
slightly modified version appeared in:

Formal Aspects of Computing, Vol. 8(5), pp. 539–564, 1996

Refinement of a typed WAM extension
by polymorphic order-sorted types∗

Christoph Beierle1 and Egon Börger2

1Fachbereich Informatik, FernUniversität Hagen, D-58084 Hagen, Germany; 2Dipartimento
di Informatica, Università di Pisa, Corso Italia 40, I-56100 Pisa, Italia

Keywords: Constraint logic programming, WAM, types, polymorphism, order-
sorted types, correctness proof, evolving algebras

Abstract. We refine the mathematical specification of a WAM extension to type-
constraint logic programming given in [BB96]. We provide a full specification and
correctness proof of the PROTOS Abstract Machine (PAM), an extension of the
WAM by polymorphic order-sorted unification as required by the logic program-
ming language PROTOS-L, by refining the abstract type constraints used in
[BB96] to the polymorphic order-sorted types of PROTOS-L. This allows us to
develop a detailed and mathematically precise account of the PAM’s compiled
type constraint representation and solving facilities, and to extend the correct-
ness theorem to compilation on the fully specified PAM.

1. Introduction

In [BR95] a mathematical elaboration of Warren’s Abstract Machine ([War83],
[AK91]) for executing Prolog is given, coming in several refinement levels together
with correctness proofs, and a correctness proof w.r.t. Börger’s phenomenological
Prolog description [Bör90]. In [BB96] we demonstrated how the evolving algebra
approach naturally allows for modifications and extensions in the description
of both the semantics of programming languages as well as of implementation

Address for correspondence: Christoph Beierle, Fachbereich Informatik, LG Praktische In-
formatik VIII, FernUniversität Hagen, Bahnhofstr. 48, D-58084 Hagen, Germany; e-mail:
christoph.beierle@fernuni-hagen.de
∗ The first author was partially funded by the German Ministry for Research and Technology
(BMFT) in the framework of the WISPRO Project (Grant 01 IW 206). He would also like to
thank the Scientific Center of IBM Germany where the work reported here was started.

2 C. Beierle and E. Börger

methods. Extending Börger and Rosenzweig’s WAM description, [BB96] pro-
vides a mathematical specification of a WAM extension to type-constraint logic
programming and proves its correctness.

The reason that types are dealt with at the abstract machine level is that
the extension of logic programming by types requires in general not only static
type checking, but types may also be present at run time (see e.g. [MO84],
[Han91], [Smo89]). In the presence of types and subtypes, restricting a variable
to a subtype represents a constraint in the spirit of constraint logic programming.
PROTOS-L [Bei92], is a logic programming language that has a polymorphic,
order-sorted type concept (similar to the slightly more general type concept of
TEL [Smo88]) and a complete abstract machine implementation, called PAM
[BM94] that is an extension of the WAM by the required polymorphic order-
sorted unification. Our aim is to provide here a full specification and correctness
proof of the PAM, including extra-logical features and all WAM optimizations
(like environment trimming and last call optimization), as well as PAM specific
optimizations (like refined variable representation or switch on typed variables).

In [BB96] the notion of type constraints was deliberately kept abstract, in
order to be applicable to a range of constraint formalisms such as Prolog III or
CLP(R). Consequently, also on the abstract machine level, the type contraint
solving parts had to be kept abstract. In this paper we refine these abstract type
constraints to the polymorphic order-sorted types of PROTOS-L. We do this
again in several refinement steps. This allows us to develop a detailed and math-
ematically precise account of the PAM’s compiled type constraint representation
and solving facilities, and to prove its correctness w.r.t. PROTOS-L.

Section 2 introduces the representation and constraint solving of monomor-
phic, order-sorted type constraints. Section 3 contains some type-specific opti-
mizations of the PAM, which yields a situation where the WAM comes out as a
special case of the PAM for any program not exploiting the advantages of dy-
namic type constraints. Section 4 gives a detailed account of polymorphic type
constraint representation and solving in the PAM. Since this paper is a direct
sequel to [BB96], we assume the reader to be familiar with it and refer to it for
unexplained definitions and notations and for further references to the literature.

2. PAM algebras with monomorphic type constraints

2.1. Binding

We start with a first refinement of the binding update which will take into ac-
count the bind direction, occur check, and trailing, while the type constraints
still remain abstract. We introduce two new 0-ary functions arg1, arg2 ∈
DATAAREA which will hold the locations given to the binding update, and
extend the values of what to do by {Bind direction, Bind} indicating that we
have to choose the direction of the binding resp. do the binding itself. The new
0-ary function return from bind will take values of the domain of what to do,
indicating where to return when the binding is finished. (Remember that the
binding update is used in different places, e.g. in the unify update or in the
creation of a new heap variable).

For l1,l2 ∈ DATAAREA we define

bind(l1,l2) ≡ arg1 := l1

Refinement of a typed WAM Extension 3

arg2 := l2

return from bind := what to do
what to do := Bind direction

bind success ≡ what to do := return from bind
BIND ≡ OK & what to do = Bind
trail(l1,l2) ≡ ref¨(tr) := (l1, val(l1))

ref¨(tr+):= (l2, val(l2))
tr := tr++

In order to reset also the constant what to do upon backtracking, we refine the
backtrack update to

backtrack ≡ p := val(p(b))
unwind trail
what to do := Run

For unbound(l1) there are two alternative conditions on the update
occur check(l1,l2), depending on whether the unification should perform the
occur check (which is required for being logically correct) or not (which is done
in most Prolog implementations for efficiency reasons):

OCCUR CHECK CONDITION: If no occur check should take place then
the update occur check(l1,l2) is empty; otherwise it has the following effect:
If mk var(l1) is among the variables of term(l2) then the backtrack update
will be executed.

We will leave the occur check update abstract, and all correctness proofs are
thus implicitly parameterized by the decision whether it actually performs the
occur check or not.

if OK Bind-1 (Bind-Direction)

& what to do = Bind direction
& unbound(arg1)
& (NOT (unbound(arg2)) | unbound(arg2)

or | &
arg2 < arg1) | arg2 > arg1 | arg1 = arg2

then
what to do := Bind | what to do := Bind | bind success

| arg1 := arg2 |
| arg2 := arg1 |

When binding two unbound variables their type constraints must be ‘joined’.
For this purpose we introduce the function

inf: TYPETERM × TYPETERM → TYPETERM

which yields the infimum of two type terms, which may also be BOTTOM ∈
TYPETERM. TOP and BOTTOM can be thought of as ‘maximal’ and ‘minimal’
type terms. As integrity constraints we have

inf(TOP,tt) = inf(tt,TOP) = tt
inf(BOTTOM,tt) = inf(tt,BOTTOM) = BOTTOM
solution({t : BOTTOM}) = nil
solution({X : tt1, X : tt2}) = solution({X : inf(tt1,tt2)})

for any t ∈ TERM and tti ∈ TYPETERM.

4 C. Beierle and E. Börger

if BIND Bind-2 (Bind-Var-Var)

& unbound(arg2)
& LET inf = inf(ref(arg1),ref(arg2))
& inf 6= BOTTOM | inf = BOTTOM
& inf 6= ref(arg2) | inf = ref(arg2) |

then
trail(arg1,arg2) | trail(arg1) | backtrack
insert type(arg2,inf) | |
arg1 ← <REF,arg2> |
bind success |

When binding an unbound variable to a non-variable term, the type restric-
tion of the variable must be propagated to the variables occurring in the term.
As a special case this situation already occured in get structure(f,xi) when
the dereferenced value of xi is a type-restricted variable. In that situation where
the term was still to be built upon the heap, we ensured the propagation by
writing arity(f) free value cells on the heap with appropriate type restrictions
and continuing in read mode; the actual propagation was then achieved by the
immediately following sequence of unify instructions. In the general case occur-
ring in the binding rules, the arguments of the term are not just variables but
arbitrary terms. However, as we will not go into the details of type constraint
solving here, we assume an abstract propagate update satisfying the following:

PROPAGATION CONDITION: For any l1, l2, l ∈ DATAARRA,
with term resp. term’ values of term(l), with prefix resp. prefix’ val-
ues of type prefix(l), and with val resp. val’ values of val(l), before
resp. after execution of propagate(l1,l2) we have if unbound(l1), ref(l1)
∈ TYPETERM, tag(l2) = STRUC, and term(l2) ∈ TERM:

LET CS = {term(l2) : ref(l1)}
if solvable(CS) = true
then (a) (term’, prefix’) = conres(term, prefix, CS)

(b) if val 6= val’ then the location l will be trailed
else backtrack update will be executed

With this update at hand the third binding rule is

if BIND Bind-3 (Bind-Var-Struc)

& NOT (unbound(arg2))
then

trail(arg1)
arg1 ← <REF,arg2>
occur check(arg1,arg2)
propagate(arg1,arg2)

BINDING LEMMA 1: The bind rules are a correct realization of the binding
update of Section 3.2 in [BB96], i.e. the BINDING CONDITIONS 1 and 3 (and
thus also 2), the TRAILING CONDITION as well as the STACK VARIABLES
PROPERTY are preserved.

Proof. The proof for the update bind(l1,l2) is by case analysis and induction
on the size of term(l2), relying on the integrity conditions for the infimum
function on type terms when binding one type-restricted variable to another

Refinement of a typed WAM Extension 5

one (Bind-2), resp. on the Propagation Condition when binding a variable to a
non-variable term (Bind-3).

2.2. Monomorphic, order-sorted types

Before introducing a representation for type terms we introduce some new func-
tions and universes that are related to TYPETERM. Until now we have kept
TYPETERM abstract; in this section we come to some more specific type
term characteristics such as monomorphic and polymorphic type terms. Going
by stepwise refinement, we first deal only with monomorphic type constraints
solving, while the details of polymorphic type constraint handling will still be
kept abstract in this section.

On TYPETERM we introduce the three functions
is top, is monomorphic, is polymorphic: TYPETERM → BOOL

with their obvious meaning. The function
target sort: SYMBOLTABLE → SORT

yields the target sort of a constructor, where SORT is a new universe, repre-
senting sort names. It comes with a function

subsort: SORT × SORT → BOOL
defining the order relation on the monomorphic sorts (and being undefined on
the polymorhic sorts [Bei92]). For the refinement of type constraint handling we
assume two functions

sort glb: SORT × SORT → SORT
poly inf: TYPETERM × TYPETERM → TYPETERM

that refine the inf function (from 2.1) in the sense that for any tt1, tt2 ∈
TYPETERM

inf(tt1,tt2) =




sort glb(tt1, tt2) if is monomorphic(tt1)
and is monomorphic(tt2)

poly inf(tt1, tt2) if is polymorphic(tt1)
and is polymorphic(tt2)

For constraint solving involving a monomorphic type term s and t = f(. . .) ∈
TERM we have the integrity constraint

solution({t : s}) =
{ ∅ if subsort(target sort(f),s)

nil otherwise

i.e. the solvability of a monomorphic type constraint depends solely on the sub-
sort relationship between the required sort and the target sort of the top-level
constructor of the term. It will turn out that this suffices for the refinement of
monomorphic type constraint handling.

2.3. Representation of types

For the PAM representation of typeterms we introduce a pointer algebra, similar
to DATAAREA, which will be used for the representation of both monomorphic
types and polymorphic type terms (for the latter see Section 4):

6 C. Beierle and E. Börger

(TYPEAREA; ttop, tbottom, TOP; +, -; tval)

ttop, tbottom, TOP: → TYPEAREA
+, -: TYPEAREA → TYPEAREA
tval: TYPEAREA → TO

The functions ttag and tref are defined on the universe of “type objects” TO
ttag: TO → TTAGS
tref: TO → SORT + TYPEAREA

with the tags for type terms given by (to be extended later)
{ S TOP, S MONO, S POLY } ⊆ TTAGS

Similar as done before, we abbreviate ttag(tval(l)) and tref(tval(l)) by
ttag(l) and tref(l). As integrity constraints we have

if ttag(l) = S MONO then tref(l) ∈ SORT
is monomorphic(tref(l))

if ttag(l) = S POLY then is polymorphic(tref(l))

where the auxiliary function typeterm: TYPEAREA → TYPETERM
satisfies the constraints

typeterm(l) = TOP if ttag(l) = S TOP
typeterm(l) = tref(l) if ttag(l) = S MONO

We refine the PAM algebras of Section 5 in [BB96] by replacing the universe
TYPETERM by its representing universe TYPEAREA. The codomain of
the ref function (from 3.1 in [BB96]) now contains TYPEAREA, and in the
integrity constraints of 3.1 in [BB96] as well as in the definition of type prefix
the case for unbound(l) now contains typeterm(ref(l)) instead of ref(l). The
three abstract functions is top, is monomorphic, and is polymorphic defined
on TYPETERM are defined on TYPEAREA by just looking at the type tag;
for l ∈ DATAAREA we therefore use the following abbreviations:

top(l) ≡ tag(l) = VAR & ttag(ref(l)) = S TOP
monomorphic(l) ≡ tag(l) = VAR & ttag(ref(l)) = S MONO
polymorphic(l) ≡ tag(l) = VAR & ttag(ref(l)) = S POLY
sort(l) ≡ typeterm(ref(l)) if monomorphic(l)

2.4. Initialization of type constrained variables

In the PAM algebras developed so far the update insert type(l,t) is used
- as part of the mk unbound update - in the variable initialization instructions
get variable, put variable, and unify variable (Section 5.2 in [BB96]) (Its
use in the multiple mk unbounds update in get structure will be refined in
Section 2.6 below). This update is now refined by

insert type(l,tt) ≡ if is top(tt)
then insert top(l)
else if is monomorphic(tt)

then insert mono(l,tt)
else insert poly(l,tt)

insert top(l) ≡ ref(l) := ttop
ttag(ttop) := S TOP
ttop := ttop+

Refinement of a typed WAM Extension 7

insert mono(l,s) ≡ ref(l) := ttop
ttag(ttop) := S MONO
tref(ttop) := s
ttop := ttop+

where we use a new type area location when inserting a monomorphic sort s
(resp. TOP) as restriction for location l ∈ DATAAREA.1

Similarly, the insertion of polymorphic type terms by insert poly(l,tt)
will be handled in Section 4. As we want to leave the details of polymorphic type
constraint solving still abstract here, we pose the following

POLYMORPHIC TYPE INSERTION CONDITION: For any l1,
l ∈ DATAARRA, with term resp. term’ values of term(l) and with
prefix resp. prefix’ values of type prefix(l) before resp. after execution
of insert poly(l1,tt), we have if unbound(l1) and tt ∈ TYPETERM with
is polymorphic(tt):
(term’, prefix’) = conres(term,prefix\mk var(l1),{mk var(l1) : tt})

TYPE INSERTION LEMMA: The refinement of the insert type update
satisfies the TYPE INSERTING CONDITION of 3.5 in [BB96].

Proof. By straightforward case analysis for TOP, monomorphic and polymorphic
type restrictions; for the latter the POLYMORPHIC TYPE INSERTION CON-
DITION is used.

2.5. Binding of type constrained variables

We refine the binding rules of Section 2.1 according to the type term representa-
tion. Rule Bind-1 remains unchanged, whereas the rule Bind-2 for binding two
variables is replaced by the following four rules:

if BIND Bind-2a (Bind-TOP-Any)

& top(arg1)
& unbound(arg2)) | NOT (unbound(arg2))

then
trail(arg1)
arg1 ← <REF,arg2>
bind success | occur check(arg1,arg2)

if BIND Bind-2b (Bind-Var-TOP)

& monomorphic(arg1) OR polymorphic(arg1)
& top(arg2)

then

1 Note that deliberately we have left out the re-use of type area locations. For trailing, we
have to preserve old type restrictions to be recovered upon backtracking. However, locations
that will not be reached any more by backtracking can be re-used, just as e.g. memory on
the local stack or on the heap is freed for re-use upon backtracking. In the current PAM
implementation the type area is embedded into the heap so that the same mechanism for
allocating and deallocating can be used. However, other realizations are also possible, and we
will not elaborate this topic in this paper.

8 C. Beierle and E. Börger

trail(arg1,arg2)
arg1 ← <REF,arg2>
arg2 ← arg1
bind success

if BIND Bind-2c (Bind-Mono-Mono)

& monomorphic(arg1)
& monomorphic(arg2)
& LET glb = sort glb(sort(arg1),sort(arg2))
& glb 6= BOTTOM | glb = BOTTOM
& glb 6= sort(arg2) | glb = sort(arg2) |

then
trail(arg1,arg2) | trail(arg1) | backtrack
insert type(arg2,glb) | |
arg1 ← <REF,arg2> |
bind success |

if BIND Bind-2d (Bind-Poly-Poly)

& polymorphic(arg1)
& polymorphic(arg2)

then
trail(arg1)
arg1 ← <REF,arg2>
poly infimum(arg1,arg2)

For the still abstract update poly infimum(l1,l2) used when binding two poly-
morphically restricted variables we require the following

POLYMORPHIC INFIMUM CONDITION: For any l1, l2, l ∈
DATAAREA, with term resp. term’ values of term(l), with prefix resp.
prefix’ values of type prefix(l), and with val resp. val’ values of val(l),
before resp. after execution of poly infimum(l1,l2) we have if for i = 1,2
unbound(li), polymorphic(li), and typeterm(ref(li)) ∈ TYPETERM:

LET CS = {mk var(l2) : poly inf(typeterm(l1),typeterm(l2))}
if solvable(CS) = true
then (a) (term’, prefix’) = conres(term, prefix, CS)

(b) if val 6= val’ then the location l will be trailed
else backtrack update will be executed

Rule Bind-3 of Section 2.1 for binding a variable to a non-variable structure
is replaced by the rules Bind-2a above (which already covers the case that the
variable has no type restriction, denoted by TOP) and the two new rules

if BIND Bind-3a (Bind-Mono-Struc)

& monomorphic(arg1)
& NOT (unbound(arg2))
& subsort(target sort(ref(arg2)),sort(arg1))

= true | = false
then

trail(arg1) | backtrack
arg1 ← <REF,arg2> |
occur check(arg1,arg2) |

Refinement of a typed WAM Extension 9

if BIND Bind-3b (Bind-Poly-Struc)

& polymorphic(arg1)
& NOT (unbound(arg2))

then
trail(arg1)
arg1 ← <REF,arg2>
occur check(arg1,arg2)
poly propagate(arg1,arg2)

The abstract update poly propagate(l1,l2) must satisfy the

POLYMORPHIC PROPAGATION CONDITION which is obtained
from the PROPAGATION CONDITION of 2.1 by adding is polymorphic(l1)
as an additional precondition and replacing ref(l1) by typeterm(ref(l1)).

BINDING LEMMA 2: The refined binding rules correctly realize the binding
rules of Section 2.1 and thus the binding update of 3.2 in [BB96].

Proof. Following the proof of the BINDING LEMMA in 2.1 we have to show that
the rules Bind-2a - Bind-2d and Bind-3a - Bind-3b are correct realizations of the
inf function used in Bind-2 and of the propagate update used in Bind-3. This
follows by straightforward case analysis for TOP, monomorphic, and polymorphic
type restrictions: For TOP, we use its property that it is ‘maximal’ w.r.t. inf
and that the propagate update can not have any effect since any TOP restriction
trivially holds (Section 2.1 in [BB96]). For the monomorphic case we conclude
from the last integrity constraint given in Section 2.2 that the propagate update
is either empty or fails immediately due to the subsort test, implying that the
different cases correctly simulate this situation. For the polymorphic case the
POLYMORPHIC INFIMUM and POLYMORPHIC PROPAGATION CONDI-
TIONS are used.

2.6. Getting of structures

We refine the get struture rules of Section 3.4 in [BB96] according to the type
term representation. Rule Get-Structure-1 remains unchanged. Get-Structure-2
for the case that xi is an unbound variable is replaced by the following rules:

if RUN Get-Structure-2a

& code(p) = get structure(f,xi)
& monomorphic(deref(xi))
& NOT (subsort(target sort(f),sort(deref(xi))))

then
backtrack

if RUN Get-Structure-2b

& code(p) = get structure(f,xi)
& top(deref(xi)) | polymorphic(deref(xi))

OR |
(monomorphic(deref(xi)) & |
subsort(target sort(f), |

sort(deref(xi))) |

10 C. Beierle and E. Börger

then
h ← <STRUC,h+>
bind(deref(xi),h)
val(h+) := f
h := h++ | h := h + arity(f) + 2
mode := Write | nextarg := h++

| mode := Read
| FORALL i = 1,. . .,arity(f) DO
| mk unbound(h+i)
| ENDFORALL
| poly propagate(h+,deref(xi))

succeed

Thus, the only remaining abstract update is in the case when xi is a polymor-
phically restricted variable; this case in Get-Structure-2b is reduced to the more
general update poly propagate already introduced in the previous subsection.

CORRECTNESS OF GET-STRUCTURE REFINEMENT: The refined
Get-Structure rules are a correct realization of the rules of Section 3.4 in [BB96],
i.e. the GETTING LEMMA stills holds for the refined type term representation.

Proof. As in the proof of the BINDING LEMMA 2 in the previous subsec-
tion we can apply a straightforward case analysis for TOP, monomorphic, and
polymorphic type restrictions: For TOP, we observe that always both conditions
can propagate(f,TOP) and trivially propagates(f,TOP) used in the Get-
Structure rule of 3.4 in [BB96] hold. For monomorphic type restrictions, the
propagation reduces again to the subsort test. For the polymorphic case the
POLYMORPHIC PROPAGATION CONDITION ensures that exactly the type
restrictions given by the propagate list function used in 3.4 in [BB96] are
propagated onto the arguments of the structure.

Whereas we have now a representation for type terms and rules for monomor-
phic type constraint solving, some details of polymorphic type constraint
solving are still abstract, namely the three updates insert poly(l,tt),
poly infimum(l1,l2), and poly propagate(l1,l2) which will be refined in Sec-
tion 4.

3. PAM Optimizations

3.1. Special representation for typed variables

Many of the type related rules introduced above - in particular the get-structure
and the binding rules - apply only if the involved variable has no type restric-
tion at all (i.e. TOP), or a monomorphic, or a polymorphic type restriction, re-
spectively. In the spirit of the WAM’s tagged architecture it is thus sensible to
distinguish these three different cases efficiently by special tags [BM94]. The tag
VAR is therefore replaced by the three tags FREE, FREE M, FREE P.

Moreover, in the representation of monomorphic sorts one can also easily
save a type area location by letting the ref value of a data area location point
directly to SORT. Therefore, we extend the codomain of the function ref (see
3.1 in [BB96]) to include also SORT. Let l ∈ DATAAREA; instead of

Refinement of a typed WAM Extension 11

val(l) = <VAR,t> and tval(t) = <S MONO,s>

we will just have val(l) = <FREE M,s> and instead of

val(l) = <VAR,t> and ttag(t) = S TOP

we will just have tag(l) = FREE. This motivates the following modified
abbreviations:

mk unbound(l) ≡ tag(l) := FREE
mk unbound mono(l,s) ≡ tag(l) := FREE M

ref(l) := s
mk unbound poly(l,tt) ≡ tag(l) := FREE P

insert poly(l,tt)
mk unbound(l,tt) ≡ if is top(tt)

then mk unbound(l)
elseif is monomorphic(tt)

then mk unbound mono(l,tt)
else mk unbound poly(l,tt)

unbound(l) ≡ tag(l) ∈ {FREE, FREE M, FREE P}
top(l) ≡ tag(l) = FREE
monomorphic(l) ≡ tag(l) = FREE M
polymorphic(l) ≡ tag(l) = FREE P
sort(l) ≡ ref(l) if monomorphic(l)

The integrity constraint for the case unbound(l) of Section 3.1 in [BB96] is
replaced by

if tag(l) = FREE M then ref(l) ∈ SORT
if tag(l) = FREE P then ref(l) ∈ TYPEAREA

typeterm(ref(l)) ∈ TYPETERM
is polymorphic(typeterm(ref(l)))

and in the definition of type prefix the case for unbound(l) is refined to

type prefix(l) =




mk var(l) : TOP if tag(l) = FREE

mk var(l) : ref(l) if tag(l) = FREE M

mk var(l) : typeterm(ref(l)) if tag(l) = FREE P

. . .

Every time a new variable is created, this refined representation of variables will
be taken into account by one of the specialized mk unbound updates introduced
above; for instance in the Get-Structure-2b rule (Section 2.6).

Similarly, the rules for initializing variables (Section 5.2 in [BB96]) are mod-
ified as explained in the following. In order to take advantage of the refined
variable representation we modify the compile function such that each instruc-
tion of the form get variable(l,xj,tt) is replaced by one of the three new
instructions

get free(l,xj) get mono(l,xj,tt) get poly(l,xj,tt)

depending on whether is top(tt), is monomorphic(tt), or is polymor-
phic(tt) holds. Likewise, all put variable and unify variable instructions
are replaced by the instructions

12 C. Beierle and E. Börger

put free(l,xj) unify free(l)
put mono(l,xj,tt) unify mono(l,tt)
put poly(l,xj,tt) unify poly(l,tt)

respectively. Note that these new instructions always correspond to the first
occurrence of a variable in a clause and are thus responsible for the correct type
initialization of that variable.
if RUN Put-1 (X variable)

& code(p) =
put free(xi,xj) | put mono(xi,xj,s) | put poly(xi,xj,tt)

then
mk unbound(h) | mk unbound mono(h,s) | mk unbound poly(h,tt)
xi ← <REF,h>
xj ← <REF,h>
h := h+
succeed

if RUN Put-2 (Y variable)

&code(p) =
put free(yn,xj) | put mono(yn,xj,s) | put poly(yn,xj,tt)

then
mk unbound(yn) | mk unbound mono(yn,s)| mk unbound poly(yn,tt)
xj ← <REF,yn>
succeed

if RUN Get (Variable)

& code(p) =
get free(l,xj) | get mono(l,xj,s) | get poly(l,xj,tt)

then
l ← xj | mk unbound mono(l,s)| mk unbound poly(l,tt)

| bind(l,xj) | bind(l,xj)
succeed

if RUN Unify (Read Mode)

& code(p) =
unify free(l) | unify mono(l,s) | unify poly(l,tt)

& mode = Read
then

l ← <REF,nextarg> | mk unbound mono(l,s)| mk unbound poly(l,tt)
| bind(l,nextarg) | bind(l,nextarg)

nextarg := nextarg+
succeed

if RUN Unify (Write Mode)

& code(p) =
unify free(l) | unify mono(l,s) | unify poly(l,tt)

& mode = Write
then

mk unbound(h) | mk unbound mono(h,s)| mk unbound poly(h,tt)
l ← <REF,h>
h := h+
succeed

Refinement of a typed WAM Extension 13

CORRECTNESS OF REFINED VARIABLE REPRESENTATION:
The PAM algebras with the refined variable representation are correct with re-
spect to the PAM algebras constructed in Section 2.

Proof. The only type inserting update of 2.4 that is still used is insert poly
for which the POLYMORPHIC TYPE INSERTION CONDITION ensures the
TYPE INSERTION CONDITION. Inserting TOP and monomorphic type restric-
tions for variables obviously has the same effect as in 2.4. Trailing still works fine
since in 4.2 in [BB96] we trailed the complete val decoration of a data area lo-
cation - including its tag - and restored it upon backtracking. With these two
observations the proof follows by case analysis for the three different kinds of type
restrictions. Showing that each variable is initialized properly is straightforward;
the correct treatment of the refined variable representation in all relevant rules
(in particular the binding rules) is ensured directly by our modified abbrevia-
tions that refer to a variable’s representation, like monomorphic(l) or sort(l).

3.2. Switch on Types

As opposed to the WAM, in the PAM also a switch on the subtype restriction
of a variable is possible (c.f. 5.3 in [BB96]) which increases the determinacy
detection abilities. Since only monomorphic types can have explicitly defined
subtypes there are two switch-on-term instructions. (In this paper we did not
introduce special representations for constants, lists, or built-in integers; they
are, however, present in the PAM and could be added to our treatment without
difficulties, leading to additional parameters in the following instructions.)

if RUN Switch-on-poly-term

& code(p) = switch on poly term(i,Lfree,Lstruc)
& tag(deref(xi)) ∈ {FREE, FREE P} | tag(deref(xi)) = STRUC

then
p := Lfree | p := Lstruc

The switch on poly term instruction is as the WAM switch on term instruc-
tion (c.f. Appendix B.7 in [BB96]) except that the variable may carry a poly-
morphic type restriction, which however does not lead to the exclusion of any
clauses, since in PROTOS-L no explicit subtype relationships are allowed be-
tween polymorphic types [Bei92].

if RUN Switch-on-mono-term

& code(p) = switch on mono term(i,Lfree,Lfree m,Lstruc)
& tag(deref(xi)) =

FREE | FREE M | STRUC
then

p := Lfree | p := Lfree m | p := Lstruc

In the switch on mono term instruction we distinguish the two cases for a FREE
variable and a FREE M variable. In the first case again no clauses can be excluded
form further consideration, but in the second case only those clauses that are
compatible with xi’s subtype restriction have to be taken into account. The latter

14 C. Beierle and E. Börger

is achieved by setting the program counter p to a label where a switch on sort
instruction will exploit xi’s subtype restriction:

if RUN Switch-on-sort

& code(p) = switch on sort(i,Table)
then

p := selectsort(Table,sort(deref(xi)))

where Table is a list of pairs of the form SORT × CODEAREA, and
selectsort(Table,s) yields the location c such that (s,c) is in Table.

For the correctness proof for the extended switching instructions we must
extend the assumptions on the compiler stated in 2.2 in [BB96]. The defintion
of chain is changed so that the two cases for switch on term are replaced by
chain(Ptr) =



chain(Lf) if code(Ptr) = switch on poly term(i,Lf,Ls)
and is top(Xi) or is polymorphic(Xi)

chain(Ls) if code(Ptr) = switch on poly term(i,Lf,Ls)
and is struct(Xi)

chain(Lf) if code(Ptr) = switch on mono term(i,Lf,Lfm,Ls)
and is top(Xi)

chain(Lfm) if code(Ptr) = switch on mono term(i,Lf,Lfm,Ls)
and is monomorphic(Xi)

chain(Ls) if code(Ptr) = switch on mono term(i,Lf,Lfm,Ls)
and is struct(Xi)

chain(selectsort(T,s)) if code(Ptr) = switch on sort(i,T)
and s = sort(Xi)

. . .

SWITCHING LEMMA: Switching extended to types preserves correctness.

Proof. By case analysis using the extended chain definition, and relying on the
correctness of the other building blocks of the determinancy detection mechanism
(like try, retry, trust, etc.) which remain unchanged.

The special representation of typed variables introduced in this section yield
that the type extension in the PAM is orthogonal to the WAM. Any untyped
program is carried out in the PAM with the same efficiency as in the WAM:
Adding the trivial one-sorted type information to such a program reveals that the
PAM code will contain only the FREE-case for variables. Apart form the minor
difference of representing a free (unconstrained) variable not by a selfreference
(as in the WAM) but by a special tag, the generated and executed code is the
same for both the WAM and the PAM. On the other hand, any typed program
exploiting e.g. the possibilities of computing with subtypes can take advantage
of the type constraint handling facilities in the PAM which would have to be
simulated by additional explicit program clauses in an untyped version.

4. Polymorphic type constraint solving

In this section polymorphic type constraint handling is refined by re-
fining the three updates insert poly(l,tt), poly infimum(l1,l2), and
poly propagate(l1,l2) that have been left abstract so far.

Refinement of a typed WAM Extension 15

4.1. Representation of polymorphic type terms

For the representation of polymorphic type terms we introduce the function

sort arity: SORT → NAT

yielding the arity of a polymorphic sort (which must be 0 in the case of a
monomorphic sort). The relationship between the declaration part of the pro-
gram prog (see 2.1 and 2.4 in [BB96]) and the functions on SORT is regulated
by the following integrity constraints: For each function declaration of the form

f: d1 . . . dm → s(α1,. . . ,αn)

with m, n ≥ 0, pairwise distinct (type) variables αi that occur in d1,. . . ,dm,
and each tt = s(. . .) ∈ TYPETERM the following holds:

target sort(entry(f, m)) = s
arity(entry(f, m)) = m
sort arity(s) = n
is monomorphic(tt) = true iff n = 0
is polymorphic(tt) = true iff n > 0

We illustrate these integrity constraints by an example. Consider the three func-
tion declarations

succ: nat → nat
cons: α × list(α) → list(α)
mk pair:α × β → pair(α, β)

Then we have e.g. the following relationships:

target sort(entry(succ,1)) = nat arity(entry(succ,1)) = 1
target sort(entry(cons,2)) = list arity(entry(cons,2)) = 2
target sort(entry(mk pair,2))=pair arity(entry(mk pair,2)) = 2

sort arity(nat) = 0 is monomorphic(nat) = true
sort arity(list) = 1 is polymorphic(list(list(γ))) = true
sort arity(pair) = 2

Since the type terms required at run time are represented in TYPEAREA,
we add two new tags S REF and S BOTTOM to the set of type tags, yielding

TTAGS = { S TOP, S BOTTOM, S MONO, S REF, S POLY }
where S REF corresponds to the subterm reference STRUC used in DATAAREA
for ordinary terms. Together with the additional integrity constraints

if tag(l) = S REF then tref(l) ∈ TYPEAREA
ttag(tref(l)) = S POLY

if tag(l) = S POLY then tref(l) ∈ SORT
is polymorphic(typeterm(l))

the function

typeterm: TYPEAREA → TYPETERM

introduced in Section 2.3 is now completely defined by

16 C. Beierle and E. Börger

typeterm(l) =




TOP if ttag(l) = S TOP

BOTTOM if ttag(l) = S BOTTOM

tref(l) if ttag(l) = S MONO

typeterm(tref(l)) if ttag(l) = S REF

s(a1,. . .,an) if ttag(l) = S POLY and
s = tref(l)
n = sort arity(tref(l))
ai = typeterm(tref(l)+i)

4.2. Creation of polymorphic type terms

We introduce a representation of polymorphic type terms occurring as arguments
of the instructions in CODEAREA such that they can easily be loaded into
TYPEAREA. For this purpose, we extend the compile function such that every
polymorphic type term tt occurring in any of the generated PAM instructions
introduced so far (i.e. put , get , unify variable, respectively their refine-
ments put free, put mono etc., see Section 3) is replaced by

compile type(tt) ∈ (TTAG × (SORT + NAT))∗

For simplicity this list representation abstracts from the actual representation
used in the PAM where the tagged type term representation occurring in the code
is embedded into CODEAREA, mapping the list structure to the +-structure
of CODEAREA. The function inverse to compile type is defined by
decompile type(L) =



TOP if head(L) = <S TOP,.>

BOTTOM if head(L) = <S BOTTOM,.>

s if head(L) = <S MONO,s>

decompile type(tail(. . .(tail︸ ︷︷ ︸
m−times

(L)). . .)) if head(L) = <S REF,m>

s(a1,. . .,an) if head(L) = <S POLY,s> and
n = sort arity(tref(l))
ai = decompile type(tail(. . .(tail︸ ︷︷ ︸

i−times

(L)). . .))

For any type term tt ∈ TYPETERM we impose the integrity constraint
decompile type(compile type(tt)) = tt

Using compile type(tt) instead of tt itself passes this refined argument
to the update mk unbound. Since the update mk unbound is defined in terms of
insert type which in turn is defined in terms of insert poly for the polymor-
phic case, we only have to adapt the - until now - abstract update insert poly
(Section 2.4). It is now defined by
insert poly(l,L) ≡ ref(l) := ttop

FORALL j = 1,. . .,length(L) DO
tval(ttop+j-1) := offset(ttop+j-1,nth(j,L))

ENDFORALL
ttop := ttop + length(L)

where

Refinement of a typed WAM Extension 17

offset(tl, <tag,k>) =
{

<tag, tl+k> if tag = S REF
<tag, k> otherwise

POLYMORPHIC TYPE INSERTION LEMMA: The representation of
type terms and the update defined above are a correct realization of the
insert poly update of Section 2.4, i.e. the POLYMORPHIC TYPE INSER-
TION CONDITION is satisfied.

Proof. The list representation generated by the function compile type reflects
exactly the structure of the representation of type terms in TYPEAREA, the
only difference being that a sub-(type-)term pointer in TYPEAREA (with tag
S REF) is realized by an integer offset in the list representation. This representa-
tion difference is taken into account in the definition of insert poly given above
by adding the offset to the current TYPEAREA location in the S REF case.

4.3. Polymorphic infimum

In order to refine the still abtract update poly infimum(l1,l2) used in the Bind-
2d rule of Section 2.5 to the infimum computation of polymorphic type terms
as they occur in PROTOS-L, we need to know whether a type term is empty
or not. For instance, given the standard notions of list(α1) and pair(α1,α2),
list(BOTTOM) is not empty since it can be instantiated to the empty list nil,
while pair(BOTTOM,INTEGER) is empty since there is no pair without a first
component. The property that a type tt is not empty is formalized by

inhabited(tt) ≡ solution({X : tt}) 6= nil

where X ∈ VARIABLE. Thus, from the conditions on the solution func-
tion in 2.1 we have e.g. inhabited(BOTTOM) = false, inhabited(TOP) =
true, inhabited(list(BOTTOM)) = true, inhabited(pair(BOTTOM,INTEGER))
= false.

We pose three additional integrity conditions. The first one requires that
there are no ‘empty’ (monomorphic) sorts:

is monomorphic(s) ⇒ inhabited(s)

The second integrity constraint says that the infimum of polymorphic type
terms is computed from the infimum of the argument types, and that it is always
BOTTOM if we have different polymorphic types:

poly inf(s(tt1,. . .,ttn),s’(tt1’,. . .,ttn’)

=




s(poly inf(tt1,tt1’),. . .,(poly inf(ttn,ttn’)) if s = s’
and

inhabited(s(poly inf(tt1,tt1’),. . .,poly inf(ttn,ttn’)))

BOTTOM otherwise

For the third integrity constraint we introduce a new abstract function

inst modus: SORT × BOOL∗ → BOOL

which tells whether terms of a given sort can be instantiated, depending only on
the emptiness of the argument types, but not on the arguments themselves. This
function specifies the ‘instantiation modi’ for a polymorphic sort, i.e. which type

18 C. Beierle and E. Börger

arguments of s may be BOTTOM so that s can still be instantiated. For instance,
we have

inst modus(list, [false]) = true
inst modus(pair, [false, true]) = false

since
solution({X : list(BOTTOM)}) 6= nil
solution({X : pair(BOTTOM,INTEGER)}) = nil

and thus
inhabited(list(BOTTOM)) = true
inhabited(pair(BOTTOM,INTEGER)) = false.

The general condition on inst modus is
inst modus(s,[b1,. . . ,bn]) = true

⇒ ((∀ i ∈ {1,. . .,n} . bi = true ⇒ inhabited(tti))
⇒ inhabited(s(tt1,. . .,ttn)))

For the realization of the poly inf function in the PAM we introduce a new
universe P NODE that comes with a tree structure realized by the functions

p root, p current: P NODE
p father: P NODE → P NODE
p sons: P NODE → P NODE∗

where p current is used to navigate through the tree. Each node in the
P NODE tree represents an infimum computation task for two type terms given
as arguments, and it will be eventually be marked with the result. Thus, we have
the three labelling functions

p arg1, p arg2, p result: P NODE → TYPEAREA
When a P NODE element p represents the computation of the infimum of
two polymorphic type terms typeterm(p arg1(p)) = s(tt1,. . .,ttn) and
typeterm(p arg2(p)) = s(tt1’,. . .,ttn’), then the n required computations
of the infimum of the tti and tti’ will correspond to the n nodes in the list
p sons(p). The P NODE label

p status: P NODE → {expand, expanded}
indicates for each node whether the son nodes for it have still to be gener-
ated or not. The until now abtract update poly infimum(l1,l2) for l1, l2 ∈
DATAAREA is then defined by

poly infimum(l1,l2) ≡ p arg1(p root) := ref(l1)
p arg2(p root) := ref(l2)
p status(p root) := expand
p current := p root
p return arg := l2

ll what to do := polymorphic infimum

It initializes the P NODE tree containing just the root node. Additionally,
it sets the new 0-ary function p return arg : DATAAREA which holds
the location where the result of the polymorphic infimum computation will be
written to when it has been finished.

ll what to do ∈ {none, polymorphic infiumum,
polymorphic propagation}

Refinement of a typed WAM Extension 19

is also a new 0-ary function that is added to the initial PAM algebras. Its initial
value is none, indicating that no specific low-level actions have to be performed.
All rules introduced so far get ll what to do = none as an additional precon-
dition; thus the definition of the poly infimum(l1,l2) update just given blocks
the applicability of all previous rules, until ll what to do has been set back
again to the value none by one of the rules to be introduced below. These new
rules in turn will be guarded by the precondition

POLY-INF ≡ OK & ll what to do = polymorphic infimum

(Note that such a scheme has been used before with the 0-ary function
what to do, separating e.g. the binding and unification rules from all other rules.)
Resetting of ll what to do is done by means of the following abbreviation that
holds for tl ∈ TYPEAREA and that is also used for the returning of values
in intermediate stages of the polymorphic infimum computation:

p return(tl) ≡ if p current 6= p root
thenp result(p current) := tl

p current := p father(p current)
else ll what to do := none

if ttag(tl) = S BOTTOM
then backtrack
else bind success

if ref(p return arg) 6= tl
then trail(p return arg)

ref(p return arg) := tl

Note that the last if-then conditional is an optimization over the unconditional
updates in the then-part since in case the return argument location p return arg
already contains the required value we neither have to update nor to trail it.
Additionally, the following abbreviations will be used for i = 1, 2:

pargi ≡ p argi(p current)
ttagi ≡ ttag(pargi)
trefi ≡ tref(pargi)

If either of the two type term arguments of p current is TOP or BOTTOM, no son
nodes have to be created and the result can be determined immediately since it
is given by one of the two arguments.

if POLY-INF Polymorphic Infimum 1 (S TOP, S BOTTOM)

& p status(p current) = expand
& (ttag1 = S TOP | (ttag1 = S BOTTOM

OR | OR
ttag2 = S BOTTOM) | ttag2 = S TOP)

then
p status(p current) := expanded
p return(parg2) | p return(parg1)

Also in the case of monomorphic types no son nodes have to be created.

if POLY-INF Polymorphic Infimum 2 (S MONO)

& p status(p current) = expand
& ttag1 = S MONO & ttag2 = S MONO
& subsort(tref1,|subsort(tref2,|sort glb(tref1,|sort glb(tref1,

tref2)| tref1) | tref2)| tref2)

20 C. Beierle and E. Börger

| | = BOTTOM | 6= BOTTOM
then

p status(p current) := expanded
p return(parg1) |p return(parg2)|make s bottom |make s mono(

| | | sort glb(tref1,
| | | tref2))
| |p return(ttop) |p return(ttop)

where for s ∈ SORT the allocation of new type locations in TYPEAREA is
achieved by

make s mono(s) ≡ ttag(ttop) := S MONO
tref(ttop) := s
ttop := ttop+

make s bottom ≡ ttag(ttop) := S BOTTOM
ttop := ttop+

If p current points to a node with S POLY tagged arguments for the first
time (i.e. its status is expand), sort arity(tref(p arg1(p current))) new
son nodes are created and labelled accordingly (c.f. the integrity condition on
poly inf given above). p current is set to the first of the new sons, and the
new function

p rest calls: P NODE → P NODE∗

is set to the remaining son nodes, indicating that these nodes still have to be
visited by p current.

if POLY-INF Polymorphic Infimum 3 (S POLY-1)

& p status(p current) = expand
& ttag1 = S POLY & ttag2 = S POLY

then
p status(p current) := expanded
LET n = sort arity(tref1)
extend P NODE by temp(1),...,temp(n)

where p arg1(temp(i)) := parg1 + i
p arg2(temp(i)) := parg2 + i
p father(temp(i)) := p current
p sons(p current) := [temp(1),. . .,temp(n)]
p status(temp(i)) := expand
p current := temp(1)
p rest calls(p current) := [temp(2),. . .,temp(n)]

endextend

When p current points to a node with S POLY tagged arguments for the second
or a later time (i.e. its status is expanded) and there are still sons to be visited
(i.e. p rest calls(p current)) 6= []), then p current is set to the next son.

if POLY-INF Polymorphic Infimum 4 (S POLY-2)

& p status(p current) = expanded
& ttag1 = S POLY & ttag2 = S POLY
& p rest calls(p current) 6= []

then
p current := head(p rest calls(p current))
p rest calls(p current) := tail(p rest calls(p current))

Refinement of a typed WAM Extension 21

When p current points to a node with S POLY tagged arguments for
the second or a later time and all sons have already been visited (i.e.
p rest calls(p current)) = []), then all sub-computations for this node
have been completed and the result is returned.

if POLY-INF Polymorphic Infimum 5 (S POLY-3)

& p status(p current) = expanded
& ttag1 = S POLY & ttag2 = S POLY
& p rest calls(p current) = []
& subtype(1) |subtype(2) |NOT(is inhabited)|is inhabited

then
p return(parg1)|p return(parg2)|make s bottom |write poly term

| |p return(ttop) |p return(ttop)

The three new abbreviations in the last rule are given by
subtype(i) ≡ FOR ALL k = 1,. . .,sort arity(tref1) .

pargi + k = p result(nth(k,p sons(p current)))

write poly term ≡ tval(ttop) := tval(parg1)
FOR ALL k = 1,. . .,sort arity(tref1) DO

tval(ttop + k) := tval(p result(nth(k,
p sons(p current))))

ENDFORALL
ttop := ttop + sort arity(tref1) + 1

is inhabited ≡ inst modus(tref1,[tb1,. . .,tbn])

where in the last abbreviation n = sort arity(tref1), and for k = 1,...,n

tbk ≡ ttag(p result(nth(k,p sons(p current)))) 6= S BOTTOM

The subtype conditions in the above rule represent an optimization analo-
gously to the subsort optimization in the S MONO case (rule Polymorphic Infi-
mum 2): only if the result differs from one of the two input arguments a new
TYPEAREA location has to be returnd.

If p current points to a node with S REF tagged arguments for the first time
(i.e. its status is expand), a single new son node labelled with the respective
referenced type area locations is created.

if POLY-INF Polymorphic Infimum 6 (S REF-1)

& p status(p current) = expand
& ttag1 = S REF & ttag2 = S REF

then
p status(p current) := expanded
extend P NODE by temp

where p arg1(temp) := tref1
p arg2(temp) := tref2
p father(temp) := p current
p sons(p current) := [temp]
p status(temp) := expand
p current := temp

endextend

When p current points to a node with S REF tagged arguments for the second
time (i.e. its status is expanded), then the sub-computations for its single son
node has been completed and the result is returned.

22 C. Beierle and E. Börger

if POLY-INF Polymorphic Infimum 7 (S REF-2)

& p status(p current) = expanded
& ttag1 = S REF & ttag2 = S REF
& LET res = p result(head(p sons(p current)))
& res = tref1 | res = tref2 | ttag(res) = | ttag(res) 6=

| | S BOTTOM | S BOTTOM
then

p return(parg1) | p return(parg2) | p return(res)| make s ref(res)
| | | p return(ttop)

where for tl ∈ TYPEAREA the new abbreviation in the last rule is given by
make s ref(tl) ≡ ttag(ttop) := S REF

tref(ttop) := tl
ttop := ttop+

POLYMORPHIC INFIMUM LEMMA: The polymorphic infimum rules
given above are a correct realization of the poly infimum(l1,l2) update of
Section 2.5.

Proof. We have to show that the polymorphic infimum rules represent a cor-
rect realization of the poly inf function on TYPETERM that is used in
PROTOS-L (and which was introduced as an abtract function in Section 2.2).
Taking the integrity constraints given for inf, sort glb, and poly inf in 2.1,
2.2, and 4.1 the proof follows by case analysis and induction on the sizes of
typeterm(ref(l1)) and typeterm(ref(l2)). Note that the TRAILING CON-
DITION is also satisfied since in p return(tl) the location p return arg (which
had been set to l2) is trailed if its value is to be changed.

4.4. Propagation of polymorphic type restrictions

The still abtract update poly propagate(l1,l2) is used in the Bind-3b rule of
Section 2.5 and in the Get-Structure-2b rule of Section 2.6. We refine this update
to the propagation of polymorphic type constraints as they occur in PROTOS-L.

Let us start with an example. Consider the polymorphic declaration for
list(α) with constructors

nil: → list(α)
cons: α × list(α) → list(α)

and assume monomorphic types NAT and INTEGER with subsort(NAT,INTEGER)
= true. Then solving the unification (or binding) constraint X

.= cons(Y,L) in
the presence of the type prefix

{X : list(NAT), Y : INTEGER, L : list(INTEGER)}
generates the type constraint cons(Y,L) : list(NAT) under the same type prefix.
Thus, the update poly propagate(l1,l2) would be called with term(l2) =
cons(Y,L) and typeterm(ref(l1)) = list(NAT).

More generally, the arguments of the term referenced by l2 (in the ex-
ample Y : INTEGER and L : list(INTEGER)) must be restricted to the respec-
tive argument domains of the top-level functor f of term(l2) (here: cons)
where each type variable in an argument domain in the declaration of f (here:
cons: α × list(α) → list(α)) is replaced by the respective argument of

Refinement of a typed WAM Extension 23

typeterm(ref(l1)) (here: replacing α by NAT, which yields cons: NAT ×
list(NAT) → list(NAT)).

This can be achieved in two steps: First, a new term f(X1,. . .,Xm) (in the ex-
ample: cons(X1,X2)) is created with appropriately type-restricted new variables
Xi (here: X1 : NAT and X2 : list(NAT)), and second, this new term is unified with
term(l2). Thus, in the example the type constraint cons(Y,L) : list(NAT) rep-
resented by poly propagate(l1,l2) would be reduced to the unification prob-
lem

cons(X1,X2)
.= cons(Y,L)

with type-constrained new variables X1 and X2. (In fact, this is a slight simpli-
fication of the representation over the actual PAM implementation where the
top-level functor (here: cons) would not be generated since it is not needed; in-
stead, the binding of the n argument variables of the new term can be called
directly.)

For the general refinement of the polymorphic porpagation we assume as an
integrity condition

solution({f(t1,. . . ,tm) : s(tt1,. . .,ttn)}) =
solution({f(t1,. . . ,tm)

.= f(X1,. . .,Xm),
X1 : subres(d1,subst), . . ., Xm : subres(dm,subst)})

where the Xi are new variables, f has declaration
f: d1 . . . dm → s(α1,. . . ,αn) ∈ prog

and subst is the substitution (on type terms)
subst =

⋃
k∈{1,...,n} {αk

.= ttk}
(c.f. [Bei92], [BM94]). Note that since s(tt1,. . .,ttn) can not contain any type
variables, also in subres(dj,subst) all type variables will have been replaced
by ground type terms.

For the SYMBOLTABLE representation of the argument domains dj in a
function declaration of the form given above we assume a compiled form similar
to the representation of type terms in CODEAREA used in 4.2. We assume
that the compiler numbers the variables in s(α1,. . .,αn) from left to right, and
use the additional tag S VAR such that <S VAR,k> represents the k-th variable
αk. Thus, the de-compilation of type terms in 4.2 is extended by

decompile type(L) = αk if head(L) = <S VAR,k>

The function

constr arg: SYMBOLTABLE × NAT
→ ((TTAG + {S VAR}) × (SORT + NAT))∗

returns the argument domains dj for a constructor. For instance, given the above
list(α) declaration, we have

constr arg(entry(cons,2),1) = [<S VAR,1>]
constr arg(entry(cons,2),2) = [<S POLY,list>, <S VAR,1>]

More generally, for j ∈ {1,. . .,m} we impose the integrity constraint
decompile type(constr arg(entry(f,n),j)) = dj

For the refinement of poly propagate we add three new 0-ary functions to
our initial PAM algebras: pp t ∈ DATAAREA, representing a reference to the
term t to be retricted, pp tt ∈ TYPEAREA, a reference to the type term

24 C. Beierle and E. Börger

tt of the restriction, and pp i ∈ NAT, an index for the argument positions
{1,. . . ,m}. The update

poly propagate(l1,l2) ≡ pp t := l2

pp tt := ref(l1)
pp i := 1
h ← <STRUC,h+>
val(h+) := ref(l2)
h := h++
ll what to do := polymorphic propagate

sets the three new 0-ary functions to their initial value, starts the generation
of the new term by writing the top level functor on the heap, and blocks the
applicability of all previous rules by updating ll what to do. The following three
polymorphic propagation rules are guarded by the condition POLY-PROP and use
the abbreviations hi (for the heap location of the i-th argument of the term to
be generated) and pp f (for its top-level functor):

POLY-PROP ≡ OK & ll what to do = polymorphic propagate
hi ≡ h + pp i - 1
pp f ≡ ref(pp t)

The first two propagation rules generate the argument variables X1,. . . ,Xm. If
there is still a variable to be generated (pp i ≤ arity(pp f)) and the (pp i)th
argument domain in the declaration of pp f is not a type variable, then a variable
with the respective type restriction is generated.

if POLY-PROP Polymorphic Propagation 1

& pp i ≤ arity(pp f)
& head(constr arg(pp f,pp i)) =

<S TOP, .> | <S MONO, s> | <S POLY, .>
then

tag(hi) := FREE | tag(hi) := FREE M | tag(hi) := FREE P
| ref(hi) := s | insert poly(hi,
| | constr arg(pp f,pp i),
| | pp tt)

pp i := pp i + 1

The update insert poly(l,L,tl) is derived from its 2-argument counterpart
in 4.2 by additionally substituting the (representation of the) type variable αk

by the (representation of the) k-th argument of typeterm(tl):
insert poly(l,L,tl) ≡

ref(l) := ttop
FORALL j = 1,. . .,length(L) DO
tval(ttop+j-1) := offset&subst(ttop+j-1, nth(j,L), tl)

ENDFORALL
ttop := ttop + length(L)

where

offset&subst(tl’, <tag,k>, tl) =

{
<tag, tl’+k> if tag = S REF
tval(tl+k) if tag = S VAR
<tag, k> otherwise

If there is still a variable to be generated (pp i ≤ arity(pp f)) and the

Refinement of a typed WAM Extension 25

(pp i)th argument domain in the declaration of pp f is a type variable (say,
αk), then the variable to be written on the heap must get the k-th type argu-
ment of typeterm(pp tt) as its type restriction (i.e. tref(pp tt + k)). If the
latter is BOTTOM, backtrack update is executed since αk : BOTTOM is an inconsistent
type constraint (see 2.1).

if POLY-PROP Polymorphic Propagation 2

& pp i ≤ arity(pp f)
& head(constr arg(pp f,pp i)) = <S VAR, k>
& ttag(pp tt + k) =

S TOP | S MONO | S POLY | S BOTTOM
then

tag(hi) := FREE | tag(hi) := FREE M | tag(hi) := FREE P | backtrack
| ref(hi) := tref(pp tt + k) |

pp i := pp i + 1 |

The third propagation rule is applied when all argument variables have been
written on the heap (pp i > arity(pp f)). It is responsible for the unification
of the term to be restricted (pp t) with the newly generated term (referenced by
h).

if POLY-PROP Polymorphic Propagation 3

& pp i > arity(pp f)
then

h := h + arity(pp f)
ll what to do := none
propagate unify(h,pp t)

with the abbreviations

propagate unify(l1,l2) ≡ if still unifying
then push on unify stack(l1,l2)
else unify(l1,l2)

still unifying ≡ what to do = Bind &
return from bind = Unify

push on unify stack(l1,l2) ≡ ref’(pdl++) := l1

ref’(pdl+) := l2

pdl := pdl++
what to do := Unify

Thus, if the machine is still in unifying mode, the update propagate
unify(l1,l2) just pushes the two locations to be unified onto the push down
list PDL used for unification; otherwise the update unify(l1,l2) initializing
unification is executed (see 3.2 in [BB96]).

POLYMORPHIC PROPAGATION LEMMA: The polymorphic propaga-
tion rules given above are a correct realization of the poly propagate(l1,l2)
update of Section 2.5.

Proof. By induction on the number of arguments in typeterm(l2) we can show
that, from the time when ll what to do is set to polymorphic propagate to the
time when the rule Polymorphic Propagation 3 is being executed, a term of the
form f(X1,. . .,Xm) is created on the heap. The rules Polymorphic Propagation

26 C. Beierle and E. Börger

1 and 2 as well as the update insert poly(l,L,tt) ensure that the proper type
restrictions for Xi are inserted, i.e. - using the notation of the solution integrity
constraint given in the beginning of this subsection - Xi : subres(di,subst). Note
that if subres(di,subst) = BOTTOM, rule Polymorphic Propagation 2 carries out
the backtrack update since solution({t : BOTTOM}) = nil for any term t.

Thus, we are left to show that also the equation part f(t1,. . .,tm)
.=

f(X1,. . . ,Xm) is taken properly into account. This exactly is ensured by the
updates of rule Polymorphic Propagation 3: By induction on the number of
times the unification of the two terms to be unified will again cause a polymor-
phic propagation invocation, and using the UNIFICATION LEMMA of Section
3.2 in [BB96], we can show that at the time when the unification initiated by the
update propagate unify(h, pp t) has been carried out (either with success
or with failure) the post-conditions of the POLYMORPHIC PROPAGATION
CONDITION are satisfied.

4.5. Main Theorem

Putting everything together, we obtain

Correctness Theorem 3: Compilation from PROTOS-L algebras to the PAM
algebras with polymorphic, order-sorted type constraint handling is correct.

References

[AK91] H. Aı̈t-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press,
Cambridge, MA, 1991.

[BB96] C. Beierle and E. Börger. Specification and correctness proof of a WAM extension
with abstract type constraints. Formal Aspects of Computing, 8(4), 1996.

[Bei92] C. Beierle. Logic programming with typed unification and its realization on an
abstract machine. IBM Journal of Research and Development, 36(3):375–390,
May 1992.

[BM94] C. Beierle and G. Meyer. Run-time type computations in the Warren Abstract
Machine. Journal of Logic Programming, 18(2):123–148, February 1994.

[Bör90] E. Börger. A logical operational semantics of full Prolog. Part I. Selection core and
control. CSL’89 - 3rd Workshop on Computer Science Logic. LNCS 440, pages
36–64. Springer-Verlag, Berlin, 1990.

[BR95] E. Börger and D. Rosenzweig. The WAM – definition and compiler correctness.
In C. Beierle and L. Plümer, editors, Logic Programming: Formal Methods and
Practical Applications, Studies in Computer Science and Artificial Intelligence,
chapter 2, pages 20–90. Elsevier Science B.V./North-Holland, Amsterdam, 1995.

[Han91] M. Hanus. Horn clause programs with polymorphic types: Semantics and resolu-
tion. Theoretical Computer Science, 89:63–106, 1991.

[MO84] A. Mycroft and R. A. O’Keefe. A polymorphic type system for Prolog. Artificial
Intelligence, 23:295–307, 1984.

[Smo88] G. Smolka. TEL (Version 0.9), Report and User Manual. SEKI-Report SR 87-17,
FB Informatik, Universität Kaiserslautern, 1988.

[Smo89] G. Smolka. Logic Programming over Polymorphically Order-Sorted Types. PhD
thesis, FB Informatik, Univ. Kaiserslautern, 1989.

[War83] D. H. D. Warren. An Abstract PROLOG Instruction Set. Technical Report 309,
SRI, 1983.

