
1

Formal Design of an Abstract Machine for Constraint Logic
Programming

Christoph Beierlea

aFachbereich Informatik, Fernuniversität Hagen, D-58084 Hagen, Germany
e-mail: Christoph.Beierle@fernuni-hagen.de

Abstract: By studying properties of CLP over an unspecified constraint domain X one obtains

general results applicable to all instances of CLP(X ). The purpose of this paper is to study a

general implementation scheme for CLP(X ) by designing a generic extension WAM(X ) of the

WAM and a corresponding generic compilation scheme of CLP(X ) programs to WAM(X ) code

which is based on Börger and Rosenzweig’s WAM specification and correctness proof. Thus,

using the evolving algebra specification method, we obtain not only a formal description of our

WAM(X ) scheme, but also a mathematical correctness proof for the design.∗

Keyword Codes: D.1.6, F.3.1
Keywords: Logic Programming, Specifying and Verifying about Programs

[To appear in: B. Pehrson, I. Simon (eds): Proceedings of the IFIP Congress 94,

Elsevier, Amsterdam, 1994]

1. INTRODUCTION

Recently, Gurevich’s evolving algebra approach has not only been used for the descrip-
tion of the (operational) semantics of various programming languages (Modula-2, Occam,
Prolog, Prolog III, Smalltalk, Parlog, C; see [9]), but also for the description and analysis
of implementation methods: Börger and Rosenzweig [6] provide a mathematical elabora-
tion of Warren’s Abstract Machine [14,1] for executing Prolog. The description consists of
several refinement levels together with correctness proofs, and a correctness proof w.r.t.
Börger’s phenomenological Prolog description [5]. Based on Börger and Rosenzweig’s
WAM description, [2] provides a mathematical specification of the PAM, a WAM exten-
sion to type-constraint logic programming, and proves its correctness w.r.t. PROTOS-L,
a logic programming language with polymorphic order-sorted types [4]. [7] extends the
correctness proof in [6] to the compilation of CLP(R) programs to the Constraint Logic
Arithmetic Machine (CLAM) [12], [11]. These approaches demonstrate how the evolving
algebra approach naturally allows for modifications and extensions in the description of
both the semantics of programming languages as well as in the description of implemen-
tation methods.

However, both [2] and [7] aim at the specification and verification of specific systems
that are within the constraint logic programming paradigm. CLP(R) is a particular
instance (by arithmetic constraints over the real numbers) of CLP [10], a framework for
constraint handling in logic programming; similarly, the type constraints of PROTOS-L

∗Acknowledgements: I am most grateful to Egon Börger for many fruitful and encouraging discussions;
the research reported here has profited very much from our joint work described in [2] and [3].



2

could be seen as an instance CLP(T YPE). On the other hand, many other approaches to
constraint logic programming can be seen as instances of CLP. E.g., Trilogy [13] could be
viewed as CLP(Z), or Prolog III [8] could be viewed as instantiating CLP by constraints
over boolean and rational terms. Thus, by studying properties of CLP over an unspecified
constraint domain X (denoted by CLP(X ) in the sequel) one obtains general results
applicable to all instances of CLP(X ). The purpose of this paper is to study a general

implementation scheme for CLP(X ) by designing a generic extension WAM(X ) of the
WAM and a corresponding generic compilation scheme of CLP(X ) programs to WAM(X )
code. Based on the mathematical WAM specification and correctness proof in [6], we
extend the work of [2] to general constraints. Thus, we obtain not only a formal description
of our WAM(X ) scheme, but also a mathematical correctness proof for the design.

Although in this paper we keep the domain X of constraints abstract, we will provide
one further step of reuse of logic programming and WAM technology (and of the evolving
algebra specification of [6] as well). Since a constraint solver for X also gives us a constraint
solver for equational constraints in TΣ(X ), the algebra of freely generated terms over X ,
we will consider such constraints over TΣ(X ). The equational constraint solving part
will be done by term unification properly extended to interface with the (non-equational)
constraint solver over X . An important aspect of this paper will thus be the exact
specification of the interaction between the unification part (which will be refined down
to the basic WAM level, representing one of the major WAM principles) and the - still
abstract - general constraint solver. For notational convenience we will, however, stick to
the names CLP(X ) and WAM(X ). Furthermore, we assume that the reader is familiar
with the WAM and the WAM specification given in [6]. For further details of the WAM(X )
specification we refer to [3].

2. AN ABSTRACT NOTION OF CONSTRAINTS

The basic universes and functions in CLP(X ) algebras dealing with terms and sub-
stitutions are taken directly from the standard Prolog algebras. For a formalization of
constraints - in the spirit of constraint logic programming - we introduce a new abstract
universe X-CONSTRAINT, connected to terms via the function

dom: X-CONSTRAINT → VARIABLE ∗

yielding all variables occurring in an X-CONSTRAINT, called the domain of a constraint.
Constraints are then defined as equations or (X-)constraints, i.e.

CONSTRAINT ⊆ EQUATION ∪ X-CONSTRAINT

Let CSS denote the set of all sets of constraints together with nil ∈ CSS denoting an
inconsistent constraint system. The unifiability notion of ordinary Prolog is now replaced
by a more general (for the moment abstract) constraint solving function:

solvable: CSS → BOOL

telling us whether the given constraint system is solvable or not. From every (solution of
a) solvable constraint system we can extract a substitution part. Thus, we introduce a
function

solution: CSS → SUBST × CSS ∪ {nil}

where solution(CS) = nil iff solvable(CS) = false. For the trivially solvable empty
constraint system we have solution(∅) = (∅,∅) and the functions



3

subst part: CSS → SUBST

cs part: CSS → CSS

are the two obvious projections of solution. Since we want to consider equational con-
straints over the term algebra TΣ(X ) freely generated over X , we have to express that in
solution(CS) = (s,c) the two solution components s and c are compatible with this
requirement. That is, either the domains of s and c are disjoint, or, if a variable x is
in both domains, in the substitution part it can only be identified with another variable
since as a constraint variable it must still be a free variable. Thus we require:

if solution(CS) = (s,c) 6= nil then
∀ x ∈ dom(s) ∩ dom(c) . ∃ y ∈ VARIABLE .

x
.
= y ∈ s and, if y ∈ dom(c), then x = y in any interpretation of c.

Having refined the notions of unifiability and substitution to constraint solvability and
(solvable) constraint system, respectively, we can now also refine the related notion of
substitution result to terms with constrained variables. The latter involves three argu-
ments:

1. a term t to be instantiated,
2. constraints for the variables of t (and possibly other variables) given by ct , and
3. a constraint system CS (containing in general also a substitution part) to be applied.

Since a CS-solution consists of an ordinary substitution sCS together with constraints cCS
via solution(CS) = (sCS, cCS), the result of the constraint application can be intro-
duced by

conres(t, ct, CS) = (t1, c1)

as a pair consisting of the instantiated term t1 and constraints c1. For this function

conres: TERM × CSS × CSS → TERM × CSS ∪ {nil}

we impose the following integrity constraints:

∀ t ∈ TERM, ct ∈ CSS, CS ∈ CSS .

if solvable(ct ∪ CS) then
conres(t, ct, CS) = (t1, c1)

where:
t1 = subres(t,subst part(ct ∪ CS))

c1 = cs part(ct ∪ CS)

else
conres(t, ct, CS) = nil

Thus, the condition that a constraint system CS “can be applied” to a term t with
variables constrained by ct means that ct is compatible with CS, i.e. solvable(CS ∪
ct) = true.

3. CLP(X ) ALGEBRAS WITH COMPILED AND / OR STRUCTURE

As our starting point we can take CLP(X ) algebras with compiled AND/OR structure.
This is motivated by the fact that the constraint mechanism is orthogonal both to the
compilation of the predicate structure (OR structure) as well as to the compilation of
the clause structure (AND structure). Leaving the notion of terms and substitutions as
abstract as in 2, we can use the compiled AND/OR structure development for Prolog



4

in [6] which was also used for PROTOS-L in [2] and for CLP(R) in [7]. Essentially we
just have have to replace substitutions (resp. substitutions with type constraints) by the
more general constraint systems, where the new instruction add constraint enlarges the
current constraint system accumulated so far.

4. TERM REPRESENTATION

The representation of terms and substitutions in the WAM(X ) can be introduced in
several steps. Following the development in [6] we first introduce the treatment of the
low-level run-time unification but we keep the (non-equational) constraints completely
abstract. Thus, in the WAM(X ) algebras to be developed here we introduce a 0-ary
function xcs holding the current non-substitutional constraint system accumulated so
far. The only deviation from the WAM’s resp. PAM’s term representation is that we
want to distinguish between data area locations l representing free variables with no
constraints at all (tag(l) = VAR) and free constrained variables (tag(l) = CVAR).

4.1. Unification
Low-level unification in the WAM(X) can be carried out as in the WAM (see [1]) if

we refine the bind operation into one that takes into account also the constraints of the
variables (see [4] for the case of type constraints). The bind operation may thus also
fail and initiate backtracking if the constraints are not satisfied. Thus, we can use the
treatment of unification as described in [6], while leaving the bind operation abstract for
the moment, not only in order to postpone the discussion of occur check and trailing but
also to stress the fact that the bind operation will take care of the constraints for the
variables. For the abstract bind update we impose the following modified

BINDING CONDITION 1: For any l1, l2, l ∈ DATAARRA with unbound(l1),
with term, term’ values of term(l) before and after execution of bind(l1,l2), we have:
If

xcs’ = xcs ∪ {mk var(l1)
.
= term(l2)}

is solvable, then term’ = conres(term, xcs’) and cs part(xcs’) will be the new value
of xcs; otherwise backtracking will be executed.

With this generalized binding assumption we easily obtain a correspondingly modified
unification lemma, expressing the effect of the unify(l1,l2) update.

4.2. Getting of terms
Whereas the compilation of body goals and the required term creation by putting

instructions does not involve unification and thus remains unchanged, the getting of
terms does involve unification. Parts of it are compiled into the getting instructions
(like get structure followed by a sequence of unify instructions) and the remaining
unification tasks are handled by the low-level unify procedure.

The get value, unify value, and unify variable instructions are as in the WAM or
the PAM case. The first get structure rule for WAM(X ) is still as before, covering the
situation when in get structure(f,xi) xi is bound to a non-variable term. When xi is
unbound, it must be bound to a newly created term with top-level symbol f. Whereas in
the WAM this will always succeed, in the WAM(X ) case a possible constraint of xi must
be taken into account:



5

if RUN

& code(p) = get structure(f,xi)

& unbound(deref(xi))

& NOT(constrained(xi)) | constrained(xi)

then

h ← <STRUC,h+> | backtrack

bind(deref(xi),h) |

val(h+) := f |

h := h++ |

mode := Write |

succeed |

The Getting Lemma now takes into account the constraint system accumulated in xcs.

4.3. Putting of Constraints
The compile function is refined to issue a new put constraint instruction (for realiza-

tion of add constraint of Section 3):

if RUN & code(p) = put constraint(C)

then addtoxcs(ρ(C))

where ρ is the variable renaming substitution {Yi

.
= mk var(yi) | i=1,. . . ,l},

vars(C) = {Y1,. . . ,Yl}, and where the crucial addtoxcs update must satisfy the
ADD CONSTRAINT CONDITION: For any l ∈ DATAAREA with term, term’

values of term(l) before and after execution of addtoxcs(C) we have: If xcs’ = xcs

∪ {C} is solvable then term’ = conres(term,xcs’) and cs part(xcs’) will be the new
value of xcs, and any of the variables in vars(C) will be tagged as a constraint variable
(i.e. constrained(deref(yi)); otherwise backtracking will be executed.

5. CLP(X ) ALGEBRAS

5.1. Environment and Choicepoint Representation
The stack of states and environments of CLP(X ) algebras remains unchanged except

that we extend the choice point information by a location xcs(l) ≡ l - 6 to hold the
current (non-equational part of the) constraint system. It is stored in the stack when a
new choice point is created (by executing a try me else or try instruction) and retrieved
when updating or removing a choice point (by a retry[ me else] or trust[ me else]

instruction).

5.2. Trailing
Trailing is done exactly as in the PAM, i.e. compared to the WAM not only the location

l but also its value val(l) is trailed and recovered upon backtracking, ensuring that VAR
and CVAR tags are restored correctly. While still leaving the binding update abstract, we
pose the following

TRAILING CONDITION: Let l1, l2, l ∈ DATAAREA, C ∈ CSS. If val(l)

before execution of bind(l1,l2) (resp. addtoxcs(C)) is different from val(l) after suc-
cessful execution of bind(l1,l2) (resp. addtoxcs(C)), then the location l has been
trailed with trail(l).

For the WAM(X ) algebras developed so far from CLP(X ) algebras with compiled
AND/OR structure we can now generalize the “Pure Prolog Theorem” of [6].



6

5.3. Additional WAM optimizations in the WAM(X )
Environment trimming and last call optimization (LCO) are among the most prominent

optimizations in the WAM; other crucial points in the WAM design is the classsification
of variables into temporary and permanent variables, as well as their initialization “on
the fly”, or the indexing methods. For a discussion of these aspects we refer to [1] and
[6]. In the case of type constraints we showed in [2] how the treamtment of these WAM
optimizations in [6] carried over to the PAM, including the realization of the Cut operator.
The same argumentation applies to the WAM(X ) extension since no constraint related
actions are involved, allowing us to extend the correctnes theorems of [6] to the full
WAM(X ) with all WAM characteristics like environment trimming, LCO, or indexing.

REFERENCES

1. H. Aı̈t-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press, Cam-
bridge, MA, 1991.

2. C. Beierle and E. Börger. Correctness proof for the WAM with types. In E. Börger, H. Kleine
Büning, G. Jäger, and M. M. Richter, editors, Computer Science Logic - CSL’91, volume
626 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1992.

3. C. Beierle and E. Börger. Evolving algebra specification of an abstract machine for constraint
logic programming. Technical Report, FernUniversität Hagen, 1994. (to appear).

4. C. Beierle and G. Meyer. Run-time type computations in the Warren Abstract Machine.
The Journal of Logic Programming, 18(2):123–148, February 1994.

5. E. Börger. A logical operational semantics of full Prolog. Part I. Selection core and control.
In E. Börger, H. Kleine Büning, and M. M. Richter, editors, CSL’89 - 3rd Workshop on

Computer Science Logic, volume 440 of Lecture Notes in Computer Science, pages 36–64.
Springer-Verlag, Berlin, 1990.

6. E. Börger and D. Rosenzweig. The WAM - definition and compiler correctness. In C. Beierle
and L. Plümer, editors, Logic Programming: Formal Methods and Practical Applications,
Studies in Computer Science and Artificial Intelligence. North-Holland, 1994. (to appear).

7. E. Börger and R. Salamone. CLAM specification for provably correct compilation of CLP(R)
programs. In E. Börger, editor, Specification and Validation Methods for Programming

Languages and Systems. Oxford University Press, 1994. (to appear).
8. A. Colmerauer. An introduction to Prolog-III. Communications of the ACM, 33(7):69–906,

July 1990.
9. Y. Gurevich. Evolving algebras. A tutorial introduction. EATCS Bulletin, 43, February

1991.
10. J. Jaffar and J.-L. Lassez. Constraint logic programming. In Proceedings of the 14th ACM

Symposium on Principles of Programming Languages, pages 111–119. ACM, January 1987.
11. J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. An abstract machine for CLP(R). Technical

report, IBM Research Devision, 1992.
12. J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The CLP(R) language and system. ACM

TOPLAS, pages 339–395, July 1992.
13. P. Voda. The constraint language Trilogy. Technical report, Complete Logic Systems, North

Vancouver, BC, Canada, 1988.
14. D. H. D. Warren. An Abstract PROLOG Instruction Set. Technical Report 309, SRI, 1983.


