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Abstract. This article transfers concepts and methods from business
process modeling and workflow management to the field of learnflows,
i.e. learning and teaching processes. It is first shown that these two areas
have a lot of commonalities and similarities. On the other hand, there
are also crucial specifics of learning processes that have to be taken into
account additionally. We then introduce and discuss modeling languages
for learnflows which are based on ideas from workflow modeling. Finally,
we develop an approach to automatically generate learnflow models from
log files of learning systems by adapting workflow mining methods.

1 Introduction

Learners’ activity is in the focus of modern strands in pedagogy, such as con-
structivistic and self-regulated learning. Research results show that in completely
unguided learning situations productive activities like reflection and elaboration
rarely happen or are not performed successfully [1]. In contrast, structuring of
learning activities by means of scripts [2,3] and scaffolds has proven to be ben-
eficial to learning outcomes. In most of today’s learning support systems (e.g.
[4]) this type of support is hard-wired and tied to a specific learning domain
and system, especially when tightly integrated with the graphical user interface
of the system. The learning process models are given only implicitly by the re-
spective systems. This way, re-usability and transferability to other contexts and
learning platforms is restricted.

Explicit representation of learning process models and scaffolds is one way to
make pedagogical expertise and practice re-usable, thus reducing the effort to
develop educational support systems while also stressing the underlying peda-
gogical design principles. This holds in particular for computer-supported collab-
orative learning (CSCL) systems. CSCL research investigates in the affordances
and effects of computer applications supporting groups of students in knowledge
construction and skill development.

While the initiatives to make learning processes more explicit have recently
gained scientific prominence under the terms educational modeling [5] and learn-
ing design [6], business process modeling or workflow engineering is a well-
established research field. There is a large repertoire of mature methods, rigorous
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procedures, and formal approaches that are used for definition, re-engineering,
and automatic support of business processes in industry and companies [7,8,9].

Business process modeling and modeling of learning processes obviously share
similar traits. We discuss in this work the similarities and differences. We also
investigate potential transfer of results and methods from business process mod-
eling to learning process modeling, or shortly from workflows to learnflows. More
precisely, we first develop modeling techniques and methods for learnflows that
take up approaches from workflow methodology. Then, we present specific pro-
cedures and schemas for (semi-)automated synthesis of learning process models
from example scenarios and from real learning traces. These methods are based
on the well-known and successful concepts of process mining and workflow min-
ing [10,11,12].

As in the area of business processes, there are learning processes with more
flexibility and with less flexibility. Too much flexibility leads to deficient struc-
ture, with the problems mentioned initially. Too little flexibility is not realistic
and might frustrate learners. We concentrate on structured learning processes
with limited flexibility that are supported by appropriate supporting systems,
just like workflows supported by workflow systems are not those business pro-
cesses with maximal flexibility.

The paper is structured as follows. In the next section, we discuss learnflows
and workflows and their similarities. Section 3 is devoted to suggestions for
learnflow modeling with Petri nets. In Section 4 we argue that mining techniques
can be applied to derive learnflows from runs of learning processes.

2 Learnflows and Workflows

In this section we investigate similarities and differences between workflow en-
gineering, explored intensively since the 1990s, and the challenges of the newly
established strand of educational modeling.

2.1 Comparison of the Workflow Reference Architecture and
Learning Design Technologies

Business information systems support workflows that define the ordering of ac-
tivities to be executed. In traditional information systems these processes are
integrated in the software, i.e. hard-wired. They are thus not clearly visible and
can only be modified with substantial effort. Modern ERP systems make the
supported processes explicit and visible, yet the modification of processes (called
customization) requires a major programming effort. More flexible in this respect
are workflow systems which are a stringent application of the principles of busi-
ness process engineering. Workflow systems are standard software in which the
respective process logic is defined in a flexible way and according to the users’
requirements. The resulting formal process model is an additional input for the
system with a well-defined semantics. Its representation is interpreted by the
system at run-time. Thus, process logic and functionality of the application are
strictly separated and can be enhanced / evolved independently of each other.
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The central component of a workflow system is the workflow engine. It con-
trols and monitors the execution of a workflow by means of an explicit process
model. It ensures that the tasks are correctly accomplished by the associated
actors and subsystems. Besides the core workflow engine, several other compo-
nents are needed for workflow management. Among these are tools to develop,
define, and analyze processes, tools for interaction with users and applications,
for administration, and for cooperation among multiple workflow systems.

The Workflow Management Coalition (WfMC) was founded in 1993 and is
constituted today of more than 300 institutions representing all facets of work-
flow management, from vendors to users, and from academics to consultants (cf.
www.wfmc.org). The WfMC takes care of standardization of concepts, terminol-
ogy, and technology to promote interoperability and establishment of workflow
technology in the market.

Fig. 1. Comparison of the Workflow reference architecture (left) and existing imple-
mentations of learnflow architectures (right)

Figure 1 shows on the left hand side the workflow reference architecture from
the WfMC. It provides an overview of the main characteristics and components
of a workflow system. We consider this reference architecture a suitable schema
to compare workflow technology with the practice and technology in educational
modeling and according systems.

The distinct components of the WfMC reference architecture have the follow-
ing meaning:

Process Definition Tools: These include tools to edit and modify process defini-
tions and tools for the analysis of these processes. The processes are imported
into the workflow engine via a well-defined interface that takes the chosen repre-
sentation format as input. A process definition specifies tasks, ordering of tasks
and required resources (users / actors, external applications, etc.). Tasks can be
executable concurrently or alternatively.

Workflow Engines: The workflow enactment service creates a process instance
for each incoming case. Process instances are controlled by one or more workflow
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engines. For each case the tasks to be executed are called work items. According
to the process definition, a work item gets assigned available resources.

Workflow Client Applications: User interfaces allow users to interact with the
workflow system, especially by means of worklists that show the currently active
work items for a user.

Invoked Applications: This component consists of technical interfaces to external
applications which can process, either fully automated or interactively, specific
work items.

Other Workflow Enactment Services: The protocols and the functionalities are
needed for interoperability between – and cooperative use of – different workflow
systems.

Administration and Monitoring: Administrators and responsible persons of pro-
cesses or of specific process instances use this user interface to manipulate and
configure process parameters, inspect status information, and gain data for the
analysis and re-design of processes.

In the field of educational modeling, a similar distinction of components is
visible, yet an agreement on a similar standard architecture has not been reached.
The formal, mostly XML-based, representations such as IMS/LD [13], LDL [14],
PALO [15] or MoCoLADe [16] are usually not edited directly at XML-level but
rather with specific editors on a more abstract level. Some of the representations
are mainly visual, some of them are tree-structured textual representations. The
models are interpreted by so called learning design engines. The engine controls –
depending on the concrete approach – web-based user interfaces for the learners
(e.g. the web player of IMS/LD) or external learning applications. An example
of the latter is the remote control approach [17] which uses the collaborative
learning application FreeStyler.

Some of the approaches provide a complete implementation of editor, engine,
and learning environment, while other approaches such as the Collage tool or the
MoCoLaDe modeling language use a semantic mapping of the created models to
IMS/LD as a target language, i.e. they use IMS/LD as an educational assembler.

To administrate and observe the learning processes configuration and moni-
toring tools can be used, yet currently only basic functionality and support is
available.

There is no generally agreed reference model for educational modeling yet. In
analogy to the WfMC reference model, the right hand side of Figure 1 presents
principles and interactions of functionalities / components of process based learn-
ing systems by means of existing software / practice in the learnflow field. There
are obvious similarities with the workflow architecture. This analogy supports a
potential for take-up of methods and concepts from the workflow to the learnflow
field.

Research groups in educational design that also have a background in CSCW
(computer supported cooperative work / groupware) have recently proposed to
follow service oriented approaches [18] for architecture and components. For ex-
ample, the GridCole system [19] integrated the freely available Open Source
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IMS/LD-engine CopperCore (cf. www.coppercore.org) with tools that are avail-
able as Grid-services. Approaches stressing interoperability with workflow tech-
nology, such as BPEL, have also been brought up in educational modeling [20],
but they represent still isolated research initiatives.

2.2 Specifics of Learnflows

Despite of the conceptual similarities between workflows and learnflows, one can
find considerable discrepancies. There are several specifics of learnflows which
restrict an immediate application of existing techniques from business process
engineering. In particular, the following specifics have to be regarded by appro-
priate adaptations and extensions.

– In business processes, so called roles of actors determine which actors are
allowed to execute certain tasks [21]. This approach stems from the concept of
role-based access control (RBAC) known from IT-security [22]. The concept
of roles in business processes is mainly based on individual responsibility
and ability for a set of tasks, which is static after an initial assignment of
roles to actors. Dynamic constraints on the task execution, e.g. separation
of duties and binding of duties [23,22], and special rules for an appropriate
allocation of actors to tasks have been considered [23,21] on top of the static
role assignments. In contrary to this rigid role concept, the usage of roles
in learning processes is frequently guided by exercising specific skills. Roles
are dynamically changed and acquired during a learning process (e.g. using
rotating roles [4]). The changes typically depend on the learning activities
accomplished by an actor. Therefore, learnflows need an extension of static
role concepts to dynamic ones that can take into account the learning history.

– For business processes, the focus is on an efficient accomplishment and com-
pletion of the process and its associated tasks. The generation of a product
with guaranteed quality criteria or, more generally, the achievement of a
business goal is important, while the participation of individual actors is
only a minor concern [7,21]. In contrast, for learning processes the priority
is that the learners involved in the tasks gain knowledge and experience.
Neither a product nor an efficient completion of the process is important.
Consequently, the focus of learning processes is on the learners and their
learning success. This requires thorough and explicit modeling of the indi-
vidual actors.

– Each activity might require group work and discussion, i.e. collaboration.
The same holds for the entire learning process. These group activities usually
have a high importance for the learning experience. Thus, the flexible and ex-
plicit representation of groups and - if needed - the dynamic re-arrangement
of groups is a requirement for learnflow modeling.

– Finally, the phenomenon of concurrency, which allows an independent and
simultaneous processing of tasks in business processes has to be consid-
ered with particular care in learning processes. Due to the distinct focus of
attention, usually a single learner cannot accomplish tasks concurrently.
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3 Modeling Learnflows with Petri Nets

In this section we present two modeling languages for learning processes that
take specifically into account the requirements identified in the last subsection.
To make use of expertise and experience from business process modeling, we
build the proposals upon sound existing approaches from this field [7,24,21]. Be-
sides the intended applicability for learning and teaching processes, we consider
our approaches also useful for business processes with dynamic roles or with
cooperative and collaborative tasks.

Both business processes and learning processes are usually modeled and com-
municated via diagrams. Petri nets [25] are a very popular formalism to model
and analyze systems and processes involving concurrency. In particular, Petri
nets and related modeling languages such as activity diagrams, event-driven
process chains and BPMN are the standard graphical modeling languages for
business processes [7,24,9]. Petri nets offer an intuitive syntax and a clear seman-
tics as well as a large repertoire of analysis, simulation and synthesis procedures
together with respective tools. While place/transition-nets (p/t-nets) are well
suited for modeling the control flow of processes, high-level nets offer additional
modeling features to represent data and time aspects. Business processes are
often modeled by so called workflow Petri nets [7] which are a special kind of
p/t-nets having distinguished initial and final places. In this section we suggest
to use workflow nets also for the modeling of learnflows.

In the field of business process modeling, the transitions of a workflow net
represent the tasks of a business process. The places model causal dependencies
between the tasks. In order to model resources and resource allocation, usually
roles are assigned to the transitions of workflow nets. It is assumed that con-
versely each actor possesses certain roles. An actor is only allowed to execute a
task if he possesses the role associated to the task.

In the previous section we have argued that such a static role concept is prob-
lematic in the context of learnflows. To account for this difficulty, we introduce
a more flexible role concept for learnflows in this section. We extend the estab-
lished workflow modeling concepts by mechanisms to allow the change of actor
roles while performing an activity. Because of the significance of the individual
learners and their learning experience, we explicitly model the dynamic roles of
actors by state diagrams. To also consider learning groups and collaboration,
we further introduce collaborative tasks which are performed by several actors
jointly. Since Petri nets allow an intuitive representation of the interplay between
concurrency and non-determinism, a differentiated consideration of concurrency
is enabled by the choice of Petri nets for modeling learning processes.

There exist a wide spectrum of Petri net languages that differ w.r.t. expressive-
ness of the single elements, understandability and notational effort. Generally,
every Petri net can be represented as a particular high-level Petri net, e.g. using
the terminology of colored Petri nets [26]. However, for different purposes and in
different domains, variants and dialects have proven to be more appropriate be-
cause models are better understandable for users when the respective language
is specifically tailored to a particular application area. As usual in computer
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science, the semantics of such a domain specific language is given by translation
to the more general language. Behavioral concepts and analysis methods and
tools defined in the general setting thus apply to the specific one as well.

We will define two specific Petri net languages for learning processes and
sketch the respective mappings to high-level Petri nets to give them the seman-
tical foundation.

3.1 An Example

As an example we consider the following computer supported learning setting.
Groups of three students use the tool FreeStyler [17] (www.collide.info) to learn
the effect of different factors such as lightning conditions and CO2-concentration
on the growth of plants. For this purpose, FreeStyler [17] provides several tabs
with different functionalities (see Figure 2). There are, for instance, tabs to
formulate questions, to create simple models or to import data from a simulation
tool. In this example, the set of tabs corresponds to the set of supported learning
tasks. Namely, we consider the following tasks:

– Introduction: The students read a short textual introduction to the problem.
– Question: The students formulate the research questions that should be

answered in experiments later on. They are guided by explanation prompts
to step by step fill respective text fields.

– Planning: The students sketch a coarse model representing the influence of
the different factors on the growth of plants. They relate nodes labeled with
the different factors on a drawing area.

– Modeling: On another drawing area, the students first refine the previous
model (from Planning) by arc labels quantifying the effect of the factors.
Then they test their model in a simple simulation.

– Hypothesize: The students draw their hypotheses about the relationship of
a factor and the growth of plants as a function in a coordinate system.

– Experiment 1: The students are directed to a simulation tool (e.g. BioBLAST).
With the tool they can perform several experiments.

– Experiment 2: The students are directed to a second simulation tool.
– Data: The students investigate a table with precast results of lab experi-

ments.
– Analysis: The students import their experimental data to a coordinate sys-

tem. The resulting functions are analyzed and compared with the hypotheses.
– Presentation: The students summarize their results in a presentation. For

this purpose a collection of text fields together with explanation prompts is
provided.

In this context, a learnflow first describes the order in which the tabs have to be
processed by the learners. Second, it determines the possible allocation of actors
to learning tasks. It has to be specified whether a task requires a certain kind of
collaboration and who is allowed to work on a tab where the latter depends on
the learning history of the learners within the learning group.
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Fig. 2. Tabs in FreeStyler

The following example learning process describes groups of three learners
working with FreeStyler. All three learners start with In. As soon as they have
read the introduction, the two tasks Pl and Qu are executed independently. Qu
requires one of the three learners. The learners have the freedom to choose who is
assigned to the task Qu. In parallel to Qu, the two other learners jointly perform
the task Pl. After Pl these two learners can optionally perform the task Mo
which is also concurrent to Qu. When Qu, Pl and possibly Mo are accomplished,
all three learners collaboratively work on Hy. Then, each of the three learners
accomplishes one of the three independent tasks E1, E2 and Da. The learners can
freely share these tasks among each other. When all three tasks are completed,
the learners, again collaboratively, execute the task An. Subsequently, the task
Pr concludes the learning process. Pr has to be performed by the learner that
has initially executed the task Qu together with one of the other two learners.

3.2 Learnflow Nets

Learnflow nets present a first approach to extend the standard concepts of mod-
eling workflows by Petri nets to learnflows. We model the control flow of a
learnflow by a plain workflow net and depict actors and roles on top of the Petri
net model by annotations. As in the case of workflows, we assume that there
is a pool of actors possessing roles. Role annotations of transitions determine
which actors are allowed to execute which tasks. However, the concept of role
annotations is extended in two directions. First, to regard collaboration, instead
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of a single role it is allowed to specify a multiset of roles meaning that actors pos-
sessing the roles given by the multiset have to execute the task jointly. Second,
for more flexibility, it is allowed to specify alternative multisets of roles meaning
that different role combinations are possible for executing the task. Besides the
expressivity of role annotations, we also extend the relation of actors to roles
in order to model dynamic role assignments. A single actor does not anymore
just statically possess a role. Instead, he has now associated a state diagram
modeling the dynamics of role possession. Each state of such a state diagram
represents a role. Initially, an actor possesses the role given by the initial state of
the state diagram. State transitions of the state diagrams, i.e. role changes of the
respective actor, are labeled by transition names of the control flow Petri net.
They are triggered when the actor executes a respective task, i.e. the transitions
of the state diagram are synchronized with the transitions of the net.

Syntactically, we define a learnflow net by using the definitions of workflow
nets and deterministic automata. We use the following notations. N denotes the
non-negative integers. Given a finite set A, 2A denotes the power set of A. NA

denotes the set of multisets over A. For m ∈ N
A we write m =

∑
a∈A m(a)·a. By

|m| = ∑
a∈A m(a) we denote the cardinality of m. The set of all words (strings)

over A is denoted by A∗. This includes the empty word λ.

Definition 1. A workflow net is a tuple N = (P, T, F, i, f), where

– P and T are disjoint finite sets of places and transitions,
– F ⊆ (P × T ) ∪ (T × P ) is a flow relation,
– i, f ∈ P are an initial and a final place fulfilling (T × {i}) ∩ F = ∅ and

({f} × T ) ∩ F = ∅, and
– for any node n ∈ P ∪T there exists a directed path from i to n and a directed

path from n to f .

Definition 2. A deterministic finite automaton over the finite set of input sym-
bols T is a tuple M = (Q, T, δ, q0), where

– Q is a finite set of states,
– δ : Q× T → Q is a transition function, and
– q0 ∈ Q is an initial state.

Definition 3. A learnflow net is a tuple LF = (N,R, l, S, s), where

– N = (P, T, F, i, f) is a workflow net,
– R is a finite set of roles,

– l : T → 2(N
R) is a labeling function assigning multisets of roles to each

transition,
– S is a finite set of deterministic finite automata over the set of input symbols

T such that the sets of states of two distinct automata are disjoint and such
that the union of all state sets is R (S represents a set of role diagrams),
and

– s ∈ N
S is a multiset of role diagrams representing the learners of the

learnflow.
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As usual for workflow nets, initially we have one token in the distinguished
initial place. The initial state of an automaton representing the initial role of an
actor can vary, depending on the actual role (learner/teacher) or on the learning
states of a learner obtained so far (novice/experienced/...).

Figure 3 together with Figure 4 show a learnflow net modeling our example
learning process. Figure 3 illustrates the control flow aspect in the form of a
workflow net with transition annotations. The annotations refer to the roles
required for a task. The state diagram of Figure 4 complements the Petri net
model. It represents a role diagram, which models the dynamic roles of the three
learners in the pool of actors. Each learner corresponds to one instance of the
state diagram.

Fig. 3. Workflow net with role annotations

Fig. 4. State diagram representing dynamic roles

The dynamics of the learnflow net is as follows. The net gets an associated
pool of actors. These actors cannot participate in other processes while the actual
process is running. A task of the net can only be accomplished if this is possible
in the current marking of the Petri net and if the pool of actors contains learners
having the roles annotated at the transition. For instance, the collaborative task
Pl requires two actors with the role Student. The roles of the learners are given by
the role diagrams. In the example, the three learners may have the role Student,
Modeler, ExModeler, Recorder and ExRecorder. Student is the initial role. The
occurrence of a transition in the net can change the roles of the involved actors.
Such a change is modeled in the role diagram by a state transition with the task
name as the input symbol. Therefore, in our example the task Pl causes the two
students executing Pl to switch to the role Modeler, which is later on required
to perform the task Mo. When the net has received its final state (one token in
the final place) the actors can take part in other learning processes, including
further instances of the one just considered.
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For simplicity of the role diagrams, we use the following convention. We omit
transitions from a state to itself, i.e. if an actor performs a task which does not
explicitly cause a change of his role in the state diagram, he stays with his role.
For instance, the task Mo does not change the role of an actor with the role
Modeler and therefore can be neglected in the state diagram.

While the Petri net from Figure 3 exactly represents the control flow of our
example learning process, the annotations together with the associated state
diagram of Figure 4 model the specified rules for the distribution of the learning
tasks. The crucial aspect are the role changes. They allow to represent the given
restrictions as well as the specified degree of freedom for the distribution of
the tasks.

For instance, any two learners can execute the task Pl, since they all have
the role Student at the beginning. The resulting role change from Student to
Modeler then has two immediate effects. On the one hand the two learners are
afterwards allowed to execute the task Mo which requires two Modelers. On the
other hand the two learners cannot anymore execute the task Qu, since they do
not anymore possess the default role Student which is required for this task.

We have a similar situation with the three tasks E1, E2 and Da. Each of
these tasks can be executed by a Modeler or a Recorder. At this stage of the
process, each learner has one of these two roles and can therefore be assigned
to the tasks. However, the role changes associated with these tasks ensure that
each learner can only accomplish one of the three tasks. A Recorder becomes
an ExRecorder and a Modeler becomes an ExModeler. Finally, as desired, the
role history guarantees that the learner who has formulated the question has to
participate in the presentation, since he is the only learner possessing the role
ExRecorder, i.e. this role stores the information that the learner has performed
the task Qu. Additionally, the task Pr requires one of the two other learners
possessing the role ExModeler.

The example shows that learnflow nets allow to appropriately represent col-
laborative activities as well as dynamic roles and the learning progress of learners
within a learning process. Nevertheless, the modeling language is simple and intu-
itive. It naturally extends well established modeling approaches from the domain
of business process management. As in the case of business process modeling,
the approach supports a clear separation of the control flow perspective and the
role perspective of a learnflow, but still regards both perspectives in one model.

3.3 Expressiveness of Learnflow Nets

The central new feature of learnflow nets is the concept of dynamic roles. The
learning progress and the learning history of actors are encoded in role diagrams.
This is an intuitive approach since, after performing a learning task, an actor
often has additional knowledge, skills or responsibilities. Therefore, determined
by his new status, an actor has a new role in the learning process. This role
can then in a natural way be used to constrain the allocation of later tasks.
This concept to represent the distribution of learning tasks allows to model
in detail which tasks have to be done by certain actors and in which cases
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the actors can freely decide about task assignments. Using static roles, it is in
many cases not possible to allow a degree of freedom for the learners. Omitting
roles is also problematic, since then one learner would be allowed to execute
all tasks. Therefore, without dynamic roles additional constraint specification
languages, as e.g. introduced in [23,22], are necessary for an appropriate modeling
of learnflows. However, we consider this more complicated and less intuitive than
using dynamic roles for learners.

Formally, the behavior of learnflow nets can be defined by a translation into
a special class of high-level Petri nets, namely colored Petri nets [26]. Colored
Petri nets have a well-established occurrence rule which can then be applied for
learnflow nets. We here do not formally define the translation. Instead we explain
the ideas and illustrate them by our example learnflow net. The systematic
formal translation can easily be deduced from this example.

All the standard Petri net components of the learnflow net are kept in the
high-level Petri net model. The annotations of the transitions and the state di-
agrams are translated into one high-level place modeling the pool of resources
resp. actors. The color set of this place is given by the possible roles of learners.
The initial marking contains, for each instance of a state diagram, one token of
the kind given by the initial state of the state diagram. The place has an outgo-
ing and an ingoing arc connected with each transition of the net. A transition
consumes tokens from the resource place as given by its annotation. For each
consumed token, there are two cases. Either the state corresponding to the token
type in the state diagram enables a state transfer labeled with the name of the
considered transition or it does not enable such a transfer. In the first case, the
transition produces a token of the kind given by the follower state of the state
diagram in the resource pool. In the second case, it produces a token of the
same kind as the consumed token. For classical workflow models with static role
annotations, an analogous translation is possible, but in this situation the first
case never occurs, i.e. each transition produces the same tokens in the resource
pool that the transition consumes from the pool. Alternative role annotations
of learnflow nets can be formulated by means of respective expressions of the
high-level transitions.

Figure 5 illustrates the described translation for our example learnflow net.
The resulting high-level Petri net does not any more show explicitly the dynamic
roles and the behavior of the learners. Moreover, it is quite difficult to read
and understand the high-level Petri net. Therefore, for modeling purposes, the
original representation should be preferred. The high-level view is used for formal
considerations.

3.4 Actor Learnflow Nets

In our second modeling approach, called actor learnflow nets, we go one step
further. We remove the pool of actors and embed the role diagrams as tokens
into the Petri net, representing the control flow of the process model. In this
way the progress of actors within a learnflow is represented by the location
of respective tokens in the Petri net. This approach is inspired by the idea of
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Fig. 5. Translation of the example learnflow net into a colored Petri net (in CPN tools
http://cpntools.org/)
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modeling with nets-in-nets and in particular by the papers about modeling of
multi agent systems, inter-organizational workflows and adaptive workflows with
object nets (e.g. [27]). However, our modeling concept is a lot more restrictive
and simple than object nets [28].

In contrast to learnflow nets an actor learnflow net is not anymore based
on a workflow net. It is a Petri net consisting of two kinds of places, ”plain”
Petri net places which can be marked by black tokens and role places which
can be marked by role diagrams. The plain places can be considered just like
places of a usual workflow net modeling control flow. The role places represent
the locations of actors. They are connected to transitions by arcs having arc
weights. For simplicity, we do not allow high-level arc expressions as allowed
in object nets. Besides representing actors, the role places also encode control
flow aspects. They are only supplemented by plain places if this is necessary for
expressing advanced control flow structures.

An actor learnflow net has an initial marking assigning multisets of role di-
agrams to role places. The role diagrams represent the learners involved in the
learning process. They are basically treated just like black tokens, i.e. they are
not distinguished. Actor learnflow nets include a crucial restriction. For each
transition the number of role diagrams consumed by the transition, i.e. the sum
of the ingoing arc weights, has to equal the number produced by the transition,
i.e. the sum of the outgoing arc weights. Since each role diagram represents a
learner participating in the process, this preservation rule ensures that learners
are not created or deleted, instead they are just moved forward in the learn-
flow. When firing a transition, it produces the same role diagrams that were
consumed by the transition. Since the arcs are annotated only by the numbers
of role diagrams to be produced or consumed, only the numbers of role diagrams
consumed from each place and forwarded to each place are specified. This way,
the modeling language is kept comparably simple whereas the abstraction from
individual identities does not harm.

An important aspect of actor learnflow nets is that they allow transition
annotations modeling restrictions on the role diagrams consumed by a transition.
These annotations have the same form and the same meaning as in the case
of learnflow nets. The annotations specify alternative multisets of roles. The
states of the role diagrams consumed overall by a transition have to match one
of these combinations of roles. Therefore, the annotations again model which
role combinations are allowed for executing a task. Remark that we have to
require that the cardinality of the annotated multisets equals the number of role
diagrams consumed by the transition. Concerning the role diagrams themselves,
analogously as in the case of learnflow nets, their transitions are synchronized
with the transitions of the Petri net. They cannot spontaneously change their
states as in the case of object nets. The syntax of actor learnflow nets is as
follows.

Definition 4. An actor net is a tuple N = (P, P ′, T,W, F ), where

– P , P ′ and T are pairwise disjoint finite sets of role places, plain places and
transitions,
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– W : (P × T ) ∪ (T × P ) → N fulfilling
∑

p∈P W (p, t) =
∑

p∈P W (t, p) is a
flow relation (specifying arc weights) for the role places and

– F ⊆ (P ′ × T ) ∪ (T × P ′) is a flow relation for the plain places.

Definition 5. An actor learnflow net is a tuple ALF = (N,R, l, S, s), where

– N = (P, P ′, T,W, F ) is an actor net,
– R is a finite set of roles,
– l : T → {X ⊆ N

R | ∀x ∈ X : |x| = ∑
p∈P W (p, t)} is a labeling function

assigning roles to each transition,
– S is a finite set of deterministic finite automata over the set of input symbols

T such that the sets of states of two distinct automata are disjoint and such
that the union of all state sets is R (S represents a set of role diagrams) and

– s : P → N
S is an initial marking assigning multisets of role diagrams repre-

senting the learners of the learnflow to the role places.

We assume that in the initial marking plain places are unmarked.
Figure 6 depicts an actor learnflow net representing our example learning

process. In addition to role places, the net includes only one (small) plain Petri
net place for representing additional control flow aspects. The three learners of
the learning process are all represented by an instance of the same role diagram
representing the dynamic roles of the learners. In the initial marking they are
located in the same role place. The transitions are annotated by labels referring
to the roles required for a task.

Fig. 6. Actor learnflow net

The dynamics of an actor learnflow net is as follows. A transition of the net
can be fired if this is possible in the Petri net when treating role diagrams as
black tokens and if the role diagrams consumed overall by the transition can
be chosen in accordance to the roles annotated at the transition. These role
diagrams are then distributed to the places in the postset of the transition. The
distribution is non-deterministic, but it has to regard the arc weights. Moreover,
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the occurrence may change the states of the role diagrams analogously as in the
case of learnflow nets.

In our example, we consider the transition Hy. An occurrence of this transition
requires three learners, namely two Modelers and one Recorder. Two learners
have to be in the upper place of the preset of the transition and one learner in the
lower place. It does not matter whether the Recorder is in the upper or the lower
place. Since, according to the role diagrams, neither a Recorder nor a Modeler
changes its role when executing Hy, the three state diagrams are not modified
and forwarded to the three postset places. One of the three role diagrams is
added to each of these places. It does not matter to which place the Recorder is
forwarded.

In this approach the distribution of the learning tasks is not anymore just
represented by the dynamic roles. Instead, also the location of the role diagrams
is important. For instance, as explained, the transition Hy distributes the three
role diagrams to the three places enabling E1, E2 and Da. This ensures that
each of the learners has to execute one of these tasks. Similarly, the transition
In distributes two learners to the task Pl and one learner to the task Qu.

In contrast to the learnflow net from the last subsection, it is noticeable that
the transitions E1, E2 and Da do not anymore trigger a role change. This is
because the distribution of the learners to the three tasks is given by their
location in the net and not anymore by a role change. That means, actor learnflow
nets represent progress aspects explicitly by the location of role diagrams in the
Petri net. As a consequence, role diagrams become simpler.

The example shows that actor learnflow nets are appropriate for comprehensi-
bly modeling learning processes. The process perspective and the role perspective
are embedded into one model. A nets-in-nets approach is applied, where tokens
are role diagrams representing actors. Thereby, the role of an actor is given by
the current state and the progress of the actor within the learning process is
given by the location of the diagram.

We again show, using our example net, that the behavior of actor learnflow
nets can formally be defined by a translation into colored Petri nets. The transi-
tions and plain places are kept and the role places are translated into high-level
places which have a color set given by the possible roles of learners. The initial
marking is given by the initial roles of the state diagrams. The different non-
deterministic possibilities of consuming and producing role diagrams by transi-
tions are translated into respective firing modes of transitions. This is realized
by assigning variables to respective arcs and regarding the allowed assignments
of the variables by means of transition guards. These guards in particular have
to regard the dynamics of roles given by the role diagrams.

Figure 7 shows the described translation by our example actor learnflow net.
As in the case of learnflow nets, the colored Petri net associated to an actor learn-
flow net hides the dynamics of roles and is difficult to understand. Consequently,
it is only useful for a formal analysis of actor learnflow nets.
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Fig. 7. Translation of the example actor learnflow net into a colored Petri net (in CPN
tools http://cpntools.org/)
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3.5 Discussion

Concluding, both learnflow nets and actor learnflow nets model the control flow
of learning processes in a formal as well as illustrative way by means of Petri
nets. They allow an appropriate representation of dynamic roles, collaboration
and learning progress. The approaches differ w.r.t. their semantical clearness
where none of the approaches outmatches the other one.

Learnflow nets clearly distinguish the modeling of the control flow and the
resource perspective, thereby extending well-known concepts for workflow mod-
eling. Due to the use of plain black tokens, the model is simple and allows well
established formal analysis methods.

In contrast, actor learnflow nets use complex tokens represented by role dia-
grams having a current state. As a consequence, analysis of an actor learnflow net
is more difficult and requires tailoring of known techniques. Also, the readability
of the graphical representations might become worse. Finally, the role perspec-
tive is embedded into the control flow such that the clear separation known from
workflow approaches is lost. On the other hand, by this approach the learning
progress of each actor is explicitly represented in the control flow model. There-
fore, progress dependant role changes as in the case of learnflow nets are not
any more necessary. Thus, role diagrams have a more limited clear semantics
and become simpler. This phenomenon becomes obvious in our example when
for instance regarding the task E1. This task initiates a learning progress of the
involved learner. In the learnflow net the progress is represented by a change of
the role of the learner. The new role then does not allow an execution of E2 and
Da by this learner anymore. In the actor learnflow net such progress-dependent
role change is avoided. It represents the progress of the learner in a more elegant
way by moving the actor token forward in the Petri net model.

Lastly, both modeling approaches focus on the representation of dynamic
roles and regard group learning by means of collaborative activities. Thereby,
a learning group is usually given by one process instance and the dynamics
within a learning group is only implicitly considered. In view of representing
re-arrangements of groups and an explicit modeling of group dynamics, we sug-
gest two natural and useful extensions of learnflow nets resp. actor learnflow
nets. First of all, when modeling groups by process instances, an extension of
the modeling languages by global (or static [29]) places which allow to model
dependencies of process instances would be helpful to regard dynamic group
re-arrangements. Second, groups and group dynamics can also be modeled anal-
ogously as roles, i.e. the role diagrams of the actors can additionally capture
information about group membership of actors. However, in contrast to roles
it is important to represent the overall dynamics of the groups (which actors
belong to a group at a particular time?). This dynamics can only implicitly be
observed by group-memberships of single actors. Therefore, an extension of the
modeling approach which at any time explicitly represents the learning groups
is promising. This can for instance be achieved by a respective grouping of the
state diagrams representing the learners.
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4 Learnflow Mining

After having adapted modeling languages for business processes to learnflows,
we in this section transfer the modeling and analysis technique of process mining
[10,11,30,12]. The creation of a business process model can be automated or at
least supported when example executions of the process are known. For this pur-
pose, certain protocol files, so called event logs, which record the tasks executed
within an information system can be used. Methods to automatically generate
process models from event logs are known as process mining or workflow mining.
They have recently gained a lot of attention in research and have also found their
way into industrial tools [10,30,31]. We suggest to use process mining methods
and tools for the generation of learnflow models in a similar way as in the case
of business processes.

Teachers are not familiar with explicit modeling of learning processes. Usually,
lesson plans are restricted to sequential considerations in table form. These ta-
bles cannot appropriately represent complex learnflows such as spiral approaches
or learnflows including dynamic learning groups working concurrently. Moreover,
the explicit definition of learning scenarios by a teacher often suffers from the so
called expert blindspot [32], i.e. the teacher only considers the obvious scenarios
and does not anticipate unconventional approaches. Both aspects show that real
learning scenarios should be used for generation of learnflow models. We call
the automatic generation of learnflow models from example scenarios learnflow
mining, in analogy to workflow mining. We initiated the discussion about the
application of process mining in the area of learning processes and coined the
term learnflow mining in [33]. Independent work using educational mining ap-
proaches have been used to identify decision making behavior in virtual teams
[34] and to identify behavior of students solving multiple choice tests [35]. While
the latter uses single learner data, thus focusing on individual aspects, the first
is also located in the field of collaborative learning. Yet, it concentrates on the
activities and not on social or learning roles, so that both studies are similar to
our work w.r.t. control flow mining while role mining is not tackled in [34,35]. Re-
lated work concerning role mining is organizational mining [12], which is however
limited to static roles and organizational units.

Learnflow mining can help a teacher to construct valid lesson plans using
advanced modeling languages. In particular, due to automation the effort for
generating models can be reduced. For many teachers, this might be a crucial
requirement for applying learnflowmodels. In general, analogously to experiences
from the area of cognitive tutors [36] where example representations of general
rules are applied, focusing on example learning scenarios instead of whole learn-
flows is more intuitive and less complex for teachers.

For the generation of example learning scenarios we suggest two approaches
(which can also be combined), both requiring that the events of a learning system
are recorded in log files.

– The teacher generates learning scenarios by demonstration on the learn-
ing system. He executes the scenarios with the learning system, thereby
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recording them in an event log. Then he possibly categorizes the scenarios
of the log w.r.t. correctness or their potential for learning success.

– Real example scenarios of learners using the learning system are logged. The
learners can freely work with the learning system such that log files are
generated. For a classification, either a self-assessment of the learners in the
sense of collaborative filtering can be applied or the teacher can evaluate the
learning results by means of tests.

In both cases the result is a classified event log. The classification is useful to filter
the relevant scenarios. The filtered event log can be used as input for process
mining algorithms in order to generate a learnflow model which represents the
real learning scenarios. In the following we discuss this concept in detail for
learnflow nets.

The central aim of mining a process model from its specified behavior is to
create a model that has exactly the behavior specified, no matter if we consider
workflows or learnflows. However, we can only expect such a result if the specified
behavior contains all and only legal runs. This assumption is unrealistic for larger
process models because the number of legal runs can grow exponentially with the
size of the model. Moreover, when starting with observed behavior, it is not easy
to say whether a log is complete or whether some legal runs just never appear
in the log. The situation becomes even more complicated if a log contains runs
that are not legal (so called noise) or if a log contains runs that are successful,
i.e., lead to a positive end, and runs that are not successful but still legal. The
latter is particularly relevant for learnflows because a legal learning process can
be successful or unsuccessful.

Therefore, in general it is neither possible nor desirable to gain process models
that precisely have the specified behavior. The best we can expect is a model
that has at least the specified behavior, is reasonably simple and has not too
much additional behavior. Moreover, the model should be sound, i.e., it has no
superfluous elements, does not run into deadlocks and ends with a proper end
state. Roughly speaking, these are the main goals in process mining. We cannot
expect to gain more than that when mining learning processes.

Usually, the generated (learning) process models are the starting point for a
manual revision. At this stage, relevant properties of the model are analyzed
and the model might be modified so that it enjoys desirable properties. The
specified behavior is compared with the actual behavior to check whether this
model is really suitable as a basis for legal processes in computer supported
learning environments.

4.1 Control Flow

The methods to mine the control flow of a learning process are directly deduced
from process discovery approaches known from process mining. The basic ideas of
these approaches are as follows [10,11]. Every process-aware information system
supports a set of tasks of a corresponding operational process. The execution
of a task is an event. Typically, an event is stored together with information
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about the corresponding process, the process instance, the execution time, the
involved actors and maybe some more information as for instance associated
data elements. Within a process instance of a given process, the events can be
ordered by their time stamps. Therefore, each process instance defines a sequence
of events. The sequences of events associated to a certain process can then be
used to identify the control flow of the process. The benefit of this approach
is the following. While the manual construction of valid process models is a
difficult, intricate and erroneous task, a process mining algorithm automatically
generates a process model which matches the actual flow of work. The generated
model can then be used for verification, analysis and optimization issues or even
for controling the operational process by an engine.

For learnflow mining we formally consider an event log of one process as
an ordered sequence of events where each event is a triple of the form (process
instance, task, set of actors). We assume that the ordering is given by the time
stamps of events. Moreover, we abstract from additional information such as data.

Definition 6. Let T be a finite set of tasks, I be a finite set of process instances
and A be a set of actors. An event is an element of T × I × 2A. An event log is
a sequence σ = e1 . . . en ∈ (T × I × 2A)∗.

Given a log, the sequences of task occurrences given by single process instances
are called control sequences.

Definition 7. Let σ = e1 . . . en ∈ (T ×I×2A)∗ be an event log. Given a process
instance i ∈ I, we define the function ci : T × I×2A → T ∪{λ} by ci(t, i

′, U) = t
if i = i′ and ci(t, i

′, U) = λ otherwise. Then ci(e1) . . . ci(en) is a control sequence
of σ for the instance i.

There are many workflow mining methods generating a Petri net model from the
set of control sequences of a given event log such that the model represents the
behavior given by the control sequences [10,11,30]. That means, the generated
model represents the control flow of the underlying workflow. In our setting of
learnflow mining, besides the control flow we also have to consider the dynamic
role behavior. In the case of learnflow nets, the control flow perspective and the
role models are clearly separated and can be mined one after the other. We here
first consider the problem of mining the control flow given by an event log of a
learning system. In the next subsection we discuss the mining of dynamic roles.

The control flow perspective of learnflow nets is given by standard workflow
nets. To generate the workflow net underlying a learnflow net we can therefore
apply any algorithm from workflowmining. We demonstrate this using our exam-
ple learning setting. We assume that we have several learning groups processing
the tabs offered by FreeStyler and thereby using an ordering and a distribution
of the tasks as given by our example learning process. Each processing of a tab is
recognized by FreeStyler and recorded in an event log. In this way, each learning
group creates a process instance. Note that, as described before, the set of pro-
cess instances can be filtered by appropriate criteria, and the teacher can also
add certain desired process instances by demonstration. An extract of a respec-
tive event log is illustrated in Figure 8. We assume that the whole log (which is
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large and cannot be shown here) is complete for our example in the sense that
all possibilities to work on the learning tasks according to the example learning
process are included in the log.

Process ”Plants”

Instance Task Actor

Group A In Chuck, Wes, Susan
Group B In Robin, Andy, George
Group C In Chris, Anne, Dave
Group C Pl Anne, Dave
Group C Qu Chris
Group A Qu Wes
Group C Mo Anne, Dave
Group B Pl Robin, George

... ... ...

Fig. 8. Events recorded by FreeStyler

In the shown part of the example log we have the following control sequences:
In,Qu, ... (Group A), In, P l, ... (Group B) and In, P l,Qu,Mo, ... (Group C).
Already for our small example process, the integration of the control sequences
to one Petri net model exhibiting the behavior given by the sequences is not
trivial. Therefore, we use the event log as input of a process mining algorithm.
The workflow mining tool ProM [30] offers a lot of different mining algorithms
which automatically generate a Petri net model representing the behavior of
the learners as given by the log. For our complete example log file of FreeStyler
we applied a mining algorithm which is based on exact synthesis methods and
region theory [11]. With this tool we were able to mine the workflow net from
Figure 3 (without annotations).

Thus, it is possible to mine the control flow perspective of a learnflow net
which can then be used for analysis purposes.

4.2 Roles

The role names do not occur in our example log. Therefore, we cannot expect
to correctly mine the role names that appear in the learnflow model of Figure 3
and 4. Our aim is to mine role diagrams and transition annotations which define
the same restrictions for the assignment of tasks as given in the example process.
For this purpose, the behavior of the actors recorded in the log is important.
Consequently, the initial point for mining the role perspective is given by the
control sequences, where now each event is stored together with the involved
actors. We call these sequences learning sequences.

Definition 8. Let σ = e1 . . . en ∈ (T ×I×2A)∗ be an event log. Given a process
instance i ∈ I, we define the function li : T × I × 2A → (T × 2A) ∪ {λ} by
li(t, i

′, U) = (t, U) if i = i′ and li(t, i
′, U) = λ else. Then li(e1) . . . li(en) is a

learning sequence of σ.
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In our example, Group C defines the learning sequence (In, {Chris, Anne,
Dave}), (Pl, {Anne,Dave}), (Qu, {Chris}), (Mo, {Anne, Dave}), ...

For any learning sequence and each student occurring in the sequence, we
consider the sequence of task occurrences (without information about students)
the student is involved in. Such a projection of a learning sequence onto a single
actor is called actor sequence.

Definition 9. Let (t1, U1) . . . (tn, Un) be a learning sequence of an event log
σ ∈ (T × I × 2A)∗. Given an actor u ∈ A, we define the function au : T ×
2A → T ∪ {λ} by au(t, U) = t if u ∈ U and au(t, U) = λ otherwise. Then
au(t1, U1) . . . au(tn, Un) is an actor sequence of σ.

In our example, Anne executes the actor sequence In, P l,Mo, ... in Group C.
It is possible that different actors have different role behavior, i.e. different

associated role diagrams. In such a case we have to divide the actors of a process
instance into respective classes. Such a behavior does not appear in our exam-
ple. For simplicity, we assume that all actors have the same role behavior. For
instance, in our example all actors are simply learners.

Now the crucial step is to integrate all actor sequences into a deterministic
state diagram in the form of a tree. That means, the states of the diagram
are determined by the history of previously performed tasks (also regarding the
order of the events) and are named accordingly, i.e. the states are given by the
prefixes of the actor sequences. This diagram can then be used as a role diagram.
Formally, we apply a very simple technique for learning a deterministic finite
automaton from a set of words [37]. More sophisticated constructions such as the
one of Myhill-Nerode cannot be applied here since the possible role combinations
for executing a task as given by the log have to be regarded (see the Simplification
Rule at the end of the section).

Definition 10. Let AS be the set of actor sequences of an event log σ ∈ (T ×
I × 2A)∗. The deterministic finite automaton RD = (Q, T, δ, q0) where

– Q = {t1 . . . ti | t1 . . . tn ∈ AS, 0 ≤ i ≤ n},
– δ is defined by δ(t1 . . . ti, ti+1) = t1 . . . ti+1 if there exists t1 . . . tn ∈ AS, 0 ≤

i < n and δ(t1 . . . ti, ti+1) = t1 . . . ti otherwise, and
– q0 = λ

is called role diagram of σ.

For our complete example log, the resulting role diagram is given in Figure 9.
The diagram encodes the complete history of each actor. In learnflow nets we

assume that the role of an actor can only change in the case the actor executes
a task. Therefore, when consistently defining annotations of transitions in the
Petri net, it is possible to exactly represent the task allocation given in the log.
To define the annotation of a certain transition we have to take the learning
sequences into account. When a transition occurs in a learning sequence, the
histories of the involved actors within the learning sequence define one possi-
ble role allocation. There might be different possible role combinations given
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Fig. 9. Mined role diagram

by all the learning sequences. All these alternative role assignments define the
annotation of the transition.

Definition 11. Let (t1, U1) . . . (ti, Ui) . . . (tn, Un) be a learning sequence of an
event log σ ∈ (T × I × 2A)∗ and RD = (Q, T, δ, q0) be the role diagram of σ.
A possible allocation of roles for the task ti is given by the multiset of roles∑

u∈Ui
au(t1, U1) . . . au(ti−1, Ui−1) ∈ N

Q (au is defined as in Definition 9).
The role annotation l(t) of a task t ∈ T w.r.t. σ is the set of all possible

allocations for t. The resulting function l : T → 2(N
Q) is called role labeling

function of σ.

In the example learning sequence of Group C, the task Mo is performed by Anne,
who has done In and Pl before, together with Dave, who has the same learning
history. Therefore, 2 · InP l is one possible role allocation for Mo. Since Mo is
always done by 2 · InP l, the role annotation l(Mo) of Mo w.r.t. the given log is
{2 · InP l}.

Altogether, we are now able to mine a complete learnflow net from a log of
a learning process. In the previous subsection we have shown how to generate a
workflow net representing the control flow of the learning process. In this subsec-
tion we have shown how to mine a role diagram together with role annotations
representing the resource perspective of the learning process. Combining these
two models yields a learnflow net representing the behavior of the learning pro-
cess. We refer to this net as the learnflow net mined from the log. The number
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of role diagram instances of this learnflow net is given by the maximal number
of actors occurring in a learning sequence of the log.

Definition 12. Let σ ∈ (T × I × 2A)∗ be an event log and N = (P, T, F, i, f)
be a workflow net mined from σ. Let further LS be the set of learning sequences

of σ, RD = (Q, T, δ, q0) be the role diagram of σ and l : T → 2(N
Q) be the role

labeling function of σ.
The learnflow net mined from σ w.r.t. N is defined as LF = (N,Q, l, {RD}, k·

RD) where k = max(t1,U1)...(tn,Un)∈LS|
⋃n

i=1 Ui|.
The examples given in this subsection illustrate that the possible distributions of
tasks to actors allowed by the learnflow net mined from a log coincide with the
distributions of tasks given in the log. Therefore, if the control flow has precisely
been mined, the behavior of the mined learnflow net coincides with the behavior
given in the log up to isomorphism and renaming of the roles. For instance, the
behavior of the learnflow net mined from the example log is equivalent to the
behavior given by the log and thus also equivalent to the behavior of our original
learnflow net given in Figures 3 and 4.

In our example, the mined role model is by far larger than necessary. This is
the case because the model represents the whole history of each learner. There-
fore, an important issue is to simplify the mined role models by merging roles.

Given a mined role model, the central idea for simplification is to merge roles,
i.e. states, having an equivalent future. Of course, when merging roles also the
annotations in the corresponding Petri net model have to be renamed consis-
tently. The behavior of a learnflow model is not changed by this simplification.
For instance, all the leafs in our example role diagram in Figure 9 have no fol-
lower roles and can thus be merged. Also the previous nine roles have the same
follower role triggered by the same task. However, we here have to consider the
collaborative aspect. It is not allowed to merge two roles having the same future
in the role diagram if switching the two role names changes the annotation of
collaborative tasks in which both roles are involved. In our example, the task Pr
is a collaborative task which is performed by two actors. Thereby, it is important
that one of the actors is the one that executed Qu. Consequently, switching a
role name including Qu and a role name not including Qu changes the annota-
tion of Pr. Thus, only the upper six and the lower three roles can be merged.
Altogether, we formulate the following rule:

Simplification Rule. Let RD = (Q, T, δ, q0) be a role diagram and l : T →
2(N

Q) be the role labeling function of an event log σ. Two states q1, q2 ∈ Q can
be merged if the following two conditions are satisfied:

– ∀ t ∈ T : δ(q1, t) = δ(q2, t) or (δ(q1, t) = q1 and δ(q2, t) = q2)
– ∀ t ∈ T : (∃ x1, x2 ∈ l(t) : |x1| > 1 and q1 ∈ x1, q2 ∈ x2) =⇒ l(t) =

{s(q1, q2, x) | x ∈ l(t)}, where s : Q×Q×N
Q → N

Q is given by s(q1, q2, x) =∑
q∈Q\{q1,q2} x(q) · q + x(q1) · q2 + x(q2) · q1.
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When no more roles can be merged according to this simplification rule, an
additional technique can be applied. Many of the role transitions from a state to
itself (which are not shown in the illustrations of role diagrams) are irrelevant.
An irrelevant role transition cannot occur in the learnflow model since it is
forbidden by the control flow. Therefore, changing such transitions does not
affect the behavior of the learnflow net. But such changes can be used to align
the future of two states in a role diagram in view of merging them.

Using this technique for our mined role diagram of Figure 9 reduces it to a
diagram which is isomorphic to the original example role diagram of Figure 4.
That means, with the simplification rule we are in this case able to recreate the
original learning process model from a complete log file. Only the role names that
are not present in the log files cannot be mined. They can be chosen arbitrarily
by the teacher.

5 Conclusion

In this article we systematically carried over methods and techniques from work-
flow management to the modeling of learnflows. First, we worked out the sim-
ilarities and differences of workflow and learning processes. In particular, we
have compared relevant implementations in the two areas. As a basis for further
considerations we then have developed and discussed two modeling languages
for learnflows which are based on workflow modeling concepts, namely learn-
flow nets and actor learnflow nets. Finally, we have identified the field of process
mining as particularly interesting for a concrete method and technology transfer.
Under the name learnflow mining, we suggested to use mining methods for the
generation of learnflow models from real learning scenarios. Using real scenar-
ios and automatically generating more general learnflow models on the one hand
disburdens the teacher when designing models and on the other hand enables the
immediate usage of concrete learning experience (e.g. for supporting the learners
within the learning process). We have discussed both, mining of the control flow
of a learning process and mining of the role behavior of the learners within the
learning process.

As in the area of workflowmining [38], for the development of learnflow mining
tools a standardization of log formats of learning systems – which is already being
discussed in the field of educational modeling – is an important aim. Moreover,
mining tools have to support preprocessing of the event logs and postprocessing
of the generated process models. For instance, an event log recording all mouse
clicks is too fine grained for generating a reasonable model. In such a case,
filtering and aggregation of events is necessary to prepare the log for a mining
algorithm. On the other hand, a mined model usually has to be validated and
possibly complemented by the teacher.

A crucial algorithmic problem known from workflow mining is that, in prac-
tical settings, we have to assume that not all possible learning sequences have
been recorded in a log file, i.e. that logs are incomplete. For such log files the
presented mining approach has to be extended. Heuristics can help to infer the
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missing sequences and to integrate them into the process model. For the control
flow perspective, existing methods from the area of process mining can be used
[10]. For the role diagrams we plan to use methods from the theories of struc-
tural equivalence and generalized block modeling [39] where missing information
is penalized and a solution with minimal penalties can be used for the general-
ized role model. Moreover, it is possible that a log contains noise, i.e. behavior
which should not be regarded in a process model. We think that the problem of
noise can be handled by the discussed categorizations of event logs.

Finally, concerning the presented mining approach, the application of the
simplification rule for reducing the mined role models has not yet been discussed
in detail. In particular, the assisting technique of changing state transitions has to
be done manually so far. Automatizing of this procedure is our most immediate
topic of further research.
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