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Abstract. Synthesis of Petri nets from behavioral descriptions has important ap-
plications in the design of systems in different application areas. In this paper we
present a survey on the technique of region based synthesis of Petri nets from
languages. Each word in a given language specifies one run of the searched Petri
net, i.e. represents one observable scenario of the system.

We concentrate on recent developments for languages of different kinds of
causal structures (such as partial orders and stratified order structures). Causal
structures represent causal relationships between events of one run. Expressible
causal relationships are for example direct and indirect causal dependency, con-
currency and synchronicity of events.

Concerning infinite languages, several possibilities of a finite representation
are discussed. As the goal of synthesis, place/transition nets and inhibitor nets as
well as several restrictions of these net classes are used. The presented framework
integrates all classical results on sequential languages.

Keywords: Synthesis, Region Theory, Petri Net, Causal Semantics, Partial
Language, Partial Order, Stratified Order Structure.

1 Introduction

Synthesis of Petri nets from behavioral descriptions has been a successful line of re-
search since the 1990s. There is a rich body of nontrivial theoretical results and there
are important applications in industry, in particular in hardware design [9,19], in con-
trol of manufacturing systems [33] and recently also in process mining [32,31,4,17] and
workflow design [12,6].

The synthesis problem is the problem to construct, for a given behavioral specifica-
tion, a Petri net such that the behavior of this net coincides with the specified behavior
(if such a net exists). There are many different methods which are presented in litera-
ture to solve this problem. They differ mainly in the Petri net class and the model for
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the behavioral specification considered. All these methods are based on one common
theoretical concept, the notion of a region of the given behavioral specification.

In this paper, we present an overview of region-based synthesis methods, which re-
gard languages as behavioral specifications, where each word in a given language spec-
ifies one run of the searched Petri net. Classical results consider sequential languages
representing sequential runs of Petri nets. Recent developments examine languages of
different kinds of causal structures (such as partial orders and stratified order structures)
representing non-sequential runs. Such causal structures are able to represent different
causal relationships between events of one run, such as for example direct and indirect
causal dependency, concurrency and synchronicity.

In the following we describe the general approach of region based synthesis from
languages. Denote the set of runs of a Petri net N by L(N). It depends on the Petri
net class and the considered net semantics, which kind of runs are considered in L(N).
Formally the synthesis problem w.r.t. different Petri net classes and different language
types is:

Given: A prefix-closed language L over a finite alphabet of transition names T .
Searched: A Petri net N with set of transitions T and L(N) = L.

This means, we search for an exact solution of the problem. Such an exact a solution
may not exist, i.e. not each language L is a net language.

The classical idea of region-based synthesis is as follows: First consider the net N
having an empty set of places but all transitions occurring as labels in L. This net
generates each execution in L (i.e. L ⊆ L(N)), because there are no places restricting
transition occurrences. But it generates much more executions. Since we are interested
in an exact solution, we restrict L(N) by adding places.

There are places p, which restrict the set of executions too much in the sense that
L \ L(N) 
= ∅, if p together with adjacent weighted arcs is added to N . Such places
are called non-feasible (w.r.t. L). We only add so called feasible places p satisfying
L ⊆ L(N), if p is added to N (Figure 1). The idea of region-based synthesis is to add
all feasible places to N . The resulting net Nsat is called the saturated feasible net. Nsat

has by construction the following very nice property:

(min) L(Nsat) is the smallest net language satisfying L ⊆ L(Nsat).

Fig. 1. The place p1 is feasible, the place p2 is not feasible w.r.t. the language L =
{a, b, ab, ba, abb, bab} (b is no execution of the net shown in the middle). The place p3 is feasible
w.r.t. L for each integer n ∈ N
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This is clear, since L(Nsat) could only be further restricted by adding non-feasible
places. The property (min) directly implies that there is an exact solution of the syn-
thesis problem if and only if Nsat is such an exact solution. Moreover, if there is no
exact solution, Nsat is the best approximation to such a solution ”from above”.

Unfortunately, this result is only of theoretical value, since the set of feasible places
is in general infinite (Figure 1). Therefore, for a practical solution, a finite subset of the
set of all feasible places is defined, such that the net Nfin defined by this finite subset
fulfills L(Nfin) = L(Nsat). Such a net Nfin is called finite representation of Nsat. In
order to construct such a finite representation, in an intermediate step a feasible place is
defined through a so called region of the given language L, where the set of all regions
equals the set of non-negative integral solutions of an appropriate linear system of the
form AL · x ≤ bL.

The described approach is common to all known region-based synthesis methods
(see Figure 2), where different notions of regions and of finite representations Nfin

are used. There are two types of definitions of regions and two types of definitions of
finite representations, whose four combinations cover all known region-based synthesis
methods. All these combinations can be applied to almost each Petri net class and each
language type (leading to different nets Nfin having the same behavior).

Summarizing, the form of the synthesis problem and the solution method can be
varied along the following lines: Petri net class, language type, region type and finite
representation type. This paper presents a common framework for all these variations
based on a combination of and extending the publications [27], [26] and [7].

The organisation of the paper is as follows: In the first part we develop a basic frame-
work considering the synthesis of place/transition nets from finite and from simple
infinite languages of labelled partial orders, using both region types and both finite rep-
resentation types. For the finite specification of infinite languages a simple term based
notation is used. In the second part we extend and generalize the basic framework along
several lines:

– We consider the synthesis of inhibitor nets from finite and from simple infinite
languages of labelled stratified order structures.

– We discuss synthesis from languages of non-transitive order structures.

Language L Petri net N with
L⊆L(N), L(N) minimal

Regions
(finite repr.)

Feasible places
(finite repr.)

Fig. 2. The approach of region-based synthesis
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– We examine the synthesis of nets of restricted net classes.
– We suggest several possibilities for a finite representation of more general infinite

languages.

We do not consider labelled Petri nets (this is another line of research), and nets with in-
visible (internal) transitions or high level Petri nets (these are future topics of research).

This paper only gives a technical overview. Case studies and issues from practise are
out of scope of this paper.

2 Basic Framework

In this section we present all main concepts by means of the synthesis of place/transition
Petri nets from languages of labelled partial orders.

2.1 Mathematical Preliminiaries

In this subsection we present necessary notions and definitions including labelled partial
orders, place/transition Petri nets and runs of place/transition Petri nets.

Basic Notions. By N0 we denote the set of nonnegative integers, byN the set of positive
integers.

Given a function f from X to Y and a subset Z of X we write f |Z to denote the
restriction of f to the set Z .

Given a finite set X , the symbol |X | denotes the cardinality of X . The set of all
subsets of X is denoted by P(X).

The set of all multisets over a set X is the set NX of all functions f : X → N.
Addition + on multisets is defined by (m+m′)(x) = m(x) +m′(x). The relation ≤
between multiset is defined through m ≤ m′ ⇐⇒ ∃m′′(m+m′′ = m′). We define x ∈
m if m(x) > 0. A multiset is finite, if

∑
x∈X m(x) is finite. A set A ⊆ X is identified

with the multiset m satisfying m(x) = 1 ⇐⇒ x ∈ A ∧m(x) = 0 ⇐⇒ x 
∈ A. The
support of a multiset m ist the set set(m) = {x | x ∈ m}. If X is finite, a multiset m
we also write in the form of an |X |-tuple (m(x)x)x∈X . For example, the finite multiset
m over {a, b, c} defined by m(a) = 1 and m(b) = 2 we denote by (1a, 2b, 0c). A
multiset m satisfying m(a) > 0 for exactly one element a we call singleton multiset
and denote it by m(a)a. The multiset m satisfying ∀x ∈ X : m(x) = 0 we call empty
multiset and denote it by ε.

Let X,T be sets and l : X → T be a labelling function assigning to each x ∈ X
a label l(x) from T . Such a labelling function can be lifted to subsets Y ⊆ X in the
following way: l(Y ) is the multiset over T given by l(Y )(t) = |l−1(t) ∩ Y |.

Given a binary relationR ⊆ X×Y and a binary relation S ⊆ Y ×Z for sets X,Y, Z ,
then their composition is defined by R ◦S = {(x, z) | ∃y((x, y) ∈ R∧ (y, z) ∈ S)} ⊆
X × Z . For a binary relation R ⊆ X × X over a set X , we denote R1 = R and
Rn = R ◦Rn−1 for n ≥ 2. The symbol R+ denotes the transitive closure

⋃
n∈N

Rn of
R and the symbol R∗ denotes the reflexive transitive closure R+ ∪ {(x, x) | x ∈ X} of
R. We also write aRb to denote (a, b) ∈ R.
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Let A be a finite set of characters. A (classical) language over A is a (possibly
infinite) set of finite sequences of characters from A. For a language L and w ∈ L, |w|a
denotes the number of a’s occurring in w (for example |aba|a = 2). A (concurrent) step
over A is a multiset over A. A step language over A is a (possibly infinite) set of finite
sequences of steps over A. For a sequence of steps w = α1 . . . αm, |w|a =

∑m
i=1 αi(a)

denotes the number of a’s occurring in w (for example |(1a, 0b)(0a, 2b)|b = 2).

Partial Orders. A directed graph is a pair G = (V,→), where V is a finite set of
nodes and →⊆ V × V is a binary relation over V, called the set of edges (all graphs
considered in this paper are finite). The set of nodes of a directed graphG is also denoted
by V (G). The preset of a node v ∈ V is the set •v = {u | u → v}. The postset of a
node v ∈ V is the set v• = {u | v → u}. The preset of a subset W ⊆ V is the set
•W =

⋃
w∈W

•w. The postset of a subset W ⊆ V is the set W • =
⋃

w∈W w• . A path
is a sequence of (not necessarily distinct) nodes v1 . . . vn (n > 1) such that vi → vi+1

for i = 1, . . . , n − 1. A path v1 . . . vn is a cycle, if v1 = vn. A directed graph is
called acyclic, if it has no cycles. The set of maximal nodes of an acyclic directed graph
G = (V,→) is the set Max(G) = {v | v• = ∅}, the set of its minimal nodes is the
set Min(G) = {v | •v = ∅}. An acyclic directed graph (V,→′) is an extension of an
acyclic directed graph (V,→) if→⊆→′. An acyclic directed graph (V ′,→) is a prefix
of an acyclic directed graph (V,→) if V ′ ⊆ V and (v′ ∈ V ′) ∧ (v → v′)⇒ (v ∈ V ′).
An acyclic directed graph (V ′,→) is a sub-graph of an acyclic directed graph (V,→)
if V ′ = U \W for prefixes (U,→) and (W,→). Then (W,→) is called prefix of the
sub-graph (V ′,→).

A partial order over a set V is a binary relation <⊆ V × V which is irreflexive
(∀v ∈ V : v 
< v) and transitive (<=<+). We associate a finite partial order < over V
with the directed graph (V,<).

Two nodes v, v′ ∈ V of a partial order (V,<) are called independent if v 
< v′ and
v′ 
< v. By co< ⊆ V × V we denote the set of all pairs of independent nodes of V .
A co-set is a subset C ⊆ V fulfilling ∀x, y ∈ C : x co< y. A cut is a maximal co-set
w.r.t. set inclusion. For a co-set C of a partial order (V,<) and a node v ∈ V \ C we
write v < C, if v < s for an element s ∈ C and v co< C, if v co< s for all elements
s ∈ C. The sets Max(po) and Min(po) are cuts.

The skeleton of a finite partial order po = (V,<) is the minimal relation ≺⊆<
satisfying ≺+=<.

Graphically, nodes of partial orders are drawn as small squares and the relatrion
by (drawn-through) arrows between nodes. Figure 3 shows an example partial order po.
The nodes v1 and v2 as well as v3 and v2 are independent. It holdsMax(po) = {v2, v3}
and Min(po) = {v1, v2}.

Place/Transition Petri Nets. A net is a 3-tuple N = (P, T, F ), where P is a finite set
of places, T is a finite set of transitions disjoint fromP andF ⊆ (P×T )∪(T×P ) is the
flow relation. A marking of a net assigns to each place p ∈ P a number m(p) ∈ N0, i.e.
a marking is a multiset over P . A marked net is a net N = (P, T, F ) together with an
initial marking m0. Graphically, places are drawn as circles, transitions as squares and
the flow relation as arrows between places and transitions. A marking m is illustrated
by drawing m(p) tokens inside place p.



Models from Scenarios 319

Fig. 3. Example of a partial order and a prefix and two extensions of this partial order

Definition 1 (Place/Transition Petri Net). A place/transition Petri net (PT-net) is a 4-
tuple N = (P, T, F,W ), where (P, T, F ) is a net and W : (P × T ) ∪ (T × P )→ N0

is a weight function satisfying W (x, y) > 0⇔ (x, y) ∈ F .

Graphically, the number W (x, y) is assigned to an arrow from x to y, if W (x, y) > 1
(that means, W (x, y) = 1 for arrows (x, y) without assigned weight). Figure 4 shows a
marked PT-net with P = {p1, p2, p3}, T = {a, b}, m0(p1) = m0(p2) = 1, m0(p3) =
0 and W (p1, a) = W (a, p2) = W (p2, b) = W (b, p3) = 1.

We introduce the following multisets of places:

– •t(p) = W (p, t) and t• (p) = W (t, p) for transitions t.
– •τ(p) =

∑
t∈T τ(t) •t(p) and τ• (p) =

∑
t∈T τ(t)t• (p) for multisets of transi-

tions τ .

The definition of executions of PT-nets depends on the occurrence rule of transitions,
stating in which markings a transition (or a multiset of transitions) can occur and how
these markings are changed by its occurrence.

Definition 2 (Occurrence Rule). A transition t ∈ T can occur in a marking m, if
m ≥ •t. A multiset of transitions τ can occur in m, if m ≥ •τ .

If a transition t occurs in a marking m, the resulting marking m′ is defined by m′ =
m− •t + t• . If a multiset of transitions τ occurs in m, then the resulting marking m′

is defined by m′ = m− •τ + τ• . We write m
t−→ m′ (m

τ−→ m′) to denote that t (τ )
can occur in m and that its occurrence leads to m′.

The numberW (p, t) represents the number of tokens consumed from p by an occurrence
of t and the number W (t, p) represents the number of tokens produced in p by an
occurrence of t.

The occurrence of a multiset of transitions τ in a marking m means, that all transi-
tions in τ occur in parallel.

The notion of execution depends on the chosen net semantics. In the following defi-
nition we consider sequential semantics and step semantics. Causal semantics is defined
in the next subsection.

Definition 3 (Execution). A sequential execution in m of a PT-net is a finite sequence

of transitions σ = t1 . . . tn such that there are markings m1, . . . ,mn satisfying m
t1−→

m1
t2−→ . . .

tn−→ mn.
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A step execution in m of a PT-net is a finite sequence of multisets of transitions
σ = τ1 . . . τn such that there are markings m1, . . . ,mn satisfying m

τ1−→ m1
τ2−→

. . .
τn−→ mn.

We write m
σ−→ mn to denote the occurrence of such executions σ.

Each sequential execution is also a step execution. The markings which can be reached
from the initial marking via sequential executions (resp. step executions) are called
reachable.

The PT-net shown in Figure 4 has the sequential executions a, b, ab, ba, abb, bab and
the additional step execution (1a, 1b)(0a, 1b), (1a, 0b)(0a, 2b) in the initial marking.

If τ is a multiset of transitions which can occur in a marking m and τ = t1+ . . .+ tn
for transitions t1, . . . , tn, then t1 . . . tn is a sequential execution in m, i.e. the transitions
in τ can occur in m in arbitrary sequential order.

Finally, we recall process semantics of PT-nets.

Definition 4 (Occurrence Net). An occurrence net is a net O = (B,E,G) satisfying:

– B and E are finite and disjoint sets.
– G ⊆ (B × E) ∪ (E ×B).
– (B ∪ E,G) is a directed acyclic graph.
– ∀b ∈ B(| •b| ≤ 1 ∧ |b• | ≤ 1).

The elements of B are called conditions and the elements of E are called events. The
relation G is called flow relation.

Since an occurrence net can be identified with an acyclic directed graph, we use no-
tations introduced for acyclic directed graphs also for occurrence nets. A slice of an
occurrence net is a cut consisting solely of conditions.

In a process, the events of an occurrence net are interpreted as transition occurrences
of a PT-net. Conditions represent tokens in places.

Definition 5 (Process). Let N = (P, T, F,W,m0) be a marked PT-net. A process of
N is a pair K = (O, ρ), where O = (B,E,G) is an occurrence net and ρ : B ∪ E →
P ∪ T is a labelling function, satisfying

– ρ(B) ⊆ P and ρ(E) ⊆ T .
– ∀e ∈ E : ρ( •e) = •ρ(e) ∧ ρ(e• ) = ρ(e)• .
– ρ(Min(O)) = m0.

In a process of a PT-net, two transition occurrences are directly causally dependent if
one transition occurrence e′ consumes tokens which are produced by the other transition
occurrence e. Such a situation is called token flow between transition occurrences and
can be directly observed in a process via e• ∩ •e′ 
= ∅. Figure 4 shows a process of a
PT-net, where names of conditions are omitted. The names of events are shown inside,
the labels of events and conditions outside of the graphical object. In this process, v1
and v3 are directly causally dependent.

For each slice C of a process, ρ(C) is a reachable marking of the net. On the
other hand, for each reachable marking m there is a slice C in some process such that
ρ(C) = m.
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Fig. 4. Example of a PT-net and one of its processes

2.2 Causal Semantics

We use partial orders labelled by transition names to represent single (non-sequential)
runs of PT-nets. The nodes of a partial order represent transition occurrences and its
arrows an ”earlier than”-relation between transition ocurrences in the sense that one
transition occurrence can be observed earlier than another transition occurrence. If there
are no arrows between two transition occurrences, then these transition occurrences
are independend and are called concurrent. Concurrent transition occurrences can be
observed in arbitrary sequential order and in parallel. This interpretation of arrows is
called occurrence interpretation.

Definition 6 (Labelled Partial Order). A labelled partial order (LPO) over T is a
3-tuple (V,<, l), where (V,<) is a partial order and l : V → T is a labelling
function on V .

We only consider LPOs up to isomorphism, i.e. only the labelling of events is of interest,
but not the event names. Formally, two LPOs (V,<, l) and (V ′, <′, l′) are isomorphic,
if there is a renaming function I : V → V ′ satisfying l(v) = l′(I(v)) and v < w ⇔
I(v) <′ I(w).

A linear order is an LPO (V,<, l) where < is a total order, i.e. there is no indepen-
dence between transition occurrences: ∀u, v ∈ V : u < v ∨ v < u. Linear orders
represent sequential executions of Petri nets in the obvious way. For example, the LPO
lpo4 shown in Figure 5 is linear and represents the sequential execution abb.

A stepwise linear LPO is an LPO (V,<, l) where the relation co< is transitive. The
maximal sets of independent transition occurrences are called steps. The steps of a
stepwise linear LPOs are linearly ordered. Thus, stepwise linear LPOs represent step
executions of Petri nets. For example, the LPO lpo1 shown in Figure 5 is not stepwise
linear, while the LPOs lpo2 (representing the step execution (1a, 1b)(0a, 1b)) and lpo3
(representing the step execution (1a, 0b)(0a, 2b)) are stepwise linear.
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The set of step-linearizations of an LPO is the set of stepwise linear LPOs which are
extensions of this LPO. For example, the LPOs lpo2 and lpo3 shown in Figure 5 are
step linearizations of lpo1.

Definition 7 (LPO-run). Let N = (P, T, F,W,m0) be a PT-net. An LPO (V,<, l) is a
LPO-run of N if there is a process K = (O, ρ), O = (B,E,G), of N such that (V,<)
is an extension of (E, {(e, f) | e• ∩ •f 
= ∅}) and l = ρ|E .

An LPO-run lpo of N is said to be minimal, if there exists no other LPO-run lpo′ of
N such that lpo is an extension of lpo′.

Note that (E, {(e, f) | e• ∩ •f 
= ∅}) is an acyclic directed graph representing all direct
causal dependencies between transition occurrences of a process of the net. This means,
along the ”earlier than”-relations between transition occurrences of an LPO-run token
flow is allowed, but not required. Figure 5 shows a PT-net together with some of its
LPO-runs. Note that the LPO-run lpo1 exactly represents all direct causal dependencies
between transition occurrences of a process of the net (which is shown in Figure 4).
Moreover, lpo1 is minimal, since a second occurrence of b must be preceeded by an
occurrence of a.

From the definition follows that extensions of LPO-runs also are LPO-runs. This
means, the set of all LPO-runs can be deduced from the set of minimal LPO-runs.

There are two alternative but equivalent definitions of LPO-runs in literature:

– An LPO lpo = (V,<, l) is an LPO-run of a PT-net N if and only if each step-
linearization of lpo is a step execution of N . This means, LPO-runs are consistent
with the step semantics of PT-nets.

– An LPO lpo = (V,<, l) is an LPO-run if and only if for each cut C of lpo and each
place p there holds:

m0(p) +
∑
v<C

(W (l(v), p)−W (p, l(v))) ≥
∑
v∈C

W (p, l(v)).

Fig. 5. A PT-net with four of its LPO-runs. The LPOs lpo2, lpo3 and lpo4 are step linearizations
of lpo1. The LPO-run lpo1 is minimal. The LPO lpo4 is linear.
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This means, after the occurrence of each prefix of lpo there are enough tokens
for the occurrence of the multiset of transitions occurrences directly following the
prefix.

In figures we often omit transitive arrows of LPOs for a clearer presentation.

2.3 Regions of Finite Languages

The formal problem statement, which we consider from now, is:

Given: A prefix-closed and extension-closed finite language L of LPOs over a finite
alphabet of transition names T .

Searched: A PT-net N with set of transitions T such that all LPOs in L are LPO-runs
of N and N has a minimal number of additional LPO-runs.

As explained in the introduction, for the computation of places of N so-called regions
are defined. In this subsection we define two different types of PT-net regions of fi-
nite languages of LPOs as non-negative integral solutions of appropriate linear systems
of the form AL · x ≤ bL. For these definitions and in examples we only consider
those LPOs from L, which are not extensions or prefixes of other LPOs from L. If
a place is feasible w.r.t. these LPOs, then this place is feasible w.r.t. L, since the set
of LPO-runs of a PT-net is prefix- and extension-closed. Throughout the rest of this
subsection we use the language shown in Figure 6 as a running example. It is enough
to consider the LPOs lpo1 and lpo2, since the other LPOs are prefixes or extensions
of lpo1.

Transition-Regions. A (PT-net) transition-region r directly defines the parameters
of a place pr of PT-nets, i.e. it determines the numbers m0(pr) and W (pr, t) and
W (t, pr) for each t ∈ T . If T = {t1, . . . , tn}, then r is given as a (2n + 1)-tuple

Fig. 6. Running example language
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r = (r0, . . . , r2n) of non-negative integers. Its components define these numbers via
m0(pr) = r0, W (pr, ti) = ri and W (ti, pr) = rn+i for i ∈ {1, . . . , n}. In the running
example, denote t1 = a, t2 = b and t3 = c.

Since a region r is intended to define a feasible place pr, it is required to satisfy a
property (f)L ensuring that pr is feasible w.r.t. L. Remember that pr is feasible w.r.t. L
if the net resulting from adding pr still generates at least L. For this, the property (f)L
formalizes that for each cut of events there are enough tokens in pr for the occurrence
of the corresponding step of transitions after the occurrence of the prefix preceeding the
cut (which can be the empty prefix). For example, in the running example the transition
step (1a, 1b) must be able to occur after the empty prefix, i.e. in the initial marking
(see Figure 7). This means, pr has to satisfy m0(pr) ≥ W (pr, a) + W (pr, b), i.e.
r0 ≥ r1 + r2.

The definition of (f)L for a finite language L of LPOs and PT-nets is as follows: For
each lpo = (V,<, l) ∈ L and for each cut C of lpo we require

r0 +
n∑

i=1

l(V ′)(ti)(rn+i − ri)−
n∑

i=1

l(C)(ti)ri ≥ 0,

where V ′ = {v ∈ V | v < C}. This is the case if and only if (for each lpo ∈ L and for
each cut C of lpo) alpo,C · r ≤ 0 for alpo,C = (aC,0, . . . , aC,2n) defined by:

aC,j =

⎧⎨
⎩
−1 if j = 0,
l(V ′ ∪ C)(tj) if j ∈ {1, . . . , n},
−l(V ′)(tj−n) if j ∈ {n+ 1, . . . , 2n}.

For the cut C corrsponding to the transition step (1a, 1b) in the running example we
require r0 − r1 − r2 ≥ 0. This is the case if and only if alpo1,C · r ≤ 0 for

alpo1,C = (−1, 1, 1, 0, 0, 0, 0).

Definition 8 (Transition-Region). A tuple r as above is called a transition-region if it
satisfies (f)L.

Theorem 1 ([27]). A tuple r satisfies (f)L if and only if pr is feasible w.r.t. L.

Fig. 7. All cuts of the LPOs lpo1 and lpo2 together with their preceeding prefixes
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Let AL be the matrix consisting of all rows alpo,C for LPOs lpo ∈ L and cuts C
of lpo. Since L is assumed to be finite, AL is finite. Thus, the set of all regions can
be computed as the set of all integral solutions of the homogenous linear inequation
system AL · x ≤ 0. In the running example, AL looks as follows (compare Figure 7):⎛

⎝−1 1 1 0 0 0 0
−1 1 2 0 −1 0 0
−1 0 0 1 0 0 0

⎞
⎠

Solutions are for example r = (1, 1, 0, 1, 0, 0, 0) with corresponding place p1, r =
(1, 0, 1, 1, 1, 0, 0) with corresponding place p2 and r = (0, 0, 0, 0, 0, 1, 0) with corre-
sponding place p3 in Figure 8.

Theorem 2 ([27]). If L is finite then there is a finite matrix AL such that the set of
transition-regions is the set of solutions of the linear inequation system AL · x ≤ 0.

Token Flow Regions. A token flow-region r defines a place pr indirectly by deter-
mining the token flow w.r.t. this place between transition occurrences in LPOs from L,
i.e. by directly determining the number of tokens produced by a transition occurrence
which are consumed by a subsequent transition occurrence in an LPO specified in L.

Such numbers are assigned to the arrows between transition occurrences of LPOs.
Moreover, for each transition occurrence the number of tokens consumed from the ini-
tial marking and the number of tokens which are produced but not further consumed by
other transition occurrences are considered. Finally, there may be tokens in the initial
marking which are not consumed by any transition occurrence of an LPO.

If W =
⋃

(V,<,l)∈L V is the set of nodes of LPOs in L and E =
⋃

(V,<,l)∈L < is
the set of arrows of LPOs in L, then a (PT-net) token flow-region r is given as a tuple
r = (ri)i∈W×{in,out}∪E∪L of non-negative integers. Its components define

– the number of tokens an event v ∈W consumes from the initial marking by rv,in,
– the number of tokens produced by an event v and not consumed by a subsequent

event by rv,out,

Fig. 8. Some solution places for the example language
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Fig. 9. Illustration of token flow regions for the running example

– the number of tokens produced by an event v and consumed by an event w for
e = (v, w) ∈ E by re,

– the number of tokens in the initial marking, which are not consumed by any subse-
quent event of an LPO lpo ∈ L by rlpo.

Figure 9 illustrates all these numbers for the running example. For example, ru,in rep-
resents the number of tokens, this occurrence of transition a consumes from the initial
marking of the represented place. The number r(u,w) represented the number of tokens,
which are produced by transition a in the represented place and then consumed by the
following transition occurrence of b. The number ru,out represents the number of to-
kens, this occurrence of transition a produces in the the represented place and which
are not consumed by further transitions. For the running example, we denote

r = (rlpo1, rlpo2, ru,in, rv,in, rw,in, rx,in, ru,out, rv,out, rw,out, rx,out, r(u,w)).

A token-flow region r defines a PT-net-place pr as follows:

– m0(pr) = rlpo +
∑

v∈V rv,in for some LPO lpo = (V,<, l) ∈ L – the sum is
called initial token flow of lpo. The initial token flow of lpo1 equals rlpo1 + ru,in +
rv,in + rw,in.

– W (pr, t) = rv,in +
∑

e=(u,v)∈E re for some LPO lpo = (V,<, l) ∈ L and v ∈ V

with l(v) = t – the sum is called intoken flow of v. The intoken flow event w is
r(u,w) + rw,in.

– W (t, pr) = rv,out +
∑

e=(v,u)∈E re for some LPO lpo = (V,<, l) ∈ L and v ∈ V

with l(v) = t – the sum is called outtoken flow of v. The outtoken flow event u
computes r(u,w) + ru,out.

This construction is still dependent on the choice of lpo = (V,<, l) ∈ L and v ∈ V ,
thus pr is not uniquely defined. Therefore, we require r to fulfill a property (wd)L
which makes pr defined independently from the choice of lpo = (V,<, l) ∈ L and
v ∈ V . The property (wd)L states the following:
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– The initial token flows of different LPOs are equal:

rlpo +
∑
v∈V

rv,in = rlpo′ +
∑
v′∈V ′

rv′,in

for LPOs lpo = (V,<, l), lpo′ = (V ′, <′, l′) from L. This property can be ex-
pressed as a linear equation system AL,a · r = 0 as follows:
Let L = {lpo1, lpo2, . . . , lpon} and lpok = (Vk, <k, lk). Then, for each k ≥ 2, the
matrix AL,a has a row ak = (ak,i)i∈W×{in,out}∪E∪L defined by

ak,i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if i = (v, in) for v ∈ Vk,
1 if i = lpok,
−1 if i = (v′, in) for v′ ∈ Vk−1

−1 if i = lpok−1,
0 else.

For example, the two LPOs of the running example shown in Figure 9 should have
the same initial token flow, i.e. we require

rlpo1 + ru,in + rv,in + rw,in = rlpo2 + rx,in.

This is satisfied if and only if a2 · r = 0 for

a2 = (−1, 1,−1,−1,−1, 1, 0, 0, 0, 0, 0).

– The intoken flows of equally labelled events are equal:

rv,in +
∑

e=(u,v)∈<

re = rv′,in +
∑

e=(u,v′)∈<′
re

for v ∈ V , v′ ∈ V ′, (V,<, l), (V ′, <′, l′) ∈ L and l(v) = l′(v′). This prop-
erty can be expressed as a linear equation system AL,b · r = 0 as follows: Let
Wt = {v ∈ W | l(v) = t} = {vt1, vt2, . . . , vtn} be the set of all t-labeled
events for t ∈ T . Then, for each t and each k ≥ 2, the matrix AL,b has a row
bt
k = (btk,i)i∈W×{in,out}∪E∪L defined by

bt
k,i =

⎧⎨
⎩

1 if i = (vtk, in) ∨ i = (u, vtk),
−1 if i = (vtk−1, in) ∨ i = (u, vtk−1)
0 else.

For example, the two occurrences v and w of transition b shown in Figure 9 should
have the same intoken flow, i.e. we require

rv,in = rw,in + r(u,w).

If we denote vb1 = v and vb2 = w, this is satisfied if and only if bb
2 · r = 0 for

bb
2 = (0, 0, 0,−1, 1, 0, 0, 0, 0, 0, 1).
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– The outtoken flows of equally labeled events are equal:

rv,out +
∑

e=(v,u)∈<

re = rv′,out +
∑

e=(v′,u)∈<′
re

for v ∈ V , v′ ∈ V ′, (V,<, l), (V ′, <′, l′) ∈ L and l(v) = l′(v′). This property can
be expressed as a linear equation system AL,c · r = 0 as follows: For each t and
each k ≥ 2 the matrix AL,c has a row ctk = (ctk,i)i∈W×{in,out}∪E∪L defined by

ctk,i =

⎧⎨
⎩

1 if i = (vtk, out) ∨ i = (vtk, u),
−1 if i = (vtk−1, out) ∨ i = (vtk−1, u)
0 else.

For example, the two occurrences v and w of transition b shown in Figure 9 should
have the same outtoken flow, i.e. we require

rv,out = rw,out.

If we denote vb1 = v and vb2 = w, this is satisfied if and only if cb2 · r = 0 for

cb2 = (0, 0, 0, 0, 0, 0, 0,−1, 1, 0, 0).

It can be shown that the place pr is feasible w.r.t. L by construction (it is possible to
construct a process of the synthesized net directly from token flows).

Definition 9 (Token Flow-Region). A tuple r as above is called a token flow-region if
it satisfies (wd)L .

For the property (wd)L the following theorem holds for PT-net places [5]:

Theorem 3. A tuple r satisfies (wd)L if and only if pr is feasible w.r.t. L.

Let AL be the matrix consisting of all rows from the matrices AL,a, AL,b and AL,c.
Since L is assumed to be finite, AL is finite. Thus, the set of all token flow-regions
can be computed as the set of all integral solutions of the homogenous linear equation
system AL · x = 0. If we denote vb1 = v and vb2 = w, AL looks as follows for the
running example (the matrices AL,a, AL,b and AL,c each consist exactly of the one
row already shown): ⎛

⎝−1 1 −1 −1 −1 1 0 0 0 0 0
0 0 0 −1 1 0 0 0 0 0 1
0 0 0 0 0 0 0 −1 1 0 0

⎞
⎠

Figure 10 shows a solution. This solution represents the place p2 from Figure 8.

Theorem 4 ([5,27]). If L is finite then there is a finite matrix AL such that the set of
token flow-regions is the set of solutions of the linear equation system AL · x = 0.
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Fig. 10. Illustration of the token flow region r = (0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1)

2.4 Finite Representations

As shown in the last paragraph, the set of regions can be computed as the set of non-
negative integer solutions of a homogenuous equation ot inequation system. Such sys-
tems have an infinite set of solutions. In this subsection we present two possibilities to
finitely represent this set of solutions.

Separating Representation. One idea to derive a finite representation is to separate
behavior specified in L from behavior not specified in L by a finite set of regions.
For this, one defines a finite set of executions Lc with L ∩ Lc = ∅ satisfying that
L(N) ∩ Lc = ∅ =⇒ L(N) = L for each net N . Then for each w ∈ Lc one tries to
find a region r(w) such that w is not an execution of the net having the place pr(w), i.e.
a region which separates L from w. The elements of Lc are called wrong continuations.
If such a region exists, then the corresponding place is added to the net Nsep called
separating representation of Nsat.

There is an exact solution of the synthesis problem if and only if for each w ∈ Lc

there is such a region r(w). In case L is a net language (of the considered net class), it
holds L(Nsep) = L(Nsat) = L, i.e Nsep is a possible solution.

If L is not a net language, Lc does not have in general the property L(Nsat) =
L(Nsep). One common approach is to define a wrong continuation w as an LPO ex-
tending an LPO of L by one event. If there is no place separating L from such a wrong
continuation w, this does not mean that there are no places separating L from further
”continuations” of w. In order to achieve L(Nsat) = L(Nsep), also all continuations of
wrong continuations which cannot be separated from L must be considered. In general,
there is no finite set Lc with L∩Lc = ∅ satisfying L(Nsat) = L(Nsep) [10]. Thus, the
separating representation is not necessarily the best approximation to a solution of the
synthesis problem generating L.

In the following we construct a finite set Lc. Remember that lpo ∈ L is a run of a
net N if and only if each step linearization of lpo is a step execution of N . Denote by
Lstep the set of step linearizations of LPOs in L. In order to define wrong continuations
we extend elements from Lstep by one event as follows:
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Definition 10 (Wrong Continuation of LPO-languages). Let σ = α1 . . . αn−1αn ∈
Lstep and t ∈ T such that wσ,t = α1 . . . αn−1(αn + t) 
∈ Lstep, where αn is allowed
to be the empty step. Then wσ,t is called wrong continuation of L.

We call α1 . . . αn−1 the prefix andαn+t the follower step of the wrong continuation.

The following table lists Lstep together all wrong continuations of the running example
(multisets are denoted as sums of singleton multisets):

(a+ b)bε (a+ b)ba abbε abba babε baba
(a+ b)bb abbb babb
(a+ b)bc abbc babc

a(2b)ε a(2b)a (a+ b)ε (a+ b)a abε aba
a(2b)b (a+ b)c abc
a(2b)c

baε baa (a+ b)b (a+ b)(b + a) abbε ab(b+ a)
bac (a+ b)(2b) ab(2b)

(a+ b)(b + c) ab(b+ c)
bab ba(b+ a) aε aa ab a(b+ a)

ba(2b) ac a(b+ c)
ba(b+ c)

a(2b) a(2b+ a) bε bb ba b(2a)
a(3b) bc b(a+ b)
a(2b+ c) b(a+ c)

cε ca εε εa ε(2a)
cb ε(a+ c)
cc

εb ε(2b) εc ε(c+ a) ε(a+ b) ε(2a+ b)
ε(b+ c) ε(c+ b) ε(a+ 2b)

ε(2c) ε(a+ b+ c)

To prohibit a wrong continuation, one needs to find a feasible place p such that after
occurrence of its prefix there are not enough tokens in p to fire its follower step. A
a prefix of wrong continuations corresponds to a prefix (V ′, <, l) of an LPO lpo =
(V,<, l) ∈ L, which is stepwise linearized by α1 . . . αn−1. A follower step of such
a prefix can be constructed by taking a subset S of its direct successors {v ∈ V \
V ′ | u < v =⇒ u ∈ V ′} and add a labelled event z parallel to this subset. That
means, wrong continuations can be represented on the level of LPOs, where wrong
continuations having the same follower step and whose prefixes stepwise linearize the
same LPO-prefix need not be distinguished. Figure 11 shows some representations of
wrong continuations of the running example.

Since the follower marking after the occurrence of (V ′, <, l) only depends on the
number of occurrences of each transition in V ′, but not on their ordering, it is enough to
represent (V ′, <, l) by the multiset l(V ′). Altogether, the set of all wrong continuations
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Fig. 11. Some wrong continuations on the level of LPOs

can be constructed as the set of all pairs of multisets (l(V ′), l(S∪{z})), where (V ′, <, l)
is a prefix of some LPO in L, S is a subset of direct successors of (V ′, <, l) and z is an
additional labelled event. For example, the wrong continuations shown in Figure 11 are
represented in the form (a+2b, a), (a+ b, a), (a+ b, a+ b), (ε, 2c) (from left to right).

With these notations and the notations from the previous subsection we directly de-
duce the following statements for transition regions and token flow regions.

If r is a transition region, T = {t1, . . . , tn}, C = S ∪ {z} and l(z) = t then wσ,t is
not a step execution w.r.t. pr if and only if

r0 +

n∑
i=1

l(V ′)(ti)(rn+i − ri)−
n∑

i=1

l(C)(ti)ri < 0.

This is the case if and only if d(wσ,t) · r < 0 for d(wσ,t) = (d0, . . . , d2n) defined by:

dj =

⎧⎨
⎩

1 if j = 0,
−l(V ′ ∪C)(tj) if j ∈ {1, . . . , n},
l(V ′)(tj−n) if j ∈ {n+ 1, . . . , 2n}.

For example, for the left most wrong continuation in Figure 11 we require r0 + ((r4 −
r1) + 2(r5 − r2))− (r1) < 0 (remember t1 = a, t2 = b and t3 = c). This is the case if
and only if d(wσ,t) · r < 0 for

d(wσ,t) = (1,−2,−2, 0, 1, 2, 0).

The region
r = (1, 1, 0, 1, 0, 0, 0)

(corresponding to place p1 in Figure 8) is a solution which prohibits this wrong
continuation.

If r is a token flow region, then the number of tokens in the place pr after the occur-
rence of a prefix (V ′, <, l) of some LPO lpo = (V,<, l)) equals the initial token flow
of lpo minus the sum of intoken flows of events in V ′ plus the sum of outtoken flows of
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events in V ′. This sum needs to be smaller than the sum of intoken flows of events in
C. Formally, if vt an arbitrary event with label t then wσ,t is not a step execution w.r.t.
pr if and only if

rlpo +
∑

u∈V \(V ′∪S)

ru,in +
∑
v∈V ′

rv,out +
∑

v∈V ′, u∈V \(V ′∪S)

rv,u

− (r(vt,in) +
∑
u<vt

r(u,vt)) < 0.

This is the case if and only if d(wσ,t) · r < 0 for d(wext(t)) = (di)i∈W×{in,out}∪E∪L

defined by:

di =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if i = lpo,
1 if i = (u, in) ∧ u ∈ V \ (V ′ ∪ S) ∧ u 
= vt,
1 if i = (v, out) ∧ v ∈ V ′,
1 if i = (v, u) ∧ v ∈ V ′ ∧ u ∈ V \ (V ′ ∪ S) ∧ u 
= vt,
−1 if i = (vt, in) ∧ vt 
∈ V \ (V ′ ∪ S),
−1 if i = (u, vt) ∧ vt 
∈ V \ (V ′ ∪ S),
0 else.

For example, for the right most wrong continuation in Figure 11 we require rlpo1 +
ru,in+rw,in−rv,in < 0 (we use the notations from Figure 9 and V ′ = ∅ and S = {v})
This is the case if and only if d(wσ,t) · r < 0 for

d(wσ,t) = (1, 0, 1,−1, 1, 0, 0, 0, 0, 0, 0).

The region
r = (0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1)

(illustrated in Figure 10 and corresponding to place p2 in Figure 8) is a solution which
prohibits this wrong continuation.

Summarizing, a region separating L from some wrong continuation w is computed
as a solution of an adequate homogenuous linear inequation system. Such a system
consists of the equations/inequations given by AL defining regions and an additional
row d(w) which is defined in such a way that d(w) · r < 0 if and only if w is not
an execution of the net having the place pr. There are effective algorithms to compute
a non-negative integer solution of the resulting system. One example is the simplex
algorithm, which allows to compute a solution of such a system which addionally mini-
mizes or maximizes a given linear target function. Such a target function may be used to
compute simple places. This is of high importance in practise where the derived system
model should be as clear and compact as possible. For example, the places p2 and p6 in
Figure 8 both prohibit the most right wrong continuation from Figure 11, but place p2
is much more simple and intuitive.

Definition 11 (Linear Target Function of LPO-languages). A linear target function
(of an LPO-language) is a function of the form T (r) = m · r for regions r, where m is
the vector defining T .
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It is possbile to define m in such a way that the sum of initial marking and arc weight
on incoming and outgoing edges w.r.t. pr is minimized when T is minimized.

If r is a transition region and T = {t1, . . . , tn}, then m is defined through

m = (1, . . . , 1),

because m · r =
∑2n

i=0 miri = m0(pr) +
∑n

i=1(W (pr, ti) +W (ti, pr)).
If r is a token flow region, then the initial marking of pr can be computed as the initial

token flow of some LPO in L and the arc weights on incoming and outgoing edges w.r.t.
pr can be computed as intoken and outtoken flows of some events v1, . . . , vn satisfying
l(vj) = tj (we omit a formal definition here). In the running example m can be defined
through

m = (0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1),

because m0(pr) = rlpo2 + rx,in, W (pr, a) = ru,in, W (pr, b) = rv,in, W (pr, c) =
rx,in, W (a, pr) = ru,out + ru,w, W (b, pr) = rv,out and W (c, pr) = rx,out.

Definition 12 (Minimal Places). Given a target function T , a feasible place is called
minimal w.r.t. a wrong continuation, if it minimizes T among all feasible places pro-
hibiting the wrong continuation.

Figure 12 illustrates that a wrong continuation may be prohibited by several different
feasible places. The target function T has different values for these places. The smaller
the value of T is, the more simple is the place.

On the other side, Figure 12 shows that a feasible place may prohibit several wrong
continuations. Sometimes, a place prohibits all wrong continuations another place pro-
hibits. Such places are more expressive in the sense that, that less places of this kind are
needed to prohibit all wrong continuations.

Definition 13 (Expressive Places). A feasible place p is called more expressive than
second feasible place p′, if the set of wrong continuations prohibited by p′ is contained
in the set of wrong continuations prohibited by p.

Fig. 12. Left side: Some feasible places together with some of the wrong continuations they
prohibit. Right side: A solution
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A place which is more expressive than another place is not minimal w.r.t. some wrong
continuations. This means, it is necessary to find a trade-off between simple (minimal)
and expressive places.

Since feasible places in general prohibit more than one wrong contintuation, Nsep is
constructed as follows:

1. Compute a sequence of all wrong continuations.
2. For each wrong continuation w (considered in the given order):

a. If w is prohibited by a previously computed place, skip w.
b. If w is not prohibited by a previously computed place, then compute and add a

place prohibiting w (if possible.

The above considerations imply that it depends on the considered order of wrong
continuations, which places are computed. On the right side of Figure 12 a possible so-
lution is shown. It is advantageous to choose an order such that more expressive places
are computed first. There are several methods for constructing an appropriate order of
wrong continuations.

In general, the number of wrong continuations is exponential in the number of nodes
in L (first step of the algorithm). Since feasible places often prohibit more than one
wrong continuation, the number of computed places is usually much smaller. For step
2a. we need to test for every previously computed place, whether it solves the inequation
system. The simplex algorithm for solving step 2b. needs worst case exponential time
(there are other worts case polynomial algorithms, but probabilistic and experimental
results show that the Simplex algorithm has a significantly faster average runtime).

Basis Representation. For systems of the form AL · r = 0 or AL · r ≤ 0 there is a
so called basis representation of the set of all non-negative solutions. This means there
are non-negative basis-solutions y1, . . . ,yn such that each solution x is a non-negative
linear combination of y1, . . . ,yn, i.e.

x =

n∑
i=1

λiyi

for real numbersλ1, . . . , λn ≥ 0. In the case that all values in AL are integral (this is the
case here) also the values of y1, . . . ,yn can be chosen integral. If pi is the place defined
by yi and Nbasis is the net containing exactly the places p1, . . . , pn, then L(Nbasis) =
L(Nsat) [5]. This means Nbasis is also the best approximation to a solution of the
synthesis problem generating L but Nbasis is moreover finite. Nbasis is called basis
representation of Nsat.

In the worst case n can be exponential in the number of rows of AL, but in practice
it is often small. There are effective algorithms to compute minimal basis solutions
y1, . . . ,yn, where a solution y = (y1, . . . , yk) is minimal, if there is no other solution
z = (z1, . . . , zk) satisfying (∀i : zi ≤ yi) ∧ (∃j : zj < yj). Figure 13 shows Nbasis

for the running example language. Observe that there are basis places which do not
restrict the behavior of the net (filled with grey color). They are special cases of so
called implicit places.
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Fig. 13. The basis representation of the running example

Definition 14 (Implicit Place). A place of a PT-net is called implicit, it the modified
net without this place has the same set of executions.

The are polynomial methods to detect some of the implicit places of a net which can be
applied in a postprocessing phase to the synthesized net. An easy example are places
whiich are dominated by one another place (w.r.t. the behavioral restriction).

Definition 15 (Dominating Place). A place p′ dominates another place p, if for some
λ > 0:

– λm0(p) ≥ λm0(p
′),

– λW (t, p) ≥ λW (t, p′) and λW (p, t) ≤ λW (p′, t) for all transitions t.

Dependent on the initial marking and the arc weights, a maximal number for λ can
be determined. Then places can be compared pairwise. Advanced methods are able to
detect places which are dominated by positive linear combinations of other places. Such
places are implicit, too.

Since from the construction it is not clear whether Nbasis is an exact solution of the
synthesis problem, it is finally necessary to test whether L(Nbasis) = L or not. One
possibility of such an equality test is to test whether no w ∈ Lc (Lc was defined in
the last paragraph) is an execution of Nbasis. There are polynomial algoritms testing
whether an LPO is an execution of a PT-net [25], but Lc in general contains exponential
many LPOs in the number of nodes in L.

Discussion. Experiments in the first phase of the project SYNOPS showed that the
so called separation representation produces Petri nets which are simpler and more
compact, especially having less places [5]. It turned out that in the presence of much
concurrency the use of the basis representation of token flow regions is most efficient
(including an equality test), whereas in the case of low concurrency and much nonde-
terminism the use of the separation representation of transition regions ist advantageous
(concerning runtime).
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2.5 Regions of Infinite Languages

In this subsection we generalize the presented framework to inifinite LPO-languages.
In order to finitely represent such languages we introduce a term based representa-
tion extending regular expressions. A term is built from a given finite set of LPOs
through operators for iteration, parallel composition, sequential composition and union.
The parallel composition operation represents concurrent LPOs. By the iteration oper-
ation infinite sets of LPOs can be constructed. For a term α we denote by L(α) the
LPO-language represented by α.

The formal problem statement, which we consider from now, is:

Given: A term α over a finite alphabet of transition names T .
Searched: A PT-net N with set of transitions T such that all LPOs in L(α) are

LPO-runs of N and N has a minimal number of additional LPO-runs.

As in the finite case, we will define transition regions and token flow regions of L(α) as
non-negative integral solutions of appropriate linear systems of the form Aα · x ≤ bα.
Throughout the rest of this subsection we use the language shown in Figure 14 as a
running example, where zero, one and two iterations of the action b are shown and
prefixes and extensions are omitted.

LPO-terms. Let A be a finite set of LPOs. For A ∈ A we write A = (VA, <A, lA).
We denote by λ = (∅, ∅, ∅) the empty LPO. LPOs consisting only of one single event
we denote by the label of this event.

Definition 16 (LPO-term). The set of LPO-terms over a finite set of LPOsA is induc-
tively defined as follows:

– The elements A ∈ A and λ are LPO-terms.
– Let α1 and α2 be LPO-terms. Then
• α1;α2 (sequential composition),
• α1 + α2 (union),
• (α1)

∗ (iteration),
• α1 ‖ α2 (parallel composition)

are LPO-terms.

Fig. 14. Infinite example language, represented by a term
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In the running example shown in Figure 14 A = {a, b, c} consists of three single event
LPOs. If each LPO in A is single event LPO, an LPO-term defines a so called series
rational sp-language [22,23].

We assign to an arbitrary LPO-term α a possibly infinite prefix and extension closed
LPO-language L(α). The language L(α is defined as the prefix and extension clo-
sure of an appropriate LPO-language K(α). In order to construct K(α), we define the
sequential composition of LPOs A,B ∈ A by

AB = (VA ∪ VB , <A ∪ <B ∪(VA × VB), lA ∪ lB),

the parallel composition of LPOs A,B ∈ A by

A ‖ B = (VA ∪ VB , <A ∪ <B, lA ∪ lB),

and the n-th iteration of an LPO A ∈ A by

An = An−1A

for n ∈ N+ (we can assume that A,B have disjoint sets of nodes).

Definition 17 (LPO-language of an LPO-term). We define inductively:

– K(λ) = {λ} and K(A) = {A} for A ∈ A,
– Let α1 and α2 be LPO-terms. Then:
• K(α1 + α2) = K(α1) ∪K(α2),
• K(α1;α2) = {A1A2 | A1 ∈ K(α1), A2 ∈ K(α2)},
• K((α1)

∗) = {A1 . . . An | A1, . . . , An ∈ K(α1)} ∪ {λ},
• K(α1 ‖ α2) = {A1 ‖ A2 | A1 ∈ K(α1), A2 ∈ K(α2)}.

Some of the the LPOs in K(α) from the example LPO-term shown in Figure 14 are
c, a, ab, abb, . . . , a ‖ b, a ‖ b2, . . . , (ab) ‖ b, (ab) ‖ b2, . . ..

In the second part of this paper, LPO-languages which cannot be generated by LPO-
terms are discussed. This means, LPO-languages generated by LPO-terms (over finite
sets of LPOs) form a certain class of LPO-languages.

Regions of LPO-Terms. We now describe a technique to represent the infinite set
K(α) by two finite sets of LPOs R(α) and I(α). Regions will be defined w.r.t. these
finite sets.

An LPO A can occur arbitrarily often consecutively in a certain marking m if and
only if it consumes in every place at most as many tokens as it produces in this place
(then an occurrence of A does not reduce the number of tokens in this place). Conse-
quently, if A can occur iterated in m, then another LPO B can occur after the occurrence
of An for each n ∈ N if and only if it can occur in m, since an occurrence of A does
not reduce the number of tokens in a place. This principle can be used to define the two
finite sets R(α) and I(α).

For an LPO-term α the set R(α) is the set of, roughly speaking, all LPOs containing
each iterated part ofα at most once. The running example term ((a; b∗) ‖ b∗)+c contains
to iterated b-labelled events, thus R(((a; b∗) ‖ b∗) + c) = {a, ab, a ‖ b, (ab) ‖ b, c}.
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We call in R(α) the representation set. The first idea for the definition of regions is to
ensure that the place defined by a region is feasible w.r.t. the representation set, i.e. we
require that a transition region satisfies the property (f)R(α) and a token flow regions
satsfies the property (wd)R(α) as defined for finite LPO-languages.

It remains to ensure that certain LPOs can occur iterated w.r.t. the place defined by
a region. The set I(α) consist of, roughly speaking, all LPOs associated to iterated
subterms of α. The running example term ((a; b∗) ‖ b∗) + c contains to iterated b-
labelled events, thus I(((a; b∗) ‖ b∗) + c) = {b}. We call I(α) the iteration set. We
will introduce an additional property (i)α of regions which ensures that the LPOs in
I(α) produce at least as many tokens as they consume in the place defined by a region.
This implies that the place defined by a region is feasible w.r.t. K(α).

Definition 18 (Representation/Iteration set). The representation set R(α) and the it-
eration set I(α) of an LPO-term α are defined inductively as follows (α1 and α2 are
LPO-terms):

R(λ) = {λ} I(λ) = ∅
R(A) = {A} for A ∈ A I(A) = ∅ for A ∈ A
R(α1 + α2) = R(α1) ∪R(α2) I(α1 + α2) = I(α1) ∪ I(α2)
R(α1;α2) = {A1A2 | A1 ∈ R(α1), A2 ∈ R(α2)} I(α1;α2) = I(α1) ∪ I(α2)
R((α1)

∗) = R(α1) ∪ {λ} I((α1)
∗) = I(α1) ∪R(α1)

R(α1 ‖ α2) = {A1 ‖ A2 | A1 ∈ R(α1), A2 ∈ R(α2)} I(α1 ‖ α2) = I(α1) ∪ I(α2)

This approach generalizes the ideas in [10] where the authors define regions by two
finite sets representing a regular expression.

The requirement, that every LPO in I(α) produces at least as many tokens as it
consumes in a place p, corresponds to the requirement, that the sum of tokens produced
by all events of an LPO in I(α) exceeds the sum of tokens consumed by all events. For
lpo = (V,<, l) and some place p we define

Prod(lpo, p) :=
∑

t∈l(V )

l(V )(t)(W (t, p) −W (p, t)).

A region r, i.e. property (i)α, is defined in such a way that Prod(lpo, pr) ≥ 0 for each
LPO lpo ∈ I(α). For the running example LPO-term we require W (b, pr) −W (pr, b)
≥ 0.

The definition of (i)α for transition regions of LPO-termsα and PT-nets is as follows,
where a (PT-net) transition-region r = (r0, . . . , r2n) directly defines the parameters of
a place pr of PT-nets via m0(pr) = r0, W (pr, ti) = ri and W (ti, pr) = rn+i, if
T = {t1, . . . , tn} is the set of transition names occurring in LPOs from K(α). For each
lpo = (V,<, l) ∈ I(α) we require

n∑
i=1

l(V )(ti)(rn+i − ri) ≥ 0.
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This is the case if and only if (for each lpo ∈ I(α)) ilpo · r ≤ 0 for ilpo = (i0, . . . , i2n)
defined by:

ij =

⎧⎨
⎩

0 if j = 0,
l(V )(tj) if j ∈ {1, . . . , n},
−l(V )(tj−n) if j ∈ {n+ 1, . . . , 2n}.

In the running example, denote t1 = a, t2 = b and t3 = c. For the LPO b ∈ I(α) in the
running example we require r5 − r2 ≥ 0. This is the case if and only if ib · r ≤ 0 for

ib = (0, 0, 1, 0, 0,−1, 0).

Definition 19 (Transition-Region of LPO-term). We call a tuple r a transition-region
of an LPO-term α if it satisfies (f)R(α) and (i)α.

With these definitions and notions the following theorem holds:

Theorem 5. A tuple r satisfies (f)R(α) and (i)α if and only if pr is feasible w.r.t. K(α).

Let Aα be the matrix consisting of all rows of AR(α) and all rows ilpo for LPOs lpo ∈
I(α). Then the set of all regions can be computed as the set of all integral solutions
of the homogenous linear inequation system Aα · x ≤ 0. In the running example, Aα

looks as follows (the set R(α) can be represented by the finite example language from
the subsection on finite languages):⎛

⎜⎜⎝
−1 1 1 0 0 0 0
−1 1 2 0 −1 0 0
−1 0 0 1 0 0 0
0 0 1 0 0 −1 0

⎞
⎟⎟⎠

Solutions are for example r = (1, 1, 0, 1, 0, 0, 0) with corresponding place p1,
r = (1, 0, 1, 1, 1, 1, 0) and r = (0, 0, 0, 0, 0, 1, 0) with corresponding place p3 of the
PT-net shown in Figure 15.

Theorem 6. If α is an LPO-term then there is a finite matrix Aα such that the set of
transition-regions is the set of solutions of the linear inequation system Aα · x ≤ 0.

The previous theorems are proven in [7] for token flow regions and easily carry over to
transition regions.

If
W =

⋃
(V,<,l)∈R(α)

V

is the set of nodes of LPOs in R(α) and

E =
⋃

(V,<,l)∈R(α)

<

is the set of arrows of LPOs in R(α), then a (PT-net) token flow-region r of an LPO-
term α is given as a tuple r = (ri)i∈W×{in,out}∪E∪L of non-negative integers. Its
components are interpreted and define places as for finite languages.
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Fig. 15. Some solution places for the example LPO-term

The definition of (i)α for token flow regions of LPO-terms α and PT-nets is as
follows: For each lpo ∈ I(α) we require∑

v∈Vlpo

(rv,out +
∑

e=(v,u)∈<

re − rv,in −
∑

e=(u,v)∈<

re) ≥ 0,

where (Vlpo, <, l) is a sub-LPO of some LPO (V,<, l) ∈ R(α) which is isomorphic
to lpo. This is the case if and only if ilpo · r ≤ 0 for ilpo = (ij)j∈W×{in,out}∪E∪L

defined by:

ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if j = (v, in) for v ∈ Vlpo,
1 if j = (u, v) for v ∈ Vlpo, u ∈ V \ Vlpo,
−1 if i = (v, out) for v ∈ Vlpo,
−1 if j = (v, u) for v ∈ Vlpo, u ∈ V \ Vlpo,
0 else.

In the running example, it is enough to consider the LPOs lpo1 = (ab) ‖ b and lpo2 = c
from R(α), since the other LPOs are prefixes of lpo1. Thus, R(α) can be treatened in
the same way as the finite example language from the section on finite languages. As
before, we denote

r = (rlpo1, rlpo2, ru,in, rv,in, rw,in, rx,in, ru,out, rv,out, rw,out, rx,out, r(u,w)),

where the events u, v, w and x are shown in Figure 9. If we represented the iterated
LPO b ∈ I((a; b∗) ‖ b∗) by the event v, then we require

rv,in − rv,out ≤ 0.

This is satisfied if and only if ib · r = 0 for

ib = (0, 0, 0, 1, 0, 0, 0,−1, 0, 0, 0).
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Definition 20 (Token Flow-Region of LPO-term). A tuple r as above is called a token
flow-region of an LPO-term α if it satisfies (wd)R(α) and (i)α.

With these definitions and notions the following theorem holds:

Theorem 7. A tuple r satisfies (wd)R(α) and (i)α if and only if pr is feasible w.r.t.
K(α).

Let AL be the matrix consisting of all rows from the matrices AL,a, AL,b and AL,c.
Since L is assumed to be finite, AL is finite. Thus, the set of all token flow-regions
can be computed as the set of all integral solutions of the homogenous linear equation
system AL · x = 0. If we denote vb1 = v and vb2 = w, AL looks as follows for the
running example (the matrices AL,a, AL,b and AL,c each consist exactly of the one
row already shown):

Let AI(α) be the matrix consisting of all rows ilpo for LPOs lpo ∈ I(α). The set of
all regions can be computed as the set of all integral solutions of the homogenous linear
inequation system AR(α) ·x = 0 and AI(α) ·x ≤ 0. In the running example, the matrix
of this system looks as follows:⎛

⎜⎜⎝
−1 1 −1 −1 −1 1 0 0 0 0 0
0 0 0 −1 1 0 0 0 0 0 1
0 0 0 0 0 0 0 −1 1 0 0
0 0 0 1 0 0 0 −1 0 0 0

⎞
⎟⎟⎠

Figure 16 shows a solution. This solution represents the place p2 from Figure 15.

Theorem 8 ([7]). If α is an LPO-term then there is a finite matrix Aα such that the set
of token flow-regions is the set of solutions of the linear inequation system Aα · x ≤ 0.

Finite Representation. As in the case of finite languages, the set of regions of an
LPO-term is defined as the set of positive integral solutions of a homogenuous linear
inequation system. Thus, it has a finite basis representation. Figure 17 shows the basis
representation for the running example term.

Fig. 16. Illustration of the token flow region r = (0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1)
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Fig. 17. The basis representation of the running example. The iterated transition b does not
decrease the number of tokens in places

In order to compute a finite separation representation we need to finitely represent
the infinite set of wrong continuationsK(α)c. The next definition proposes such a finite
representation:

Definition 21 (Wrong Continuation of LPO-term). Let α be an LPO-term and let
σ = β1 . . . βn−1βn ∈ R(α)step and t ∈ T such that wσ,t = β1 . . . βn−1(βn + t) 
∈
K(α)step, where βn is allowed to be the empty step. Then wσ,t is called wrong contin-
uation of α.

We call β1 . . . βn−1 the prefix and βn+t the follower step of the wrong continuation.

Note that this finite set of wrong continuations is usually a proper subset of R(α)c

because of the requirement wσ,t 
∈ K(α)step. For the running example term α =
((a; b∗) ‖ b∗) + c, R(α)c is listed in the subsection on finite languages, where (for
example) bb ∈ R(α)c is not a wrong continuation of α.

For each wrong continuation w of α we search for a place pr not only prohibiting
w, but also an infinite set of wrong continuations I(w) ⊆ K(α)c. The idea is that, if
the prefix of w contains the prefix of a sub-LPO (of some LPO in R(α)) which can be
iterated, then the follower step must be prohibited by pr also after all finite iterations
of this sub-LPO. In other words, I(w) contains all wrong continuations from K(α)c

which can be constructed from w by inserting iterations of sub-LPOs into the prefix
of w. For example, I(b(2a)) = {bn(2a) | n ∈ N}. The left side of Figure 18 shows
example places.

A place pr prohibits each wrong continuations in I(w) (for some wrong continuation
w), if and only if the following two properties are satisfied:

– pr prohibits w.
– If the prefix of w contains the prefix of a sub-LPO which can be iterated, then the

occurrence of this sub-LPO does not increase the number of tokens in pr.

The first property can be encoded as a homogenuous linear inequation as in the case
of finite languages. Together with the defining property of regions of LPO-terms, the
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Fig. 18. Left Side: Place p2 prohibits b(2a) but not bb(2a); Place p1 prohibits each wrong con-
tinuation of the form bn(2a) for n ∈ N. Right side: The separation representation of the example
LPO-term.

second property implies that after the occurrence of such a sub-LPO the number of
tokens in pr is the same as before the occurrence. This can be ensured by requiring

Prod(lpo, pr) = 0

for each sub-LPO lpo whose prefix is prefix of the prefix of w and which can be
iterated. The corresponding defining linear inequation system for transition-regions
and token flow-regions can be constructed in an analoguous way as for the property
Prod(lpo, pr) ≥ 0 of regions of LPO-terms. For the running example LPO-term and
the wrong continuation b(2a) we have I(b(2a)) = {b} and require Prod(b, pr) =
W (b, pr)−W (pr, b) = 0.

It remains to determine the term of an iterated sub-LPO. Of course, each sub-LPO
which is isomorphic to an LPO in I(α) is a candidat. But the follower marking after the
occurrence of some sub-LPO (V ′, <, l) only depends on the multiset L(V ′), i.e. on the
number of occurrences of each transition in the sub-LPO.

Definition 22 (Iterated sub-LPO). We say that a sub-LPO (V ′, <′, l′) of an LPO in
R(α) can be iterated, if l′(V ′) = l(V ) for an LPO (V,<, l) ∈ I(α).

The right side of Figure 18 shows the separation representation for the example LPO-
term. Note that the wrong continuations of the form bnc cannot be prohibited (compare
also Figure 17 showing the basis representation). The reason is that bn as well as c can
occur in the initial state and bn does not decrease the number of tokens in places. Note
that it is possible to consider more general Petri net classes, as for example inhibitor
nets, which allow to prohibit bnc.

2.6 Speeding Up Synthesis for Finite Languages

If a finite language of LPOs contains finite iterations of sub-LPOs, then the technique
from the previous subsection can be used to reduce the runtime for computing the
separation representation. In the following we will illustrate this by an example.
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Fig. 19. PT-net synthesized from L = {aN ‖ bN}

Consider the familiy of LPOs (an ‖ bn) (n ∈ N). The number of wrong continua-
tions of the language L = {(an ‖ bn)} (for some fixed n) grows quadratically with n.
For a fixed N the wrong continuations are of the form (aj ‖ bi)(2a), (aj ‖ bi)(2b),
(aj ‖ bi)(2a + b) and (aj ‖ bi)(2b + a) for 0 ≤ i, j ≤ N − 1, (aN ‖ bi)a,
(aN ‖ bi)(2b) and (aN ‖ bi)(2b + a) for 0 ≤ i ≤ N − 1, (aj ‖ bN )b, (aj ‖ bN)(2a)
and (aj ‖ bN )(2a+ b) for 0 ≤ j ≤ N − 1, and (aN ‖ bN )a and (aN ‖ bN )b.

Instead of considering all these wrong continuations we can equivalently

– first compute the wrong continuations of the LPO-term (a∗ ‖ b∗), which are only
those of a ‖ b (iterations only occur once in the representation set. The correspond-
ing separation representation prohibits all wrong continuations of L = {(aN ‖
bN )} except (aN ‖ bi)a for 0 ≤ i ≤ N − 1, (aj ‖ bN )b for 0 ≤ j ≤ N − 1, and
(aN ‖ bN)a and (aN ‖ bN)b.

– second add the remaining wrong continuations, which are not yet prohibited.

Figure 19 shows the PT-net synthesized with this technique. The white places allow
arbitrary iterations and prohibit the first kind of wrong continuations. The grey places
restrict the length of LPO-runs and prohibit the second kind of wronf continuations.

The technique significantly reduces the number of wrong continuations we need to
consider.

2.7 Concluding Remarks

The presented synthesis theory for LPO-languages was developed within the last years.
In earlier years, the synthesis problem already was solved for finite and regular lan-
guages over single action names. As already mentioned, such languages are a special
case of LPO-languages as considered in this paper.

The technique of computing the separation representation of the set of PT-net tran-
sition regions as presented in this paper coincides with the earlier developed technique
for this special case [10,2,3]. In these early publications a parametric definition of
Petri nets, which can be instantiated with different concrete net classes like elementary
nets or inhibitor nets, was considered. In the second part of this paper we extend the
presented framework to several of these other net classes.
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In [16] PT-net transition-regions for trace languages (step languages) are introduced.
The authors do not consider the subclasses of finite or regular step languages and there-
fore only define an infinite separating representation (involving infinite many
constraints)

Token flow regions and the basis representation were developed later in the context
of LPO-languages.

There are many other publications considering (step) transition systems instead of
languages as behavioral model (e.g., [14,15,28,29,8,30,11]). These approaches are re-
stricted to transition-regions and separating representations.

3 Extensions and Generilizations

In this second part of the paper we extend and generalize the framework presented in
the first part in the following directions:

– We consider the synthesis of inhibitor nets from finite and from simple infinite
languages of labelled stratified order structures.

– We discuss synthesis from languages of non-transitive order structures.
– We examine the synthesis of nets of restricted net classes.
– We suggest several possibilities for a finite representation of more general infinite

languages.

For a clear presentation we do not combine these generalizations to common definitions
of regions and finite representations. Instead we consider each generilization separately
and give some hints on how to combine different concepts in each subsection.

3.1 Inhibitor Nets

As examples in the first part of this paper illutrated, not always the given LPO-language
can be exactly represented by a PT-net. In such cases, it is possible to consider more
general Petri net classes in order find a better representation. One of the most general
Petri net classes are inhibitor nets, which are as powerful as Turing machines for lan-
guages over single action names. In this subsection we extend the concept of regions to
inhibitor nets.

Stratified Order Structures. Partial orders are used in the first part of this paper to
represent causal dependencies between transition occurrences of PT-nets. When con-
sidering inhibitor nets, we need finer causal structures, so called relational structures
[18]. A relational structure (rel-structure) is a triple S = (V,≺,�), where V is a finite
set (of nodes) and ≺ ⊆ V × V and � ⊆ V × V are binary relations on V . The no-
tions of preset and postset are only used w.r.t. the relation ≺. A rel-structure S is called
acyclic if

(≺ ∪�)∗ ◦ ≺ ◦ (≺ ∪�)∗

is irreflexive. Similar to the notion of the transitive closure of a binary relation the
transitive closure S+ of a rel-structure S = (V,≺,�) is defined by

S+ = (V,≺S+ ,�S+) = (V, (≺ ∪�)∗ ◦ ≺ ◦ (≺ ∪�)∗, (≺ ∪�)∗ \ idV ).
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An extension of an acyclic rel-structure (V,≺,�) is an acyclic rel-structure (V,≺′,�′)
satisfying ≺⊆≺′ ∧ �⊆�′. A prefix of an acyclic rel-structure (V,≺,�) is an acyclic
rel-structure (V ′,≺,�) with V ′ ⊆ V satisfying (v′ ∈ V ′)∧(v(� ∪ ≺)v′)⇒ (v ∈ V ′).

A rel-structure S = (V,≺,�) is called stratified order structure (so-structure) if the
following conditions are satisfied for all u, v, w ∈ V :

– u 
� u.
– u ≺ v =⇒ u � v.
– u � v � w ∧ u 
= w =⇒ u � w (weak transitivity).
– u � v ≺ w ∨ u ≺ v � w =⇒ u ≺ w (strong mixed transitivity).

(V,≺) is a partial order. Thus a partial order can always be interpreted as an so-structure
with � = ≺. The transitive closure S+ of a rel-structure S is an so-structure if and
only if S is acyclic (for this and further results see [18]). Later on, we will interpret the
relation ≺ as an ”earlier than”-relation between events and the relation � as an ”not
later than”-relation between events.

Two nodes v, v′ ∈ V of an so-structure (V,≺,�) are called independent if v 
� v′

and v′ 
� v. Co-sets, cuts, minimal and maximal events are defined w.r.t. the partial
order ≺.

The skeleton of an so-structure (V,≺,�) is the rel-structure (V,≺′,�′) with ≺′⊆≺
minimal, �′⊆� minimal and (V,≺′,�′)+ = (V,≺,�).

Graphically, ”earlier than”-relation is drawn by drawn-through arrows and the ”not
later than”-relation by dotted arrows between events. For a clear illustration, often tran-
sitiv arrows are not drawn. Figure 20 shows an example so-structure, where the nodes
v2 and v3 are in ”not later than”-relation and the nodes v1 and v2 as well as v1 and v3
are in ”earlier than”-relation.

Semantics of Inhibitor Nets. Inhibitor nets are PT-nets extended by read arcs testing
places for absence of tokens.

Definition 23 (Inhibitor Net). An inhibitor net (PTI-net) N = (P, T, F,W, I) consists
of a PT-net (P, T, F,W ) and a mapping I : P × T → N0 ∪ {∞} called inhibitor
function.

We denote Und(N) = (P, T, F,W ) the PT-net underlying N .

Fig. 20. An so-structure with a prefix and two extensions



Models from Scenarios 347

The inhibitor function specifies upper bounds for the number of tokens allowed in a
place for the occurrence of a transition.

Graphically, the number I(p, t) is assigned to an arrow from p to t which has a circle
as arrowhead, where in the case I(p, t) =∞ no arrow is drawn and in the case I(p, t) =
0 only the arrow is drawn. Figure 22 shows a marked PTI-net with I(p5, b) = 0 and
I =∞ in all other cases.

We introduce the following multiset of places:

– −t(p) = I(p, t) for transitions t.
– −τ(p) = min({−t(p) | t ∈ τ}) for multisets of transitions τ .

There are two different semantics of inhibitor nets. We only consider the a-priori se-
mantics here, because it leads to more general causal semantics. For the so called
a-postepriori semantics of inhibitor nets, causal semantics is based on LPOs as for
PT-nets.

Definition 24 (A-Priori Occurrence Rule). A multiset of transitions τ can occur in m,
if m ≥ •τ and m ≤ −τ .

The notion of m
τ−→ m′ is defined as for PT-nets.

The notions of sequential executions and step executions are deduced from the occur-
rence rule as for PT-nets.

The PTI-net shown in Figure 22 has the sequential executions a, c, ac, ab, abc and
the additional step execution (1a, 0b, 1c), (1a, 0b, 0c)(0a, 1b, 1c) in the initial marking.

Finally, we recall process semantics of PTI-nets. The problem of defining processes
for PTI-nets is that the absence of tokens in a place – this is tested by inhibitor arcs
– cannot be directly represented in an occurrence net. This is solved by introducing
local extra conditions and read arcs – also called activator arcs – connected to these
conditions. These extra conditions are introduced ”on demand” to directly represent
dependencies of events caused by the presence of an inhibitor arc in the net. The con-
ditions are artificial conditions without a reference to inhibitor weights or places of the
net. They only focus on the dependencies that result from inhibitor tests. Thus, activator
arcs represent local information regarding the lack of tokens in a place.

The process definition is based on the usual notion of occurrence nets extended by ac-
tivator arcs. These occurrence nets are (labeled) acyclic nets with non-branching condi-
tions whose underlying causal relationship between events is described by so-structures
(similar to partial orders describing causal relationships between events of PT-net pro-
cesses). In the following definition B represents the finite set of conditions, E the finite
set of events, R the flow relation and Act the set of activator arcs of the occurrence net.

Definition 25 (Activator Occurrence Net [21]). An activator occurrence net (ao-net)
is a five-tuple AON = (B,E,R,Act) satisfying:

– B and E are finite disjoint sets.
– R ⊆ (B × E) ∪ (E ×B) and Act ⊆ B × E.
– The rel-structure S(AON) = (E,≺loc,�loc, l|E) = (E, (R ◦ R)|E×E ∪ (R ◦
Act), (Act−1 ◦R) \ idE , l|E) is acyclic.

– ∀b ∈ B(| •b| ≤ 1 ∧ |b• | ≤ 1.
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Fig. 21. Generation of the orders ≺loc (drawn-through arrow) and �loc (dotted arrow) in ao-nets.
Activator arcs have a filled cirlce as arrowhead.

For x ∈ E and X ⊆ E we denote x+ = {y | (y, x) ∈ Act} and X+ =
⋃

x∈X x+.

Note that this definition is a conservative extension of standard occurrence nets by read
arcs. The relations ≺loc and �loc represent the local information about causal relation-
ships between events. Figure 21 shows their construction rule.

Since an activator occurrence net can be identified with an acyclic directed graph, we
can use notations introduced for acyclic directed graphs. For the definition of processes
we need the notions of weak configurations and weak slices for ao-nets (there is also
the notion of strong slices which we do not need in this paper). A set of events D ⊆ E
is called a weak configuration of AON , if e ∈ D and f(≺loc∪�loc)

+e implies f ∈ D.
A weak slice of AON is a maximal (w.r.t. set inclusion) set of conditions S ⊆ B which
are R◦(≺loc∪�loc)

∗◦R-independent.WSL(AON) denotes the set of all weak slices.
Each weak slice is of the form SC = (C• ∪Min(AON)) \ •C for a weak config-

uration C [21]. For a weak slice S there is always a finite sequence of steps of ≺+
loc-

independent events τ1 . . . τn with S
τ1−→ S1

τ2−→ . . .
τn−→ Max(AON). This means

weak slices represent reachable markings which allow to complete a given process.
Now we are prepared to define processes of PTI-nets as in [20]. The mentioned

artificial conditions in such processes are labeled by the special symbol �. They are
introduced in two kinds of situations:

– A transition t ∈ T tests a place in the pre- or post-multiset of another transition
w ∈ T for absence of tokens, i.e. I(p, t) 
= ∞ and •w(p) + w• (p) 
= 0 for some
p ∈ P . Then occurrences f of w and e of t in a process must eventually be ordered
via a �-condition intended either to ensure that tokens are consumed earlier than
the test occurs ( •w(p) 
= 0) or to ensure that tokens are produced not later than the
test occurs (w• (p) 
= 0). Such situations are abbreviated by w � t.

– A transiton z testing some place for absense of tokens occurs concurrently to tran-
sitions t consuming and w producing tokens in this place, i.e. I(p, z) 
= ∞ and
p ∈ •t∩w• for some p ∈ P . Then occurrences f of w and e of t in a process must
eventually be ordered via a �-condition intended to ensure that tokens are con-
sumed not later than produced in order to restrict the maximal number of tokens in
the place according to the inhibitor weight.

In both situations the two occurrences f and e are adjacent to a common �-condition
representing the described causal dependency of f and e. This means there exists a �-
labeled condition b such that (b, e) ∈ Act and b ∈ ( •f ∪ f• ). This is abbreviated by
f �• e.
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Fig. 22. A PTI-net and one of its processes

Definition 26 (Complete activator process [20]). Let N = (P, T, F,W, I,m0) be a
PTI-net. A complete activator process (ca-process) of N is an ao-net AON = (B %
B̃, E,R,Act) together with a labelling function l : B % B̃ ∪ E → P ∪ T ∪ {�}
satisfying:

(Cond1) l(B) ⊆ P , l(E) ⊆ T and l(B̃) = {�}.
(Cond2) B̃ = {b | ∃e ∈ E((b, e) ∈ Act)}.
(Cond3) m0 = l(Min(AON) ∩B).
(Cond4) For all e ∈ E: •l(e) = l( •e ∩B) and l(e)• = l(e• ∩B).
(Cond5) For all b ∈ B̃, there are unique g, h ∈ E such that one of the following

properties hold:
– •b ∪ b• = {g}, (b, h) ∈ Act and l(g) � l(h).
– b• = {g}, (b, h) ∈ Act and additionally •l(h) ∩ l(g)• ∩ −z 
= ∅ for some

z ∈ T .
(Cond6) For all e, f ∈ E: if f �• e then there is exactly one c ∈ B̃ such that f �• e

through c.
(Cond7) For all e ∈ E and S ∈ WSL(AON): if •e ∪ {b ∈ B̃ | (b, e) ∈ Act} ⊆ S

then l(S ∩B) ≤ −l(e).

Figure 22 shows a process of a PTI-net, where names of conditions are omitted. The
names of events are shown inside, the labels of events and conditions outside of the
graphical object. There is one condition from B̃, which is filled by grey color. Observe
that transition b tests the post-set c• of c for absence of tokens, i.e. c � b. This is
reflected in the process by v3 �• v2. The right side of the Figure shows the acyclic
rel-structure underlying the process.

The requirements (Cond1), (Cond3), (Cond4) represent common features of
processes well-known from PT-nets. They ensure that ca-processes constitute a con-
servative extension of standard PT-net processes. This means, the set of processes of
Und(N) can be derived from the set of ca-processes by omitting the �-labeled
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conditions (omitting the �-conditions from a ca-processAON leads to the so called un-
derlying process Und(AON) ofAON ). IfN has no inhibitor arcs (thusN = Und(N)),
ca-processes coincide with standard processes.

The properties (Cond2) and (Cond5) together with the rule (Cond6) – describing
when �-conditions have to be inserted – constitute the structure of the �-conditions.
The requirement (Cond7) expresses that in the weak slices of AON the inhibitor con-
straints of the PTI-net have to be properly reflected. That means, for events enabled in a
certain weak slice of AON the respective transitions are also enabled in the respective
marking in the PTI-net N .

If AON is a process of a PTI-netN then the underlying causal relationsships between
events S(AON)+ form an so-structure, because S(AON) is an acyclic rel-structure.
This means, we can represent single (non-sequential) runs of PTI-nets by so-structures
labelled by transition names. Such labelled so-structure extend LPOs by adding a sec-
ond causal relation between transition occurrences which is interpreted as a ”not later
than”-relation. This relation represents the situation that two transition occurrences can
be observed simultaneously and as a sequence in one order (but not the other order).
In this model of runs, we can distinguish concurrency from synchronicity. Synchronic-
ity means that transiton occurrences can be observed only simultaneously, but not as a
sequence in any order. If two transition occurrences are in symmetric ”not later than”-
relation, then they are synchronous.

Definition 27 (Labelled SO-Structure). A labelled so-structure (LSO) over T is a 4-
tuple (V,≺,�, l), where (V,≺,�) is an so-structure and l : V → T is a labelling
function on V .

We only consider LSOs up to isomorphism, i.e. only the labelling of events is of inter-
est, but not the event names. Formally, two LSOs (V,≺,�, l) and (V ′,≺′,�′, l′) are
isomorphic, if there is a renaming function I : V → V ′ satisfying l(v) = l′(I(v)),
v ≺ w ⇔ I(v) ≺′ I(w) and v � w ⇔ I(v) �′ I(w).

As a special kind of LSOs we consider linear LSOs. A linear LSO is an LSO
satisfying co≺ =� \ ≺, This means, the relation � \ ≺ is symmetric and defines
synchronous transition occurrences. The maximal sets of synchronous transition occur-
rences are called synchronous steps. The synchronous steps of a linear LSO are linearly
ordered w.r.t. the ”earlier than”-relation. Linear LSOs cannot be extended and represent
(synchronous) step executions of PTI-nets.

The set of step linearizations of an LSO is the set of linear LSOs which are extensions
of this LSO. For example, lso1 shown in Figure 23 is not linear, since two events are in
asymetric ”not later than”-relation. The LSOs lso2 and lso3 are step-linearizations of
lso1, where

– lso2 represents the step execution (1a, 0b, 0c)(0a, 1b, 0c)(0a, 0b, 1c),
– lso3 represents the step execution (1a, 0b, 0c)(0a, 1b, 1c).

Definition 28 (LSO-run). An LSO (V,≺,�, l) is an LSO-run of a PTI-net N if there
is a ca-process AON of N such that (V,≺,�, l) is an extension of S(AON).

An LSO-run lso is said to be minimal, if there exists no other LSO-run lso′ of N
such that lso is an extension of lso′.
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Fig. 23. A PTI-net with four of its LSO-runs. The LSOs lso2 and lso3 are step-linearizations of
lso1. The LSO-runs lso1 and lso4 are minimal.

Figure 23 shows a PTI-net together with some of its LSO-runs. Note that the LSO-
run lso1 exactly represents all causal dependencies between transition occurrences of
a process of the net (which is shown in Figure 22). Moreover, lso1 is minimal, since b
may not occur simultaneously with a and may not occur after c.

From the definition follows that extensions of LSO-runs also are LSO-runs. This
means, the set of all LSO-runs can be deduced from the set of minimal LSO-runs.

We show in [20] that an LSO lso = (V,≺,�, l) is an LSO-run of a PTI-net N
if and only if each step-linearization of lso is a step execution of N . Equivalently,
lso is an LSO-run if and only if for each cut C of lso and each place p of N =
(P, T, F,W, I,m0) there holds:

m0(p) +
∑
v<C

(W (l(v), p)−W (p, l(v))) ≥
∑
v∈C

W (p, l(v))

and
m0(p) +

∑
v<C

(W (l(v), p)−W (p, l(v))) ≤ I(p, t)

for each t ∈ l(C).
We often omit transitive arrows of LSOs for a clearer presentation.

Regions of PTI-Nets. The formal problem statement, which we consider from now, is:

Given: A prefix-closed and extension-closed finite language L of LSOs over a finite
alphabet of transition names T .

Searched: A PTI-net N with set of transitions T such that all LSOs in L are LSO-runs
of N and N has a minimal number of additional LPO-runs.

As for PT-nets and LPOs, we define transition regions and token flow regions of PTI-
nets as as non-negative integral solutions of appropriate linear systems of the form
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Fig. 24. Running example language (prefixes and extensions are not shown)

AL · x ≤ bL. As in the case of LPOs, it is enough to consider only those LSOs from
L, which are not extensions or prefixes of other LSOs from L. Throughout the rest of
this subsection we use the language represented by the LSOs shown in Figure 24 as a
running example.

A (PTI-net) transition-region r directly defines the parameters of a place pr of PTI-
nets, i.e. it determines the numbers m0(pr), W (pr, t) and W (t, pr) for each t ∈ T
(PT-net part), and I(pr, t) for each t ∈ T . If T = {t1, . . . , tn}, then r is given as a
(3n+ 1)-tuple r = (r0, . . . , r3n) of non-negative integers. Its components define these
numbers via m0(pr) = r0, W (pr, ti) = ri, W (ti, pr) = rn+i and I(pr, ti) = rn+2i

for i ∈ {1, . . . , n}. In the running example, denote t1 = a, t2 = b and t3 = c.
Since a region r is intended to define a feasible place pr, it is required to satisfy a

property (f)L ensuring that pr is feasible w.r.t. L. Remember that pr is feasible w.r.t. L
if the net resulting from adding pr still generates at least L. For this, the property (f)L
formalizes that

– (as in the PT-net case) for each cut of events there are at least as much tokens in
pr as consumed by the occurrence of the corresponding step of transitions after the
occurrence of the prefix preceeding the cut (PT-net constraint).

– additionally for each cut of events there are at most as much tokens in pr as required
by inhibitor tests of transitions in the corresponding step of transitions after the
occurrence of the prefix preceeding the cut (inhibitor constraint).

In the running example transition step (1b, 1c) of lso1 must be able to occur after one
occurrence of a. This means, pr has to satisfy

– m0(pr)−W (pr, a) +W (a, pr) ≥W (pr, b) +W (pr, c),
– m0(pr)−W (pr, a) +W (a, pr) ≤ I(pr, b),
– m0(pr)−W (pr, a) +W (a, pr) ≤ I(pr, c),

i.e. r0 − r1 + r4 ≥ r2 + r3, r0 − r1 + r4 ≤ r8 and r0 − r1 + r4 ≤ r9.
The property (f)L for a finite language L of LSOs and PTI-nets contains all

PT-net constraints and additionally the following inhibitor constraint: For each
lso = (V,<,�, l) ∈ L, for each cut C of lso and for each t = tk ∈ l(C):
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r0 +

n∑
i=1

l(V ′)(ti)(rn+i − ri)− r2n+k ≤ 0,

where V ′ = {v ∈ V | v ≺ C}. This is the case if and only if blso,C,t · r ≤ 0 for the
vector blso,C,t = (bC,t,0, . . . , bC,t,3n) defined by

bC,t,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if j = 0,
−l(V ′)(tj) if j ∈ {1, . . . , n},
l(V ′)(tj−n) if n+ 1 ≤ j ≤ 2n,
−1 if j = 2n+ k,
0 else

For the cut C corrsponding to the transition step (1b, 1c) of lso1 in the running example
we require r0 − r1 + r4 ≤ r8 and r0 − r1 + r4 ≤ r9. This is the case if and only if
blso1,C,b · r ≤ 0 and blso1,C,c · r ≤ 0 for

blso1,C,b = (1,−1, 0, 0, 1, 0, 0, 0,−1, 0),

blso1,C,c = (1,−1, 0, 0, 1, 0, 0, 0, 0,−1).

Definition 29 (Transition-Region). A tuple r as above is called a transition-region if
it satisfies (f)L.

For the defined property (f)L the following theorem holds [27]:

Theorem 9. A tuple r satisfies (f)L if and only if pr is feasible w.r.t. L.

Let AL be the matrix consisting of all rows also,C (PT-net constraints) and blso,C,t

for LSOs lso = (V,<,�, l) ∈ L, cuts C of lso and transitions t ∈ l(C). Since L is
assumed to be finite, AL is finite. Thus, the set of all regions can be computed as the
set of all integral solutions of the homogenous linear inequation system AL · x ≤ 0.

Note that we never compute the inhibitor weight∞ representing the case that there
is no inhibitor restriction. This is not necessary in the case of a finite LSO-language,
since each feasible place is bounded (for each feasible place p there is an upper b ∈ N

such that m(p) ≤ b for all reachable markings m). In this case, an inhibitor weight
exceeding the bound for the number of tokens in a place is equivalent to ∞, i.e. does
not restrict the behavior. After the computation of a feasible place, it can be simplified
by replacing such useless inhibitor weights by the value∞.

All places of the PTI-net from Figure 22 are solutions for the running example
language. For example, the region r2 = (0, 0, 1, 0, 1, 0, 0, 1, 1, 1) defines p2 and the
region r5 = (0, 0, 0, 1, 0, 0, 0, 1, 0, 1) defines p5 (these regions still contain the use-
less inhibitor value 1 which can be replaced by∞, since the corresponding places are
1-bounded).

Theorem 10 ([27]). If L is finite then there is a finite matrix AL such that the set of
transition-regions is the set of solutions of the linear inequation system AL · x ≤ 0.
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A token flow-region r defines a place pr indirectly by determining the token flow w.r.t.
this place between transition occurrences in LSOs from L, i.e. by directly determining
the number of tokens produced by a transition occurrence which are consumed by a
subsequent transition occurrence in an LSO specified in L. Such numbers are assigned
to the ”earlier than”-arrows between transition occurrences of LSOs. As for LPOs, for
each transition occurrence the number of tokens consumed from the initial marking,
the number of tokens which are produced but not further consumed by other transition
occurrences and the number of tokens in the initial marking which are not consumed by
any transition occurrence of an LSO are considered.

Since inhibitor values cannot be represented by token flows, we define them directly
in the same way as for transition regions. If W =

⋃
(V,≺,�,l)∈L V is the set of nodes of

LSOs in L and E =
⋃

(V,≺,�,l)∈L ≺ is the set of ”earlier than”-arrows of LSOs in L,
then a (PTI-net) token flow-region r is given as a tuple r = (ri)i∈W×{in,out}∪E∪L∪T

of non-negative integers. The components ri with i ∈ W × {in, out} ∪ E ∪ L are
interpreted as in the PT-net case and I(pr, t) = rt for t ∈ T . Initial marking and the
weight function w.r.t. pr are defined as in the PT-net case.

Since a region r is intended to define a feasible place pr, it is required to satisfy a
property (wd)L ensuring that pr is feasible w.r.t. L. The property (wd)L for PTI-nets
and LSOs requires addionally to the PT-net constraints that the marking reached after
the occurrence of some prefix of an LSO in L does not exceed the inhibitor constraints
of transition occurrences subsequent to this prefix, i.e. for each lso = (V,≺,�, l) ∈ L,
for each cut C of lso and for each t ∈ l(C):

rlso +
∑

v∈V \V ′
rv,in +

∑
v′∈V ′, v∈V \V ′

r(v′,v) +
∑

v′∈V ′
rv′,out − rt ≤ 0,

where V ′ = {v ∈ V | v ≺ C}. This is the case it and only if AL,d · r ≤ 0, where for
each t and each cut C of an LSO lso ∈ L with t ∈ l(C) and V ′ = {v ∈ V | v ≺ C}
the matrix AL,d has a row dC,t = (dC,t,i)i∈W×{in,out}∪E∪L∪T defined by

dn,t,i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if i = lso,
1 if i = (v, in) ∧ v ∈ V \ V ′,
1 if i = (v′, v) ∧ v′ ∈ V ′ ∧ v ∈ V \ V ′,
1 if i = (v′, out) ∧ v′ ∈ V ′,
−1 if i = t
0 else.

Definition 30 (Token Flow-Region). A tuple r as above is called a token flow-region
if it satisfies (wd)L .

For the property (wd)L the following theorem holds for PTI-net places:

Theorem 11 ([5]). A tuple r satisfies (wd)L if and only if pr is feasible w.r.t. L.

Let AL be the matrix consisting of all rows from the matrices AL,a, AL,b, AL,c (PT-
net constraints) and AL,d (inhibitor constraint). Since L is assumed to be finite, AL is
finite. Thus, the set of all token flow-regions can be computed as the set of all integral
solutions of the homogenous linear equation system AL · x = 0.
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Fig. 25. Illustration of a PTI-net token flow region

All places of the PTI-net from Figure 22 are solutions for the running example lan-
guage. Figure 10 shows a token flow region representing the place p5 from Figure 22.
Inhibitor weights are annotated to additional arcs having a circle as arrowhead. Again,
useless inhibitor weights exceeding a place bound can be replaced by the value∞. Ob-
serve that the token flow leaving the prefix consisting of the occurrence of a of lso1
equals 0 such that the inhibitor constraint for the subsequent occurrence of b is fulfilled.

Theorem 12 ([5,27]). If L is finite then there is a finite matrix AL such that the set of
token flow-regions is the set of solutions of the linear equation system AL · x = 0.

Finite Representations of PTI-Net Regions. As in the case of PT-nets and LPO-
languages, the set of PTI-net regions of an LSO-language is defined as the set of positive
integral solutions of a homogenuous linear inequation system. Thus, it has a finite basis
representation. Many places of this basis represenation are relatively complex, since
there is an inhibitor arc connection to every transition. As argued in the last paragraph,
these inhibitor weight may be useless. In this case a place can be simplified by replacing
the useless inhibitor weight by the value∞. As in the case of PT-nets, many basis places
are implicit and can be omitted and in some cases there are easy strategies to compute
them. Figure 27 shows some implicit places for the running example in grey color. A
detailed examination is a topic of future research.

In order to compute a finite separation representation we need to compute the set
Lc of wrong continuations of an LSO-language L. As for LPO-languages we denote
by Lstep the set of step linearizations of LSOs in L. We need to consider two kinds of
wrong continuations: Wrong continuations of an analoguous form as in the LPO-case
and wrong continuations representing situations where steps of transitions cannot be
sequentialized in any order.

Definition 31 (Wrong Continuation of an LSO-language). A wrong flow continua-
tion of an LSO-language L is a sequence of transition steps of the form wσ,t
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Fig. 26. Some basis solution places for the running example. Iimplicit places are filled with grey
color.

= α1 . . . αn−1(αn + t) 
∈ Lstep for σ = α1 . . . αn−1αn ∈ Lstep and t ∈ T , where we
call α1 . . . αn−1 the prefix and αn + t the follower step of the wrong continuation.

A wrong inhibitor continuation of an LSO-language L is a sequence of transition
steps of the form wσ,β1,β2 = α1 . . . αn−1β1β2 
∈ Lstep for β1 + β2 ≤ αn and σ =
α1 . . . αn−1αn ∈ Lstep, where we call α1 . . . αn−1β1 the prefix and β2 the follower
step of the wrong continuation.

Some of the wrong flow continuations of the running example are (2a), b, 2c (all having
an empty prefix) and one wrong inhibitor continuation of the running example is acb
(since a(b+ c) ∈ Lstep), where multisets are denoted as sums of singleton multisets.

As in the case of LPO-languages, we represent a wrong flow continuation by a pair of
multisets (l(V ′), l(S∪{z})), where (V ′,≺,�, l) is a prefix of an LSO in L representing
the prefix of the wrong flow continuation,S is a subset of direct successors of (V ′,≺,�
, l) and z is an additional labelled event, where S and z together represent the follower
step of the wrong flow continuation.

A wrong inhibitor continuation α1 . . . αn−1β1β2 we represent by a pair of multi-
sets (l(V ′ ∪ B1), l(B2)), where (V ′,≺,�, l) is a prefix of an LSO in L representing
α1 . . . αn−1, B1 is a subset of direct successors of this prefix representing β1 and B2 is
a subset of direct successors of this prefix representing β2.

To prohibit a wrong flow continuation, one needs to find a feasible place p such that
one of the following constraints is fulfilled:

– PT-net constraint: After occurrence of its prefix there are not as much tokens in p
as its follower step consumes.

– Inhibitor constraint: After occurrence of its prefix there are more tokens in p as
allowed by the inhibitor constraint of the additional event in the follower step. Note
that this constraint only can be fulfilled, if the label of the additional event does not
occur twice in the follower step.

To prohibit a wrong inhibitor continuationα1 . . . αn−1β1β2, one needs to find a feasible
place p such that the following inhibitor constraint is fulfilled: After occurrence of its
prefix there are more tokens in p as allowed by the inhibitor constraints of the events
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Fig. 27. Illustration of the wrong inhibitor continuation acb

in the follower step. Note that, since α1 . . . αn−1αn ∈ Lstep and β1 + β2 ≤ αn, after
occurrence of α1 . . . αn−1β1 there are always at least as many tokens in a place p as β2

consumes.
The PT-net constraint can be expressed as a linear inequality as in the case of

LPO-languages and PT-nets. In the following we show, that also the inhibitor constraints
of a wrong continuation can represented by a linear inequality.

If r is a transition region, T = {t1, . . . , tn} and l(z) = tk then pr satisfies the
inhibitor constraint for a wrong flow continuation if and only if

r0 +

n∑
i=1

l(V ′)(ti)(rn+i − ri)− r2n+k > 0.

This is the case if and only if d(wσ,tk) · r < 0 for d(wσ,tk) = (d0, . . . , d3n)
defined by:

dj =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 if j = 0,
l(V ′)(tj) if j ∈ {1, . . . , n},
−l(V ′)(tj−n) if n+ 1 ≤ j ≤ 2n,
1 if j = 2n+ k,
0 else

Similarly, if r is a transition region and T = {t1, . . . , tn} then pr satisfies the inhibitor
constraint for a wrong inhibitor continuation if and only if, for each k with tk ∈ β2,
d(wσ,tk) · r < 0 for d(wσ,tk) = (d0, . . . , d3n) defined as for wrong flow continuations.
For example, for the wrong inhibitor continuation acb we require −r0 + ((r1 − r4) +
2(r3 − r6)) + (r8) < 0 (remember t1 = a, t2 = b and t3 = c). This is the case if and
only if d(wσ,t) · r < 0 for

d(wσ,t) = (−1, 1, 0, 1,−1, 0,−1, 0, 1, 0).

The region
r = (0, 0, 0, 0, 0, 0, 1, 1, 0, 1)
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(corresponding to place p5 in Figure 22 after replacing useless inhibitor weights by∞)
is a solution which prohibits this wrong continuation.

If r is a token flow region and l(z) = t then pr satisfies the inhibitor constraint if and
only if

rlso +
∑
u	∈V ′

ru,in +
∑
v∈V ′

rv,out +
∑

v∈V ′, u	∈V ′
rv,u − rt > 0.

This is the case if and only if d(wσ,t) · r < 0 for d(wσ,t) = (di)i∈W×{in,out}∪E∪L∪T

defined by:

di =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−1 if i = lso,
−1 if i = (u, in) ∧ u 
∈ V ′,
−1 if i = (v, out) ∧ v ∈ V ′,
−1 if i = (v, u) ∧ v ∈ V ′ ∧ u 
∈ V ′,
1 if i = t,
0 else.

Similarly, if r is a token flow region then pr satisfies the inhibitor constraint if and only
if, for t ∈ β2, d(wσ,t) · r < 0 for d(wσ,t) = (di)i∈W×{in,out}∪E∪L∪T defined as
for wrong flow continuations. The token flow region shown in Figure 25 prohibits the
wrong continuation acb.

One possible strategy for computing a token flow regions prohibiting a wrong flow
continuation is:

– First try to find a solution using the PT-net constraint.
– If there is no solution using the PT-net constraint, then try to find a solution using

the inhibitor constraint.

In order to compute a token flow region prohibiting a wrong inhibitor continuation,
there is only to possibility to use the inhibitor constraint. For example, the wrong con-
tinuation acb cannot be prohibited by a place satisfying the PT-net constraint, since
a(b+ c) ∈ Lstep.

There are techniques for computing simple places, as for example:

– If the PT-net constraint is used, all inhibitor weights can be chosen as the value
∞. A target function can be used to minimize initial marking and weight on flow
arrows as in the case of LPO-languages.

– If the inhibitor constraint is used, through an appropriate target function the in-
hibitor weight associated to forbidden transitions can be chosen minimal (all other
inhibitor weights can be chosen as the value∞).

– The number of wrong inhibitor continuations α1 . . . αn−1β1β2 can be reduced by
considering only singleton multisets β1 and β2 (since bigger multisets always con-
tain such a singleton).

Infinite LSO-Languages. It is possible to extend the presented framework to infinite
LSO-languages along the same lines as in the case of LPO-languages. The idea is to
use LPO-terms extended by a term-based representation of ”not later than”-relations.
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To represent ”not later than”-relations between events we introduce a new composition
operator < for weak sequential composition. Synchronous composition between events
will be expressed by a new operator <>.

Since a term like (a; b) <> (c; d) cannot be interpreted in a meaningful way, we do
not apply <> to arbitrary terms, but only to single action names. On the other hand, <
can be applied to arbitrary terms: Writing α < β for terms α, β means that all events in
α are in ”not later than”-relation to all events in β.

We do not introduce an operator for the iteration of the operator < for the same
reason we do not consider iteration of the operator ‖: Such iteration operators allow to
specify runs with arbitrary large multisets of synchronous resp. independent transition
occurrences in the same state of the system (a state of the system can be identified with
each prefix of a specified run). Such a behavior cannot be produced through Petri net
models.

Let A be a finite set of LSOs. For A ∈ A we write A = (VA,≺A,�A, lA). We
denote by λ = (∅, ∅, ∅, ∅) the empty LSO. LSOs consisting only of one single event we
denote by the label of this event.

Definition 32 (LSO-term). The set of LSO-terms over a finite set of LSOsA is induc-
tively defined as follows:

– Each singleton LSO from A is a synchronous step.
– If s1 and s2 are synchronous steps, then s1 <> s2 is a synchronous step.
– The elements A ∈ A, all synchronous steps and λ are LSO-terms.
– Let α1 and α2 be LSO-terms. Then
• α1;α2 (sequential composition),
• α1 < α2 (weak sequential composition),
• α1 + α2 (union),
• (α1)

∗ (iteration),
• α1 ‖ α2 (parallel composition)

are LSO-terms.

In the following we consider the running example LSO-term c∗; (a < b). Figure 28
illustrates the LSO-language generated by this term.

We assign to an arbitrary LSO-term α a possibly infinite prefix and extension closed
LSO-language L(α). The language L(α) is defined as the prefix and extension closure
of an appropriate LSO-language K(α). In order to construct K(α), we define the weak
sequential composition of two LSOs A and B by

A < B = (VA ∪ VB, <A ∪ <B ∪(VA \Max(A)× VB) ∪ (VA × VB \Min(B)),

�A ∪ �B ∪(VA × VB), lA ∪ lB).

Sequential composition, parallel composition and iteration of LSOs is defined w.r.t. ≺
as for LPOs. We identify synchronous steps with LSOs as follows: If sA = (VA,≺A

,�A, lA) and sB = (VB,≺B,�B, lB) are synchronous steps then

sA <> sB = (VA ∪ VB , ∅,�A ∪ �B ∪(VA × VB) ∪ (VB × VA), lA ∪ lB).
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Fig. 28. Infinite LSO-language, represented by an LSO-term

Definition 33 (LSO-language of an LSO-term). We define inductively:

– K(λ) = {λ}, K(A) = {A} for A ∈ A and K(s) = s for synchronous steps s.
– Let α1 and α2 be LSO-terms. Then:
• K(α1 + α2) = K(α1) ∪K(α2),
• K(α1;α2) = {A1A2 | A1 ∈ K(α1), A2 ∈ K(α2)},
• K(α1 < α2) = {A1 < A2 | A1 ∈ K(α1), A2 ∈ K(α2)},
• K((α1)

∗) = {A1 . . . An | A1, . . . , An ∈ K(α1)} ∪ {λ},
• K(α1 ‖ α2) = {A1 ‖ A2 | A1 ∈ K(α1), A2 ∈ K(α2)}.

Some of the LSOs in K(c∗; (a < b)) are a < b, c; (a < b) and c2; (a < b).
Since the additional operations do not introduce side effects to iterations, K(α) can

be finitely represented by a representation set R(α) and an iteration set I(α) in an
analoguous way as in the case of LPO-terms:

Definition 34 (Representation/Iteration Set of LSO-terms). The representation set
R(α) and the iteration set I(α) of an LSO-term α are defined inductively as follows
(α1 and α2 are LSO-terms, S denotes the set of synchronous steps):

R(λ) = {λ} I(λ) = ∅
R(A) = {A} for A ∈ A I(A) = ∅ for A ∈ A
R(s) = {s} for s ∈ S I(s) = ∅ for s ∈ S
R(α1 + α2) = R(α1) ∪R(α2) I(α1 + α2) = I(α1) ∪ I(α2)
R(α1;α2) = {AB | A ∈ R(α1), B ∈ R(α2)} I(α1;α2) = I(α1) ∪ I(α2)
R(α1 < α2) = {A < B | A ∈ R(α1), B ∈ R(α2)} I(α1 < α2) = I(α1) ∪ I(α2)
R((α1)

∗) = R(α1) ∪ {λ} I((α1)
∗) = I(α1) ∪R(α1)

R(α1 ‖ α2) = {A ‖ B | A ∈ R(α1), B ∈ R(α2)} I(α1 ‖ α2) = I(α1) ∪ I(α2)

In the running example, R(c∗; (a < b)) = {a < b, c; (a < b)}) and I(c∗;
(a < b)) = {c}.
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Fig. 29. A non-feasible place

We start to characterize the set of feasible places of L(α) analoguously as for LPO-
terms by defining regions r of LSO-terms as regions w.r.t. the finite set R(α) satisfying
the additional property

Prod(lso, pr) :=
∑

t∈l(V )

l(V )(t)(W (t, pr)−W (pr, t)) ≥ 0.

for all LSOs lso = (V,≺,�, l) ∈ I(α). In the running example this means (W (c, pr)−
W (pr, c)) ≥ 0.

But the set of places corresponding to such regions still contains places which are
not feasible. For example, the place shown in Figure 29 is feasible w.r.t. R(c∗; (a < b)),
but prohibits c2; (a < b), because iterations of c add tokens to a place with an inhibitor
restriction w.r.t. a. The general situation is a place p with the following properties:

– There is an LSO lso ∈ I(α) with Prod(lso, p) > 0 (in the example lso = c).
– There is an event v of an LSO in (V,≺,�, l) ∈ R(α) such that:
• I(p, l(v)) <∞ (in the example I(p, a) <∞).
• The prefix of a sub-LSO isomorphic to lso is prefix of the prefix of a cut con-

taining v (the empty prefix in the example).

If these properties are satisfied, p is not feasible because the iteration of lso arbitrar-
ily increases the number of tokens in p such that in the end the occurrence of l(v) is
prohibited by I(p, l(v)) < ∞. Obviously, we can construct a feasible place from p by
changing I(p, l(v)) into the value ∞ in each such situation. If we do this for all such
places p, we get the set of all places which are feasible w.r.t. L(α). Some of these places
can be simplyfied by replacing useless inhibitor weights by the value∞ as in the finite
case, if the place is bounded and the inhibitor weight exceeds the place bound. Bounded
places p can be easily found, since they are characterized by Prod(lso, p) = 0 for all
LSOs lso ∈ I(α).
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Since the set of regions again can be defined as the set of solutions of a linear
homogenuous inequation system, it is possible to generate a basis representation.
Basis places which are not feasible can be turned into feasible places and simplified as
described above.

It is also possible to compute a finite separation representation using the following
definition of wrong continuations which combines ideas from wrong continuations of
LPO-terms and finite LSO-languages.

Definition 35 (Wrong Continuation of LSO-term). Let α be an LPO-term and let
σ = β1 . . . βn−1βn ∈ R(α)step and t ∈ T such that wσ,t = β1 . . . βn−1(βn + t) 
∈
K(α)step, where βn is allowed to be the empty step. Then wσ,t is called wrong flow
continuation of α. We call β1 . . . βn−1 the prefix and βn + t the follower step of the
wrong flow continuation.

A wrong inhibitor continuation of an LSO-term α is a sequence of transition steps
of the form wσ,β1,β2 = α1 . . . αn−1β1β2 
∈ R(α)step for β1 + β2 ≤ αn and σ =
α1 . . . αn−1αn ∈ R(α)step, where we call α1 . . . αn−1β1 the prefix and β2 the follower
step of the wrong inhibitor continuation.

In the example, some wrong flow continuations are (a + b)a, c(a + b)b, 2c and some
wrong inhibitor continuations are ba, cba. As for finite LSO-languages, wrong flow con-
tinuations can be forbidden using a PT-net constraint or an inhibitor constraint, wrong
inhibitor continuations can be only forbidden using an inhibitor constraint. If the PT-
net constraint is used, all inhibitor weights can be chosen to be∞ and for some iterated
LSOs lso we require Prod(lso, pr) = 0 as in the case of LPO-terms. If the inhibitor
constraint w.r.t. an event v is used, we also require Prod(lso, pr) = 0 for some iterated
LSOs lso, namely if the prefix of a sub-LSO isomorphic to lso is prefix of the prefix of
a cut containing an event with label l(v) (as argued above).

Each LPO-term is a special case of an LSO-term. This means, if the synthesis prob-
lem of LPO-term has no exact PT-net solution, then can try find an exact PTI-net so-
lution using the extended techniques from this paragraph. For example, consider the
LPO-term ((a; b∗) ‖ b∗) + c from the subsection on LPO-terms. As discribed, it is not
possible to prohibit wrong continuations of the form bnc by a PT-net place. As illus-
trated in Figure 30 it is possible to prohibit these wrong continuations by a PTI-net
place.

3.2 Non-transitive Causal Structures

It is possible to specify the set of runs of a Petri net by non-transitive causal structures
like labelled acyclic directed graphs (for PT-nets) or labelled acyclic rel-structures (for
PTI-nets). In the following we only consider labelled acyclic directed graphs in more
detail. All definitions and results can be extended and generalized to labelled acyclic
rel-structures along the same lines as before for LPOs and LSOs.

Acyclic directed graphs labelled by transition names can be used to represent the
direct causal dependencies between transition occurrences underlying processes. This
means, we require a token flow between transition occurrences along each specified
arrow.



Models from Scenarios 363

Fig. 30. The grey PTI-net place prohibits executions of the form bnc

Definition 36 (Labelled Acyclic Directed Graph). A labelled acyclic directed graph
(LDAG) over T is a 3-tuple (V,→, l), where (V,→) is an acyclic directed graph and
l : V → T is a labelling function on V .

As LPOs, we only consider LDAGs up to isomorphism.

Definition 37 (LDAG-run). An LDAG (V,→, l) is a LDAG-run of a PT-net N =
(P, T, F,W,m0) if there is a process K = (O, ρ), O = (B,E,G), of N such that
(V,→) = (E, {(e, f) | e• ∩ •f 
= ∅}) and l = ρ|E .

An LDAG-run ldag of N is said to be minimal, if there exists no other LDAG-run
ldag′ of N such that ldag is an extension of ldag′.

From the definition follows that extensions of LDAG-runs in general are no LDAG-runs
(see Figure 31).

The formal synthesis problem statement, which we consider here, is:

Given: A language L of LDAGs over a finite alphabet of transition names T .
Searched: A PT-net N with set of transitions T such that all LDAGs in L are LDAG-

runs of N and N has a minimal number of additional minimal LDAG-runs.

Fig. 31. For the PT-net without the grey place, ldag is an LDAG-run, but ldag+ is not an LDAG-
run. For the PT-net with the grey place, ldag+ is an LDAG-run, but ldag is not.
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On the one side, it is not clear how to define transition regions for LDAG-languages,
since direct causal dependencies can be expressed by the components of transition
regions.

On the other side, a token flow region contains components directly representing all
direct causal dependencies within a specified run. This means, we can define token flow
regions of LDAG-languages in an analoguous way as for LPO-languages. If between
two transition occurrences there is no arrow specified, then no token flow is possible
between these transition occurrences (compare ldag and the PT-net without the grey
place in Figure 31). If between two transition occurrences there is an arrow specified,
then always a token flow region with positive token flow along this edge can be found
(compare ldag+ and the PT-net with the grey place in Figure 31).

The basis representation of the set of token flow regions of an LDAG-language is
defined as for LPO-languages. By construction, the basis representation generates all
specified LDAG-runs.

In order to define a separating representation of an LDAG-language L, observe that
if an LDAG ldag is an LDAG-run of a PT-net, then its transitive closure ldag+ is an
LPO-run of the PT-net. This means conversely, if ldag+ is not an LPO-run, then ldag
is not an LDAG-run. Thus, each wrong continuation of L+ = {ldag+ | ldag ∈ L}
is also a wrong continuation of L. The computation of the separating representation is
analoguous as in the case of LPOs by representing wrong continuations on the level
of LDAGs. It remains to ensure that for each specified arrow there is a place such that
there is token flow along this arrow w.r.t. this place, if this is not yet the case. Such
places can be computed by token flow regions through requiring a positive token flow
on such an arrow edge through an appropriate homogenuous linear inequation. For
example, consider ldag+ from Figure 31: The white places of the shown PT-net sep-
arate all wrong continuations (2b), a, bb, b(2a), ba(2b), baa, babb, baba, while the grey
place ensures the direct causal dependency between the two occurrences of transition b
specified by the transitive edge in ldag+.

In order to define inifinite LDAG-languages, LDAG-terms can be defined analogu-
osly as LPO-terms. The only difference concerns the definition of sequential composi-
tion AB of LDAGs A = (VA,→A, lA) and B = (VB ,→B, lB) used for the generation
of the language of an LDAG-term. Since LDAGs represent only direct causal dependen-
cies between transition occurrences, the sequential composition only introduces such
direct causal dependencies between maximal events of the first and minimal events of
the second LDAG:

AB = (VA ∪ VB, <A ∪ <B ∪(Max(A) ×Min(B), lA ∪ lB).

3.3 Restricted Net Classes

In this subsection we discuss the synthesis of nets from several restricted net classes.
In principle, each restriction which can be encoded as a finite set of linear inequations
over the components of regions can be integrated into the defintion of regions. This
way, regions can represent places of restricted net classes. In the following paragraphs
we briefly suggest several such restrictions.
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Some of the restrictions leed to non-homogenuous linear inequations of the form
B · x ≤ b with b 
= 0. In these cases, the set of solutions has no basis representation,
i.e. the separation representation must be computed.

Bounds for Place Markings. For finite languages, each prefix of a specified causal
structure represents a reachable marking. The number of tokens in a place reached after
occurrence of such a prefix can be expressed as a linear sum of components of transition
regions and token flow regions. Thus a bound restricting the number of tokens in all
places can be introduced by a set of non-homogenuous linear inequations (for each
prefix a linear inequation must be added).

For infinite languages, all prefixes of the finite representation set need to be consid-
ered. Additionally, iterated parts may not increase the number of tokens in a place.

Using these ideas, places of bounded PT-nets and bounded PTI-nets can be
computed.

Bounds for Flow Weights. Also flow weigths can be can be expressed as a linear sum
of components of transition regions and token flow regions:

– Transition regions have components directly representing flow weights.
– For token flow regions, the intoken flows and outtoken flows represent flow weights.

This means, a bound restricting all flow weights can be introduced by a set of non-
homogenuous linear inequations.

Using the bound 1 for markings and flow weights, it is possible to compute places of
elementary nets.

Bounds for Inhibitor Weights. Analoguously to flow weights, inhibitor weights can
be bounded, because they are directly represented by components of transition regions
and token flow regions.

Using the bound 0 for inhibitor weights, it is possible to compute places of simple
inhibitor nets.

Final Markings. A final marking is a marking reached after occurrence of a complete
specified causal structure. It is possible to introduce combinations of the following use-
ful restrictions for final markings by sets of linear inequations:

– All final markings of some subset of specified causal structures are equal
(homogenuous linear inequations).

– The final marking of some causal structure is bounded (non-homogenuous linear
inequations).

– The final marking of some causal structure equals a fixed number.

For infinite languages, in the second and third case, all final markigs of the finite rep-
resentation set need to be considered. Additionally, iterated parts may not increase the
number of tokens in a place.
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Initial Markings. It is possible to introduce combinations of the following useful re-
strictions for initial markings by sets of linear inequations:

– The initial marking of all places is bounded (non-homogenuous linear inequations).
– The initial marking of all places is a fixed number.

It is possible to compute intermediate places of sound workflow nets by requiring that
all initial and final markings equal the number 0.

3.4 More on Infinite Languages

LPO-terms (and LSO-terms) only represent a small class of LPO-languages. In the
following we show several examples of languages which cannot be represented by LPO-
terms and discuss possibilities to generalize LPO-terms in order to cover some of these
examples.

Figure 33 shows a simple example of a PT-net-language which cannot be represented
by an LPO-term. The reason for this is that by the iteration operator it is not possible to
append LPOs to a part of a previous LPO, but only to the whole LPO.

Therefore generalized LPO-terms, allowing to iteratively append LPOs only to parts
of previous LPOs, are introduced in [7]. These parts, which we call interfaces, are given
by prefixes containing maximal events of the LPO. In the example, the LPO a; (b ‖ c)
is iterated only w.r.t. its prefix a; b. This can be expressed by operators ;X and ∗X for
sequential composition and iteration w.r.t. an interface X .

Figure 33 shows a simple safe Petri net, whose LPO-language even cannot be rep-
resented by such generalized LPO-terms. This is because for no choice of an iterated
part there is a prefix of the iterated part, such that all subsequent events causally depend
on all events from this prefix. Instead, different subsequent events depend on different
prefixes.

One possibility to further generalize interfaces is to specify direct causal dependen-
cies between events of the previous LPO and events of the subsequent LPO by pairs of
multisets of action names.

The PT-net-language in the last example then can be represented by the term ((a ‖
c);X (d ‖ b))∗Y with

Fig. 32. A PT-net whose set of LPO-runs cannot be represented by an LPO-term
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Fig. 33. A PT-net whose set of runs cannot be represented by a generalized LPO-term.

– an interface set X = {(a, b + d), (a + c, b)} defining which events of the second
LPO are directly causally dependent on which events of the previous LPO.

– and an interface set Y = {(d + b, a), (b, a + c)} defining which events of the
subsequent occurrence of the iterated LPO are directly causally dependent on which
events of the previous occurrence of the iterated LPO.

In general an interface X = {(A1, B1), . . . , (Ak, Bk)} is interpreted as follows: If an
LPO (V,<, l) = lpo1;X lpo2 is constructed from a sequential composition of two LPOs
lpo1 and lpo2 w.r.t. this interface, then it satisfies the following properties:

– If v is a maximal event of lpo1 with l(v) ∈
⋃

iAi and W ′ is the set of its direct
successor events in lpo2, then l(W ′) ≤ Bi for some Bi with l(v) ∈ Ai.

– If w is a minimal event of lpo2 with l(w) ∈
⋃

iBi and V ′ is the set of its direct
predecessor events in lpo1, then l(V ′) = Ai for some maximal multiset Ai among
A1, . . . , An with l(w) ∈ Bi.

Consider the interface X in the previous example:

– An occurrence of a can be directly followed by at most one occurrence of b and
one occurrence of d, since (a, b+ d) ∈ X and b < b+ d.

– An occurrence of b exactly directly causally depends on one occurrence of a and
one occurrence of c, since (a+ c, b) ∈ X and a < a+ c.

Analoguous properties must hold for iterations w.r.t. interfaces.
Figure 34 shows that in presence of several equally labelled events there are several

possibilities to sequentially compose LPOs w.r.t. to a given interface.
Note that the interfaces X = {(a, b+ d), (a+ c, b)} and X ′ = {(a, b), (a, d), (c, b)}

have a different interpretation. According to X ′, an occurrence of a is not allowed to
have two direct successors. Instead, alternatively action b or action d can occur directly
after a. Moreover, an occurrence of b directly causally depends on an occurrence of a
or an occurrence of c, but not on both occurrences.

This approach is very flexible and intuitive, since only direct causal dependencies
between actions need to be specified and also multiple direct causal dependencies can
be considered (for example, the interface {(2b, a)} specufies that a directly causally
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Fig. 34. Two instantiations of an interface

depends on two occurrences of b). It allows to construct arbitrary LPOs from single
action names.

Moreover, it can also be applied to LSOs, as illustrated by Figure 35.
On the other side, as Figure 34 illustrates, the set of possible instantiations of an

interface may be complex and difficult to predict from the syntax. Another formulation,
which is more clear and restrictive, is to specify interfaces directly through LPOs.

For all mentioned generilizations through interfaces, the notions of transition region
and token flow region can be adapted in such a way that they are characterized as so-
lutions of an appropriate homogenuous linear inequations system and such that it is
possible to compute a basis representation and a separation representation.

As for LPO-terms and LSO-terms, a finite representation set and a finite iteration set
represent the language generated by term with interfaces.

The representation set is defined as for LPO-terms and LSO-terms, where sequential
composition is defined w.r.t. a given interface. We define

R(α1;X α2) = {A;xB | A ∈ R(α1), B ∈ R(α2), x ∈ R(A,B,X)},

where R(A,B,X) is the set of instantiations of X w.r.t. A and B (as described above
and illustrated in Figure 34 - we omit a formal definition here) and

A;x B = (VA ∪ VB, <A ∪ <B ∪x, lA ∪ lB)

in the case LPO-terms with interfaces (this definition can be extended to LSO-terms
with interfaces in a straightforward way).

Fig. 35. Some LSOs which cannot be constructed from sinlge action names by LSO-terms
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Fig. 36. A double iteration with some co-sets of events, which are considered for the definition of
regions

In order to reflect interface connections, the iteration set is not defined from single
iterations, but double iterations:

I(α∗X) = {A;xB | A,B ∈ R(α), x ∈ R(A,B,X)} ∪ I(α).

For each double iteration A;x B we require that B can occur solely consuming tokens
produced by A. This means that each co-set of A;x B containing events from B can oc-
cur after the occurrence of its prefix in A;x B. This can be encoded by linear inequations
in the usual way, where ”initial markings” of double iterations are chosen consistent
with markings reached after prefixes of corresponding iterated parts in R(α). Figure 36
illustrates some of the considered co-sets for the example shown in Figure 32.

4 Conclusion

In this paper we gave a survey on region based synthesis of Petri nets from languages.
We considered place/transition nets (PT-nets), inhibitor nets (PTI-nets) and several re-
strictions of these net classes on the one side, and languages of labelled partial orders,
labelled stratified orders, labelled acyclic graphs and labelled relational structures on
the other side. The presented framework includes synthesis from finite languages and
several classes of infinite languages finitely represented in term based notations and
integrates all classical results on sequential languages.

Most of the results are combinations and reformulations of results from [27], [26]
and [7]. There are some easy new adaptions of techniques for token flow regions to
transition regions as the synthesis of PT-nets from transition regions of LPO-terms.
New developments, which are not yet published, are:

– Computation of the separation representation of regions of LPO-terms.
– Computation of the separation representation of regions of finite LSO-languages.
– Definition of LSO-terms and synthesis from LSO-terms.
– Synthesis from non-transitive causal structures.
– Synthesis of nets from terms with general interfaces.

There is tool support for several of the presented techniques:
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– The graphical Petri net editor VIPtool [13] supports business process modelling
and synthesis and has also verification and simulation capabilities.

– The command line tool Synops [24] supports the term-based construction of partial
languages and the synthesis of Petri nets from partial languages.
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