A (marked) p/t-net is a quadruple N = (P, T,W,m0), where
P is a finite set of places, T is a finite set of transitions satisfying P ∩ T = ∅, W :
(P×T )∪(T×P )→ N is a weight function defining the flow relation, andm0 : P → N
(N denotes the non-negative integers) is an initial marking.



A multi-set of transitions τ : T → N is called a step (of transitions). A step τ is
enabled to occur (concurrently) in a marking m : P → N of a p/t-net if and only if
m(p) ≥

∑
t∈τ τ(t)W (p, t) for each place p ∈ P . In this case, its occurrence leads to

the marking m′(p) = m(p) +
∑
t∈τ τ(t)(W (t, p) −W (p, t)), abbreviated by m τ−→

m′. A finite sequence of steps σ = τ1 . . . τn, n ∈ N, is called a step occurrence
sequence enabled at m and leading to mn, denoted by m σ−→ mn, if there exists a
sequence of markings m1, . . . ,mn such that m τ1−→ m1

τ2−→ . . .
τn−→ mn.

Given an LPO lpo = (V,<, l), two events v, v′ ∈ V are called independent if
v 6< v′ and v′ 6< v, denoted by v co v′. A co-set is a subset C ⊆ V fulfilling: ∀v, v′ ∈
C : v co v′. A cut is a maximal co-set. For a co-set C and an event v ∈ V \C we write
v < (>)C, if v < (>) v′ for an element v′ ∈ C and v coC, if v co v′ for all elements
v′ ∈ C. Given a marked p/t-net N , an LPO lpo = (V,<, l) with l : V → T is called
a run of N if m0(p) +

∑
v∈V ∧v<C(W (l(v), p) − W (p, l(v))) ≥

∑
v∈CW (p, l(v))

for every cut C of lpo and every place p. The set of runs of a p/t-net N is defined by
Lpo(N) = {(V,<, l) | (V,<, l) is a run of N}.

A p/t-net N synthesized from a specified composed run R by the algorithm pre-
sented in [6] is a best upper approximation to R in the sense that

– Lpo(R) ⊆ Lpo(N) and
– ∀(N ′) : (Lpo(R) ⊆ Lpo(N ′)) =⇒ (Lpo(N) ⊆ Lpo(N ′)).

Synthesizing an upper approximation is useful, because the behaviour explicitly
specified by R should definitely be included in the behaviour of the synthesized model.
The best upper approximation property ensures that only necessary additional behaviour
is added to the synthesized net. Thus, computing a best upper approximation may be
seen as a natural completion of the specified behaviour R by a Petri net.

After the generation of a process model in this way, in a follow-up validation step
runs of the synthesized net which have not been specified are visualized. An expert is
interactively asked whether these runs are legal or not. In the positive case, they are
added to the specification. In the negative case, changes of the net to prohibit such runs
are proposed to the expert. These changes always have the problem that the changed
net does not anymore allow all specified runs. But it is possible to automatically com-
pute such changes which prohibit a minimal number of specified runs. Additionally,
since the specified behaviour is often incomplete and also the synthesized net tends to
be incomplete, reasonable continuations of runs of the net are generated following cer-
tain heuristics and presented to the expert. The applied technique is deduced from the
concept of wrong continuations [14, 8, 11]. Runs of the net are extended by appropriate
events, and it is asked whether such additional runs model intended behaviour or not.
To only propose a reasonable choice of such possible additional runs, different heuris-
tic criteria such as considering runs occurring only once as a wrong continuation of the
specified behaviour or runs prohibited by certain places can be applied. If such runs
are desired, the net is changed accordingly and the runs are added to the set of runs
specifying the process.

Finally, further heuristics to improve the readability of the net, as e.g. known from
process mining [9], as well as partial order based validation techniques, as e.g. sup-
ported by VipTool [4], and verification techniques can be applied to further improve the
process model.



5 Hierarchy

For large processes, knowledge about the process and its behaviour is often distributed
in several involved people’s minds. Some domain experts might have knowledge about
the general process where single activities are on a high level of abstraction and have to
be refined. Providing runs of this process leads to a corresponding model. Other people
might know the behaviour of some details of the process, i.e. about the refinement of an
activity of the main process, which defines a subprocess.

The paper [12] deals with synthesis of process models from this kind of distributed
knowledge on process behaviour on different abstraction levels. Its results are mainly
based on the observation that for partial order behaviour (in contrast to sequential order
behaviour) subprocesses and the main process can first be synthesized independently
and then be integrated. This section provides the core idea of this approach.

In the underlying design procedure, a special class of Petri nets is considered to
model processes: connected p/t-nets with two distinguished sets of input and output
transitions. In Figure 7 such nets are shown, where the input (output) transitions are
depicted with two ingoing (outgoing) arcs.

Actually, in [12] no arc weights are considered. Moreover, the nets are required to
have a certain 1-boundedness property (no reachable marking assigns more than one
token to a place). The aim is that input and output transitions strictly alternate. This
property ensures that the refinement step of the design procedure is correct. In [14],
we show how 1-boundedness can be guaranteed by the considered synthesis algorithm.
Nevertheless, in the present paper we consider the definition of processes based on
general p/t-nets, because the synthesis algorithm is a lot more efficient in this case [15,
10, 8] (it is possible to apply fast standard linear programming techniques, while in the
case of 1-boundedness integer linear programming methods are needed). To still allow
the refinement procedure for transitions from [12], it has to be ensured that never a
second instance of some subprocess is started (by an initial transition) before a prior
instance of the same subprocess is finished (by a final transition). This can be achieved
by adding to a transition t, before it is refined, a self-loop place pt with W (pt, t) =
W (t, pt) = m0(pt) = 1. Refining t by a subprocess, the place pt has an outgoing arc
with weight one to every input transition of the subprocess and an ingoing arc with
weight one from every output transition of the subprocess (see Figure 7). Now we can
guarantee the desired property by requiring that in the subprocess extended by pt, input
and output transitions can only occur strictly alternatingly, i.e. it is not possible that
two input transitions occur without an intermediate output transition and vice versa. To
avoid deadlocks, it additionally has to be required that from each reachable marking of
the subprocess extended by pt, there is a firing sequence including an output transition.

Formally, the refinement steps in our setting are defined as follows: We consider one
main process. A subprocess refines a transition (to which a self-loop place was added)
which either belongs to the main process or to another subprocess. It replaces the transi-
tion, the transition’s input places are connected to the input transitions of the subprocess
with arcs having the same weights, whereas the output transitions are connected to the
output places of the transition by arcs having the same weights (see Figure 7). If we
require the above behavioural restrictions for the subprocess, the external behaviour of
the subprocess resembles the behaviour of the transition, with the difference that first



the input tokens are consumed and later the output tokens are produced. That means,
the behaviour of the main process is preserved when refinement is applied. The order
of refinements does not matter.

Fig. 7. Top: Two abstract processes. Bottom: The refinement of the left process w.r.t. t and the
right process.

Definition 5 (refinement). A process net is a connected p/t-net (P, T,W,m0) with two
distinguished sets of input and output transitions Ti, To ⊆ T .

Let N = (P, T,W,m0) be a process net with a transition t and let N t = (P t, T t,
W t,mt

0) be a process net with input transitions T ti and output transitions T to . Assume
w.l.o.g. that the elements of P and of P t as well as of T and of T t are disjoint. The
refinement of N w.r.t. transition t and process N t is defined as (P ∪ P t, T ∪ T t \
{t},WN,Nt ,m0 ∪mt

0), where WN,Nt is defined by

WN,Nt(x, y) =


W (x, y) if x, y ∈ P ∪ T \ {t},
W t(x, y) if x, y ∈ P t ∪ T t,
W (x, t) if x ∈ •t ∧ y ∈ T ti ,
W (t, y) if x ∈ T t0 ∧ y ∈ t•,
0 otherwise .

It only remains to tune the considered synthesis algorithm to the definition of pro-
cess nets. The sets of input and output transitions have to be regarded in the synthesis
algorithm to create reasonable process models.

Therefore, first the sets of input transitions Ti and output transitions To have to
be defined. To ensure that a process starts with an input transition, finishes with an
output transition and in between no input and output transitions occur, we require for
the specification given by the composed run R that
• every non-empty LPO (V,<, l) in the set of runs Lpo(R) of R contains exactly
one event v0 ∈ V (called initial event) labelled by an input transition of the process
(l(v0) ∈ Ti),
• the initial event v0 of every non-empty LPO (V,<, l) ∈ Lpo(R) is a unique minimal



event, i.e. it fulfills v0 < v for every v ∈ V \ {v0},
• every LPO (V,<, l) in the set of runs Lpo(R) of R which is not prefix of another
LPO in Lpo(R), called maximal LPO of Lpo(R), contains exactly one event vmax ∈ V
(called final event) labelled by an output transition of the process (l(vmax) ∈ To),
• the final event vmax of every maximal LPO (V,<, l) ∈ Lpo(R) is a unique maximal
event, i.e. it fulfills v < vmax for every v ∈ V \ {vmax}.
With these requirements, it is ensured that a net synthesized from R∗ (∗ is considered
because a subprocess can be invoked arbitrarily often) fulfills the above behavioural
requirements for subprocesses.

In the running example of the business process of an insurance company, the only
input transition is ”Receive Claim” and the only output transition is ”Complete Claim”.
Therefore, the formulated requirement is fulfilled by our example composed run shown
in Figure 4.

Figure 7 shows an example of a subprocess net refining a transition of a main pro-
cess. Notice that this subprocess is equipped with a memory feature: In the first invoca-
tion of the subprocess, only the sequence cd is executable, in a second invocation only
ab is possible, in a third one again cd, and so on. This memory feature was not possible
if we would expect the subprocess to start with the empty marking, as it is the case for
workflow nets [1].

6 Case Study and Tool Support

In this section we briefly illustrate the proposed synthesis procedure by the small case
study which was already used for examples. We recently implemented appropriate syn-
thesis features into our Petri net toolset VipTool, which offers a flexible xml-based open
plug-in architecture. New plug-ins of VipTool allow to graphically specify a composed
run and then to automatically synthesize a net from such specification. The refinement
aspects of the business process design procedure of [12] are not yet supported by Vip-
Tool. Thus we consider the generation of a main process to show the applicability of
the implemented synthesis algorithm.

The new editing functionalities for composed runs allow to compose LPOs drawn
with other plug-ins of VipTool by respective composition operators. The composition of
LPOs is graphically supported by a visualization of composed runs by block structures
as introduced in this paper (compare Figure 4). The new editor also offers an alternative
visualization in the form of UML activity diagrams (see Figure 8). The new algorithm
to synthesize a net from a composed run is described in [16]. It combines the idea
of wrong continuations of LPOs [14, 11], which proved to yield nice synthesis results,
with the notion of regions introduced in [6]. A synthesized net can be loaded, visualized,
layouted, edited and analyzed by other plug-ins of VipTool.

Figure 8 shows the specification of the running example depicted as an activity di-
agram in VipTool. The possible runs of this workflow have been depicted in Figures 2
and 5. The workflow starts by receiving a claim submitted by a client, followed by two
concurrent activities ”Assign Claim Expert” and ”Register Claim” (segment ”Registra-
tion”). The first one models the assignment of a claim expert in charge for this claim,
the latter is concerned with the registration of the client and the loss form. Then, con-



Fig. 8. Screenshot of VipTool showing the composed run from Figure 4 represented as an activity
diagram and the corresponding run segments drawn in VipTool.

currently reserves for the claim are established (segment ”Reserves”) and the evaluation
of the claim is started. The evaluation comprises four alternative runs. Each begins with
two concurrent activities ”Check Damage” and ”Check Insurance”. ”Check Insurance”
represents checking validity of the clients insurance, ”Check Damage” models check-
ing of the damage itself. The segment ”Positive Evaluation” models the situation that
both checks are evaluated positively, meaning that an acceptance letter is sent after the
two checks. If one evaluation is negative, the company sends a refusal letter. Thus, the
activity ”Send Refusal Letter” is performed after the two ”Check” activities if one is
evaluated negatively (segment ”Negative Evaluation 1”). If a negative evaluation of one
”Check” activity already causes sending a refusal letter, while the other ”Check” ac-
tivity has not been performed yet, this second ”Check” activity has to be disabled (i.e.
it does not occur in a respective run), since it is no more necessary (segments ”Nega-
tive Evaluation 2” and ”Negative Evaluation 3”). In the case of a positive evaluation,
either the damage is immediately estimated and payed (segment ”Payment”), or before
the damage is estimated additional queries to improve estimation of the loss (segment
”Queries”) are repeatedly asked until sufficient information is collected. If the evalua-
tion of the claim (including possibly paying the damage) and the segment ”Reserves”
are finished, the process can be completed by the segment ”Completion”.

Figure 9 shows the net automatically created with the synthesis algorithm of Vip-
Tool from the specification depicted in Figure 8 (actually the synthesis algorithm gen-
erated two more places which have been deleted by a plug-in of VipTool searching for
implicit places). Although the net seems to be complex on the first glance, it represents
a very appealing model of the described business process. In fact, the net exactly has
the specified behaviour (no additional, not specified runs) and there is no more compact
possibility to describe the complex control flow of this business process by a Petri net.

The example illustrates that directly designing a Petri net model of a business pro-
cess is often challenging, while modelling runs and synthesizing a net is more easy.



Fig. 9. Screenshot of VipTool showing the user interface of the editor for Petri nets.

Manually developing a complex Petri net such as our example net for the described
workflow is an error-prone task.

7 Discussion

In the field of software engineering, the main approaches to system modelling have been
structured analysis and structured design, developed in the late 1970’s, as well as object-
oriented analysis and design, starting in the late 1980’s [17]. In the 1990’s it was rec-
ognized on a broad front that requirements engineering – the elicitation, documentation
and validation of requirements - is a fundamental aspect of software development and
requirements engineering emerged as a field of study in its own right. Scenarios, firstly
introduced by Jacobson’s use cases [18], proved to be a key concept for writing system
requirements specifications. Important advantages of using scenarios in requirements
engineering include the view of the system from the viewpoint of users, the possibility
to write partial specifications, the ease of understanding, short feedback cycles and the
possibilities to directly derive test cases [19, 20]. Modelling software systems by means
of scenarios received much attention over the past years. The dozens of popular scenario
notations including e.g. the ITU standard of Message Sequence Charts, UML Sequence
Diagrams, UML Communication Diagrams, UML Activity Diagrams and UML Inter-
action Overview Diagrams as well as Live Sequence Charts, are an evidence for this
development. Several methodologies to bridge the gap between the scenario view of a
system and state-based system models, which are closer to design and implementation,
have been proposed [21, 22]. There are analytic, fully-automated synthetic and interac-
tive synthetic software engineering methods to construct design models from scenarios.
In a more radical approach [17] it is even suggested that a scenario specification may
be considered not just the system’s requirements but actually its final implementation.



In this paper we suggested focusing on scenarios to design business processes.
Looking at scenarios to specify the requirements of a business process has similar
advantages as in the software engineering domain. We developed a comprehensive
methodology to model business processes which on the one hand regards the specifics
of business processes and on the other hand exploits the benefits of scenario modelling.
The approach starts by specifying example scenarios of the process in terms of (com-
posed) runs and establishing respective necessary preconditions and relationships. Then
a fully-automated synthesis algorithm generates a Petri net model of the process from
the example scenarios which is afterwards interactively adjusted. In the domain of busi-
ness processes modelling such construction methodology of process models focusing
on example scenarios is an innovative approach. Most of the methods known from soft-
ware engineering are not suited for business process design, because there are several
differences which have to be regarded. E.g., in software modelling [17, 22, 21] the fo-
cus is on components or objects, communication (dependencies) between components
and the distinction between inter- and intra-object behaviour, while in business process
modelling [1–3] the emphasis is on global activities, dependencies through pre- and
post-conditions of activities, and resources for activities. Modularity comes into play
by appropriate refinement and composition concepts. In business process modelling
so far (partially ordered) scenarios have only rarely been used and their application
was restricted to analysis of process models, e.g. [4, 23]. An exception, where scenar-
ios are directly used in the design phase, is process mining [9]. But usually process
mining is very much adjusted to scenarios of event logs and restricted to sequential sce-
narios. Nevertheless, there is one approach, called multi-phase mining [24–26], where
the final phase [25] algorithmically generates a process model from a finite collection
of arbitrary partially ordered scenarios given e.g. by instance EPCs [25] or message
sequence charts [26] (by directly translating dependencies from the scenarios to the
process model). In contrast to this approach, we build our modelling methodology on
formal methods known from Petri net synthesis [8, 6]. The advantage compared to [24,
25] is that our approach generates reliable results for all kinds of specifications (also
in the presence of very complex routing structures). However, our techniques may be
inferior w.r.t. performance issues.

8 Future Research

Results from practical application and evaluation will be important for further develop-
ment of our methodology. The suggested approach to design business processes is based
on several assumptions, but we believe that it could be helpful in many cases. However,
this research is still in an initial phase and we do not have experiences from real ap-
plications. Future work includes defining of success criteria and empirical research.
In particular, it would be interesting to identify and characterize settings in which our
approach is superior to other approaches.
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