
Pure Prolog Execution in 21 Rules

M. Kulaš

FernUniversität Hagen, FB Informatik, D-58084 Hagen, Germany
marija.kulas@fernuni-hagen.de

Abstract. A simple mathematical definition of the 4-port model for pure
Prolog is given. The model combines the intuition of ports with a compact
representation of execution state. Forward and backward derivation steps
are possible. The model satisfies a modularity claim, making it suitable for
formal reasoning.

1 Introduction

In order to formally handle (specify and prove) some properties of Prolog execu-
tion, we needed above all a definition of a port. A port is perhaps the single most
popular notion in Prolog debugging, but theoretically it appears still rather elusive.
The notion stems from the seminal article of L.Byrd [Byr80] which identifies four
different types of control flow in a Prolog execution, as movements in and out of
procedure boxes via the four ports of these boxes:

– call, entering the procedure in order to solve a goal,
– exit, leaving the procedure after a success, i. e. a solution for the goal is found,
– fail, leaving the procedure after the failure, i. e. there are no (more) solutions,
– redo, re-entering the procedure, i. e. another solution is sought for.

In this work, we present a formal definition of ports, which is a calculus of execution
states, and hence provide a formal model of pure Prolog execution, S:PP. Our
approach is to define ports by virtue of their effect, as port transitions. A port
transition relates two events. An event is a state in the execution of a given query
Q with respect to a given Prolog program Π . There are two restrictions we make:

1. the program Π has to be pure
2. the program Π shall first be transformed into a canonical form.

The first restriction concerns only the presentation in this paper, since our model
has been prototypically extended to cover the control flow of full Standard Prolog,
as given in [DEDC96]. The canonical form we use is the common single-clause rep-
resentation. This representation is arguably ‘near enough’ to the original program,
the only differences concern the head-unification (which is now delegated to the
body) and the choices (which are now uniformly expressed as disjunction).

2 Preliminaries and the main idea

First we define the canonical form, into which the original program has to be trans-
formed. Such a syntactic form appears as an intermediate stage in defining the
Clark’s completion of a logic program, and is used in logic program analysis. How-
ever, we are not aware of any consensus upon the name for this form. Some of the
names in the literature are single-clausal form [Lin95] and normalisation of a logic
program [KL02]. Here we use the name canonical form, partly on the grounds of
our imposing a transformation on if-then as well (this additional transformation is
of no interest in the present paper, which has to do only with pure Prolog, but we
state it for completeness).

Definition 1 (canonical form of a predicate) We say that a predicate P/n is
in the canonical form, if its definition consists of a single clause P (X1, ..., Xn) :−
B; Bs. Here B is a ”canonical body”, of the form X1=T1, . . . , Xn=Tn, G, Gs, and
P (X1, ..., Xn) is a ”canonical head”, i. e. X1, ..., Xn are distinct variables not appear-
ing in G,Gs ,T1 , ...,Tn . Further, Bs is a disjunction of canonical bodies (possibly
empty), Gs is a conjunction of goals (possibly empty), and G is a goal (for facts:
true). Additionally, each if-then goal A → B must be part of an if-then-else (like
A → B ; fail). �

Example 1 (canonical form) For the following program

q(a,b).
q(Z,c) :− r(Z).
r(c).

we obtain as canonical form

q(X,Y) :− X=a, Y=b, true; X=Z, Y=c, r(Z).
r(X) :− X=c, true. ❏

Having each predicate represented as one clause, and bearing in mind the box
metaphor above, we identified some elementary execution steps. For simplicity we
first disregard variables.

The following table should give some intuition about the idea. The symbols α,
β in this table serve to identify the appropriate redo-transition, depending on the
exit-transition. Transitions are deterministic, since the rules do not overlap.

Term Port transitions in the context of Term
H :−B call H _ call B exit B _ exit H fail B _ fail H redo H _ redo B
A,B call A,B _ call A exit A _ call B fail A _ fail A,B redo A,B _ redo B

exit B _ exit A,B fail B _ redo A
A;B call A;B _ call A exit A _ αexit A;B fail A _ call B αredo A;B _ redo A

exit B _ βexit A;B fail B _ fail A;B βredo A;B _ redo B
true call true _ exit true redo true _ fail true

fail call fail _ fail fail

Table 1. The idea of port transitions

Remark 1 (general goals) Observe that we extend the notion of a port, ini-
tially conceived for predicates, to general goals. The shifting of attention from pred-
icates to goals is the key idea of this approach. �

Notation 1 (distinguishing meta-level from object-level) In the follow-
ing we show object-level terms (i. e. actual Prolog terms) in sans serif, like true.
Meta-level terms (i. e. anything else in the calculus) will be shown in italics, like
call ,Σ, or in blackboard font, like U,�. �

Each transition pertains to a certain context, as indicated in Table 1. In the next
step towards the new definition of ports we shall make this dependency explicit, by
adding a parameter to each event.

Example 2 (good, bad and main) Relative to the program

2

main :− good, bad.
good.

there are the following execution steps for main:

call main _
call (good, bad) _

call good _
call true _
exit true _

exit good_
call bad _
fail bad _
redo good _

redo true _
fail true _

fail good _
fail (good, bad) _

fail main

The indentations should suggest the context of the transitions, which is not very
satisfying, since we want our representation to be entirely symbolic, and therefore
visual aspects may not be part of the definition. So we provide the context infor-
mation within the calculus, by means of a stack of ancestors, or A-stack. Hereby
we define the immediate ancestor (the parent) of a goal to be the context of the
transition. On some reflection, this is not enough. In case of a redo of an atomary
goal, like redo true above, we need to know how the goal was resolved, in order to
see the remaining alternatives. Since it is possible, in full Prolog, that a predicate
definition changes between an exit and a redo, simply accessing the program would
not guarantee the retrieval of the definition effective at the time of call. For this
reason we memorize, at an exit of an atomary goal, the effectively used definition
(more about this on page 6). Also, on exit from a disjunction, some kind of mem-
oing of the used disjunct is necessary. So we tried combining the memoing (both
kinds of memos: used definitions and used disjuncts) with the administration of
variable bindings, into one stack of bets, or B-stack. One claim of this paper is that
an A-stack and a B-stack are sufficient to represent the execution of pure Prolog. As
an illustration of the two-stack idea, let us show the above derivation in complete
detail. In Appendix B an example with variables is given. Each stack is enclosed in
parentheses, • separates the elements, and nil marks the bottom of a stack.

call main , {nil}, {nil}
_ call (good, bad) , {main •nil}, {nil}
_ call good , {1/good, bad •main •nil}, {nil}
_ call true , {good •1/good, bad •main •nil}, {nil}
_ exit true , {good •1/good, bad •main •nil}, {nil}
_ exit good , {1/good, bad •main •nil}, {BY (true, good) • nil}
_ call bad , {2/good, bad •main •nil}, {BY (true, good) •nil}
_ fail bad , {2/good, bad •main •nil}, {BY (true, good) •nil}
_ redo good , {1/good, bad •main •nil}, {BY (true, good) •nil}
_ redo true , {good •1/good, bad •main •nil}, {nil}
_ fail true , {good •1/good, bad •main •nil}, {nil}
_ fail good , {1/good, bad •main •nil}, {nil}
_ fail (good, bad) , {main •nil}, {nil}
_ fail main , {nil}, {nil}

❏

3

3 The calculus S:PP

We consider pure Prolog programs as given in Fig. 1, syntax domain ”program”,
under restriction that every ”definition” has to be in the canonical form.

Definition 2 (event) An event is a quadruple (Port ,Goal ,A-stack ,B -stack), as
given by the grammar in Fig. 1, syntax domain ”event”. �

Intuitively, an event is a state of Prolog execution, determined by four parameters:

– port
– current goal
– history of current goal (stack of generalized ancestors, for short: A-stack)
– current environment (stack of generalized bindings, bets, for short: B-stack)

Definition 3 (transition rule) Let Π be a program. Port transition rules wrt Π
are listed in Fig. 2. �

event ::= port goal 〈 stack of bets
stack of ancestors

〉
event ::= port goal , {stack of ancestors}, {stack of bets} % inline

definition ::= atom :− goal
program ::= {definition.}+

port ::= call | exit | fail | redo
goal ::= true | fail | atom | term=term | goal;goal | goal,goal
ancestor ::= true | fail | atom | term=term | tag/goal;goal | tag/goal,goal
tag ::= 1 | 2
memo ::= BY (goal, atom) | OR(goal, (tag/goal;goal))
bet ::= mgu | memo
stack of Xs ::= nil | X • stack of Xs

Variables
U, V : stack of ancestors, U : ancestor
�, � : stack of bets, Σ : bet
σ : substitution
A, B , C , G, H : goal
GA : atom
T : term

Semantic functions
T1 = T2 := T1 and T2 are identical
σ(T) = application of σ upon T
mgu(T1 ,T2) = mgu of T1 and T2

substOf(�) = current substitution = composition of all mgus from �

substOf(nil)(T) := T

substOf(Σ •�)(T) :=
{

Σ(substOf(�)(T)), if Σ is an mgu
substOf(�)(T), if Σ is a memo

Syntactic domains that we do not redefine, but take in their usual sense:
term (taken in the Prolog sense, as a superset of goal);
atom (atomary goal in logic programming);
substitution, mgu.

Fig. 1. Language of events

4

Conjunction

call A,B 〈�
U
〉 _ call A 〈 �

1/A,B •U 〉 (S:conj:1)

exit A′ 〈 �

1/A,B •U 〉 _ call B ′′ 〈 �

2/A,B •U 〉, with B ′′ := substOf(�)(B) (S:conj:2)

fail A′ 〈 �

1/A,B •U 〉 _ fail A,B 〈�
U
〉 (S:conj:3)

exit B ′ 〈 �

2/A,B •U 〉 _ exit A,B 〈�
U
〉 (S:conj:4)

fail B ′ 〈 �

2/A,B •U 〉 _ redo A 〈 �

1/A,B •U 〉 (S:conj:5)

redo A,B 〈�
U
〉 _ redo B 〈 �

2/A,B •U 〉 (S:conj:6)

Disjunction

call A;B 〈�
U
〉 _ call A 〈 �

1/A;B •U 〉 (S:disj:1)

fail A 〈 �

1/A;B •U 〉 _ call B 〈 �

2/A;B •U 〉 (S:disj:2)

fail B 〈 �

2/A;B •U 〉 _ fail A;B 〈�
U
〉 (S:disj:3)

exit A 〈 �

1/A;B •U 〉 _ exit A;B 〈OR(A,(1/A;B)) •�
U

〉 (S:disj:4)

exit B 〈 �

2/A;B •U 〉 _ exit A;B 〈OR(B ,(2/A;B)) •�
U

〉 (S:disj:5)

redo A;B 〈OR(C ,(N/A;B)) •�
U

〉 _ redo C 〈 �

N/A;B •U 〉 (S:disj:6)

True

call true 〈�
U
〉 _ exit true 〈�

U
〉 (S:true:1)

redo true 〈�
U
〉 _ fail true 〈�

U
〉 (S:true:2)

Fail

call fail 〈�
U
〉 _ fail fail 〈�

U
〉 (S:fail)

Explicit unification

call T1=T2 〈�U 〉 _
{

exit T1=T2 〈σ •�
U

〉, if mgu(T1 ,T2) = σ

fail T1=T2 〈�U 〉, otherwise
(S:unif:1)

redo T1=T2 〈σ •�
U

〉 _ fail T1=T2 〈�U 〉 (S:unif:2)

User-defined atomary goal GA

call GA 〈�
U
〉 _

call σ(B) 〈 �

GA •U 〉, if H :− B is a fresh renaming of a
clause in Π , and mgu(GA,H) = σ, and σ(GA) = GA

fail GA 〈�
U
〉, otherwise

(S:atom:1)

exit B 〈 �

GA •U 〉 _ exit GA 〈BY (B ,GA) •�
U

〉 (S:atom:2)

fail B 〈 �

GA •U 〉 _ fail GA 〈�
U
〉 (S:atom:3)

redo GA 〈BY (B ,G′
A) •�

U
〉 _ redo B 〈 �

G′
A •U 〉 (S:atom:4)

Fig. 2. Operational semantics S:PP of pure Prolog

3.1 Remarks on the calculus

About event:

– Current goal is a generalization of selected literal : rather than focusing upon
single literals, we focus upon goals.

– Ancestor of a goal is defined in a disambiguating manner, via tags.
– The notion of environment is generalized, to contain following bets :

1. variable bindings,
2. choices taken (OR-branches),
3. used predicate definitions.

Environment is represented by one stack, storing each bet as soon as it is com-
puted. For an event to represent the state of pure Prolog execution, suffices here
one environment and one ancestor stack.

About transitions:

– Port transition relation is functional. The same holds for its converse, if re-
stricted on legal events, i. e. events that can be reached from an initial event of
the form call G 〈nil

nil 〉.
– This uniqueness of legal derivations enables forward and backward derivation

steps, in the spirit of the Byrd’s article.
– Modularity of derivation: The execution of a goal can be abstracted like for

example call G 〈�
U
〉 ∗
_ exit G 〈� +�

U
〉. Notice the same A-stack.

Remark 2 (atomary goal) By atom or atomary goal we denote only user-defined
predications. So true, fail or T1=T2 shall not be considered atoms. �

Remark 3 (mgu) The most general unifiers σ shall be chosen to be idempotent,
i. e. σ(σ(T)) = σ(T). �

Remark 4 (tags) The names A′ or B ′ of (S:conj:2)–(S:conj:5) should only suggest
that the argument is related to A or B , but the actual retrieval is determined by the
tags 1 and 2, saying that respectively the first or the second conjunct are currently
being tried. For example, the rule (S:conj:1) states that the call of A,B leads to
the call of A with immediate ancestor 1/A,B . This kind of add-on mechanism
is necessary to be able to correctly handle a query like A,A where retrieval by
unification would get stuck on the first conjunct. �

Remark 5 (canonical form) Note the requirement σ(GA) = GA in (S:atom:1).
Since the clauses are in canonical form, unifying the head of a clause with a goal
could do no more than rename the goal. Since we do not need a renaming of the
goal, we may fix the mgu to just operate on the clause. �

Remark 6 (logical update view) Observe how (S:atom:2) and (S:atom:4) serve
to implement the logical update view of Lindholm and O’Keefe [LO87], saying that
the definition of a predicate shall be fixed at the time of its call. This is further
explained in the following remark. �

Remark 7 (”lazy” binding) Although we memorize the used predicate defini-
tion on exit, the definition will be unaffected by exit bindings, because bindings
are applied lazily: Instead of ”eagerly” applying any bindings as they occur (e. g. in
T1=T2 , in resolution or in read), we chose to do this only in conjunction (in rule

6

(S:conj:2)) and nowhere else. Due to the rules (S:conj:1) and (S:conj:4), the exit
bindings shall not affect the predicate definition like e. g. p(X) :− q(X), r(X).

Also, lazy bindings enable less ‘jumpy’ trace. A jumpy trace can be illustrated
by the following exit event (assuming we applied bindings eagerly):

exit append([O], B, [O|B]) , {2/([I|B] = [I|B]), append([], B, B) •U}, �

The problem consists in exiting the goal append([], B, B) via append([O], B, [O|B]),
the latter of course being no instance of the former. By means of lazy binding,
we avoid the jumpiness, and at the same time make memoing definitions on exit
possible. To ensure that the trace of a query execution shows the correct bindings,
an event shall be printed only after the current substitution has been applied to it.

A perhaps more important collateral advantage of lazy binding is that a suc-
cessful derivation (see Definition 11) can always be abstracted as follows:

call Goal
∗
_ exit Goal

even if Goal happened to get further instantiated in the course of this derivation.
The instantiation will be reflected in the B-stack but not in the goal itself. �

4 Modelling Prolog execution

Definition 4 (port transition relation, converse) Let Π be a program. Port
transition relation _ wrt Π is defined in Fig. 2. The converse relation shall be
denoted by ^ . If E1 _ E, we say that E1 leads to E. An event E can be entered,
if some event leads to it. An event E can be left, if it leads to some event. �

Lemma 1 The relation _ is functional, i. e. for each event E there can be at most
one event E1 such that E _ E1. �

Proof: The premisses of the transition rules are mutually disjunct, i. e. there are
no critical pairs. �

Example 3 (converse relation) The converse of the port transition relation is
not functional, since there may be more than one event leading to the same event:

call T1=T2 〈nil
nil 〉 _ fail T1=T2 〈nil

nil 〉
redo T1=T2 〈σ •nil

nil 〉 _ fail T1=T2 〈nil
nil 〉

We could have prevented the ambiguous situation above and made converse relation
functional as well, by giving natural conditions on redo-transitions for atomary goal
and unification. However, further down it will be shown that, for events that are
legal, the converse relation is functional anyway. ❏

Definition 5 (derivation) Let Π be a program. Let E0, E be events. A Π-
derivation of E from E0, written as E0

∗
_ E, is a path from E0 to E in the

port transition relation wrt Π . We say that E can be reached from E0. �

Definition 6 (initial event, top-level goal) An initial event is any event of the
form call Q 〈nil

nil 〉, where Q is a goal. The goal Q of an initial event is called a
top-level goal, or a query. �

7

Definition 7 (legal derivation, legal event, execution) Let Π be a program.
If there is a goal Q such that

call Q 〈nil
nil 〉

∗
_ E0

∗
_ E

is a Π-derivation, then we say that E0
∗
_ E is a legal Π-derivation, E is a legal

Π-event, and call Q 〈nil
nil 〉

∗
_ E0 is a Π-execution of the query Q . �

Definition 8 (final event) A legal event E is a final event wrt program Π , if
there is no transition E _ E1 wrt Π . �

Definition 9 (parent of goal) If E = Port G 〈�
U
〉 is an event, and U = P •V,

then we say that P is the parent of G. �

Notation 2 (selector tags) Function Sel(U) is defined as follows:

Sel((1/A,B)) := A, Sel((2/A,B)) := B

and analogously for disjunction. �

Definition 10 (push/pop event) Let E be an event with the port Port. If Port
is one of call , redo, then E is a push event. If Port is one of exit , fail , then E is a
pop event. �

Lemma 2 (final event) If E is a legal pop event, and its A-stack is not empty,
then ∃E1 : E _ E1 �

Proof (sketch): According to the rules (see also Appendix A), the possibilities
to leave an exit event are:

exit A′ 〈 �

1/A,B •U 〉 _ call B ′′ 〈 �

2/A,B •U 〉, with B ′′ := substOf(�)(B)

exit B ′ 〈 �

2/A,B •U 〉 _ exit A,B 〈�
U
〉

exit A 〈 �

1/A;B •U 〉 _ exit A;B 〈OR(A,(1/A;B)) •�
U

〉
exit B 〈 �

2/A;B •U 〉 _ exit A;B 〈OR(B ,(2/A;B)) •�
U

〉
exit B 〈 �

GA •U 〉 _ exit GA 〈BY (B ,GA) •�
U

〉

These rules state that it is always possible to leave an exit event exit G 〈�
U
〉, save for

the following two restrictions: The parent goal may not be true, fail or a unification;
and if the parent goal P is a disjunction, then there has to hold

G = Sel(P) (1)

i. e. it is not possible to leave an event exit A′ 〈 �

1/A;B •U 〉 if A′ 6= A (and similarly
for the second disjunct). The first restriction is void, since a parent cannot be true,
fail or a unification anyway, according to the rules. It remains to show that the
second restriction is also void, i. e. a legal exit event has necessarily the property
(1). Looking at the rules for entering an exit event, we note that the goal part of
an exit event either comes from the A-stack, or is true or T1=T2 . The latter two
possibilities we may exclude, because exit true 〈 �

1/A;B •U 〉 can only be derived from
call true 〈 �

1/A;B •U 〉, which cannot be reached if true 6= A. Similarly for unification.

8

So the goal part of a legal exit event must come from the A-stack. The elements
of the A-stack originate from call/redo events, and they have the property (1).
In conclusion, we can always leave a legal exit event with a nonempty A-stack.
Similarly for a fail event. �

Proposition 1 (uniqueness) If E is a legal event, then E can have only one legal
predecessor, and only one successor. In case E is non-initial, there is exactly one
legal predecessor. In case E is non-final, there is exactly one successor. �

Proof: The successor part follows from the functionality of _ . Looking at the
rules, we note that only two kinds of events may have more than one predecessor:
fail GA 〈�

U
〉 and fail T1=T2 〈�U 〉. Let fail T1=T2 〈�U 〉 be a legal event. Its predecessor

may have been call T1=T2 〈�U 〉, on the condition that T1 and T2 have no mgu (rule
(S:unif:1)), or it could have been redo T1=T2 〈σ •�

U
〉 (rule (S:unif:2)). In the latter

case, redo T1=T2 〈σ •�
U

〉 must be a legal event, so the B-stack σ •� had to be
derived. The only rule able to derive such a B-stack is (S:unif:1), on the condition
that the previous event was call T1=T2 〈�U 〉 and mgu(T1 ,T2) = σ. Hence, there
can be only one legal predecessor of fail T1=T2 〈�U 〉, depending solely on T1 and
T2 . By a similar argument we can prove that fail GA 〈�

U
〉 can have only one legal

predecessor. This concludes the proof of functionality of the converse relation, if
restricted to the set of legal events. �

Notation 3 (impossible event) As a notational convenience, all the events which
are not final and do not lead to any further events by means of transitions with
respect to the given program, are said to lead to the impossible event, written as
⊥. Analogously for events that are not initial events and cannot be entered. In
particular, redo fail _ ⊥ and exit fail ^ ⊥ with respect to any program. Some
impossible events are: call G 〈σ •nil

nil 〉, redo G 〈 �

nil 〉 (cannot be entered, non-initial),
and redo p 〈nil

U
〉 (cannot be left, non-final). �

Lemma 3 (non-legal event) If E
∗
_ ⊥, then E is not legal. If E

∗
^ ⊥, then E

is not legal. �

Proof: Let E ^ E1. If E is legal, then, because of the uniqueness of the transition,
E1 has to be legal as well. �

Lemma 4 (call is up-to-date) For a legal call event call G 〈�
U
〉 holds that G =

substOf(�)(G), meaning that the substitutions from the B-stack are already applied
upon the goal to be called. In other words, the goal of any legal call event is up-to-
date relative to the current substitution. �

Notice that this property holds only for call events.

Notation 4 (stack concatenation) Concatenation of stacks we denote by +.
Concatenating to both stacks of an event we denote by ‡: If E = Port G 〈�

U
〉, then

E ‡ 〈�
V
〉 := Port G 〈�+�

U+V
〉. �

Proposition 2 (modularity of derivation) Let Π be a program. Let Pop be
one of exit , fail . If

call G 〈nil
nil 〉 _ E1 _ ... _ En _ Pop G 〈 �

nil 〉

9

is a legal Π-derivation, then for every A-stack U and for every B-stack � such that
call G 〈�

U
〉 is a legal event, holds:

call G 〈�
U
〉 _ E1 ‡ 〈�U 〉 _ ... _ En ‡ 〈�U 〉 _ Pop G 〈� +�

U
〉

is also a legal Π-derivation. �

Proof: Observe that our rules (with the exception of (S:conj:2)) refer only to the
existence of the top element of some stack, never to the emptiness of a stack. Since
the top element of a stack S cannot change after appending another stack to S, it
is possible to emulate each of the original derivation steps using the ‘new’ stacks.

It remains to consider the rule (S:conj:2), which applies the whole current substi-
tution upon the second conjunct. First note that any variables in a legal derivation
stem either from the top-level goal or are fresh. According to the Lemma 4, a call
event is always up-to-date, i. e. the current substitution has already been applied to
the goal. The most general unifiers may be chosen to be idempotent, so a multiple
application of a substitution amounts to a single application. Hence, if call G 〈�

U
〉

is a legal event, the substitution of � cannot affect any variables of the original
derivation. �

5 Applications

5.1 Specifying program properties

Uniqueness and modularity of legal port derivations allow us to succinctly define
some traditional notions.

Definition 11 (termination, success, failure) A goal G is said to terminate
wrt program Π , if there is a Π-derivation

call G 〈nil
nil 〉

∗
_ Pop G 〈 �

nil 〉
where Pop is one of exit , fail . In case of exit , the derivation is successful, otherwise
it is failed. �

In a failed derivation, � = nil .

Definition 12 (computed answer) In a successful derivation

call G 〈nil
nil 〉

∗
_ exit G 〈 �

nil 〉
is substOf(�), restricted upon the variables of G, called the computed answer sub-
stitution for G. �

5.2 Proving program properties

Uniqueness of legal derivation steps enables forward and backward derivation steps,
in the spirit of the Byrd’s article. Push events (call, redo) are more amenable to
forward steps, and pop events (exit, fail) are more amenable to backward steps. We
illustrate this by a small example.

Lemma 5 If the events on the left-hand sides are legal, the following are legal
derivations (for appropriate �0, �1):

exit A;B , fail 〈�
U
〉 ^ exit A 〈 �0

1/A;B ,fail •U 〉 (2)

redo A;B , fail 〈�
U
〉 _ redo A 〈 �1

1/A;B ,fail•U 〉 (3)
�

10

Proof: The first statement claims: If exit A;B , fail 〈�
U
〉 is legal, then it was reached

via exit A. Without inspecting �, in general it is not known whether a disjunc-
tion succeeded via its first, or via its second member. But in this particular dis-
junction, the second member cannot succeed: Assume there are some U0, �0 with
exit A;B , fail 〈�

U
〉 ^ exit B , fail 〈�0

U0
〉. According to the rules:

exit B , fail 〈�0
U0
〉 ^ exit fail 〈 �0

2/B ,fail•U0 〉 ^ ⊥

So according to Lemma 3, exit B , fail 〈�0
U0
〉 is not a legal event, which proves (2).

Similarly, the non-legal derivation redo B , fail _ redo fail _ ⊥ proves (3). �

Modularity of legal derivations enables abstracting the execution of a goal, like
in the following example.

Example 4 (modularity) Assume that a goal A succeeds, i. e. call A 〈nil
nil 〉

∗
_

exit A 〈 �

nil 〉. Then we have the following legal derivation:

call A,B 〈nil
nil 〉 _ call A 〈 nil

1/A,B •nil 〉, by (S:conj:1)
∗
_ exit A 〈 � • nil

1/A,B •nil 〉, by modularity and success of A

_ call B ′ 〈 � •nil
2/A,B •nil 〉, by (S:conj:2), where B ′ = substOf(�)(B)

If A fails, then we have:

call A,B 〈nil
nil 〉 _ call A 〈 nil

1/A,B •nil 〉, by (S:conj:1)
∗
_ fail A 〈 nil

1/A,B • nil 〉, by modularity and failure of A

_ fail A,B 〈nil
nil 〉, by (S:conj:3) ❏

6 Conclusions and outlook

In this paper we give a simple mathematical definition S:PP of the 4-port model of
pure Prolog. Some potential for formal verification of pure Prolog has been outlined.
There are two interesting directions for future work in this area:

(1) formal specification of the control flow of full Standard Prolog (currently we
have a prototype for this, within the 4-port model)

(2) formal specification and proof of some non-trivial program properties, like ade-
quacy and non-interference of a practical program transformation.

7 Related work

Concerning attempts to formally define the 4-port model, we are aware of only few
previous works. One is a graph-based model of Tobermann and Beckstein [TB93],
who formalize the graph traversal idea of Byrd, defining the notion of a trace (of
a given query with respect to a given program), as a path in a trace graph. The
ports are quite lucidly defined as hierarchical nodes of such a graph. However,
even for a simple recursive program and a ground query, with a finite SLD-tree,
the corresponding trace graph is infinite, which limits its applicability. Another
model of Byrd box is a continuation-based approach of Jahier, Ducassé and Ridoux
[JDR00]. There is also a stack-based attempt in [Kul00], but although it provides

11

for some parametrizing, it suffers essentially the same problem as the continuation-
based approach, and also the prototypical implementation of the tracer given in
[Byr80], taken as a specification of Prolog execution: In these three attempts, a
port is represented by some semantic action (e. g. writing of a message), instead of
a formal method. Therefore it is not clear how to use any of these models to prove
some port-related assertions.

In contrast to the few specifications of the Byrd box, there are many more gen-
eral models of pure (or even full) Prolog execution. Due to space limitations we
mention here only some models, directly relevant to S:PP, and for a more compre-
hensive discussion see e. g. [KB01]. Comparable to our work are the stack-based
approaches. Stärk gives in [Stä98], as a side issue, a simple operational semantics of
pure logic programming. A state of execution is a stack of frame stacks, where each
frame consists of a goal (ancestor) and an environment. In comparison, our state of
execution consists of exactly one environment and one ancestor stack. The seminal
paper of Jones and Mycroft [JM84] was the first to present a stack-based model of
execution, applicable to pure Prolog with cut added. It uses a sequence of frames.
In these stack-based approaches (including our previous attempt [KB01]), there is
no modularity, i. e. it is not possible to abstract the execution of a subgoal.

Acknowledgments

Many thanks for helpful comments are due to anonymous referees.

References

[Byr80] Lawrence Byrd. Understanding the control flow of Prolog programs. In S. A.
Tärnlund, editor, Proc. of the 1980 Logic Programming Workshop, pages 127–
138, Debrecen, Hungary, 1980. Also as D. A. I. Research Paper No. 151.

[DEDC96] P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The Standard (Reference
Manual). Springer-Verlag, 1996.

[JDR00] E. Jahier, M. Ducassé, and O. Ridoux. Specifying Byrd’s box model with a
continuation semantics. In Proc. of the WLPE’99, Las Cruces, NM, volume 30
of ENTCS. Elsevier, 2000. http://www.elsevier.nl/locate/entcs/volume30.html.

[JM84] N. D. Jones and A. Mycroft. Stepwise development of operational and deno-
tational semantics for Prolog. In Proc. of the 1st Int. Symposium on Logic
Programming (SLP’84), pages 281–288, Atlantic City, 1984.

[KB01] M. Kulaš and C. Beierle. Defining Standard Prolog in rewriting logic. In
K. Futatsugi, editor, Proc. of the 3rd Int. Workshop on Rewriting Logic and its
Applications (WRLA 2000), Kanazawa, volume 36 of ENTCS. Elsevier, 2001.
http://www.elsevier.nl/locate/entcs/volume36.html.

[KL02] A. King and L. Lu. A backward analysis for constraint logic programs. Theory
and Practice of Logic Programming, 2(4):517–547, 2002.

[Kul00] M. Kulaš. A rewriting Prolog semantics. In M. Leuschel, A. Podelski, R. Ra-
makrishnan C. and U. Ultes-Nitsche, editors, Proc. of the CL 2000 Workshop
on Verification and Computational Logic (VCL 2000), London, 2000.

[Lin95] T. Lindgren. Control flow analysis of Prolog (extended remix). Technical Report
112, Uppsala University, 1995. http://www.csd.uu.se/papers/reports.html.

[LO87] T. Lindholm and R. A. O’Keefe. Efficient implementation of a defensible se-
mantics for dynamic Prolog code. In Proc. of the 4th Int. Conference on Logic
Programming (ICLP’87), pages 21–39, Melbourne, 1987.

[Stä98] Robert F. Stärk. The theoretical foundations of LPTP (a logic program theorem
prover). J. of Logic Programming, 36(3):241–269, 1998. Source distribution
http://www.inf.ethz.ch/˜staerk/lptp.html.

[TB93] G. Tobermann and C. Beckstein. What’s in a trace: The box model revisited.
In Proc. of the 1st Int. Workshop on Automated and Algorithmic Debugging
(AADEBUG’93), Linköping, volume 749 of LNCS. Springer-Verlag, 1993.

12

A Leaving events

Leaving a call event

call A,B 〈�
U
〉 _ call A 〈 �

1/A,B •U 〉 (S:conj:1)

call A;B 〈�
U
〉 _ call A 〈 �

1/A;B •U 〉 (S:disj:1)

call true 〈�
U
〉 _ exit true 〈�

U
〉 (S:true:1)

call fail 〈�
U
〉 _ fail fail 〈�

U
〉 (S:fail)

call T1=T2 〈�U 〉 _
{

exit T1=T2 〈σ •�
U

〉, if mgu(T1 ,T2) = σ

fail T1=T2 〈�U 〉, otherwise
(S:unif:1)

call GA 〈�
U
〉 _

call σ(B) 〈 �

GA •U 〉, if H :− B is a fresh renaming of a
clause in Π , and mgu(GA,H) = σ, and σ(GA) = GA

fail GA 〈�
U
〉, otherwise

(S:atom:1)

Leaving a redo event

redo A,B 〈�
U
〉 _ redo B 〈 �

2/A,B •U 〉 (S:conj:6)

redo A;B 〈OR(C ,(N/A;B)) •�
U

〉 _ redo C 〈 �

N/A;B •U 〉 (S:disj:6)

redo true 〈�
U
〉 _ fail true 〈�

U
〉 (S:true:2)

redo T1=T2 〈σ •�
U

〉 _ fail T1=T2 〈�U 〉 (S:unif:2)

redo GA 〈BY (B ,G′
A) •�

U
〉 _ redo B 〈 �

G′
A •U 〉 (S:atom:4)

Leaving an exit event

exit A′ 〈 �

1/A,B •U 〉 _ call B ′′ 〈 �

2/A,B •U 〉, with B ′′ := substOf(�)(B) (S:conj:2)

exit B ′ 〈 �

2/A,B •U 〉 _ exit A,B 〈�
U
〉 (S:conj:4)

exit A 〈 �

1/A;B •U 〉 _ exit A;B 〈OR(A,(1/A;B)) •�
U

〉 (S:disj:4)

exit B 〈 �

2/A;B •U 〉 _ exit A;B 〈OR(B ,(2/A;B)) •�
U

〉 (S:disj:5)

exit B 〈 �

GA •U 〉 _ exit GA 〈BY (B ,GA) •�
U

〉 (S:atom:2)

Leaving a fail event

fail A′ 〈 �

1/A,B •U 〉 _ fail A,B 〈�
U
〉 (S:conj:3)

fail B ′ 〈 �

2/A,B •U 〉 _ redo A 〈 �

1/A,B •U 〉 (S:conj:5)

fail A 〈 �

1/A;B •U 〉 _ call B 〈 �

2/A;B •U 〉 (S:disj:2)

fail B 〈 �

2/A;B •U 〉 _ fail A;B 〈�
U
〉 (S:disj:3)

fail B 〈 �

GA •U 〉 _ fail GA 〈�
U
〉 (S:atom:3)

13

B An example with variables

Assume the following program Π :

post(X,Y) :− one(X,Y), two(X,Y).
one(X,) :− X=1.
two(,Y) :− Y=a; Y=b.

Table 2 below shows the complete Π-execution of the goal post(X, Y), fail in the model S:PP. Highlighted are the A-stacks and the mgus. Notice the
”lazy” binding of variables in the current goal.

call (post(X, Y), fail) , {nil} , {nil}

_ call post(X, Y) , {1/post(X, Y), fail •nil} , {nil}

_ call (one(X, Y), two(X, Y)) , {post(X, Y) • 1/post(X, Y), fail •nil} , {nil}

_ call one(X, Y) , {1/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail • nil} , {nil}

_ call X=1 , {one(X, Y) • 1/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {nil}

_ exit X=1 , {one(X, Y) • 1/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , { [X=1] •nil}

_ exit one(X, Y) , {1/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail • nil} , {BY (X=1, one(X, Y)) • [X=1] • nil}

_ call two(1, Y) , {2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {BY (X=1, one(X, Y)) • [X=1] • nil}

_ call (Y=a;Y=b) , {two(1, Y) • 2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail • nil} , {BY (X=1, one(X, Y)) • [X=1] •nil}

_ call Y=a , {(1/(Y=a);Y=b) • two(1, Y) • 2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {BY (X=1, one(X, Y)) • [X=1] •nil}

_ exit Y=a , {(1/(Y=a);Y=b) • two(1, Y) • 2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail • nil} , { [Y=a] •BY (X=1, one(X, Y)) • [X=1] • nil}

_ exit (Y=a;Y=b) , {two(1, Y) • 2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail • nil} , {OR(Y=a, (1/(Y=a);Y=b)) • [Y=a] •BY (X=1, one(X, Y)) • [X=1] • nil}

_ exit two(1, Y) , {2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {BY ((Y=a; Y=b), two(1, Y)) •OR(Y=a, (1/(Y=a);Y=b)) • [Y=a] •BY (X=1, one(X, Y)) • [X=1] • nil}

_ exit (one(X, Y), two(X, Y)) , {post(X, Y) • 1/post(X, Y), fail •nil} , {BY ((Y=a; Y=b), two(1, Y)) •OR(Y=a, (1/(Y=a);Y=b)) • [Y=a] •BY (X=1, one(X, Y)) • [X=1] •nil}

_ exit post(X, Y) , {1/post(X, Y), fail •nil} , {BY ((one(X, Y), two(X, Y)), post(X, Y)) •BY ((Y=a;Y=b), two(1, Y)) •OR(Y=a, (1/(Y=a);Y=b)) • [Y=a] •BY (X=1, one(X, Y)) • [X=1] •nil}

_ call fail , {2/post(X, Y), fail •nil} , {BY ((one(X, Y), two(X, Y)), post(X, Y)) •BY ((Y=a;Y=b), two(1, Y)) •OR(Y=a, (1/(Y=a);Y=b)) • [Y=a] •BY (X=1, one(X, Y)) • [X=1] • nil}

_ fail fail , {2/post(X, Y), fail •nil} , {BY ((one(X, Y), two(X, Y)), post(X, Y)) •BY ((Y=a;Y=b), two(1, Y)) •OR(Y=a, (1/(Y=a);Y=b)) • [Y=a] •BY (X=1, one(X, Y)) • [X=1] •nil}

_ redo post(X, Y) , {1/post(X, Y), fail • nil} , {BY ((one(X, Y), two(X, Y)), post(X, Y)) •BY ((Y=a;Y=b), two(1, Y)) •OR(Y=a, (1/(Y=a); Y=b)) • [Y=a] •BY (X=1, one(X, Y)) • [X=1] •nil}

_ redo (one(X, Y), two(X, Y)) , {post(X, Y) • 1/post(X, Y), fail •nil} , {BY ((Y=a; Y=b), two(1, Y)) •OR(Y=a, (1/(Y=a);Y=b)) • [Y=a] •BY (X=1, one(X, Y)) • [X=1] • nil}

_ redo two(X, Y) , {2/one(X, Y), two(X, Y)• post(X, Y) • 1/post(X, Y), fail • nil} , {BY ((Y=a;Y=b), two(1, Y)) •OR(Y=a, (1/(Y=a); Y=b)) • [Y=a] •BY (X=1, one(X, Y)) • [X=1] •nil}

14

_ redo (Y=a;Y=b) , {two(1, Y) • 2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {OR(Y=a, (1/(Y=a);Y=b)) • [Y=a] •BY (X=1, one(X, Y)) • [X=1] • nil}

_ redo Y=a , {(1/(Y=a);Y=b) • two(1, Y) • 2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail • nil} , { [Y=a] •BY (X=1, one(X, Y)) • [X=1] •nil}

_ fail Y=a , {(1/(Y=a);Y=b) • two(1, Y) • 2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail • nil} , {BY (X=1, one(X, Y)) • [X=1] •nil}

_ call Y=b , {(2/(Y=a);Y=b) • two(1, Y) • 2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail • nil} , {BY (X=1, one(X, Y)) • [X=1] •nil}

_ exit Y=b , {(2/(Y=a);Y=b) • two(1, Y) • 2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail • nil} , { [Y=b] •BY (X=1, one(X, Y)) • [X=1] •nil}

_ exit (Y=a;Y=b) , {two(1, Y) • 2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail • nil} , {OR(Y=b, (2/(Y=a);Y=b)) • [Y=b] •BY (X=1, one(X, Y)) • [X=1] •nil}

_ exit two(1, Y) , {2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {BY ((Y=a; Y=b), two(1, Y)) •OR(Y=b, (2/(Y=a);Y=b)) • [Y=b] •BY (X=1, one(X, Y)) • [X=1] •nil}

_ exit (one(X, Y), two(X, Y)) , {post(X, Y) • 1/post(X, Y), fail •nil} , {BY ((Y=a; Y=b), two(1, Y)) •OR(Y=b, (2/(Y=a);Y=b)) • [Y=b] •BY (X=1, one(X, Y)) • [X=1] • nil}

_ exit post(X, Y) , {1/post(X, Y), fail •nil} , {BY ((one(X, Y), two(X, Y)), post(X, Y)) •BY ((Y=a;Y=b), two(1, Y)) •OR(Y=b, (2/(Y=a); Y=b)) • [Y=b] •BY (X=1, one(X, Y)) • [X=1] •nil}

_ call fail , {2/post(X, Y), fail •nil} , {BY ((one(X, Y), two(X, Y)), post(X, Y)) •BY ((Y=a;Y=b), two(1, Y)) •OR(Y=b, (2/(Y=a);Y=b)) • [Y=b] •BY (X=1, one(X, Y)) • [X=1] •nil}

_ fail fail , {2/post(X, Y), fail •nil} , {BY ((one(X, Y), two(X, Y)), post(X, Y)) •BY ((Y=a;Y=b), two(1, Y)) •OR(Y=b, (2/(Y=a); Y=b)) • [Y=b] •BY (X=1, one(X, Y)) • [X=1] •nil}

_ redo post(X, Y) , {1/post(X, Y), fail • nil} , {BY ((one(X, Y), two(X, Y)), post(X, Y)) •BY ((Y=a;Y=b), two(1, Y)) •OR(Y=b, (2/(Y=a);Y=b)) • [Y=b] •BY (X=1, one(X, Y)) • [X=1] •nil}

_ redo (one(X, Y), two(X, Y)) , {post(X, Y) • 1/post(X, Y), fail •nil} , {BY ((Y=a; Y=b), two(1, Y)) •OR(Y=b, (2/(Y=a);Y=b)) • [Y=b] •BY (X=1, one(X, Y)) • [X=1] •nil}

_ redo two(X, Y) , {2/one(X, Y), two(X, Y)• post(X, Y) • 1/post(X, Y), fail • nil} , {BY ((Y=a;Y=b), two(1, Y)) •OR(Y=b, (2/(Y=a);Y=b)) • [Y=b] •BY (X=1, one(X, Y)) • [X=1] •nil}

_ redo (Y=a;Y=b) , {two(1, Y) • 2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {OR(Y=b, (2/(Y=a);Y=b)) • [Y=b] •BY (X=1, one(X, Y)) • [X=1] •nil}

_ redo Y=b , {(2/(Y=a);Y=b) • two(1, Y) • 2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , { [Y=b] •BY (X=1, one(X, Y)) • [X=1] •nil}

_ fail Y=b , {(2/(Y=a);Y=b) • two(1, Y) • 2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail • nil} , {BY (X=1, one(X, Y)) • [X=1] • nil}

_ fail (Y=a;Y=b) , {two(1, Y) • 2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail • nil} , {BY (X=1, one(X, Y)) • [X=1] • nil}

_ fail two(1, Y) , {2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {BY (X=1, one(X, Y)) • [X=1] •nil}

_ redo one(X, Y) , {1/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {BY (X=1, one(X, Y)) • [X=1] • nil}

_ redo X=1 , {one(X, Y) • 1/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail • nil} , { [X=1] •nil}

_ fail X=1 , {one(X, Y) • 1/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {nil}

_ fail one(X, Y) , {1/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail • nil} , {nil}

_ fail (one(X, Y), two(X, Y)) , {post(X, Y) • 1/post(X, Y), fail •nil} , {nil}

_ fail post(X, Y) , {1/post(X, Y), fail • nil} , {nil}

_ fail (post(X, Y), fail) , {nil} , {nil}

Table 2. Execution of a query in S:PP

15

