
Folding Partially Ordered Runs

Robin Bergenthum, Sebastian Mauser

Department of Software Engineering, FernUniversität in Hagen

{robin.bergenthum,sebastian.mauser}@fernuni-hagen.de

Abstract. In this paper we present a folding algorithm to construct a process

model from a specification given by a set of scenarios. Each scenario is formal-

ized as a partially ordered set of activities of the process. As a process model we

consider Event-driven Process Chains which are well established in the domain

of business process modeling. Assuming that a specification describes valid be-

havior of the process to be modeled, the crucial requirement is to get a process

model which in any case is able to execute all input scenarios.

1 Introduction

Business process modeling and management has attracted increasing attention in recent

years. The usual approach to process model construction is that a domain expert ed-

its a formal process model. Simulation tools generate single scenarios of that process

model which can also be viewed as formal objects. Then, the expert checks whether the

scenarios of the model correspond to possible scenarios of the intended process. In the

negative case, he changes the process model and iteratively repeats the simulation.

In the papers [1, 2] a proceeding in the opposite direction has been suggested. It is

assumed that the domain experts know some or all scenarios of a process to be modeled

better than the process itself. Actually, experts might also know parts of the process

model including parts of its branching structure, but in this case scenarios can be de-

rived from this partially known process model. Experience shows that in various appli-

cation areas processes are specified in terms of example scenarios (an evidence is the

commonly used sequence diagrams in UML to specify scenarios).

In a first step of the approach from [1, 2], the scenarios of a process are specified

by domain experts. Then, these scenarios have to be formalized yielding formal runs.

Formalization on the instance level of single scenarios is an intuitive task. In our setting,

the scenarios are formalized in terms of labeled partial orders (LPOs) representing oc-

currences of process activities and their mutual order relation. Under the name instance

Event-driven Process Chains (iEPCs), a similar concept is also applied in the indus-

trial ARIS PPM tool [3, 4]. As in the case of iEPCs, we do not allow auto-concurrency,

i.e. we assume that the scenario descriptions of the domain experts do not contain two

concurrent occurrences of the same activity.

In a second step, a process model is automatically generated from the given for-

mal runs. For this step, in previous work [2] it was suggested to build on synthesis

algorithms generating Petri nets exactly having the behavior given by a set of LPOs.

Although using an exact synthesis algorithm as the starting point for this step has sev-

eral advantages such as reliable results, there are also several problems w.r.t. practical

52

applicability. Namely, a precise reproduction is mostly not desired in practice due to

incomplete information, the performance of synthesis is low and the resulting nets are

sometimes difficult to understand.

In the related field of process mining [5], simplified construction algorithms are

successful. Against this background, in this paper we develop a simplified construc-

tion algorithm for the automatic generation of a process model from a set of example

scenarios given by LPOs. We here use Event-driven Process Chains (EPCs) to model

processes. The idea of our approach is to fold the scenarios to one EPC model similar as

in [4] (the approach has also similarities to [6, 5]). The resulting EPC represents all the

direct dependencies given by the LPOs. The folding algorithm is efficient and gener-

ates intuitive models. Still, it has the important property that all the explicitly specified

example LPOs are executable scenarios of the generated EPC.

To formally define the folding algorithm and to prove the latter important result, we

first provide formal definitions in the next section, in particular we introduce the notion

of an LPO executable w.r.t. an EPC. Then, in Section 3 we introduce and discuss the

folding algorithm generating an EPC from a set of LPOs. Finally, Section 4 concludes

the paper.

2 Partially Ordered Runs of EPCs

EPCs are an intuitive modeling language for business processes [7, 8]. Since the lan-

guage was initially not intended for formal specifications, the formal definitions of

EPCs in literature show some differences. We here give a short and simple definition of

an EPC.

Definition 1. An EPC-structure is a five-tuple epc = (A, E , Cxor, Cand,D) where A is
a finite set of activities (also called functions), E is a finite set of events, Cxor resp. Cand
are finite sets of XOR- resp. AND-connectors and D ⊆ (A ∪ E ∪ Cxor ∪ Cand)× (A ∪
E ∪Cxor ∪Cand) is a set of directed edges connecting activities, events and connectors.
An EPC-structure is an Event-driven Process Chain (EPC) if:

(i) Events have at most one incoming and one outgoing edge.
(ii) Activities have precisely one incoming and one outgoing edge.
(iii) Connectors have either one incoming edge and multiple outgoing edges, or multiple

incoming edges and one outgoing edge.

Activities, events and connectors are also called nodes of an EPC. Given a node n,
the set of edges •n := {(n′, n) ∈ D | n′ ∈ A ∪ E ∪ Cxor ∪ Cand} is called preset of n
and the set of edges n• := {(n, n′) ∈ D | n′ ∈ A ∪ E ∪ Cxor ∪ Cand} is called postset
of n. Furthermore, an event having an empty preset is called initial event.

An example of an EPC is shown in Figure 1. Activities are illustrated by rounded

rectangles, events by hexagons and connectors by circles.

For simplicity, this definition of an EPC does not regard OR-connectors, since they

are not necessary for our considerations later on. Moreover, syntactically it is not as

restrictive as other definitions found in the literature. The main differences are described

in the following remark. However, these differences are not relevant for semantical

issues.

53

Fig. 1. EPC.

Remark 1. We omit the stylistic requirements for EPCs that in every path activities and
events alternate, that an XOR-split must not succeed an event and that there should be

no cycle of control flow that consists of connectors only.

In the following, we define a partial order semantics for EPCs. We introduce such

semantics analogously as in the case of Petri nets, see e.g. [9].

First, we define an occurrence rule for nodes of an EPC. Thereby, we consider the

notion of a marking representing a state of an EPC analogously as in [8] by assigning

tokens resp. process folders to the edges of the EPC. A problem is that the semantics of

XOR-joins (and OR-joins) of EPCs is not clear [8]. In the literature there are different

occurrence rules for XOR-joins. In this paper, we consider the simple “Petri net seman-

tics” as given in [7] where an XOR-join can fire if one of its incoming edges contains

a process folder. In this way, the exclusiveness of an XOR-operator is not regarded.

However, an appropriate approach for considering the exclusiveness meaning of XOR

requires difficult non-local behavioral definitions [8] and there is not yet a standard

approach for solving this problem.

Based on our occurrence rule for single nodes we then define a step occurrence rule

for sets of nodes. Since each edge has exactly one successor node, there are no conflicts

between nodes regarding the consumption of tokens. Consequently, a set of nodes is

concurrently executable if each node of the set is executable. Using this step occurrence

rule we further define the notion of an executable sequence of sets of nodes which we

then restrict to activities by applying an appropriate projection.

Finally, we define the executability of an LPO as in the case of Petri nets (see [9])

by requiring that each step sequence allowed by the LPO, i.e. being a sequentialization

of the LPO, is executable w.r.t. the given EPC.

A marking of an EPC is formally defined as follows.

Definition 2. Given an EPC epc = (A, E , Cxor, Cand,D), a marking of epc is a func-
tion m : D → N = {0, 1, 2, . . .}. A pair (epc,m) where epc is an EPC and m is a
marking is called marked EPC.

A directed edge d ∈ D is called marked if m(d) > 0, marked by one if m(d) = 1
and unmarked ifm(d) = 0.

The initial markingm0 of an EPC is defined as follows:

54

(i) The postsets of all initial events are marked by one and
(ii) all other edges are unmarked.

The occurrence rule for nodes of EPCs is given by the following definition.

Definition 3. Given a marked EPC epc = (A, E , Cxor, Cand,D,m), a node n ∈ A ∪
E ∪ Cxor ∪ Cand is executable if one of the following statements holds.
(i) | • n| = 1 and the unique edge d ∈ •n is marked or
(ii) | • n| > 1, n ∈ Cand and each edge d ∈ •n is marked or
(iii) | • n| > 1, n ∈ Cxor and at least one edge d ∈ •n is marked.

If a node is executable, it can be fired changing the marking of the EPC. Firing a
node n �∈ Cxor leads to the markingm′ defined by:

m′(d) =

⎧⎨
⎩

m(d)− 1, d ∈ •n
m(d) + 1, d ∈ n•
m(d) else

When firing a node n ∈ Cxor, a marked edge ein ∈ •n and an edge eout ∈ n• have
to be fixed. Then, firing n w.r.t. ein and eout leads to the markingm′ defined by:

m′(d) =

⎧⎨
⎩

m(d)− 1, d = ein
m(d) + 1, d = eout
m(d) else

Each different choice of ein and eout yields another markingm′.
If a node n is executable in a marking m and firing n leads to a marking m′, we

shortly writem n→ m′.

Next, we further extend the occurrence rule to sets of nodes.

Definition 4. A set of nodesN is concurrently executable in a markingm if each node
n ∈ N is executable inm.

In this case, a follower marking m′ is given by firing the set of nodes in any order.
If a set of nodes N is executable in a marking m and firing N leads to a marking m′,
we writem N→ m′.

A sequence of sets of nodes σ = N1N2 . . .Nn is executable in a markingm, if there
are markingsm1,m2, . . .mn such thatm

N1→ m1
N2→ . . .

Nn→ mn.
Given an executable sequence of sets of nodes σ = N1N2 . . .Nn and its projection

onto activities σ∅A = N1 ∩A . . .Nn ∩A, the sequence of sets of activities which arises
from σ∅A when omitting all empty sets is called activity step sequence σA of σ.

A sequence of sets of activities σ is executable in a marking m if there exists an
executable sequence of sets of nodes σ′ such that σ = σ′A.

For instance, in the initial marking of the EPC in Figure 1 the sequence of sets of

nodes {ST}, {Event}, {A}, {XOR}, {AND}, {Event,XOR}, {Event}, {B,D},
{Event}, {C,XOR} is executable (for simplicity we omit names for connectors and
events). Therefore, the corresponding activity step sequence {ST}, {A}, {B,D}, {C}
is executable. We use the following notions for partially ordered runs.

55

Definition 5. Given a set of activities A, a (finite) labeled partial order (LPO) is a
triple lpo = (V,<, l), where V is a finite set of vertices,< is an irreflexive and transitive
binary relation over V and l : V → A is a labeling function. The Hasse diagram
underlying an LPO lpo = (V,<, l) is defined by the labeled directed graph hlpo =
(V,<h, l) where <h= {(v, v′) | v < v′∧ � ∃v′′ : v < v′′ < v′} is the set of skeleton
edges.

We here only consider LPOs without autoconcurrency i.e. v, v′ ∈ V, v �= v′, v �<
v′, v′ �< v ⇒ l(v) �= l(v′).

Given an LPO lpo = (V,<, l), an LPO lpo′ = (V,<′, l) with <⊆<′ is called
sequentialization of lpo.

Given an LPO lpo = (V,<, l) and a sequentialization lpo′ = (V,<′, l) of lpo
with V = V1 ∪̇ . . . ∪̇ Vn and <′=

⋃
i<j Vi × Vj , the sequence of sets of activities

l(V1) . . . l(Vn) is called step sequence of lpo.

In Figure 2, Hasse diagrams of three LPOs are shown. An example of a step se-

quence of the first LPO is {ST}, {A}, {B,D}, {C}, {F}, {FI}. Finally, we define the
executability of an LPO.

Definition 6. Given an EPC epc, an LPO lpo is executable w.r.t. epc if all step se-
quences of lpo are executable in the initial marking of epc.

Note that, as in the case of Petri nets, we can also define the executability of an LPO

w.r.t. an EPC by using concepts similar to occurrence nets and process nets of Petri nets.

3 Folding Algorithm

In this section, we explain a folding algorithm generating an EPC model epc = (A, E ,
Cxor, Cand,D) of a business process from a set of LPOs L representing scenarios of the
process. Each LPO of L models one possible run of the process, i.e. different LPOs of
L represent alternative scenarios. A vertex of an LPO represents an activity occurrence
where the label refers to the respective activity of the process. The edges of an LPO de-

scribe the precedence relation of the activity occurrences within the respective scenario.

Unordered vertices represent concurrent activity occurrences. For formal purposes, we

assume that each LPO includes a vertex labeled with ST (Start) which is ordered before

all the other vertices and by a vertex labeled with FI (Final) which is ordered behind all

the other vertices (such vertices can always be added to an LPO).

We now present the steps of the folding algorithm generating an EPC epc from a

set of LPOs L. Directly after the following formal definition of the algorithm which is
rather technical, we provide an illustrative example.

– The algorithm generates an EPC with only two events, a start and a final event, i.e.
E = {Start, F inal}. The set of activities of the EPC is given by the labels of the
LPOs, i.e. A = {l(v) | v ∈ V, (V,<, l) ∈ L}.

– For each vertex v ∈ V , (V,<, l) ∈ L we consider the sets of direct predecessor
and successor activities of the vertex, called predecessor-set and successor-set of

the vertex. The predecessor-set is defined as pred(v) = {l(v′) | v′ <h v}, the
successor-set is defined as succ(v) = {l(v′) | v <h v′}.

56

– Then, for each activity a ∈ A we consider all vertices labeled by this activity and
collect the predecessor-sets of these vertices in one set, called pre-activity-set of the

activity, and the successor-sets of these vertices in another set, called post-activity-

set of the activity. The pre-activity-set is defined as prea(a) = {pred(v) �= ∅ |
v ∈ V, (V,<, l) ∈ L, l(v) = a}, the post-activity-set is defined as posta(a) =
{succ(v) �= ∅ | v ∈ V, (V,<, l) ∈ L, l(v) = a}.

– For each activity a ∈ Awe define an EPC-structure epca = ({a}, ∅, Caxor, Caand,Da)
containing the activity a and connectors determined by the dependencies given
by the pre-activity-set and post-activity-set of a. The EPC-structure epca is called
building block of a.
• Caxor = {xorapre, xorapost} ∪ {xorapre,a′ | a′ ∈ x, x ∈ prea(a)} ∪ {xorapost,a′ |
a′ ∈ x, x ∈ posta(a)}

• Caand = {andapre,x | x ∈ prea(a)} ∪ {andapost,x | x ∈ posta(a)}
• Da = {(xorapre, a), (a, xorapost} ∪ {(andapre,x, xorapre) | x ∈ prea(a)} ∪
{(xorapost, andapost,x) | x ∈ posta(a)} ∪ {(xorapre,a′ , andapre,x) | a′ ∈ x, x ∈
prea(a)} ∪ {(andapost,x, xorapost,a′) | a′ ∈ x, x ∈ posta(a)}

– By connecting the appropriate interface-connectors (xorapost,a′ with xora
′

pre,a) of

the building blocks we get the EPC-structure epc′ = (A, ∅, C′xor, C′and,D′) defined
by C′xor =

⋃
a∈A Caxor, C′and =

⋃
a∈A Caand and D′ =

⋃
a∈ADa ∪ {(xorapost,a′ ,

xora
′

pre,a) | a, a′ ∈ A, xorapost,a′ ∈ Caxor, xora
′

pre,a ∈ Ca
′

xor}.
– Finally, the EPC epc = (A, E, Cxor, Cand,D) results from removing all connectors
c having exactly one incoming edge (n, c) and exactly one outgoing edge (c, n′)
from C′xor. The two edges (n, c) and (c, n′) are also removed from D′ and an edge
(n, n′) is added to D′. Moreover, the connectors xorSTpre and xorFIpost are removed
from C′xor. Also their related edges (xorSTpre, ST) and (FI, xorFIpost) are removed
from D′ and edges (Start, ST) and (FI, F inal) are added to D′.

Fig. 2. Set of LPOs.

As an example, we consider the set of LPOs L illustrated in Figure 2 by their Hasse-
diagrams. In this example, we have A = {ST,A,B,C,D,E, F,G, FI}. To illustrate

57

the notion of predecessor- and successor-sets consider the vertex v labeled by A in the
first example LPO. There holds pred(v) = {ST} and succ(v) = {B,D}. As the pre-
and post-activity-set of the activity A we altogether get prea(A) = {{ST}, {G}} and
posta(A) = {{B,D}, {E,D}, {G}}. The construction of the building block for the
activity A is shown in Figure 3.

– We first add an XOR-split-connector having an incoming edge coming from A and
|posta(A)| outgoing edges (Figure 3 (a)).

– Each outgoing edge of the XOR-split represents one set x ∈ posta(A) (i.e. one
possible set of successor-activities ofA). Such edge is connected with a new AND-
split connector having |x| outgoing edges (Figure 3 (b)).

– Each outgoing edge of such AND-split represents a connection to one activity
a′ ∈ x. For each such a′, the respective edges have to be merged to a unique inter-
face w.r.t. a′. Therefore, these edges are connected with a new XOR-join-connector
representing the unique interface. This connector has one outgoing edge for the

connection with the activity a′ (Figure 3 (c)).
– By proceeding analogously for prea(A) (the role of incoming and outgoing edges
as well as the role of splits and joins switches, see Figure 3 (d)-(f)) we get a building

block for the activity A having a unique outgoing-interface to each activity a ∈
x, x ∈ posta(A) and a unique incoming-interface to each activity a ∈ x, x ∈
prea(A).

Fig. 3. Construction of a building block.

Figure 4 shows the building blocks for all the activities of our example, where con-

nectors having exactly one incoming edge and exactly one outgoing edge and the con-

nectors xorSTpre and xor
FI
post are already removed and replaced as defined by the last step

of the algorithm. The interfaces of the building blocks exactly fit together, i.e. if the

block of activity a has an outgoing-interface to a′, then a′ has an incoming-interface to

58

a. Therefore, the building blocks are connected along these interfaces yielding the final
EPC shown in Figure 5.

Fig. 4. Building blocks (inadequate connectors are already removed).

Fig. 5. Resulting EPC.

It remains to formally show that the presented folding algorithm in fact generates

an EPC from a set of LPOs. For this purpose, we first prove that the interfaces of the

building blocks in the step before last of the algorithm fit together.

Lemma 1. In the previous algorithm, the interface connectors of the building blocks
are matching, i.e. for two building blocks epca, epca

′
there holds xorapost,a′ ∈ Caxor if

and only if xora
′

pre,a ∈ Ca
′

xor.

Proof. There holds xorapost,a′ ∈ Caxor if and only if there exists x ∈ posta(a) fulfilling
a′ ∈ x if and only if there exists v ∈ V , (V,<, l) ∈ L, l(v) = a fulfilling a′ ∈ succ(v)
if and only if there exist v, v′ ∈ V , (V,<, l) ∈ L, v <h v′ fulfilling l(v) = a, l(v′) = a′

if and only if there exists v′ ∈ V , (V,<, l) ∈ L, l(v′) = a′ fulfilling a ∈ pred(v′) if
and only if there exists x′ ∈ prea(a′) fulfilling a ∈ x′ if and only if there holds
xora

′
pre,a ∈ Ca

′
xor.

Lemma 2. The EPC-structure epc = (A, E , Cxor, Cand,D) generated by the previous
algorithm is an EPC according to Definition 1.

Proof. We have to check the requirements (i) - (iii).
(i): Start and Final are the only events of the EPC-structure. By construction,

Start has no incoming edge and only one outgoing edge connected with ST . Final
has no outgoing edge and only one incoming edge connected with FI .

59

(ii): By construction in epc′ each activity a ∈ A has exactly one incoming edge

connected with xorapre and one outgoing edge connected with xor
a
post. In the last step

of the algorithm, if such edge is removed, it is replaced by another edge, such that (ii)

is preserved.

(iii): In the last step of the algorithm, property (iii) is ensured by removing from

epc′ the connectors xorSTpre and xor
FI
post and all connectors having exactly one incoming

edge and exactly one outgoing edge. It remains to show that each connector of epc′

except for xorSTpre and xor
FI
post either fulfills (iii) or has exactly one incoming edge and

exactly one outgoing edge:

– xorapre (a ∈ A) has exactly one outgoing edge connected with a and it has an
incoming edge connected with andapre,x for each x ∈ prea(a) where prea(a) �= ∅
for a �= ST .

– xorapost (a ∈ A) has exactly one incoming edge connected with a and it has an
outgoing edge connected with andapost,x for each x ∈ posta(a) where posta(a) �=
∅ for a �= FI .

– andapre,x (a ∈ A, x ∈ prea(a)) has exactly one outgoing edge connected with
xorapre and it has an incoming edge connected with xorapre,a′ for each a′ ∈ x
where x �= ∅.

– andapost,x (a ∈ A, x ∈ posta(a)) has exactly one incoming edge connected with
xorapost and it has an outgoing edge connected with xorapost,a′ for each a′ ∈ x
where x �= ∅.

– xorapre,a′ (a ∈ A, x ∈ prea(a), a′ ∈ x) by Lemma 2 has exactly one incom-

ing edge connected with xora
′

post,a and it has an outgoing edge connected with

andapre,x′ for each x′ ∈ {x ∈ prea(a) | a′ ∈ x} where {x ∈ prea(a) | a′ ∈ x} �=
∅.

– xorapost,a′ (a ∈ A, x ∈ posta(a), a′ ∈ x) by Lemma 2 has exactly one out-

going edge connected with xora
′

pre,a and it has an incoming edge connected with

andapost,x′ for each x′ ∈ {x ∈ posta(a) | a′ ∈ x} where {x ∈ posta(a) | a′ ∈
x} �= ∅.
As it can be seen in the example, the EPC generated by the folding algorithm repre-

sents all the direct dependencies and respects all the independencies given by the speci-

fied LPOs. Therefore, it nicely represents the behavior given by the LPOs. In particular,

it allows the execution of the specified LPOs according to Definition 6. We formally

prove this interesting result in the following lemma. The result means that scenarios

which are explicitly specified by a user are allowed by the generated EPC. This is an

important and reasonable feature, e.g. in our example all three LPOs from Figure 2 are

executable w.r.t. the constructed EPC from Figure 5. Nevertheless, many simplified al-

gorithms for model construction, e.g. from the area of process mining [5], do not satisfy

such property.

Lemma 3. Each LPO lpo ∈ L is executable w.r.t. the EPC epc generated by the previ-
ous folding algorithm (according to Definition 6).

Proof. Given a step sequence σ = A1 . . .An of lpo = (V,<, l) and the corresponding
sequentialisation lpo′ = (V,<′, l) of lpo, we consider the sequence σ′ of sets of nodes
of epc which is defined as follows:

60

– Given a setAi = {a1 . . . am} and its corresponding set of vertices Vi = {v1 . . . vm}
⊆ V with l(vj) = aj , we construct a sequence σi of sets of nodes of epc having
the form σi = σa1,pre

i σa2,pre
i . . . σam,prei Aiσ

a1,post
i σa2,post

i . . . σam,posti .
– For pred(vj) = {a′1 . . . a′p}we define σaj ,prei = {xorajpre,a′

k
| 1 ≤ k ≤ p, xor

aj
pre,a′

k

∈ Cxor}{andajpre,pred(vj) | anda
j

pre,pred(vj)
∈ Cand}{xorajpre | xorajpre ∈ Cxor}.

– For succ(vj) = {a′1 . . . a′s} we define σ
aj ,post
i = {xorajpost | xorajpost ∈ Cxor}

{andajpost,succ(vj) | anda
j

post,succ(vj)
∈ Cand}{xorajpost,a′

k
| 1 ≤ k ≤ s, xor

aj
post,a′

k
∈

Cxor}.
– Finally σ′ = σ1 . . . σn.

By construction σ = σ′A. To prove the executability of σ = A1 . . .An, it remains to

show that σ′ = σ1 . . . σn is executable in the initial marking of epc. We sketch the proof
for this statement in the following.

– First, we show that σ1 is executable in the initial marking. We have A1 = {ST}
and σST,pre1 = ∅. By construction ST is executable in the initial marking. Then, we
have to check σST,post1 . By construction, xorSTpost is executable after ST . Then, if

|succ(vj)| > 1, we can fire andSTpost,succ(vj). Afterwards, each xor
ST
post,a′

k
fulfilling

a′k ∈ succ(vj) and |{x ∈ posta(ST) | a′k ∈ x}| > 1 is executable.
– Now, we show that, if σ1 . . . σi−1 is executable in the initial marking, then σi is
executable in the follower marking. GivenAi = {a1 . . . am} and Vi = {v1 . . . vm}
as before, we consider the executability of σ

aj ,pre
i . First, each xor

aj
pre,a′

k
fulfill-

ing a′k ∈ pred(vj) and |{x ∈ prea(aj) | a′k ∈ x}| > 1 is executable. The
reason is that we have fired the activity a′k corresponding to the vertex v <h vj

with l(v) = a′k and, when they exist, the connectors xor
a′
k

post, and
a′
k

post,succ(v) and

xor
a′
k

post,aj within the sequence σ1 . . . σi−1. Moreover, the process folder generated

by xor
a′
k

post,aj is not consumed within the sequence σ1 . . . σi−1 by our construc-

tion. Next, if |pred(vj)| > 1, we can fire and
aj
pre,pred(vj)

. Then, xor
aj
pre is exe-

cutable. After each σ
aj ,pre
i , the set Ai is executable. Finally, the executability of

σa1,post
i σa2,post

i . . . σam,posti can be shown analogously as in the last paragraph.

We have proven that each step sequence σ of lpo is executable in the initial marking of
epc and thus lpo is executable.

The only problem of the folding algorithm is that indirect dependencies within the

LPOs are not represented such that the generated EPC might also allow the execution

of additional LPOs, i.e. additional behavior which has not been specified is possible. In

our example from Figure 5, first the sequence A→ G cannot only be repeated twice as

specified by the third LPO, but it can be repeated arbitrarily often. Second, it is possible

to finish the process after any number of repetitions of A → G, in particular FI can
be executed after just one execution of A → G. Third, also the first two scenarios can
still be executed after any number of repetitions of A → G.1 That means, due to the

1 Moreover, to avoid a deadlock, the routing of the XOR-split behind D has to be chosen in

accordance to the routing of the XOR-split behind A.

61

disregard of indirect dependencies the different specified behaviors can be combined

in a certain way. However, this is not only a problem but can also be seen as a positive

aspect. Typical specifications are incomplete. Thus, a real process often allows for more

behavior than given by a specification. Abstracting from indirect dependencies, as it

is done by the folding algorithm, results in a reasonable completion of the specified

example behavior.

Finally, it remains to mention that the three stylistic requirements for EPCs men-

tioned in Remark 1 can easily be ensured by the folding algorithm. First of all, by

construction the EPC generated by the algorithm contains no cycles of connectors only.

Second, the generated EPC has only one starting and one final event. However, we can

easily add (artificial) events in between the activities to guarantee alternating events

and activities. For instance, we can add an event directly before each activity except of

ST , i.e. events are inserted to the edges incoming to activities. In this way, not only
alternation is ensured but the property that XOR-splits must not proceed events is also

preserved. In our example, this approach yields the EPC shown in Figure 1 which now

fulfills all the typical syntactic requirements for EPCs.

4 Conclusion

We have presented a folding algorithm to generate a process model in the form of an

EPC from example scenarios given by a set of LPOs. The presented algorithm is very

efficient, more precisely it runs in linear time. It generates an intuitive model by repre-

senting all the direct dependencies specified by the LPOs. We have formally proven that

the generated EPC allows the execution of all the specified LPOs. Moreover, it usually

overapproximates the specification, i.e. additional scenarios which are “similar” to the

specified scenarios are possible which is reasonable due to incomplete specifications.

References
1. Desel, J.: From Human Knowledge to Process Models. In: UNISCON 2008, LNBIP 5,

Springer (2008) 84–95
2. Bergenthum, R., Desel, J., Mauser, S., Lorenz, R.: Construction of Process Models from

Example Runs. In: ToPNoC II, LNCS 5460, Springer (2009) 243–259
3. Scheer: IDS Scheer: ARIS Process Performance Manager. http://www.ids-scheer.com.
4. Dongen, B., Aalst, W.: Multi-Phase Process Mining: Aggregating Instance Graphs into EPC’s

and Petri Nets. In: 2nd Workshop on Applications of Petri Nets to Coordination, Workflow

and Business Process Management, Petri Nets 2005, Miami (2005) 35–58
5. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow Mining: Discovering Process

Models from Event Logs. IEEE Trans. Knowl. Data Eng. 16(9) (2004) 1128–1142
6. Smith, E.: Zur Bedeutung der Concurrency-Theorie für den Aufbau hochverteilter Systeme.

PhD thesis, Universität Hamburg (1989)
7. van der Aalst, W.M.P.: Formalization and Verification of Event-driven Process Chains. Infor-

mation & Software Technology 41(10) (1999) 639–650
8. Kindler, E.: On the Semantics of EPCs: A Framework for Resolving the Vicious Circle. In:

BPM 2004, LNCS 3080, Springer (2004) 82–97
9. Kiehn, A.: On the Interrelation Between Synchronized and Non-Synchronized Behaviour of

Petri Nets. Elektronische Informationsverarbeitung und Kybernetik 24(1/2) (1988) 3–18

62

