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Abstract. This paper provides three algorithms for constructing system nets from

sets of partially-ordered causal runs. The three aggregation algorithms differ with

respect to the assumptions about the information contained in the causal runs.

Specifically, we look at the situations where labels of conditions (i.e. references

to places) or events (i.e. references to transitions) are unknown. Since the pa-

per focusses on aggregation in the context of process mining, we solely look at

workflow nets, i.e. the class of Petri nets with unique start and end places. The

difference of the work presented here and most work on process mining is the

assumption that events are logged as partial orders instead of linear traces. Al-

though the work is inspired by applications in the process mining and workflow

domains, the results are generic and can be applied in other application domains.

1 Introduction

This paper proposes different approaches to “discover” process models from observing

runs, i.e., runs (also known as causal nets or occurrence nets, see e.g. [1]) are aggregated

into a single Petri net that captures the observed behaviour. Runs provide information

about events together with pre- and post-conditions which constitute a (partial) order

between these events.

There are many techniques to discover sequential process models based on event

logs (also known as transaction logs, audit trails, etc). People working on process min-

ing techniques [2] also tackle situations where processes may be concurrent and the

set of observations is incomplete. The set of possible sequences is typically larger than

the number of process instances thus making it unrealistic to assume that all possible

combinations of behaviour have been observed.

In many applications, the event log is linear, e.g., sorted based on timestamps, and

an approach based on runs is not applicable. However, there are processes where it is

possible to monitor causal dependencies (e.g., by analyzing the dataflows). We also

encountered some systems that actually log behaviour using a representation similar to

runs. The ad-hoc workflow management system InConcert of Tibco (formerly Xerox)

allows end users to define and modify process instances (e.g., customer orders) while

capturing the causal dependencies between the various activities. The representation

used directly corresponds to runs. The analysis tool ARIS PPM (Process Performance

Monitor) of IDS Scheer can extract runs represented as so-called instance EPCs (Event-

driven Process Chains) from systems such as SAP R/3 and Staffware. These examples

show that in real-life systems and processes runs can be recorded or already are being

recorded, thus motivating the work presented in this contribution.
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Fig. 1. Example describing the three problems tackled in this paper.
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To introduce the main topic of this paper we use the examples shown in Figure 1.

The left-hand side of this figure shows several runs. These are the behaviours that have

been observed by extracting information from e.g. some enterprise information system.

The right-hand side shows the models that we would like to discover by aggregating

the runs shown on the left-hand side. Runs are represented by acyclic Petri nets without

any choices. Figure 1 (a) shows the easiest situation. Here we assume that in the run all

event and condition labels have been recorded in some event log. There are two runs

and it is easy to see that the aggregated model can indeed reproduce these two runs,

and no other runs are possible. However, in general not all possible runs need to be

present. In most application domains the number of possible runs is larger than the ac-

tual number of process instances. Figure 1 (b) describes a more complex problem where

not all event labels are recorded or where the same label may refer to different transi-

tions. For example, in Figure 1 (b) the archive event is no longer visible and the two

send events (send_goods and send_bill) cannot be distinguished, since both of

them are recorded as send_something. Figure 1 (c) illustrates the most challenging

problem, i.e., the event labels are given but the condition labels are not recorded at all.

Nevertheless, the Petri net on the right is the most likely candidate process to exhibit

such behaviour. In this paper we will tackle the problem of aggregating runs into a Petri

net that can generate these runs. We will show that it is possible to do this for the three

situations depicted in Figure 1.

The generation of system nets from their causal runs has been investigated before.

The first publication on this topic is [3]. Here the basis is assumed to be the set of

all runs. These runs are folded, i.e., events representing the occurrence of the same

transition are identified, and so are conditions representing a token on the same place.

In [4] a similar folding approach is taken, but there the authors start with a set of causal

runs, as we do in the present paper. [4] does not present algorithms in details for the

aggregation of runs but rather concentrates on correctness criteria for the derived system

net. [5] extracts Petri nets from models which are based on Message Sequence Charts

(MSCs), a concept quite similar to causal runs. Less related is the work presented in

[6], where a special variant of MSCs is used to generate a system implementation.

In more recent papers [7], so-called regions are defined for partial orders of events

representing runs. These regions correspond to anonymous places of a synthesized

Place/Transition net, which can generate these partial orders. In contrast to our work, the

considered partial orders are any linearizations of causal orders, i.e., two ordered events

can either occur in a sequence (then there is a causal run with a condition ”between” the

events) or they can occur concurrently. Consequently, conditions representing tokens on

places are not considered in these partial orders whereas our approach heavily depends

on these conditions.

The goal of process mining is to extract information about processes from event

logs. One of its aspects focusses on finding a process specification, based on a set of

executions of that process, i.e. a process log is taken as a starting point. A variety of

algorithms have been proposed to generate a process model based on this log. Typically,

such a log is considered to consist of cases (i.e. process instances, for example one

insurance claim in a process dealing with insurance claims) and all tasks in each case

are totally ordered (typically based on the timestamps). In this paper, we take a different
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approach. We start by looking at so-called runs. These runs are a partial ordering on

the tasks within each case. However, in addition to the partial ordering of tasks, we may

have information about the local states of the system from which the logs originated,

i.e. for each event the pre- and post-conditions are known. This closely relates to the

process mining algorithms presented in [8] and [9]. However, also in these papers only

causal dependencies between events and no state information is assumed to be known.

In this paper, we provide three algorithms for the aggregation of runs. First, we

assume we indeed have full knowledge of each event, its preconditions and its postcon-

ditions. Then, we assume that we cannot uniquely identify events, i.e. the label of an

event may refer to multiple transitions. Finally, we provide an algorithm that assumes

less knowledge about pre- and post-conditions. Before we elaborate on our results, we

first provide some preliminary definitions that we use throughout the paper.

2 Preliminaries

Let G = (N,E) be a directed graph, i.e. N is the set of nodes and E ⊆ N × N is

the set of edges. If N ′ ⊆ N , we say that G′ = (N ′, E ∩ (N ′ × N ′)) is a subgraph of

G. N ′ ⊆ N generates a maximal connected subgraph if it is a maximal set of vertices

generating a connected subgraph. For n ∈ N , we define
G•n = {m ∈ N | (m,n) ∈ E}

as the pre-set and n
G•= {m ∈ N | (n,m) ∈ E} as the post-set of n with respect to the

graph G. If the context is clear, the superscript G is omitted.

Let G = (N,E) be a graph. Let μ be a set of colors. A function f : N → μ is a

coloring function if, for all (n1, n2) ∈ E, either n1 = n2 or f(n1) �= f(n2).
As stated in the introduction, our starting point is not only a partial order of events

within a case, but also information about the state of a case. Since we want to be able

to represent both events and states, Petri nets provide a natural basis for our approach.

In this paper, we use the standard definition of finite marked Place/Transition (P/T-nets)

nets N = (P, T, F,M0). We restrict ourselves to P/T nets where for all transitions t
holds that •t �= ∅ and t• �= ∅.

We use square brackets for the enumeration of the elements of a bag representing a

marking of a P/T-net, e.g. [2a, b, 3c] denotes the bag with two a’s, one b, and three c’s.
The sum of two bags (X � Y ), the presence of an element in a bag (a ∈ X), and the

notion of subbags (X ≤ Y ) are defined in a straightforward way, and they can handle

a mixture of sets and bags. Furthermore,
⊎
a∈A

(
f(a)

)
denotes the sum over the bags

that are results of function f applied to the elements a of a bag A.

Petri nets specify processes. The behaviour of a Petri net is given in terms of causal

nets, representing process instances (i.e. cases). Therefore, we introduce some concepts

(notation taken from [1]). First, we introduce the notion of a causal net, this is a speci-

fication of one process instance of some process specification.

Definition 2.1. (Causal net)
A P/T net (C,E,K, S0) is called a causal net if:

– for every place c ∈ C holds that | • c| ≤ 1 and |c • | ≤ 1,

– the transitive closure ofK is irreflexive, i.e. it is a partial order on C ∪ E,

– for each place c ∈ C holds that S0(c) = 1 if •c = ∅ and S0(c) = 0 if •c �= ∅.
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In causal nets, we refer to places as conditions and to transitions as events.

Each event of a causal net should refer to a transition of a corresponding P/T-net and

each condition should refer to a token on some place of the P/T-net. These references

are made by mapping the conditions and the events of a causal net onto places and

transitions, respectively, of a Petri net. We call the combination of a causal net and such

a mapping a run.

Definition 2.2. (Run)
A run (N,α, β) of a P/T-net (P, T, F,M0) is a causal netN = (C,E,K, S0), together

with two mappings α : C → P and β : E → T , such that:

– For each event (transition) e ∈ E, the mapping α induces a bijection from •e to

•β(e) and a bijection from e• to β(e)•,
– α(S0) = M0 where α is generalized to markings by α : (C → IN) → (P → IN),

such that α(S0)(p) =
∑

c|α(c)=p S0(c).

The causal behaviour of the P/T-net (P, T, F,M0) is defined as its set of runs. To avoid

confusion, the P/T-net (P, T, F,M0) is called system net in the sequel.

3 Aggregation of Runs

In this section, we will introduce an approach that takes a set of runs as a starting point.

From this set of runs, a system net is constructed. Moreover, we need to find a mapping

from all the events and conditions in the causal nets to the transitions and places in the

system net. From Definition 2.2, we know that there should exist a bijection between all

places in the pre- or post-set of an event in some causal net and the pre- or post-set of

a transition in a system net. Therefore, two conditions belonging to the pre- or post-set
of an event should not be mapped onto the same label. This restriction is in fact merely

another way to express the fact that our P/T-nets do not allow for more than one edge

between a place and a transition or vice versa. More generally, we define a labelling

function on the nodes of a graph as a function that does not give the same label to

two nodes that have a common element in their pre-sets or a common element in their

post-sets.

Definition 3.1. (Labelling function)
Let μ be a set of labels. LetG = (N,E) be a graph. LetR = {(n1, n2) ⊆ N×N | n1

G•
∩n2

G• �= ∅∨ G• n1∩ G• n2 �= ∅}. We define f : N → μ to be a labelling function if f is a

coloring function on the graph (N,R).

We focus on the aggregation of runs that originate from a Petri net with clearly

defined starting state and completion state, i.e. processes that describe a lifespan of

some case. This assumption is very natural in the context of workflow management

systems. However, it applies to many other domains where processes are instantiated

for specific cases. Hence, we will limit ourselves to a special class of Petri nets, namely

workflow nets.
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Definition 3.2. (Workflow nets)
A P/T-net N = (P, T, F,M0) is a workflow net (WF-net) if:

1. object creation: P contains an input place pini such that •pini = ∅,
2. object completion: P contains an output place pout such that pout• = ∅,
3. connectedness: there is a path from pini to every node and from every node to pout,

4. initial marking:M0 = [pini], i.e. the initial marking marks only pini.

As a consequence, a WF-net has exactly one one input place. When looking at a run

of a WF-net, we can therefore conclude that there is exactly one condition containing

a token initially and all other conditions do not contain tokens. A set of causal nets

fulfilling this condition and some structural consequences is called a causal set.

Definition 3.3. (Causal set)
Let n ∈ IN and let Φ = {(Ci, Ei,Ki, Si) | 0 ≤ i < n} be a set of causal nets. We call

this set a causal set if and only if, for 0 ≤ i < n holds:

– all sets Ci, Ei,Ki are disjoint,

– for 0 ≤ i ≤ n,
∑

c∈Ci Si(c) = 1, i.e. exactly one condition has an empty pre-set,

– for e ∈ Ei, if Si(c) = 1 for some c ∈ •e then {c} = •e,
– for e ∈ Ei, if c• = ∅ for some c ∈ e•, then {c} = e•.

The concept of constructing a system net from a causal set is called aggregation.

This concept can be applied if we assume that each causal net in the given set can

be called a run of some system net. From Definition 2.2 we know that we need two

mappings α and β satisfying the two properties mentioned. Using the definition of a

system net and the relation between system nets and runs, we can conclude that any

aggregation algorithm should have the following functionality:

– it should provide the set of places P of the system net,

– it should provide the set of transitions T of the system net,

– it should provide the flow relation F of the system net,

– it should provide the initial markingM0 of the system net,

– for each causal net in the causal set, it should provide the mappings αi : Ci → P
and βi : Ei → T , in such a way that for all causal nets, αi(Si) is the same (i.e.

they have the same initial marking) and they induce bijections between pre- and

post-sets of events and their corresponding transitions.

Each event that appears in a causal net has a corresponding transition in the original

system net. Moreover, bijections exist between the pre- and post-sets of this event and

the corresponding transitions. In order to express this in terms of labelling functions of

causal nets, we formalize this concept using the notion of transition equivalence.

Definition 3.4. (Transition equivalence)
Let μ, ν be two disjoint sets of labels. Let Φ = {Ni = (Ci, Ei,Ki, Si) | 0 ≤ i < n} be

a causal set, and let Ψ = {(αi : Ci → μ, βi : Ei → ν) | 0 ≤ i < n} be a set of labelling

functions of (Ci, Ei,Ki, Si). We define (Φ, Ψ) to respect transition equivalence if and

only if for each ei ∈ Ei and ej ∈ Ej with βi(ei) = βj(ej) the following holds:

– for each (ci, ei) ∈ Ki we have a (cj , ej) ∈ Kj such that αi(ci) = αj(cj),

– for each (ei, ci) ∈ Ki we have a (ej , cj) ∈ Kj such that αi(ci) = αj(cj).
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4 Aggregation with Known Labels

In this section, we present an aggregation algorithm that assumes that we know all

mapping functions, and that these mapping functions adhere to the definition of a run.

To illustrate the aggregation process, we make use of a running example. Consider

Figure 2 where four part of runs are shown. We assume that the events A,B,C,D,E,F
and G do not appear in any other part of each run. Our first aggregation algorithm is
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D
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Fig. 2. Four examples of parts of runs.

called the ALK aggregation algorithm (short for “All Labels Known”). This algorithm

assumes all information to be present, such as in Figure 2, i.e. it assumes known labels

for events and known labels for conditions. These labels refer to concrete transitions

and places in the aggregated system net.

Definition 4.1. (ALK aggregation algorithm)
Let μ, ν be two disjoint sets of labels. Let Φ be a causal set of size n with causal nets

(Ci, Ei,Ki, Si) (0 ≤ i < n).

Furthermore, let {(αi : Ci → μ, βi : Ei → ν) | 0 ≤ i < n} be a set of labelling

functions respecting transition equivalence, such that for all causal nets αi(Si) is the

same. We construct the system net (P, T, F,M0) belonging to these runs as follows:

– P =
⋃

0≤i<n rng(αi) is the set of places (note that P ⊆ μ)1,

– T =
⋃

0≤i<n rng(βi) is the set of transitions (note that T ⊆ ν),

– F =
⋃

0≤i<n{(αi(c), βi(e)) ∈ P × T | (c, e) ∈ Ki ∩ (Ci × Ei)}∪⋃
0≤i<n{(βi(e), αi(c)) ∈ T × P | (e, c) ∈ Ki ∩ (Ei × Ci)}

is the flow relation,

– M0 = α0(S0) is the initial marking.

The result of the ALK aggregation algorithm from Definition 4.1 for the parts pre-

sented in Figure 2 is shown in Figure 3. Another example is given in Figure 1(a).

. . .
A

p1

p2 B

C

D

E

F

G

. . .

Fig. 3. The aggregated Petri net.

The aggregated net shown in Figure 3 can actually generate the runs of Figure 2.

This is always the case after applying the ALK aggregation algorithm:

1 With rng we denote the range of a function, i.e. rng(f) = {f(x) | x ∈ dom(f)}
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Property 4.2. (The ALK algorithm is correct)
For 0 ≤ i < n,Ni = (Ci, Ei,Ki, Si), (Ni, αi, βi) is indeed a run of σ = (P, T, F,M0)
(i.e., the requirements stated in Definition 2.2 are fulfilled).

The ALK algorithm is a rather trivial aggregation over a set of runs. However, it is

assumed that the mapping functions αi and βi are known for each causal net. Further-

more, we assume two sets of labels μ and ν to be known. However, when applying these

techniques in the context of process mining, it is often not realistic to assume that all

of these are present. Therefore, in the remainder of this paper, we relax some of these

assumptions to obtain more usable process mining algorithms.

5 Aggregation with Duplicate or Missing Transition Labels

In this section, we will assume that the causal set used to generate the system net and

the labelling functions do not respect transition equivalence. We introduce an algorithm

to change the labelling function for events in such a way that this property holds again.

In the domain of process mining, the problem of so-called “duplicate transitions” (i.e.

several transitions with the same label) is well-known (cf. [10–12]). Therefore, there is

a need for algorithms to find out which events actually belong to which transition. We

assume that we have causal nets with labelling functions, where some events have the

same label, even though they may refer to different transitions (see Figure 4).
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Fig. 4. Four examples of parts of runs.

In terms of an aggregation algorithm, the problem of duplicate labels translates to

the situation where the property of transition equivalence is not satisfied. Since the

aggregation algorithm presented in the previous section only works if this property

holds, we provide an algorithm to redefine the labelling functions for events.

Definition 5.1. (Relabelling algorithm)
Let μ, ν be two disjoint sets of labels. LetΦ = {Ni | 0 ≤ i < n∧Ni = (Ci, Ei,Ki, Si)}
be a causal set and let Ψ = {(αi : Ci → μ, βi : Ei → ν) | 0 ≤ i < n} be a set

of labelling functions in (Ci, Ei,Ki, Si) such that αi(Si) is the same for all causal

nets. Furthermore, assume that μ and ν are minimal, i.e.
⋃

0≤i<n rng(αi) = μ and⋃
0≤i<n rng(βi) = ν. Let E� =

⋃
0≤i<nEi be the set of all events in the causal set.

We define the relabelling algorithm as follows:

1. Define �	⊆ E� × E� as an equivalence relation on the elements of E� in such

a way that ei �	 ej with ei ∈ Ei and ej ∈ Ej if and only if βi(ei) = βj(ej),

αi(
Ni• ei) = αj(

Ni• ej), and αi(ei
Ni• ) = αj(ej

Ni• ).
2. For each e ∈ E�, we say eqvl(e) = {e′ ∈ E� | e �	 e′}.
3. Let ν′ be the set of equivalence classes of �	, i.e. ν′ = {eqvl(e) | e ∈ E�}.
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Fig. 5. The original and relabelled part of Figure 4(d) and a part of the aggregated net.

4. For all causal nets (Ci, Ei,Ki, Si) and labelling functions αi, define a labelling

function β′i : Ei → ν′ such that for an event ei, β
′
i(ei) = eqvl(ei), i.e. it returns the

equivalence class of �	 containing ei.

After re-labelling the events, the part of the run shown in Figure 4(d) is relabelled to

include the pre- and post-conditions. Figure 5(a) shows the fragment before relabelling,

whereas Figure 5(b) shows the fragment after relabelling. (We only show the relabelling

with respect to the post-conditions.) Applying the ALK algorithm of Definition 4.1 to

the relabelled runs yields the result as shown in Figure 5(c). Note that we do not show

the ν′ labels explicitly, i.e. B refers to the equivalence class of events labelled B.

What remains to be shown is that our algorithm does not only work for our small

running example, but also in the general case. The only difference between the assump-

tions in Definition 4.1 and Definition 5.1 is the requirement with respect to transition

equivalence. Therefore, if suffices to show that after applying the relabelling algorithm

on a causal set, we can establish transition equivalence.

Property 5.2. (Transition equivalence holds after relabelling)
Let μ, ν be two disjoint sets of labels. Let Φ = {(Ci, Ei,Ki, Si) | 0 ≤ i < n} be

a causal set, and let Ψ = {(αi : Ci → μ, βi : Ei → ν) | 0 ≤ i < n} be a set of

labelling functions in (Ci, Ei,Ki, Si), such that αi(Si) is the same for all causal nets.

After applying the relabelling algorithm, the property of transition equivalence holds

for (Φ, Ψ ′), with Ψ ′ = {(αi : Ci → μ, β′i : Ei → ν′) | 0 ≤ i < n}, and β′i as defined

in Definition 5.1.

The algorithm presented above is capable of finding events that have the same label,

but correspond to different transitions in the system net. When no transition labels are
known at all, it can be applied to find all transition labels, by using an initial ν = {τ}
and initial mapping functions βi, mapping everything onto τ . However, in that case, no

distinction can be made between events that have the same pre- and post-set, but should

have different labels. After applying this relabelling algorithm, the ALK algorithm of

Section 4 can be used to find the system net belonging to the given causal nets.

6 Aggregation with Unknown Place Labels

In Section 5, we have shown a way to identify the transitions in a system net, based on

the labels of events in causal nets. However, what if condition labels are not known?

Notice that the difference to other approaches based on partial orders is that here we do
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Fig. 6. Four examples of parts of runs.

know the conditions constituting the order between events but do not know which two

conditions refer to a token in the same place of the P/T-net representing the process.

So, in this section, we take one step back. We assume all events to refer to the

correct transition and try to identify the labels of conditions. We introduce an algorithm

to aggregate causal nets to a system net, such that the original causal nets are indeed

runs of that system net. In Figure 6, we again show our small example of the aggregation

problem, only this time there are no labels for conditions p1 and p2, which we did have

in Figures 2 and 4.

Consider the four runs of Figure 6. Remember that they are parts of causal nets,

in such a way that the tasks A,B,C,D,E, F and G do not appear in any other way

in another causal net. In contrast to the algorithms presented in previous sections, we

cannot always derive a unique aggregated system net for causal nets if we do not have

labels for the conditions. Instead, we define an aggregation class, describing a class of

WF-nets that could have generated these causal nets. The following table shows some

requirements all WF-nets in the aggregation class of our example should satisfy.

Fragment Conclusions

Fig. 6 (a) A• = •B � •C
Fig. 6 (b) A• = •D
Fig. 6 (c) E• = •B
Fig. 6 (d) F • �G• = •D

This information is derived using the concept of a segment, which can be considered

to be the context of a condition in a causal net.

Definition 6.1. (Segment)
Let N = ((C,E,K), S0) be a causal net and let N ′ = (C ′, Ein, Eout) be such that

C ′ ⊆ C, Ein ∪ Eout ⊆ E and Ein �= ∅ and Eout �= ∅. We call N ′ a segment if:

– for all c ∈ C ′ holds that •c ⊆ Ein and c• ⊆ Eout, and

– for all e ∈ Ein holds that e• ⊆ C ′, and

– for all e ∈ Eout holds that •e ⊆ C ′, and

– the subgraph of N made up by C ′ ∪ Ein ∪ Eout is connected.

We call the events in Ein the input events and the events in Eout the output events.

Furthermore, a segment is called minimal if C ′ is minimal, i.e. if there does not exist a

segment N ′′ = (C ′′, E′
in, E

′
out) with C ′′ ⊂ C ′ and C ′′ �= ∅.

For the fragments of Figure 6, it is easy to see that each of them contains only one

minimal segment, where the input events are the events on the left hand side and the

output events are the events on the right hand side.

The meaning of a segment is as follows. If we have a run and a segment in that

run, then we know that after each of the events in the input set of the segment occurred,
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Fig. 7. Two aggregated nets.

all the events in the output set occurred in the execution represented by this run. This

translates directly to a marking in a system net, since the occurrence of a set of transi-

tions would lead to some marking (i.e. a bag over places), which enables another set of

transitions. Furthermore, each transition only produces one token in each output place.

Combining this leads to the fact that for each minimal segment in a causal net the bag of

places following the transitions corresponding to the input events of the segment should

be the same as the bag of places preceding the transitions corresponding to the output

set of events.

Clearly, when looking only at these fragments, what we are looking for are the

places that should be put between tasks A,E, F and G on the one hand, and B,C and

D on the other hand. Therefore, we only focus on this part of the causal nets. For this

specific example, there are two possibilities, both of which are equally correct, namely

the two WF-net fragments shown in Figure 7.

From the small example, we have seen that it is possible to take a set of causal nets

without labels for any of the conditions (but with labels for all the events) and to define

a class of WF-nets that could be system nets of the causal nets. In the remainder of

this section, we show that this is indeed possible for all causal sets. For this, we first

introduce the NCL algorithm.

6.1 NCL Algorithm

Before presenting the NCL algorithm (which stands for “No Condition Labels”), we

first take a look at a more intuitive example. Consider Figure 8, where we present three

causal nets, each of which corresponds to a paper review process. In the first causal net,

three reviewers are invited to review the paper and after the three reviews are received,

the paper is accepted. In the second causal net, only two reviews are received (the

third one is not received on time), but the paper is rejected nonetheless (apparently

the two reviewers that replied rejected the paper). In the third example only one review

is received in time, and therefore an additional reviewer is invited, which hands in his

review in time, but does not accept the paper.

As we stated before, we define an aggregation class of a causal set that contains all

WF-nets that are capable of generating the causal nets in the causal set. The information

needed for this aggregation class comes directly from the causal nets, using minimal

segments. In Table 1, we present the conclusions we can draw based on the three causal

nets. In this table we consider bags of pre- and post-sets of transitions in the aggregation

class. The information in this table is obtained from the causal nets in the following

way. Consider for example Figure 8(a), where invite reviewers is followed by
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Fig. 8. Three causal nets of a review process of a paper.

Get review 1, Get review 2 and Get review 3. This implies that the bag

of output places of invite reviewers, should be the same as the sum over the bags

of the input places of Get review 1, Get review 2 and Get review 3.

Definition 6.2. (Aggregation class)
Let Φ = {(Ci, Ei,Ki, Si) | 0 ≤ i < n} be a causal set, and let σ = (P, T, F,M0) be a

marked WF-net. For each causal net, let βi : Ei → T be a mapping from the events of

that causal net to T , such that βi is a labelling function for (Ci, Ei,Ki, Si). We define

AΦ, the aggregation class of Φ, as the set of all pairs (σ,B) such that the following

conditions are satisfied:

1. T =
⋃

0≤i<n rng(βi) is the set of transitions, i.e. each transition appears as an event

at least once in some causal net,

2. B is the set of all labelling functions, i.e. B = {βi | 0 ≤ i < n}. We use βi ∈ B to

denote the labelling function for events belonging to (Ci, Ei,Ki, Si) ∈ Φ,

3. For all p ∈ P holds that
σ•p ∪ pσ• �= ∅,

4. M0 = [pini] and
σ•pini = ∅,

5. For each causal net γ = (Ci, Ei,Ki, Si), with e ∈ Ei and βi(e) = t holds that if

Si(
γ•e) = 1 then pini ∈σ• t,

6. For each causal net γ = (Ci, Ei,Ki, Si), with e ∈ Ei and βi(e) = t holds that

|tσ• | = |eγ• | and | σ• t| = | γ•e|,
7. For each causal net γ = (Ci, Ei,Ki, Si), with e ∈ Ei, βi(e) = t and T ′ ⊆ T holds

that |tσ• ∩⋃t′∈T ′(
σ• t′)| ≥∑e′∈Ei,β(e′)∈T ′ |eγ• ∩ γ•e′|,

47



A

c2

c1 C

TS
A

p1

p2

C

D

T

B

S

A

c5

c4

c6

C

D

T

B

S

… …

… …

Fig. 9. Example explaining the use of bags.

8. For each causal net γ = (Ci, Ei,Ki, Si), with e ∈ Ei, βi(e) = t and T ′ ⊆ T holds

that |⋃t′∈T ′(t′
σ•)∩ σ• t| ≥∑e′∈Ei,β(e′)∈T ′ |e′ γ• ∩ γ•e|,

9. For each causal net γ = (Ci, Ei,Ki, Si) and any minimal segment (C ′
i, Ein, Eout)

of γ, holds that
⊎
e∈Ein

(
βi(e)

σ•
)
=
⊎
e∈Eout

(
σ•βi(e)

)
.

Figure 9 is used to gain more insight into part 9 of Definition 6.2. In the lower

causal net of that figure, there is a token travelling from A to D and from B to C.

The upper causal net only connects A and C. Assuming that these are the only causal

nets in which these transitions appear, we know that the conditions between A and

D and between B and C should represent a token in the same place, since there is a

minimal segment ({c4, c5, c6}, {A,B}, {C,D}) in the lower causal net and therefore,

A • �B• = •C � •D = [p1, 2p2].
The NLC algorithm takes a set of runs without condition labels as a starting point.

From these runs, an aggregation class of WF-nets is defined. If the runs were generated

from some sound WF-net, then the WF-net itself is in that aggregation class. We con-

clude this section with an elaborate example of the application of the NCL algorithm.

Consider the four causal nets presented in Figure 10. These causal nets originate

from a workflow system in which two activities need to be performed. These activities

are labelled L and R. However, in the workflow design, there are several options. First,

the system initializes the two activities trough event Init LR. Then, a person can

decide to perform both activities at once, which is represented by the event Do LR.

When both activities have been performed, the workflow can be finished through event

exit LR. However, in a typical workflow environment, people can make mistakes

and therefore, in Figure 10(b), both activities have been undone, thus generating events

Undo L and Undo R. Finally, in Figure 10 (c) and (d) it is shown that the workflow

system allows for the two activities to be executed separately, through Do L and Do R.

To keep things interesting, the last causal net belongs to a case in the workflow system

that is not finished yet. However, this set of causal nets still conforms to the definition

of a causal set (i.e. Definition 3.3).

Using the NCL algorithm given by Definition 6.2, we can generate the aggregation

class of the causal set of Figure 10. In fact, this aggregation class only contains one

workflow net, namely the workflow net shown in Figure 11.

The workflow net in Figure 11 actually allows for more behaviour than is shown in

the four causal nets of Figure 10. It is for example possible to execute a long sequence
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Table 1. Information derived from review example.

Causal net Conclusions on transitions in the aggregation class

Fig. 8 (a) •“Invite reviewers” = [pini]

“Invite reviewers”• = •“Get review 1” �
•“Get review 2” �
•“Get review 3”

“Get review 1” • �
“Get review 2” • �
“Get review 3”•

= •“Collect & Decide”

“Collect & Decide”• = •“Accept paper”

|“Accept paper” • | = 1

Fig. 8 (b) •“Invite reviewers” = [pini]

“Invite reviewers”• = •“Get review 1” �
•“Get review 2” �
•“Time-out review 3”

“Get review 1” • �
“Get review 2” • �
“Time-out review 3”•

= •“Collect & Decide”

“Collect & Decide”• = •“Reject paper”

|“Reject paper” • | = 1

Fig. 8 (c) •“Invite reviewers” = [pini]

“Invite reviewers”• = •“Time-out review 1”�
•“Time-out review 2”�
•“Get review 3”

“Time-out review 1”• �
“Time-out review 2”• �
“Get review 3”•

= •“Collect & Decide”

“Collect & Decide”• = •“Invite add. reviewer”

“Invite add. reviewer”• = •“Get add. review”

“Get add. review”• = •“Reject paper”

|“Reject paper” • | = 1
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Fig. 10. Four causal nets without condition labels.
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Fig. 11. The only element of the aggregation class of the four nets of Figure 10.

of Do L and Undo L, which is not shown in the causal nets. Therefore, this example

once more shows that each net in the aggregation class can actually generate the runs

of the causal set it was constructed from, but it might be able to generate more runs.

7 Conclusion and Future Work

In this paper, we looked at process mining from a new perspective. Instead of starting

with a set of traces, we started with runs, which constitute partial orders on events. We

presented three algorithms to generate a Petri net from these runs. The first algorithm

assumes that, for each run, all labels of both conditions and events are known. The
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second algorithm relaxes this by assuming that some transitions can have the same

label (i.e. duplicate labels are allowed in the system net). This algorithm can also be

used if only condition/place-labels were recorded. Finally, we provided an algorithm

that does not require condition labels, i.e. the event/transition labels are known, the

condition/place labels are unknown and duplicate transition labels are not allowed.

The results presented in this paper hold for a subclass of Petri nets, so-called WF-

nets. However, the first two algorithms presented here can easily be generalized to be

applicable to any Petri net. For the third algorithm this can also be done, however,

explicit knowledge about the initial marking would be required. When taking a set of

runs as a starting point, this knowledge is not present in the general case.
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