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Abstract
For logic program analysis or formal semantics, the issue of re-
naming terms and generally handling substitutions is inevitable.
We revisit substitutions from a practitioner’s point of view, pre-
senting concepts we found useful in dealing with operational se-
mantics of pure Prolog. A concept of relaxed core representation is
introduced, upon which a concept of prenaming is built. Prenam-
ing formalizes the intuitive practice of renaming terms and allows
for extensibility. A novel algorithm for term matching is proposed,
which also solves the problem of substitution generality (and thus
equivalence), using witness term technique. The technique aleviates
the problem of ad-hoc proofs involving generality.

Categories and Subject Descriptors F.4.1 [Logic and constraint
programming]

Keywords substitution, renaming, term matching, generality

1. Introduction
The image of substitutions in logic programming research is a
somewhat tainted one. First, it has been pointed out by H.-P. Ko
(Shepherdson 1994, p. 148) that the original claim of strong com-
pleteness of SLD-resolution needs to be rectified, because of a
counter-example using the fact that

(
x

f(y,z)

)
is not more general

than
(

x
f(a,a)

)
, which admittedly does look rather counter-intuitive,

but complies with the definition of substitution generality (Ex-
ample 6.10). Second, by composing substitutions, properties like
equivalence (Remark 6.13), idempotency (Remark 6.24), or restric-
tion (Remark 6.28) are not preserved. Third, due to group structure
of renamings, permuting any number of variables amounts to ”do-
ing nothing”, as in

(
x
y
y
x

)
∼ ε (Example 6.12). Such equivalences

are also felt to be counter-intuitive. Hence the prevalent sentiments
that substitutions are ”quite hard matter to deal with” (Palamidessi
1990) or ”very tricky” (Shepherdson 1994). In an effort to avoid
substitutions as much as possible, resultants were proposed (Lloyd
and Shepherdson 1991). Still, for almost anyone embarking on a
journey of logic program analysis or formal semantics, sooner or
later the need for renaming terms and generally handling substitu-
tions arises.

In the case of this author, the need arose while trying to prove
completeness of an operational semantics for pure Prolog, S1:PP

[Copyright notice will appear here once ’preprint’ option is removed.]

(Kulaš 2005), and facing the following extensibility problem. Start-
ing from a pair of variant queries, their respective formal deriva-
tions proceed to develop. At each step, new variables may crop up,
but the status of being variant should be maintained. This setup is
known from the classical variant lemma (Legacy 7.3). A new as-
pect here is that we need to collect the variables, obtaining at each
step the temporary variance between the derivations.

How to model this process of accumulating new variables and
their correspondence between derivations? Surely by renamings?
Assume the first query is p(z, u) and the second p(y, z). There is
only one relevant renaming, ρ =

(
z
y
u
z
y
u

)
. Now assume in the next

step the first derivation acquires the variable y, and the second x.
The relevant renaming this time would be ρ′ =

(
z
y
u
z
y
x
x
u

)
. Clearly,

ρ′ is not an extension of ρ, which makes it seem unsafe to proceed:
are some properties of the previous step now in danger?

For this reason, in Section 5 we introduce a slight generaliza-
tion of renaming, called prenaming, which can handle extensibility
(Theorem 5.17). As a bonus, it is a mathematical underpinning of
the intuitive practice of ”renaming” terms by just considering the
necessary bindings, and not worrying whether the result is a per-
mutation. In the above example that would be z 7→ y, u 7→ z. Pre-
naming provides finer control of term variance, owing to relaxed
core representation, which is nothing else than allowing some x/x
pairs alongside ”real” bindings, as placeholders. Prenamings relate
to and are inspired by previous work as follows: A safe prenam-
ing is more general than renaming for a term from (Lloyd 1987),
and it maximizesW in the notion of W-renaming from (Eder 1985)
(subsection 5.2). Also, prenamings can generalize substitution re-
naming from (Amato and Scozzari 2009).

In Section 7, an application on a nontrivial example is shown
(Lemma 7.1), where a propagation claim for logic programming
systems has been proved, in a constructive way. As a corollary, a
variant lemma (Theorem 7.4) for Prolog is obtained. Underway,
we touch on the discrepancy between the rather abundant theory
of logic programming and a scarcity of mathematical claims for
implemented logic programming systems. While there are some
formal proofs of properties like nominal unification (Urban et al.
2004), for logic programming systems or their compilation such are
still few and far between, a notable exception being (Pusch 1996).
New concepts like prenaming may help with this. In subsection 7.1
we discuss the question of renaming-compatibility and resolution-
compatibility of unification for logic programming systems. Such
properties are important for formalizing operational behaviour of
Prolog in a compositional way.

In Section 6, we discuss some other notions about substitutions
that were needed in the course of work on operational semantics.
A novel algorithm for term matching, also rooted in the relaxed
core idea, is proposed (Algorithm 6.1). It solves the problem of
substitution generality (and thus equivalence) as well, using witness
term (Theorem 6.8). Witness term technique was also used for a
direct proof of Legacy 6.27.
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2. Substitution
First we need a bit of notation. Assume two disjoint sets: the set
of functors, Fun, and the countably infinite set of variables, V.
If W ⊆ V, any mapping F with F (W ) ⊆ V shall be called
variable-pure on W . A mapping variable-pure on the whole set of
variables V shall be called all-vars mapping. If V \W is finite, W
is said to be co-finite. A mapping F is injective on W , if whenever
F (x) = F (y) for x, y ∈W we have x = y.

Associated with every functor f shall be a natural number n
denoting its number of arguments, arity. To emphasize this, the
notation f /n will be used. Functors of arity 0 are called constants.
Starting from V and Fun we build data objects, terms. In Prolog,
everything is a term, and so shall term be here the topmost syntactic
concept. Any variable x ∈ V is a term. If t1, ..., tn are terms
and f /n ∈ Fun, then f(t1, ..., tn) is a term with shape f /n and
constructor f . In case of f /0, the term shall be written without
parentheses. If a term s occurs within a term t, we write s∈ t.

A special kind of term is dotted pair, introduced under the name
S-expression in (McCarthy 1960) and written1 as h · t, where h is
called the head and t is called the tail of the pair. A special dotted
pair is non-empty list, distinguished by its tail being a special term
nil called empty list, or a non-empty list itself. In Edinburgh Prolog
notation, dotted pair would be written [h|t] and empty list as [].
A list of n elements is the term [t1|[t2|[...[tn|[]]]]], conveniently
written as [t1,...,tn].

Let Vars(t) be the set of variables in the term t. A term without
variables is called a ground term. If the terms s and t share a
variable, that shall be written s ./ t. Otherwise, we say s, t are
variable-disjunct, written as s 6./ t. The list of all variables of t, in
order of appearance, shall be denoted as VarList(t).

A recurrent theme in this paper shall be relevance, meaning
”no extraneous variables” (relative to some term or terms). The
name appears in (Apt 1997, p.3̇8), with the unary meaning, i. e.
no extraneous variables relative to (one) term. This usage shall be
reflected in the text as follows.

• A unifier σ of a set of equationsE (Definition 6.14, Legacy 6.27)
is a relevant unifier, if Vars(σ) ⊆ Vars(E). A renaming ρ
embedding a prenaming α (Algorithm 5.1) is a relevant embed-
ding, if Vars(ρ) ⊆ Vars(α).

Additionally, a binary version of relevance, handling two terms,
shall also be needed (Algorithm 5.2, Lemma 7.1):

• A mapping F is relevant for t1 to t2, if Dom(F ) ⊆ Vars(t1)
and Range(F ) ⊆ Vars(t2).

Definition 2.1 (substitution). A substitution θ is a function map-
ping variables to terms, which is identity almost everywhere. In
other words, a function θ with domain Dom(θ) = V such that the
following requirement holds:

finite action2 The set {x ∈ V | θ(x) 6= x} is finite.

The set Core(θ) ··= {x ∈ V | θ(x) 6= x} shall be called the active
domain3 or core of θ, and its elements active variables4 of θ. The
set Ran(θ) ··= θ(Core(θ)) is called the active range of θ. The set
VarsRan(θ) ··= Vars(θ(Core(θ))) is called the active variable

1 In Definition 2.1, we shall overload the dot operator with composing
substitutions, in addition to its rôle as pair constructor.
2 (Gallier 1986) uses the name finite support.
3 Literature traditionally uses the name domain. However, in the usual
mathematical sense it is always the whole V which is the domain of any
substitution. It may be less confusing to have both the domain, which is
uniformly V, and the core or active domain, making it clear that, while
every variable can be mapped, only active variables are of interest.
4 The name active variable appears in (Jacobs and Langen 1992).

range of θ. For completeness, a variable x such that θ(x) = x shall
be called a passive variable, or a fixpoint, for θ. Also, we say that
θ is active on the variables from Core(θ), and passive on all the
other variables.

If Core(θ) = {x1, ..., xk}, where x1, ..., xk are pairwise dis-
tinct variables, and θ maps each xi to ti, then θ shall have the
core representation {x1/t1, ..., xk/tk}, or the perhaps more visual(
x1
t1

...

...
xk
tk

)
. Hence, the above requirement shall also be called fi-

nite core. Each pair xi/ti is called the binding for xi via θ, denoted
by xi/ti ∈ θ.

Often we identify a substitution with its core representation, and
thus regard it as a syntactical object, a term. So the set of variables
of a substitution is defined as Vars(θ) ··= Core(θ)∪VarsRan(θ).

The notions of restriction and extension of a mapping shall also
be transported to core representation: if θ ⊆ σ, we say θ is a
restriction of σ, and σ is an extension of θ. The restriction θ�W
of a substitution θ on a set of variables W ⊆ V is defined as
follows: if x ∈W then θ�W (x) ··= θ(x), otherwise θ�W (x) ··= x.
The restriction of a substitution θ upon the variables of the term
t shall be abbreviated as θ�t ··= θ�Vars(t). We also write θ�−t to
denote the restriction of θ to variables outside of t, like θ�−t ··=
θ�Core(θ)\Vars(t).

Definition of substitution is extended from variables to arbi-
trary terms in a structure-preserving way by θ(f(t1, ..., tn)) ··=
f(θ(t1), ..., θ(tn)). If s is a term, θ(s) is an instance of s via θ.

The composition θ · σ of substitutions θ and σ is defined by
(θ · σ)(t) ··= θ(σ(t)). Composition may be iterated, written as
σn ··= σ · σn−1 for n ≥ 1, and σ0 ··= ε. Here ε ··= () is the
identity function on V. In case an all-vars substitution ρ is bijective,
its inverse shall be denoted as ρ−1. A substitution θ satisfying the
equality θ · θ = θ is called idempotent.

Example 2.2.
(
x
u
w
v
u
x
v
w

)
·
(
u
x
v
w
x
y
y
u
z
v
w
z

)
=
(
6u
6u
6v
6v
x
y
y
x
z
w
w
z
6x
6u
6w
6v
6u
6x
6v
6w

)
=(

x
y
y
x
z
w
w
z

)
.

3. Renaming
Definition 3.1 (renaming). A renaming of variables is a bijective
all-vars substitution.

In (Eder 1985), it is synonymously called ”permutation”. We
shall reserve the word for the general case where infinite move-
ments like translation are possible. Here we shall synonymously
speak of finite permutation due to the fact that, being a substitu-
tion, any renaming has a finite core, and Legacy 3.4 holds.

From the definition of substitution, we know: if s ∈ t, then
σ(s) ∈ σ(t). For bijective substitutions (i. e. renamings), a com-
plementary property holds as well:

Lemma 3.2 (renaming stability of not-in). Let ρ be a renaming
and s, t be terms. If s 6∈ t, then ρ(s) 6∈ ρ(t).

Proof. Assume ρ(s) ∈ ρ(t). Then ρ−1(ρ(s)) ∈ ρ−1(ρ(t)). ♦

Corollary 3.3 (renaming stability of ”=”, ”∈”, ” 6./”). Let ρ be a
renaming and s, t be terms. Then s = t iff ρ(s) = ρ(t), and also
s ∈ t iff ρ(s) ∈ ρ(t). As a consequence, s 6./ t iff ρ(s) 6./ ρ(t).

Legacy 3.4 ((Lassez et al. 1988)). A substitution ρ is a renaming
iff ρ(Core(ρ)) = Core(ρ).

Legacy 3.5 ((Eder 1985)). Every injective all-vars substitution is
a renaming.

So composition of renamings is a renaming. The next property
is about cycle decomposition of a finite permutation.

2 2016/6/30



Lemma 3.6 (cycles). Let σ be an all-vars substitution. It is injec-
tive iff for every x ∈ V, there is n ∈ N such that σn(x) = x.

Proof. Assume σ injective, and choose x0 ∈ V. If σ(x0) = x0,
we are done. Otherwise, σi(x0) 6= σi−1(x0) for all i ≥ 1, due to
injectivity. Hence, σi−1(x0) ∈ Core(σ) for every i ≥ 1. Because
of the finiteness of Core(σ), there is m > k ≥ 1 such that
σm(x0) = σk(x0). Due to injectivity, σm−1(x0) = σk−1(x0).
By iteration we get n ··= m− k.

For the other direction, assume σ(x) = σ(y), and minimalm,n
such that σn(x) = x, σm(y) = y. Consider the case m 6= n,
say m > n. Then σm−n(y) = σm−n(x) = σm−n(σn(x)) =
σm−n(σn(y)) = σm(y) = y, contradicting minimality of m.
Hence m = n, and so x = σn(x) = σn(y) = y. ♦

4. Relaxed core representation
In Lemma 7.1, we shall have to deal with mappings of variables
between two terms. There, it is possible that a variable stays the
same, so (x, x) would have to be tolerated as a ”binding”, since we
need our mapping to cover all variables in the two terms. Therefore,
we allow the set C to contain some passive variables, raising those
above the rest, as it were.

Definition 4.1 (relaxed core). If Core(σ) ⊆ {x1, ..., xn}, where
variables x1, ..., xn are pairwise distinct, then {x1, ..., xn} shall be
called a relaxed core and

(
x1

σ(x1)
...
...

xn
σ(xn)

)
shall be called a relaxed

core representation for σ.
If we fix a relaxed core for σ, it shall be denoted C(σ) ··=

{x1, ..., xn}. The associated range σ(C(σ)) we denote as R(σ).
The set of variables of σ is as expected, V (σ) ··= Vars(C(σ)) ∪
Vars(R(σ)). To get back to the traditional core representation, we
denote by [σ] the core representation of σ.

For extending substitution, we shall employ disjoint union.

Definition 4.2 (sum of substitutions). If σ =
(
x1
s1

...

...
xm
sm

)
and θ =(

y1
t1

...

...
yn
tn

)
are substitutions in relaxed representation such that

{y1, ..., yn} 6./ {x1, ..., xm}, then σ ] θ ··=
(
x1
s1

...

...
xm
sm

y1
t1

...

...
yn
tn

)

is the sum of σ and θ.

In case {y1, ..., yn} ./ {x1, ..., xm} but with σ(xi) = θ(yj) on
any common variables xi = yj , we shall simply write σ ∪ θ. Also,
we shall not be introducing special symbols to denote that σ is an
extension of θ, but simply write σ ⊇ θ.

In subsection 7.2, we shall need backward compatibility of an
extension. A first stab might be:

Lemma 4.3. If β(t) = t, then (α ] β)(t) = α(t).

Proof. For any x ∈ Vars(t) ∩ C(α) by definition (α ] β)(x) =
α(x). Assume now x ∈ Vars(t) ∩ C(β). From the condition,
β(x) = x, and by definition of extension, x 6∈ C(α), hence (α ]
β)(x) = β(x) = x = α(x). Clearly, if x ∈ Vars(t) \ C(α ] β)
the claim also holds. ♦

As an immediate consequence, if a substitution σ is complete
for a term t, there is no danger that an extension of σ might map t
differently from σ.

Definition 4.4 (complete for term). Let σ be given in relaxed core
representation. We say that σ is complete for t if Vars(t) ⊆ C(σ).

Corollary 4.5 (backward compatibility). If σ is complete for t,
then for any θ holds (σ ] θ)(t) = σ(t).

5. Prenaming
In practice, one would like to change the variables in a term,
without bothering to check whether this change is a permutation or
not. For example, the term p(z, u, x) can be mapped on p(y, z, x)
via z 7→ y, u 7→ z, x 7→ x.

Let us call such a mapping prenaming5. Like any substitution, a
prenaming α shall also be represented finitely, but in relaxed core
representation, in order to capture possible x 7→ x pairings. The
set C(α) is fixed by the terms to map. Obviously, injectivity is
important for such a mapping, since p(z, u, x) cannot be mapped
on p(y, y, x) without losing a variable. Hence,

Definition 5.1 (prenaming). A prenaming α is an all-vars substi-
tution injective on a finite set of variables C(α) ⊇ Core(α).

Obviously, any renaming is a prenaming. For Theorem 7.4, we
need a possibility to extend a given prenaming by new bindings.

Lemma 5.2 (extension of prenaming). Let α =
(
x1
y1

...

...
xn
yn

)

and β =
(
u1
v1

...

...
uk
vk

)
be prenamings such that {u1, ..., uk} 6./

{x1, ..., xn} and {v1, ..., vk} 6./ {y1, ..., yn}. Then α ] β =(
x1
y1

...

...
xn
yn

u1
v1

...

...
uk
vk

)
is also a prenaming.

Clearly, C(α ] β) = C(α) ] C(β) and R(α ] β) = R(α) ]
R(β).

5.1 The question of inverse
In practice, a prenaming is more natural, but a ”full” renaming is
better mathematically tractable (inverse exists). Hence we want to
know whether each prenaming can be embedded in a renaming.

The next property shows how to extend a prenaming α to obtain
a renaming, and a relevant one at that, i. e. acting only on the
variables from V (α). The claim is essentially given in (Lloyd and
Shepherdson 1991), (Apt 1997) and (Amato and Scozzari 2009)
with the emphasis on the existence6 of such an extension. In (Eder
1985), the emphasis is on the actual reach7 of the extension. The
latter is our concern as well. We formulate the claim around the
notion of prenaming, and provide a constructive proof based on
Lemma 3.6.

Theorem 5.3 (embedding). Let α be a prenaming. Then there is a
renaming ρ which coincides with α on V\(R(α)\C(α)) such that
Vars(ρ) ⊆ V (α).

Additionally, if α(x) 6= x on C(α), then ρ(x) 6= x on V (α).

Proof. If α is a prenaming, then C(α) =·· C and R(α) =·· R
are sets of n distinct variables each. We shall construct the wanted
renaming in Algorithm 5.1, where it is named α. The idea is to
close any open chains α(x), α2(x), ....

α(x) ··=


α(x), if x ∈ C
z, if x ∈ R \ C and αm(z) = x for maximal m ≤ n
x, outside of C ∪R

Algorithm 5.1: Closure, the natural relevant embedding

5 Finding an appropriate name can be a struggle. Shortlisted were pre-
renaming and proto-renaming.
6 (Apt 1997, p. 23): ”Every finite 1-1 mapping f from A onto B can be
extended to a permutation g ofA∪B. Moreover, if f has no fixpoints, then
it can be extended to a g with no fixpoints.”
7 (Eder 1985, p. 35): ”Let W be a co-finite set of variables (...) and let σ be a
W-renaming. Then there is a permutation π which coincides with σ on the
set W.”
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Let us see if for every x there is a j such that αj(x) = x.
If x ∈ C, we start as in the proof of Lemma 3.6, and consider
the sequence α(x), α2(x), .... Since C is finite, either we get two
equals (and proceed as there), or we get αk(x) 6∈ C and are stuck.
For y ··= αk(x) we know α(y) = z such that αm(z) = y with
maximal m, so m ≥ k. Therefore, αm(α(y)) = y = αk(x). Due
to injectivity of α on C(α) we get αm−k(α(αk(x))) = x, and
hence αm+1(x) = x.

The cases x ∈ R \C or x 6∈ C ∪R are easy. By Lemma 3.6, α
is injective. By Legacy 3.5, α is a renaming. The discussion of the
case α(x) 6= x on C(α) is straightforward. ♦

Definition 5.4 (closure of a prenaming). The renaming α con-
structed in Algorithm 5.1 shall be called the closure of α.

Remark 5.5 (relevant embedding is not unique). Letα =
(
z
y
u
z
y
x
w1
w2

)
,

and let us embed it in a relevant renaming. The Algorithm 5.1
gives α =

(
z
y
u
z
y
x
w1
w2

x
u
w2
w1

)
. But ρ =

(
z
y
u
z
y
x
w1
w2

x
w1

w2
u

)
is also

a relevant renaming which is embedding α. In the usual nota-
tion for cycle decomposition, ρ = {(x,w1, w2, u, z, y)} and
α = {(x, u, z, y), (w1, w2)}.

If we reverse the prenaming, the closure algorithm shall be
closing the same open chains but in the opposite direction, hence

Lemma 5.6 (reverse prenaming). Let α ··=
(
x1
y1

...

...
xn
yn

)
and β ··=(

y1
x1

...

...
yn
xn

)
. Then β = α−1.

Remark 5.7 (closure is not compositional). Take α ··=
(
z
y
u
z
y
x

)

and ρ ··=
(
x
y
y
x

)
. Then α =

(
z
y
u
z
y
x
x
u

)
, ρ · α =

(
z
x
u
z
x
u

)
, ρ · α =(

z
x
u
z
x
y

)
and ρ · α =

(
z
x
u
z
x
y
y
u

)
.

Remark 5.8 (closure is not monotone). If α ⊇ α′, then not always
α ⊇ α′. To see this, let α =

(
z
y
u
z
y
x

)
and α′ =

(
z
y
u
z

)
. Then

α′ =
(
z
y
u
z
y
u

)
and α =

(
z
y
u
z
y
x
x
u

)
.

5.2 Staying safe
Let us look more closely into Remark 5.8: α(y) = x and α(x) =
x, so y and x may not simultaneously occur in the candidate term.
Otherwise, a variable shall be lost, which we call aliasing, like in(
y
x

)
(p(x, f(y))) = p(x, f(x)).

Definition 5.9 (aliasing). Let α be a prenaming. If x 6= y but
α(x) = α(y), then we say α is aliasing x and y.

So what Remark 5.8 means is: if we want to use α on a larger
set than C(α), then the set Pit(α) ··= R(α) \ C(α) is dangerous
to touch. But, luckily, its complement is not:

Lemma 5.10 (larger set). A prenaming α is injective on the co-
finite set V \ Pit(α). The set is maximal containing C(α).

Proof. Let x, y ∈ V \ Pit(α). Is it possible that α(x) = α(y)?
Possible cases: If x, y ∈ C(α), then by definition of prenaming
α(x) 6= α(y). If x, y 6∈ C(α), then α(x) = x 6= y = α(y).
It remains to consider the mixed case x ∈ C(α), y 6∈ C(α). We
have α(x) ∈ R(α) and α(y) = y. So is α(x) = y possible? If yes,
then y ∈ R(α), but since y 6∈ C(α), that would mean y ∈ Pit(α).
Contradiction.

The set cannot be made larger: if y ∈ Pit(α), then there is
x ∈ C(α) with x 6= y and α(x) = y = α(y), so injectivity is
compromised. ♦

Definition 5.11 (injectivity domain). For a prenaming α, let
InDom(α) ··= V \ Pit(α). Since InDom(α) is the largest co-
finite set containing C(α) on which α is injective, it shall be called
the injectivity domain of α.

The injectivity domain of a prenaming is clearly the only safe
place for it to be mapping terms from. Hence,

Definition 5.12 (safety of prenaming). A prenaming safe8 for a
term t is a prenaming α with Vars(t) ⊆ InDom(α).

Clearly, InDom(α) = C(α) ∪ (V \ R(α)), so α is safe for
its relaxed core. Hence, if α is complete for a term, it is safe for
that term. For a prenaming α with the quality R(α) = C(α), i. e.
a renaming, it is no surprise that InDom(α) = V and hence safety
is guaranteed for any term.

A prenaming behaves like a renaming on its injectivity domain,
since it coincides with its closure there. This follows immediately
from Theorem 5.3:

Corollary 5.13 (injectivity domain). Let x ∈ InDom(α). Then

α(x) = α(x).

Corollary 5.14 (prenaming stability). A generalization of Corol-
lary 3.3 holds: Let s, t be terms and α be a prenaming safe for s, t.
Then s = t iff α(s) = α(t) and also s ∈ t iff α(s) ∈ α(t). As a
consequence, s 6./ t iff α(s) 6./ α(t).

Our definition of prenaming was inspired by the following more
general notion from (Eder 1985).

Definition 5.15 (W-renaming). Let W ⊆ V . A substitution σ is a
W-renaming if σ is variable-pure on W , and σ is injective on W .

With this notion, Lemma 5.10 can be summarized as: InDom(α)
is a co-finite set of variables, and the largest set W ⊇ C(α) such
that α is a W-renaming.

What about safety of extension? If α is safe for t, α ] β does
not have to be, even if β(t) = t, as the following example shows:
α ··=

(
v
w

)
, β ··=

(
z
y
u
z
y
x

)
, t ··= p(x). The following two claims

try to redress that isssue.

Lemma 5.16 (monotonicity). Assume α ] β is defined. Then

1. InDom(α) ∪ InDom(β) = V
2. InDom(α) ∩ InDom(β) ⊆ InDom(α ] β)

Proof. Since (V \ A) ∪ (V \ B) = V \ (A ∩ B)), and Pit(α) 6./
Pit(β), we obtain InDom(α) ∪ InDom(β) = V.

Further, (V\A)∩ (V\B) = V\ (A∪B) and so Pit(α]β) =
(R(α) ] R(β)) \ (C(α) ] C(β)) ⊆ (R(α) \ C(α)) ∪ (R(β) \
C(β)) = Pit(α) ∪ Pit(β). ♦

In Remark 5.8, Pit(α′) = {y}, Pit(
(
y
x

)
) = {x}, and

Pit(α) = {x}, hence InDom(α′) = V \ {y}, InDom(
(
y
x

)
) =

V \ {x} and InDom(α) = V \ {x}.
By the last claim, staying within InDom(α) and InDom(β)

ensures staying within InDom(α ] β). By assuming a bit more
about α than just safety, we may ignore the nature of extension β,
and still ensure safety and even backward compatibility of α ] β.
This shall be used in Section 7.

Theorem 5.17 (extensibility). Assume α ] β is defined.

1. If α is safe for t and β is safe for t, then α ] β is safe for t.

8 Our definition of safe prenaming is more general than the definition
of renaming for a term in (Lloyd 1987, p. 22), since we do not require
Core(α) ⊆ Vars(t).
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2. If α is complete for t, then α] β is safe for t and (α] β)(t) =
α(t).

The first part follows from Lemma 5.16 and the second from Corol-
lary 4.5. Observe the importance of relaxed core for this to work:
otherwise, passive bindings x/x would not be accounted for.

5.3 Variant of term and substitution
The traditional notion of term variance, which is term renaming,
shall be generalized to prenaming. As a special case, substitution
variance is defined, inspired by substitution renaming from (Am-
ato and Scozzari 2009). For this, substitution shall be regarded as a
special case of term. The term is of course the relaxed core repre-
sentation. This concept shall come in handy for proving properties
of renamed derivations, as in subsection 7.2.

5.3.1 Term variant
Definition 5.18 (term variant). If α is a prenaming safe for t, then
we also call α(t) a variant of t, and write α(t) ∼= t. The particular
variance and the direction of its application may be explicated:
s =α t iff s = α(t).

If s ∼= t, then there is a unique α mapping s to t in a complete
and relevant9 manner, i. e. mapping each variable pair and nothing
else, as computed by Algorithm 5.2. The algorithm makes do with
only one set for equations and bindings, thanks to different types.
Termination can be seen from the tuple (lfun=(E), card=(E))
decreasing in lexicographic order with each rule application, where
lfun=(E) is the number of function symbols in equations inE, and
card=(E) is the number of equations in E.

Start from the set E ··= {s = t} and transform according to the
following rules. The transformation is bound to stop. If the stop
was not due to failure, then the current set E is Pren(s, t).

elimination E ] {x = y} E, if x/y ∈ E
failure: alias E ] {x = y}  failure, if (x/z ∈ E, z 6=

y) or (z/y ∈ E, z 6= x)

binding E]{x = y} E∪{x/y}, if (x/ 6∈ E) and ( /y 6∈
E)

failure: instance E ] {x = t} failure, if t 6∈ V;
E ] {t = x} failure, if t 6∈ V

decomposition E ] {f(s1, ..., sn) = f(t1, ..., tn)}  E ∪
{s1 = t1, ..., sn = tn}

failure: clash E ] {f(s1, ..., sn) = g(t1, ..., tm)}  
failure, if f 6= g or m 6= n

Algorithm 5.2: Computing the prenaming of s to t

Notation 5.19 (epsoid). The prenaming constructed in Algo-
rithm 5.2 shall be simply called the prenaming of s to t, and denoted
Pren(s, t). It is complete for s and relevant for s to t.

In case s = t, we obtain for Pren(s, t) essentially the identity
substitution. However, regarded as prenamings, Pren(t, t) and ε
are not the same. A prenaming α with relaxed core W mapping
each variable on itself (in other words, C(α) = W and α = ε)
shall be called the W -epsoid and denoted εW . For a term t, we
abbreviate εt ··= εVars(t).

Regarding composition, an epsoid behaves just like ε. Its use is
for providing completeness, and hence extensibility, by means of
placeholding pairs x/x.

9 for prenaming, we naturally use C for Dom and R for Range.

5.3.2 Special case: substitution variant
Even substitutions themselves can be renamed. To rename a sub-
stitution, one regards it as a syntactical object, a set of bindings,
and renames those bindings. If ρ is a renaming and σ is a sub-
stitution, (Amato and Scozzari 2009) define substitution renaming
by ρ(σ) ··= {ρ(x)/ρ(σ(x)) | x ∈ Core(σ)}. It is easy to see
that ρ(σ) is a substitution in core representation. For this we only
need two properties of ρ: variable-pure on Vars(σ) and injective
on Vars(σ). These requirements are clearly fulfilled by prenam-
ings safe on σ as well. Hence,

Definition 5.20 (substitution variant). Let σ be a substitution and
let α be a prenaming safe for σ, i. e. Vars(σ) ⊆ InDom(α). Then
a variant of σ by α is

α(σ) ··= {α(x)/α(σ(x)) | x ∈ Core(σ)} (1)

We may write θ =α σ if θ = α(σ), as with any other terms.
As can be expected, the concept of variance by prenaming is well-
defined, owing to safety. Otherwise, the result of prenaming would
not even have to be a substitution again, as with α =

(
y
x

)
, σ =(

x
a
y
b

)
.

Lemma 5.21 (well-defined). Substitution variant is well-defined,
i. e. (1) is a core representation of a substitution, and α does not
introduce aliasing.

Proof. Let Core(σ) = {x1, ..., xn}. Due to injectivity of α on
Vars(σ), if α(xi) = α(xj), then xi = xj , so i = j. To finish
the proof that (1) a core representation, observe x ∈ Core(σ) iff
x 6= σ(x) iff α(x) 6= α(σ(x)), due to injectivity again.

Next, by Corollary 5.14, if α(σ(xi)) ./ α(σ(xj)), then
σ(xi) ./ σ(xj), meaning that α does not introduce aliasing. ♦

From Definition 5.20 and Corollary 5.13 follows

Lemma 5.22. Let σ be a substitution and α, β be prenamings such
that α(σ) and (α · β)(σ) are defined. Then

1. (α · β)(σ) = α(β(σ))

2. α(σ) = α(σ)

For the case of ”full” renaming, there is a way to dissolve the
new expression:10

Legacy 5.23 ((Amato and Scozzari 2009)). For any renaming ρ
and substitution σ

ρ(σ) = ρ · σ · ρ−1

Would such a claim hold for the weakened case, prenamings?

Theorem 5.24 (substitution variant). Let σ be a substitution and α
be a prenaming safe for σ. Then

1. α(σ) · α = α · σ
2. α(σ) = α · σ · α−1

Proof. First part: According to Definition 5.20, for every x ∈ V
holds (α(σ)·α)(x) = α(σ(x)). Since any substitution is structure-
preserving, the claim holds for any term t as well.

Second part: From the first part we know α(σ)·α = α·σ, hence
α(σ) = α · σ ·α−1. By Corollary 5.13 holds α(σ) = α(σ), which
completes the proof. ♦

It is known that idempotence and equivalence of substitutions
are not compatible with composition (Eder 1985). Luckily, the
concept of variance, with constant prenaming, does not share this
handicap:

10 An immediate consequence of which is ρ(σ) 6= ρ · σ.
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Theorem 5.25 (compositionality). Let σ, θ be substitutions and α
be their safe prenaming. Then

α(σ · θ) = α(σ) · α(θ)

Proof. Since Vars(σ · θ) ⊆ Vars(σ)∪Vars(θ), clearly Vars(σ · θ) ⊆
InDom(α). By Theorem 5.24α(σ)·α(θ) = α·σ·α−1·α·θ·α−1 =
α · σ · θ · α−1 = α(σ · θ). ♦

6. Further topics
Here is a brief overview of other substitution properties that we
found useful for analysing the operational semantics S1:PP.

For some properties like Lemma 7.1 and Theorem 7.4 we need
the concept of SLD-derivations. Regarding SLD-derivations, we
shall for the most part assume traditional concepts as given in (Apt
1997), but with some changes and additions outlined below. The
variable names in actual logic programs shall be capitalized, as in
Prolog.
Notation 6.1 (adapting SLD-derivation). Assume an SLD-derivation
for G like G ↪−.K1 :σ1 G1 ↪−.K2 :σ2 ... ↪−.Kn :σn Gn.

• Ki is here the actually used variant of a program clause (i. e.,
the current input clause) and not the program clause itself.
• The substitution σn · ... · σ1 shall be called the partial answer

at step n of the derivation.
• Recall that a computed answer substitution (c.a.s.) for G is

defined as (σn·...·σ1)�G, wheneverGn = �. For our purposes,
the restriction on the variables of G is not urgent. As an interim
step, we define a complete answer for G to be a final partial
answer, σn · ... · σ1. A c.a.s. is then a complete answer made
relevant by restricting it to query variables.

An input clauseKi obtained from a program clause K̄ by replacing
the variables in order of appearance with A1, ..., An may be de-
noted as Ki = K̄[A1, ..., An]. We also say that K̄ is applicable on
Gi with effector clause Ki, and that Ki is effective on Gi with σi.

Showing the actually used variants of program clauses (in-
stead of program clauses themselves) enables a simple definition
of derivation variables.

Definition 6.2 (variables of a derivation). Assume D to be an SLD-
derivation G ↪−.K1 :σ1 G1 ↪−.K2 :σ2 ... ↪−.Kn :σn Gn. We shall
define the set of variables of D as would be natural for a term, i. e.
we regard the annotations Ki :σi as part of the derivation. Hence,
Vars(D) ··= (Vars(G) ∪ ... ∪ Vars(Gn)) ∪ (Vars(σ1) ∪ ... ∪
Vars(σn)) ∪ (Vars(K1) ∪ ... ∪Vars(Kn)).

One last piece of introductory notation: Head((H ← B)) ··= H .

6.1 Term matching and subsumption
Consider f(x, y) and f(z, x). Intuitively, they ”match” each other,
while f(x) and g(x) do not. If asked about f(x, x) and f(x, y),
we may consent that they ”match” only in one direction.

Definition 6.3 (term matching). Let g and s be two terms. If there
is a substitution σ such that σ(g) = s, then we say g matches s, and
also that s is an instance of g (as already defined in Definition 2.1).
The substitution σ is then a matcher of g on s.

Moreover, if σ(g) = σ(s) = s, then we say g subsumes s. The
substitution σ is then a subsumer of s by g.

Example: f(x) matches f(g(x)), but does not subsume it, while
f(x, y) subsumes f(x, x). For relation to Prolog see (Neumerkel
2010).

Term matching can be seen as a special case of unification,
where any variables on the right-hand side are inactivated by re-
placing them with new constants (hence the synonym ”one-sided

unification”). For parallel approach, see e. g. (Dwork et al. 1984).
We propose a one-pass algorithm with a stress on simplicity, Algo-
rithm 6.1. It decides generality and equivalence of substitutions as
well.

6.1.1 Subterm
Definition 6.4 (subterm, occurrence). A character subsequence of
the term t which is itself a term, s, shall be called an occurrence of
subterm s of t, denoted non-deterministically by s ∈ t. This may
also be pictured as t = s .

Note that there may be several occurences of the same sub-
term in a term. Unlike its term representation, the position (Defini-
tion 6.5) of an occurrence determines it uniquely. For disambigua-
tion, the n-th occurrence of s in t may be denoted as (s ∈ t)n.

Terms have a tree representation as follows. A variable x is rep-
resented by the root labeled x. A term f(t1, ..., tn) is represented
by the root labeled f and by trees for t1, ..., tn as subtrees, ordered
from left to right. Thus, the root label for a term t is t itself, if t is
a variable, otherwise the constructor of t.

Access path shall be defined as a variation of (Apt 1997, p. 27),
and used to define pendants, which shall be needed for matching,
and include disagreement pairs from (Robinson 1965).

Definition 6.5 (access path and position of subterm). Let t be a
term and consider an occurrence of its subterm s, denoted as s ∈ t.
The access path of s ∈ t is defined as follows. If s = t, then
AP(s ∈ t) is the root label for t. If t = f(t1, ..., tn) and s ∈ tk,
then AP(s ∈ t) ··= f/k ·AP(s ∈ tk).

By extracting the integers, we obtain the position of s ∈ t. By
extracting the labels, save for the last one, we obtain the ancestry
of s ∈ t. If s1 ∈ t1 has the same position and ancestry as s2 ∈ t2,
then we say s1 ∈ t1 and s2 ∈ t2 are pendants in t1 and t2. A
disagreement pair between t1 and t2 is a pair of pendants therein
differing in the last label.

For example, let t ··= [f(y), z] and s ··= z. There is only
one ocurrence s ∈ t. According to list definition, [f(y), z] =
·(f(y), ·(z,nil)). Hence, AP(s ∈ t) = (·)/2 · (·)/1 · z, so the
position of s ∈ t is 2 · 1 and its ancestry is (·) · (·). An example
of pendants: f(y) ∈ [f(y), z] and g(a, b) ∈ [g(a, b), h(x)]. This is
also a disagreement pair.

6.1.2 A matching algorithm
Owing to the placeholding facility of relaxed core representation,
the following algorithm is linear and rather succinct. In fact, with-
out the placeholding facility it would be difficult to capture the error
in matching f(x, x) on f(x, y) in just one pass along the terms and
without auxiliary registers.

variable Let L be a variable. If L/S ∈ δ and S 6= R,
then stop with FAILURE(”divergence”). Otherwise,

Match(L,R, δ) ··= δ ∪
(
L
R

)
.

failure: shrinkage If L is a non-variable, but R is a variable,
stop with FAILURE(”shrinkage”).

failure: clash If L and R are non-variables of different shape,
stop with FAILURE(”clash”).

decomposition Let L = f(s1, ..., sn) and R = f(t1, ..., tn).
If there are δ1 ··= Match(s1, t1, δ) and ... and δn ··=
Match(sn, tn, δn−1), then Match(L,R, δ) ··= δn.

Algorithm 6.1: One-pass term matching Match(L,R, δ)
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Theorem 6.6 (matching). Algorithm 6.1 solves the problem of
matching L on R: If Match(L,R, ε) stops with failure, then L
does not match R; otherwise, it stops with a substitution δ such
that [δ] is a relevant matcher of L on R. This follows from

1. If Match(L,R, δ) stops with failure, there is no µ with µ(L) =
R and µ ⊇ δ.

2. If Match(L,R, δ) = δ′, then δ′(L) = R and δ′ ⊇ δ. In
other words, Match(L,R, δ) is a matcher of L on R con-
taining δ. Additionally, δ′ is complete for L and Vars(δ′) ⊆
Vars((L,R, δ)).

Proof. This algorithm clearly always terminates. For the Proof of 1,
we need two observations, readily verified by structural induction:

• If µmaps L onR, then it maps any s ∈ L on its pendant t ∈ R.
• Each time the algorithm visits one of the cases, the registers
L and R denote either the original terms, or some pendants
therein.

Thus, in the two middle non-variable cases there can be no matcher
for the original terms, notwithstanding δ.

In the variable case, the purported matcher µwould have to map
one variable on two different terms (Figure 1).

x x
?−−−−−→ s r

Figure 1. Divergence: one variable, two terms

Proof of 2: By structural induction. In case of variable, the claim
holds. Assume we have a case of decomposition and the claim
holds for the argument terms, i. e. δ1(s1) = t1, δ1 ⊇ δ, δ2(s2) =
t2, δ2 ⊇ δ1, ..., δn(sn) = tn, δn ⊇ δn−1, and each δi
is complete for si as well as relevant. Due to completeness and
Corollary 4.5, from δn ⊇ ... ⊇ δ2 ⊇ δ1 follows δn(s1) = ... =
δ2(s1) = t1 and so forth. Hence, δn(L) = R. Clearly, δn ⊇ δ and
δn is complete for L and relevant. As a final detail, recall that δn
may contain passive pairs x/x, which are eliminated in [δn]. ♦

6.2 Generality
As an application of the matching algorithm Algorithm 6.1, we
can solve the problem of generality and equivalence between two
substitutions.

Definition 6.7 (more general). A substitution σ is more general (or
less instantiated)11 than a substitution θ, written as σ ≤ θ,12 if σ
is a right-divisor of θ, i. e. if there exists a substitution δ with the
property θ = δ · σ.

How to check whether σ ≤ θ? One possibility would be to
look for a counter-example, i. e. try to find a term w such that
for no renaming δ holds δ(σ(w)) = θ(w). Let us call such a
term a witness term. How to obtain a witness term? Intuitively,
we may take w to be the list of all variables of σ, θ, denoted
w ··= VarList((σ, θ)), and see if we can find an impasse, i. e.
some parts of σ(w) that cannot possibly simultaneously be mapped
on the respective parts of θ(w). It turns out this is sufficient.

Theorem 6.8 (witness). σ ≤ θ iff for some w with Vars(w) =
Vars((σ, θ)) holds that σ(w) matches θ(w).

11 It has also been said that σ schematises θ (Huet 1976).
12 Some authors like (Jacobs and Langen 1992) and (Amato and Scozzari
2009) turn the symbol ≤ around. Indeed the choice may appear to be
abitrary. But we shall stick to the notion that a more general object is
”smaller”, because it correlates with the ”smallness” of the substitution
stack.

Proof. If δ · σ = θ, then surely δ(σ(w)) = θ(w).
For the other direction, assume there is µ with µ(σ(w)) =

θ(w). By Theorem 6.6, we can choose the matcher µ to be relevant,
so Vars(µ) ⊆ Vars((σ, θ)). If for some x ∈ V holds µ(σ(x)) 6=
θ(x), then clearly x 6∈ Vars((σ, θ)), hence the inequality becomes
µ(x) 6= x, meaning x ∈ Core(µ), which is impossible. ♦

As a consequence, we obtain a simple visual criterion.

Corollary 6.9 (witness). The relation σ ≤ θ does not hold, iff for
some w with Vars(w) ⊆ Vars((σ, θ)) any of the following holds:

1. At some corresponding positions, σ(w) exhibits a non-variable,
and θ(w) exhibits a variable (”shrinkage”), or a non-variable
of a different shape (”clash”).

2. σ(w) exibits two occurrences of variable x, but at the cor-
responding positions in θ(w) there are two mutually distinct
terms (”divergence”).

The search for an impasse can be performed by Algorithm 6.1
via Match(σ(w0), θ(w0), ε), where w0 ··= VarList((σ, θ)).

If no impasse is found, the algorithm produces δ such that
θ = δ · σ. Some test runs are in Figure 2 and Figure 3.

Example 6.10. The subtlety of the relation ”more general” is
illustrated in (Apt 1997) with the following example: σ ··=

(
x
y

)
is

more general than
(
x
a
y
a

)
, but not more general than θ ··=

(
x
a

)
. The

former claim is justified by
(
x
a
y
a

)
=
(
y
a

)
·
(
x
y

)
. The matcher was

here not difficult to guess, but in general may be, and can always
be found by Algorithm 6.1 (Figure 2).

The latter is a simplified form of a counter-example by Hai-
Ping Ko (reported in (Shepherdson 1994)), which was pivotal in
showing that the strong completeness theorem for SLD-derivation
from (Lloyd 1987) needed a revision. The Ko example purports
that σ ··=

(
x

f(y,z)

)
is not more general than θ ··=

(
x

f(a,a)

)
,

where y, z are distinct variables. For proof, it was observed: if
δ ·
(

x
f(y,z)

)
=
(

x
f(a,a)

)
, then y/a, z/a ∈ δ, therefore even if one

of y, z is equal to x, at least one of bindings y/a, z/a has to be in
δ ·
(

x
f(y,z)

)
. To aleviate the need for such ”ad-hoc”, custom-made

proofs, Algorithm 6.1 could be used, giving divergence (Figure 3).

[x, y]

+��
��σ =

(
x
y

)
QQQQ

θ =
(
x
a

y
a

)

s
[y, y]

δ =
(
y
a

) → [a, a]

Figure 2. Successfull check on ≤

6.3 Equivalence
The set of substitutions is not partially ordered by ≤, namely it is
possible that σ ≤ θ and θ ≤ σ for σ 6= θ. Such cases form an
equivalence relation, called simply equivalence13 and denoted by
σ ∼ θ.

The following property, in similar form, has been proven in
(Eder 1985); the formulation is from (Apt 1997). The property
follows from Theorem 6.8 as well, since the case where one of a
pendant pair is a variable and the other a non-variable is clearly not
possible (shrinkage failure).

13 perhaps a new name like equigeneral would be less confusing, in view of
counter-intuitive equivalences?
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[x, y]

+��
��σ =

(
x
a

) QQQQ

θ =
(

x
y

)

s
[a, y] ×

shrinkage

→ [y, y]

[x, y, z]

+��
��σ =

(
x

f(y,z)

)
QQQQ

θ =
(

x
f(a,a)

)

s
[f(y, z), y, z] ×

divergence

→ [f(a, a), y, z]

[x, y]

+��
��σ =

(
x

f(y)

)
QQQQ

θ =
(

x
g(y)

)

s
[f(y), y] ×

clash

→ [g(y), y]

Figure 3. Failed check on ≤

Legacy 6.11 (equivalence). θ is more general than θ′ and θ′ is
more general than θ iff for some renaming ρ such that Vars(ρ) ⊆
Vars(θ) ∪Vars(θ′) holds ρ · θ = θ′.

With some practice, such a renaming ρ can be guessed, or
simply constructed by Algorithm 6.1.

Example 6.12. Since
(
y
x
x
y

)
is a renaming and

(
y
x
x
y

)
·
(
y
x
x
y

)
= ε,

we have
(
y
x
x
y

)
∼ ε. In other words, if we permute two variables,

that amounts to ”doing nothing”. This is a much-cited example
of counter-intuitive character of equivalence. In fact, due to group
structure of finite permutations, any two renamings are bound to be
equivalent, so permuting any number of variables amounts to doing
nothing.

Remark 6.13 (”∼” is not compositional). Equivalence is not com-
patible with composition, as shown in (Eder 1985): Let σ ··=

(
y
x

)
,

σ′ ··=
(
x
y

)
and θ ··=

(
x
z

)
. Then σ ∼ σ′, but θ · σ =

(
y
z
x
z

)
6∼

θ · σ′ =
(
x
y

)
. The non-equivalence is verified by Algorithm 6.1.

6.4 Unification
Definition 6.14 (unification). Let s and t be terms. If there is a
substitution θ such that θ(s) = θ(t), then s and t are said to be
unifiable, and θ is their unifier, the set of all such being Unif (s, t).
It is a relevant, if Vars(θ) ⊆ Vars(s) ∪ Vars(t). A unifier θ of
s and t is their most general unifier (mgu), if it is more general
than any other unifier; the set of all such is Mgus(s, t) ··= {θ ∈
Unif (s, t) | for every α ∈ Unif (s, t) holds θ ≤ α}.

A set of equations {a1=b1, ..., an=bn} may be condensed
to one equation like f(a1, ..., an)=f(b1, ..., bn), and vice versa,
which shows that unifying two terms and unifying arbitrarily many
terms are the same task. So the notions of unifier and mgu can
be extended from a single equation s=t to a set of equations E
by defining Unif (E) ··= {θ | for every (s=t) ∈ E holds θ(s) =
θ(t)}. Similarly for Mgus(E). A set of equations is in solved form
if it is of the form {x1=t1, ..., xn=tn} where all xi are distinct
and none of them occurs in any tj .

If σ ∈ Mgus(s, t), then for any renaming ρ by Corollary 3.3
ρ · σ ∈ Mgus(s, t). In fact, any element from Mgus(s, t) has this
form, as a consequence of Legacy 6.11:

Legacy 6.15 (equivalence of mgus). Let µ ∈ Mgus(E). Then
µ′ ∈ Mgus(E) iff there is a renaming ρ such that Vars(ρ) ⊆
Vars(µ) ∪Vars(µ′) and µ′ = ρ · µ.

Thus, the set Mgus(s, t) is either empty or infinite.14 As a meta-
function, Mgus has two pleasing properties: it is compatible with
renaming and it is compatible with LD-resolution.

Lemma 6.16 (renaming compatibility of Mgus). For every ρ and
E holds Mgus(ρ(E)) = ρ(Mgus(E)).

Proof. This follows from Theorem 5.24 and Corollary 3.3. Assume
σ ∈ Mgus(s, t), then ρ(σ)(ρ(s)) = ρ(σ(s)) = ρ(σ(t)) =
ρ(σ)(ρ(t)). Further, if θ is a unifier of ρ(s), ρ(t), then θ · ρ is a
unifier of s, t, hence there is a renaming δ with θ · ρ = δ ·σ, giving
θ = δ · σ · ρ−1 = δ · ρ−1 · ρ · σ · ρ−1 = (δ · ρ−1) · ρ(σ),
meaning ρ(σ) ∈ Mgus(ρ(E)). For the other direction, observe
θ = ρ · ρ−1 · δ · σ · ρ−1 = ρ(ρ−1 · δ · σ). ♦

Compatibility of Mgus with LD-resolution, also called iteration
property, is proved in (Apt 1997).

Legacy 6.17 (iteration for Mgus). 1. Let E1, E2 be sets of equa-
tions. If σ is a mgu of E1 and θ is a mgu of σ(E2), then θ · σ is
a mgu of E1 ∪ E2.

2. Moreover, if E1 ∪ E2 is unifiable, then there exists a mgu σ of
E1, and for each such σ there exists a mgu θ of σ(E2).

6.4.1 Unification by algorithm
For any two unifiable terms s, t holds that Mgus(s, t) is an infi-
nite set. On the other hand, any particular unification algorithm A
produces, for the given two unifiable terms, just one deterministic
value as their mgu. We shall denote this particular mgu of s and t
as A(s, t), the algorithmic (or concrete) mgu of s and t, produced
by algorithm A.

The task of unification was introduced and solved in (Robin-
son 1965). Another classical unification algorithm is (Martelli and
Montanari 1982), based on (Herbrand 1930), The algorithm is usu-
ally given in non-deterministic form, here denoted as Am2, but it
can be made deterministic using sequences instead of sets and pick-
ing the leftmost equation eligible for a rule application, as observed
in (Apt 1997, p. 36). The resulting algorithm shall be denoted Am2.

6.4.2 ... and iteration property
As opposed to Mgus , any particular unification algorithm like Am2

does not have to satisfy the iteration property. But the deterministic
version Am2 does.

Example 6.18 (no iteration for Am2). Let E1 ··= (x=y, y=x)
and E2 ··= (z=f(x)). If we pick the equation y=x for bind-
ing (denoted by underlining), we obtain E1 = {x=y, y=x}  
{x=x, y=x}  {y=x}  

(
y
x

)
=·· σ and σ(E2)  

(
z

f(x)

)
=··

θ. However, for unifying E1 ∪ E2 we may as well pick x=y
for binding, and get E1 ∪ E2 = {x=y, y=x, z=f(x)}  
{x=y, y=y, z=f(y)} 

(
x
y

z
f(y)

)
6= θ · σ.

Lemma 6.19 (iteration for Am2). Assume σ = Am2(E′) and
θ = Am2(σ(E′′)). Then Am2((E′, E′′)) = θ · σ.

Proof. By Legacy 6.17, we know that E′, E′′ is unifiable.
The deterministic version of Am2 transforms an equation se-

quence from left to right. This has the nice consequence that Am2

chooses the same equations to transform in E′ as in E′, E′′ for so

14 Because of the equivalence, the sloppy formulation ”the most general
unifier of s and t” is often used.
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long as E′ has not reached its solved form. The only interesting
steps here are binding steps. Underlined is the next candidate for
binding, which is afterwards shaded, to signify that this pair now
went ”passive”, i. e.it cannot be elected for further transformations
and may merely get its right-hand side further instantiated.

Am2((E′, E′′)) = Am2((x1=t1, E
′
1, E

′′))

= Am2((x1=t1 , σ1(E′1), σ1(E′′))

= Am2((x1=t1 , x2=t2, E
′
2, σ1(E′′)))

= Am2((σ2(x1=t1) , x2=t2 , σ2(E′2), σ2(σ1(E′′))))

= ... = Am2(( (σk · ... · σ2)(x1=t1) , ..., σk(xk−1=tk−1) , xk=tk,

(σk · ... · σ1)(E′′))) = Am2((x1=(σk · ... · σ2)(t1) , ...,

xk−1=σk(tk−1) , xk=tk, (σk · ... · σ1)(E′′)))

where σ1 =
(
x1
t1

)
, ..., σk =

(
xk
tk

)
. Here we made use of

x1 6∈ σ1(E′1) meaning x1 6./ σ2, and x1, x2 6∈ σ2(E′2) mean-
ing x1, x2 6./ σ3, etc., which are due to definition of binding steps.
Putting E′′ = �, we obtain solved form, hence

σ = Am2(E′) =

(
x1

(σk · ... · σ2)(t1)

...

...

xk−1

σk(tk−1)

xk
tk

)

=

(
xk
tk

)
·
(
xk−1

tk−1

)
· ... ·

(
x1
t1

)
= σk · ... · σ1

Consider now an arbitrary E′′. From the definition of binding
steps follows that x1, ..., xk 6./ (σk · ... · σ1)(E′′) = σ(E′′),
which shows that the pairs from the solved form for E′ remain
passive during the handling of σ(E′′). Thus, Am2((E′, E′′)) =
θm · ... · θ1 · σk · ... · σ1, where θ1, ..., θm stem from binding
steps for σ(E′′), and θ = Am2(σ(E′′)) = θm · ... · θ1. Overall,
Am2((E′, E′′)) = θ · σ, as hoped for. ♦

6.4.3 ... and renaming-compatibility
For freely choosable mgus, renaming-compatibility holds, as seen
in Lemma 6.16. But what if mgus are chosen by an algorithm? For
example, the simplest unification problem p(x) = p(y) has among
others two equally attractive candidate mgus, {x/y} and {y/x}.
Assume our unification algorithm decided upon {x/y}. Assume
further that we rename the protagonists and obtain the unification
problem p(x) = p(z). What mgu shall be chosen this time? To
ensure some dependability in this issue, we shall place on any
unification algorithm the following simple requirement.

Axiom 6.20 (renaming compatibility of A). Let A be a unification
algorithm. For any renaming ρ and any equation E, it has to hold
A(ρ(E)) = ρ(A(E)).

Since classical unification algorithms like Robinson’s and
Martelli-Montanari’s do not depend upon the actual names of vari-
ables15, this requirement is in praxis always satisfied.

Deterministic character of unification algorithms allows for
some predictability when applying a program clause on a query
in different ways, i. e. using different variants. This is expressed
in the first part of our next claim. The second part makes a con-
nection between any resolution for a query, and the one made with
algorithm A.

Lemma 6.21 (two input clauses). Assume a unification algorithm
A satisfying Axiom 6.20. Let G be a query and K and L be two
variants of the same program clause for G, each variable-disjunct
with G. Let λ ··= Pren(K,L). Then

15 as remarked in (Amato and Scozzari 2009)

1. there is A(G=Head(L)) = θ iff there is A(G=Head(K)) =

λ
−1

(θ)

2. K is effective onG with some mgu σ iff there is renaming ρ with
θ = ρ · λ(σ)

Additionally, if σ is relevant, then λ(σ) = λ(σ). If furthermore A
produces relevant mgus, then Vars(ρ) ⊆ Vars(G) ∪Vars(L).

Proof. For the first part, λ(A(G=Head(K))) = A(λ(G=Head(K)))
= A(λ(G)=λ(Head(K)))) = A(G=Head(L)), which is due
to Axiom 6.20, λ(G) = G and λ(K) = L. Hence, if θ ··=
A(G=Head(L)), then A(G=Head(K)) = λ

−1
(θ).

For the second part, note that σ and A(G=Head(K)) are two
mgus for the same unification task. Hence, by Legacy 6.15, there is
renaming δ with

Vars(δ) ⊆ Vars(σ) ∪Vars(A(G=Head(K))) (2)

such that A(G=Head(K)) = δ · σ. From λ
−1

(θ) = δ · σ we get
θ = λ(δ) · λ(σ). By assigning ρ ··= λ(δ) we obtain the claim.

It remains to consider relevance. If σ is relevant, Vars(σ) ⊆
Vars(K) ∪ Vars(G). On the other hand, Pit(λ) = Vars(L) \
Vars(K) and G 6./ L, hence Pit(λ) 6./ σ, meaning that λ(σ) is
defined and λ(σ) = λ(σ). Lastly, if both σ and A(G=Head(K))
are relevant, from (2) follows Vars(ρ) ⊆ Vars(G)∪Vars(L). ♦

Notation 6.22 (equivalent modulo prenaming). If for some prenam-
ing λ holds θ ∼ λ(σ), then we also write θ ∼λ σ.

With this notation, in the previous claim we would have had
θ ∼λ σ. Assuming relevant mgus, this can be further simplified to
θ ∼λ σ.
Remark 6.23. The relationship from Lemma 6.21 is symmetrical.
Let µ ··= Pren(L,K), then µ = λ

−1
(Lemma 5.6). From θ =

ρ · λ(σ) follows λ
−1

(ρ−1 · θ) = σ. By assigning δ ··= λ
−1

(ρ−1)
we obtain σ = δ · µ(θ), or σ ∼µ θ.

If θ is relevant, Vars(θ) ∈ Vars(G,L), so due to G 6./ K
and Pit(µ) = Vars(K) \ Vars(L) we have θ 6./ Pit(µ), thus
µ(θ) = µ(θ), and σ ∼µ θ.

6.5 Idempotence
Recall that a substitution θ satisfying the equality θ ·θ = θ is called
idempotent. Any two unifiable terms have an idempotent (and rel-
evant) most general unifier, as provided by classical unification al-
gorithms.
Remark 6.24 (idempotence is not compositional). As illustrated
by (Eder 1985), composition of two idempotent substitutions does
not have to be idempotent – not even equivalent to an idempotent
substitution. Example: σ ··=

(
x

f(y)

)
and θ ··=

(
y

f(z)

)
give

σ · θ =
(

x
f(y)

y
f(z)

)
.

However, θ · σ =
(

x
f(f(z))

y
f(z)

)
is idempotent. This is an

instance of a useful property from (Apt 1997).

Legacy 6.25 (two idempotence criteria). Let σ, θ be substitutions.

1. θ is idempotent iff Core(θ) ∩VarsRan(θ) = ∅.
2. Let σ and θ be idempotent. If VarsRan(θ) 6./ Core(σ), then
θ · σ is also idempotent.

The first criterion is quite intuitive: if the active domain and
the active range of a substitution σ have no variables in common,
then all the variables from the active domain shall be released from
the term t after the application of σ upon t. Therefore, a repeated
application of σ cannot change anything.
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By the unruly charm of substitutions,
(
x
y
y
x

)
is an mgu for

t = t, yet surely not the expected one. It is lucky that idempotency
prevents such surprises:

Lemma 6.26 (pertinence). If σ is idempotent and σ ∈ Mgus(t, t)
for some t, then σ = ε.

Proof. Since we know that ε ∈ Mgus(t, t), by Legacy 6.15 there
has to hold ε ∼ σ, so there is a renaming ρ such that ρ = ρ ·ε = σ.
If σ is idempotent, by Legacy 6.25 we know that Core(σ) ∩
VarsRan(σ) = ∅. The only renaming with this property is ε, since
for a renaming always holds Core = Ran (Legacy 3.4). ♦

It turned out that relevance is a mandatory property of an idem-
potent mgu (Apt 1997). This shall come in handy for subsec-
tion 7.2. We give a direct proof using witness term.

Legacy 6.27 (relevance). Every idempotent mgu is relevant.

Proof. Assume σ ∈ Mgus(E) is idempotent, but not relevant, i. e.
there is z ∈ Vars(σ) such that z 6∈ Vars(E). Let us show that
σ cannot be an mgu, by finding a unifier θ of E such that σ 6≤ θ.
Technically, we construct θ and a witness term w such that for no
δ can hold δ(σ(w)) = θ(w), as outlined in Corollary 6.9.

Case z ∈ Core(σ): Here we choose θ ··= σ�−z . If σ is an
idempotent unifier of E, then so is θ (Legacy 6.25).

Subcase 1: σ(z) = g is ground. Since θ(z) = z, the witness
can be w ··= z (shrinkage). Subcase 2: σ(z) contains a variable,
say x, pictured as σ(z) = x . Due to idempotency of σ, holds
x 6∈ Core(σ), so x 6= z. We get σ([x, z]) = [x, x ], whereas
θ([x, z]) = [x, z] = [x, 6x ]. So with w ··= [x, z] we have
divergence (if σ(z) = x) or shrinkage (otherwise).

Case z 6∈ Core(σ), but z ∈ Ran(σ): There is x ∈ Core(σ)
(and therefore x 6= z) such that σ(x) = z . Here we take θ to
be an idempotent and relevant mgu of E (e. g. the outcome of a
classical unification algorithm). Due to relevance, z 6∈ θ(x). We get
σ([z, x]) = [z, z ], whereas θ([z, x]) = [z, 6z ] (divergence). ♦

6.6 Restriction
Remark 6.28 (restriction is not compositional). In general, (σ ·
θ)�W = σ�W · θ�W does not hold. Take θ ··=

(
x
y

)
, σ ··=

(
y
a

)
,

W ··= {x}. Then σ · θ =
(
y
a

)
·
(
x
y

)
=
(
x
a
y
a

)
, (σ · θ)�W =

(
x
a

)
,

but on the other hand, σ�W = ε, θ�W = θ, σ�W · θ�W =
(
x
y

)
.

On the plus side, restriction is renaming-compatible: ρ(σ�W ) =
ρ(σ)�ρ(W ). Also, by Legacy 6.25, any restriction of an idempotent
substitution is itself idempotent.

7. Claims for logic programming systems
Looking for the meaning of logic programming, there are three lev-
els to consider: logical level, which is Horn-clause logic (HCL) and
its extensions; proof method, based on SLD-resolution, for han-
dling the question of logical consequence for HCL; and implemen-
tation level, which uses fixed algorithms for mgu, standardization-
apart and search. The first two levels have been extensively stud-
ied and it is known that SLD-resolution and its special case LD-
resolution are handling the question of logical consequence in a
sound and complete way for HCL. The third level is by its nature
more a subject of technical than of theoretical interest. The latter
seems to have culminated in the assertion that the usual search strat-
egy of Prolog, depth-first search, is incomplete. Yet, it is our belief
that there is an interesting theoretical side to the logic programming
systems as well.

7.1 Compatibility claims: partly preserved
Implementing logic programming means that the freedom of Horn
clause logic must be restrained:

• most general unifier is provided by a fixed algorithm A

• standardization-apart is provided by a fixed algorithm S

7.1.1 Renaming-compatibility
If we have an SLD-derivation, it is now not possible to just rename
it wholesale (the resolvents, the mgus, the input clauses), which
was possible in Horn clause logic, by virtue of Corollary 3.3. This
is because the two fixed algorithms do not have to be renaming-
compatible – in fact, the second one cannot be.

To see this, assume a standardization-apart algorithm has for
the query G ··= p(X ,Y ) at the tip of a derivation D assigned
the input clause K ··= ”p(U ,V )← q(U ,W ).”. With renam-
ing ρ =

(
U
W

W
U

)
, and assuming the algorithm is renaming-

compatible, the query ρ(G) = G at the tip of the derivation
ρ(D) = D would need to be assigned the input clause ρ(K) =
”p(W ,V )← q(W ,U ).”. But already something else has been
assigned to it.

As a consequence, the handling of local variables (subsec-
tion 7.2) shall require some more attention.

7.1.2 Resolution-compatibility (”iteration property”)
As seen in subsubsection 6.4.1, Am2 does not but Am2 does satisfy
the iteration property. The iteration property (or resolution com-
patibility) states that the particular unification algorithm works the
same as the LD-resolution algorithm on a sequence of equations
represented via predicate eq/2 defined as ”eq(X ,X ).”.

Iteration property is important for compositional formal seman-
tics of logic programming like S1:PP.

7.2 Variant lemma revisited
For logic programming implementations complying with Ax-
iom 6.20 and yielding relevant mgus, that is to say for all of them,16

a propagation result can be proved, which leads to a constructive
and incremental version of the variant lemma.

Assume the program ”son(S)← male(S), child(S ,P).”,
and let us enquire about son in two derivations (Table 1). If we
know that one query, say son(X ), is a variant of the other, son(A),
does the same connection hold between the resolvents as well?

As can be seen from Table 1, in a resolution some new vari-
ables may crop up, originating from standardization-apart in cases
where the clause body has variables not present in the head. For the
purposes of this paper let us call them local variables, as opposed
to query variables. Were it not for local variables, the resolvents
in both derivations would clearly be variants, with the same pre-
naming as for the original queries. Yet, even though the variables
new in one derivation do not have to be new in the other (Table 1),
at least the prenaming can be extended to accomodate those local
variables. The claim is proved in a constructive manner.

query

son(X )
son(A)

input clause

son(B)← male(B), child(B ,A).
son(X )← male(X ), child(X ,B).

resolvent

male(X ), child(X ,A)
male(A), child(A,B)

Table 1. Resolution may produce local variables

16 Classical unification algorithms not only satisfy Axiom 6.20 but
also yield idempotent mgus. Idempotent mgus are always relevant
(Legacy 6.27).
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Lemma 7.1 (propagation of variance). Assume a unification algo-
rithm A satisfying Axiom 6.20. Assume an SLD-derivation D end-
ing with G and an SLD-derivation D′ ending with G′ such that
α(G) = G′ for some prenaming α which is complete for G and
relevant for D to D′.

Further assume that G ↪−.K :σ H and G′ ↪−.K′ :σ′ H ′ such
that in G and G′ atoms in the same positions were selected and
K,K′ are variants of the same program clause. Lastly assume that
σ is a relevant mgu. Then for λ ··= Pren(K,K′) holds

1. α ] λ is complete for H

2. α ] λ is relevant for D ↪−.K :σ H to D′ ↪−.K′ :σ′ H ′

3. σ′ = (α ] λ)(σ) and H ′ = (α ] λ)(H)

The claim can be summarized in Figure 4, and the rôle of
relevance in Figure 5.

G
↪−.−−−−−→ H

α

yα]λ
yα]λ

G′ −−−−−→
↪−.

H ′

Figure 4. Propagation of variance

son(X )
↪−.−−−−−→ male(X ), child(X ,A)

yα=(X
A

A
C )

yα] ?

son(A) −−−−−→
↪−.

male(A), child(A,B)

Figure 5. ...is not always possible

Proof. First let us establish that α ] λ is defined. Due to relevance
of α for D,D′,

C(α) ⊆ Vars(D) and R(α) ⊆ Vars(D′) (3)

Due to standardization-apart, K 6./ D and K′ 6./ D′, hence

C(λ) 6./ D and R(λ) 6./ D′ (4)

Thus C(α) 6./ C(λ) and R(α) 6./ R(λ), so α ] λ is defined. Also,
(4) proves that λ is passive on old variables, i. e. λ(D) = D.

LetG ··= (M, A,N) andH ··= σ(M, B,N), where M,N are
conjunctions. Then G′ = (M′, A′,N′) = (α(M), α(A), α(N)).

Let K : A1 ← B1 and K′ : A2 ← B2. Then σ = A(A,A1),
B = σ(B1) and σ′ = A(A′, A2), B′ = σ′(B2). Also,

Vars(M, A,N) ⊆ C(α), by completeness of α for G (5)
Vars(K) = Vars(A1, B1), by definition of λ (6)
Vars(σ) ⊆ Vars(A) ∪Vars(A1), by relevance of σ (7)

Having thus fielded all the assumptions, we obtain

Vars(M, A,N) ⊆ InDom(α ] λ), by (5) and Theorem 5.17
(8)

Vars(A1, B1) ⊆ InDom(α ] λ), by (6) and Theorem 5.17 (9)
Vars(σ) ⊆ InDom(α ] λ), by (7), (8) and (9) (10)

(α ] λ)(σ) = (α ] λ)(σ), by (10) (11)

Proof of 3:

σ′ = A(A′, A2) = A(α(A), λ(A1))

= A((α ] λ)(A), (α ] λ)(A1)), by (5), (6) and Theorem 5.17

= A((α ] λ)(A), (α ] λ)(A1)), by (8) and (9)

= (α ] λ)(A(A,A1)), by Axiom 6.20

= (α ] λ)(σ) = (α ] λ)(σ), by (11)

B′ = σ′(B2) = (α ] λ)(σ)(λ(B1))

= (α ] λ)(σ)((α ] λ)(B1)), by (6) and Theorem 5.17
= (α ] λ)(σ(B1)), by Theorem 5.24
= (α ] λ)(B)

H ′ = σ′(α(M), B′, α(N))

= (α ] λ)(σ)(α(M), (α ] λ)(B), α(N))

= (α ] λ)(σ)((α ] λ)(M), (α ] λ)(B), (α ] λ)(N)), by (5)
= (α ] λ) · σ(M, B,N), by Theorem 5.24
= (α ] λ)(H)

Proof of 2: By definition, C(λ) = Vars(K) and R(λ) =
Vars(K′). Hence, and due to relevance of α, C(α ] λ) =
C(α) ] C(λ) ⊆ Vars(D) ∪ Vars(K) ⊆ Vars(D ↪−.K :σ H).
Similarly, R(α ] λ) ⊆ Vars(D′ ↪−.K′ :σ′ H ′), therefore α ] λ is
relevant for D ↪−.K :σ H to D′ ↪−.K′ :σ′ H ′.

Proof of 1: By (5) and (6), Vars(H) ⊆ Vars(G) ∪ Vars(K) ⊆
C(α)∪C(λ) = C(α]λ), meaning α]λ is complete for H . ♦

Definition 7.2 (similarity). SLD-derivations of the same length
G ↪−.K1 :σ1 G1 ↪−.K2 :σ2 ... ↪−.Kn :σn Gn

G′ ↪−.K′
1 :σ′

1
G′1 ↪−.K′

2 :σ′
2
... ↪−.K′

n :σ′
n
G′n

(12)

are similar if G and G′ are variants and additionally at each step i
holds: atoms in the same position are selected, and the input clauses
Ki and K′i are variants of the same program clause.

That the name ”similarity” is justified, follows from the claim
known as variant lemma ((Lloyd 1987), (Lloyd and Shepherdson
1991), (Apt 1997)), here in the formulation from (Doets 1993).

Legacy 7.3 (variant). Finite derivations which are similar and start
from variant queries have variant resultants.

For logic programming systems obeying Axiom 6.20 and rele-
vance of mgu, a more precise claim can be proved.

The added assumptions (the axiom and relevance) are practi-
cally void (see footnote on page 10), yet the added conclusion has
substance: first, renaming a query costs a degree of freedom – if we
treat the two variants of the program clause at each step as indepen-
dent, then the two mgus are not independent. Second, the precise
variance is now known.

Theorem 7.4 (variant claim for logic programming systems). As-
sume a unification algorithm A satisfying Axiom 6.20 and yielding
relevant mgus. Then:

• finite SLD-derivations which are similar and start from variant
queries have variant partial answers
• the variance depends only on the starting queries and input

clauses.

In particular, assume our similar derivations to be as in (12). Then
for every i = 1, ..., n holds G′i = βi(Gi), σ

′
i = βi(σi) and σ′i ·

... · σ′1 = βi(σi · ... · σ1), where βi ··= α ] λ1 ] ... ] λi, α ··=
Pren(G,G′) and λi ··= Pren(Ki,K′i).
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Proof. By assumption, G and G′ are variants, so

α ··= Pren(G,G′) (13)

exists. Clearly, α is complete for G, since Vars(G) = C(α). By
construction, α is also relevant for D0 ··= G to D′0 ··= G′.

We may iterate Lemma 7.1, obtaining for every i = 1, ..., n

σ′i = (α ] λ1 ] ... ] λi)(σi) (14)

G′i = (α ] λ1 ] ... ] λi)(Gi) (15)

where λi ··= Pren(Ki,K′i). Therefore, σ′i · σ′i−1 · ... · σ′1 =
(α]λ1]...]λi)(σi)·(α]λ1]...]λi−1)(σi−1)·...·(α]λ1)(σ1).

Let k < i. Since Vars(σk) ⊆ Vars(G) ∪ Vars(K1) ∪ ... ∪
Vars(Kk) ⊆ C(α)∪C(λ1)∪ ...∪C(λk) = C(α]λ1] ...]λk),
by Theorem 5.17 α ] λ1 ] ... ] λk ] ... ] λi is safe for σk and
(α]λ1] ...]λk] ...]λi)(σk) = (α]λ1] ...]λk)(σk). Hence,

(α ] λ1 ] ... ] λi−1)(σi−1) = (α ] λ1 ] ... ] λi)(σi−1)

...

(α ] λ1)(σ1) = (α ] λ1 ] ... ] λi)(σ1)

(16)

α(G) = (α ] λ1 ] ... ] λi)(G) (17)

Let us abbreviate βi ··= α] λ1 ] ...] λi. Then from (14) and (16)
by Theorem 5.25

σ′i·σ′i−1·...·σ′1 = βi(σi)·βi(σi−1)·...·βi(σ1) = βi(σi·σi−1·...·σ1)
(18)

which is the promised connection between partial answers.
Clearly, variance of partial answers means variance of complete

answers, and c.a.s. and resultants as well: For the cases when
Gn = �, we obtain, by (18), the expected relationship between
the respective complete answers: σ′n · ... · σ′1 = βn(σn · ... · σ1). A
c.a.s. differs from our complete answer by the added restriction on
the query variables. Due to renaming-compatibility of restriction,
(18) and βn(G) = α(G) = G′, we obtain σ′n · ... · σ′1�G′ =
βn(σn · ... ·σ1�G), i. e. the same relationship. Finally, knowing that
the resultant of step i is Ri ··= (σi · ... · σ1(G)← Gi), we obtain

R′i = (σ′i · ... · σ′1(G′)← G′i)

= βi(σi · ... · σ1)(α(G))← βi(Gi), by (18), (13) and (15)
= βi(σi · ... · σ1)(βi(G))← βi(Gi), by (17)
= βi((σi · ... · σ1)(G))← βi(Gi) = βi(Ri), by Theorem 5.24

♦
Example 7.5 (similarity). Assume the program

son(S)← male(S), child(S, P ). % K̄1

male(c). male(d). child(a, d). % K̄2, K̄3, K̄4

An interpreter for LD-resolution may produce derivations

son(A) ↪−.K1 :σ1 male(A), child(C ,A) ↪−.K2 :σ2 child(C , d)

son(B) ↪−.K′
1 :σ′

1
male(B), child(D ,B) ↪−.K′

2 :σ′
2
child(D , d)

They are obviously similar, with K1 = K̄1[X,C], K′1 =
K̄1[Y,D], K2 = K′2 = K̄3. The variables X,Y stand for ac-
tually used variables, which cannot be deduced from the form of
derivations. From the queries, input clauses and resolvents we can
further deduce relevant mgus σ1 =

(
X
A

)
, σ′1 =

(
Y
B

)
, σ2 =

(
A
d

)

and σ′2 =
(
B
d

)
. The mappings are α =

(
A
B

)
, λ1 =

(
X
Y
C
D

)
and

λ2 = ε. Clearly, they fulfill (α ] λ1)(male(A), child(C ,A)) =
male(B), child(D ,B) and (α]λ1)(

(
B
A

)
) =

(
C
B

)
, also (α]λ1]

λ2)(child(C , d)) = child(D , d), and so on.
Observe that in step 1′ there is a relevant mgu

(
B
Y

)
as well, but

even without knowing the resolvent, we know that
(
B
Y

)
couldn’t

have been employed, due to renaming compatibility of the inter-
preter’s unification algorithm.

8. Outlook
There are two main contributions in this paper, the concept of pre-
naming and an algorithm for term matching. By relaxing the core
representation and forgoing permutation requirement for renaming,
the concept of prenaming is obtained. Its use for incremental claims
concerning implemented logic programming systems like propaga-
tion of variance is shown (Lemma 7.1, Theorem 7.4). There, pre-
namings made it possible to keep track of local variables in an
incremental fashion. Relaxed core representation is also used for
a novel term matching algorithm, Algorithm 6.1, that solves the
problem of checking substitution generality.
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Université de Paris, 1930. Dated Apr 14, 1929.
G. Huet. Résolution d’équations dans des langages d’ordre 1,2,...,ω. PhD

thesis, Paris VII, 1976.
D. Jacobs and A. Langen. Static analysis of logic programs for independent

AND parallelism. J. Logic Programming, 13(2-3):291 – 314, 1992.
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