
Report of the Logic Programming Language PROTOS-L

(revised version)

Christoph Beierle1, Stefan Böttcher2, Gregor Meyer1

1 FernUniversität Hagen, Fachbereich Informatik

D-58084 Hagen, Germany

e-mail: {Christoph.Beierle, Gregor.Meyer}@fernuni-hagen.de

2 Fachhochschule Ulm

June 19, 1991; revised July 1994

Abstract: PROTOS-L is a language based on logic programming that integrates a variety of
concepts for programming large knowledge based systems like a powerful type concept, a module
concept, high-level access to external relational databases, and finite domain constraints. The type
concept covers user defined sorts, subsort relationships supporting multiple inheritance and param-
eterized sorts in the form of polymorphism. In addition to relations, also user-defined functions are
available. The module concept is similar to that of Modula-2 and allows to hide implementation
details from the user of a module. Database access and modification is fully embedded in the
programming language PROTOS-L and can be programmed transparent to the user of a program
or a program part. Besides simple links to external relations, non-recursive as well as recursive
function free deduction rules can be defined. PROTOS-L also provides an easy way to work with
windows via an object-oriented interface to the OSF/Motif system. These features as well as file
handling, term manipulation etc. are embedded type-safe into PROTOS-L.

The implementation of PROTOS-L is based on the PROTOS Abstract Machine, an extension of
the Warren Abstract Machine (WAM). In particular, it supports the required polymorphic order-
sorted unification. It communicates with a database inference engine realizing a deductive database
component, and also with a window manager realizing the interface to OSF/Motif.

This report describes the language PROTOS-L and its usage in the PROTOS-L prototype system
in its current state of development. It is a working document in the sense that parts of it will be
revised or extended, and that PROTOS-L is still being developed further. Thus, all comments and
suggestions are greatly appreciated.

1The research reported here was started while the authors were with the Scientific Center of IBM
Germany. This is a revised version of the original language report [Beierle et al., 1991a] with revisions made
by the first and the third author under a research contract with the Institute for Logics and Linguistics,
Scientific Center, IBM Deutschland Informationssysteme GmbH.

This work was partially funded by the German Federal Ministry for Research and Technology (BMFT) in
the framework of the WIPSRO Project under Grant 01 IW 206. The responsibility for the contents of this
study lies with the authors.

i



Contents

0 Preface to the revised version iv

0.1 Finite domain constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

0.2 Interface to C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

0.3 Term databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Types 6

2.1 Monomorphic Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Polymorphic Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Built-in Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Relations 13

3.1 Relation declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Relation definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Relation classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Some Built-in Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Functions 23

4.1 Function declarations and definitions . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Built-in Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Modules 25

5.1 The Map Colouring Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Module Interfaces, Bodies and Views . . . . . . . . . . . . . . . . . . . . . . 33

6 Database access in PROTOS-L 35

6.1 The database module as a link to a relational database . . . . . . . . . . . . 35

6.2 The database module as a deductive database . . . . . . . . . . . . . . . . . 36

6.3 Using the module concept of PROTOS-L in order to choose the evaluation
strategy of rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.4 Integrating the knowledge of multiple databases . . . . . . . . . . . . . . . . 38

6.5 Embedded SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7 Updatable relations and transactions 41

7.1 Modification of updatable relations . . . . . . . . . . . . . . . . . . . . . . . 41

7.2 The integration of relation modifications and backtracking . . . . . . . . . . 42

7.3 Transactions in PROTOS-L . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

ii



8 File Input and Output 46

9 OSF/Motif Interface 46

10 Built-ins 46

11 Syntax 48

11.1 Module Interfaces, Bodies and Views . . . . . . . . . . . . . . . . . . . . . . 48

11.2 Declarations and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

11.2.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

11.2.2 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

11.2.3 DB relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

11.2.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

11.3 Terms and Tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A A Job Planning Scenario 59

B Map Colouring 62

B.1 The module map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

B.2 The module m output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B.3 The module m layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

B.4 The module m adt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.5 The module m country . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

B.6 The module m colour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B.7 The module utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

References 73

iii



0 Preface to the revised version

This is a revised version of the original report [Beierle et al., 1991a]. The revisions were
made by the first and the third author and concern the following aspects.

0.1 Finite domain constraints

A finite domain constraint solver (in the spirit of constraint logic programming) has been
integrated into PROTOS-L. The constraint solver itself was developed at the IBM Scien-
tific Center in Paris [Beringer and De Backer, 1994]. It is accessible via various built-in
predicates and functions.

0.2 Interface to C

An interface to the programming language C is now available. It allows calls to C within
PROTOS-L code as well as calling PROTOS-L from C.

0.3 Term databases

Term databases support the storing of terms in local databases. Modifications on term
databases are not undone upon backtracking. Like all other built-in features such as file
input and output, also the access to the term databases is completely type safe.

However, these PROTOS-L extensions are not described here but in the PROTOS-L User’s
Manual [Meyer and Beierle, 1994]. Furthermore, the following modifications where made
in this revised version of the language report:

• Sections 8, 9, and 10 now contain only brief summaries of the file handling, the
OSF/Motif Interface and the available built-ins. A detailed description of the current
version of these features is given in [Meyer and Beierle, 1994].

• Corrections of the text and of the syntax (Section 11) were made, and various
language restrictions that were still valid in [Beierle et al., 1991a] have been re-
moved. However, apart from these changes no attempt was made to update e.g.
the comparison to the related work which has appeared in the meantime. Thus,
also the references are still the same as in the previous version, apart from adding
the references mentioned above and [Beierle, 1992], [Beierle and Börger, 1992],
[Meyer et al., 1994], [Beierle and Meyer, 1994] which provide some more informa-
tion on different aspects of the PROTOS-L system.

Hagen, July 1994 C. Beierle and G. Meyer

iv



1 Introduction

1.1 Overview

Prolog, the most prominent representative of the family of logic programming languages,
lacks many of the features that play a predominant role in many other programming
languages, e.g. a type concept or a module concept. Furthermore, as application systems
become more and more complex, involving very large amounts of data and the embedding
in an open system architecture with possibly many other software systems, the need for the
integration of powerful and sophisticated interfaces to e.g. database management systems
increases more and more.

PROTOS-L is an outcome of a research effort within the EUREKA Project PROTOS
(Logic Programming Tools for Building Expert Systems, EU56) aimed at overcoming
some of the shortcomings of Prolog. It provides various advanced features together with
a state-of-the-art implementation approach based on an abstract machine.

PROTOS-L is a logic programming language based on typed Horn clause logic. The type
concept which has been derived from TEL ([Smolka, 1988b], see the following subsection)
allows for subtypes as well as for parametric polymorphism. Typing leads to better struc-
tured programs since they allow to make the data structures of a program explicit. They
are exploited at compile time for static consistency checks, so that many programming
errors can be detected early in the program development. The type information is also
present at runtime through typed unification: Free variables can be constrained to sub-
types without binding them to a particular value, and variables and terms can be tested
for subtype membership. Moreover, the types can be compared to each other w.r.t. the
type hierarchy. PROTOS-L also allows the definition of functions which are defined by a
set of conditional equations. The mode discipline of PROTOS-L supports the checking of
dataflow at compile time.

The purpose of the module concept of PROTOS-L is twofold: First, it provides a means
for the structured development of large programs by supporting separate compilation of
module interfaces and bodies. Furthermore, it provides a powerful means for the definition
of abstract data types: At the level of interfaces the realization of types and operations
on this type can be hidden.

In this way, modules also provide both a structured and transparent database access.
Through a special kind of module bodies called database bodies an external relational
database can be accessed, where this access is transparent at the level of the interface.
Moreover, the inference rules in database bodies are interpreted by a deductive database
component, combining advantages of relational databases, like efficient set-oriented eval-
uation, with advantages of the logic programming paradigm, like high-level programming
and recursion.

Database access is completely type safe, as is file handling, array manipulation, etc.

Another highlight of PROTOS-L is the integration of an object-oriented interface to
OSF/Motif. Based on this object oriented interface, high-level end-user interfaces can

1



be developed within PROTOS-L.

The implementation of PROTOS-L is based on the PROTOS inference engine (PIE)
which consists of the PROTOS abstract machine PAM – an extension of the WAM
([Warren, 1983]), the database interpreter DBI and the PROTOS window manager PWM.

The PAM ([Semle, 1989], [Beierle et al., 1991b]):

• realizes the necessary polymorphic order-sorted unification required by the type sys-
tem,

• provides a set of type safe built-ins for file handling, array manipulation, string
operations,

• offers a debug modus providing detailed information on its current machine state,
etc., and

• communicates with both the DBI and the PWM.

The database inference engine DBI ([Meyer, 1989])

• controls the relational DBMS according to read access to relations, updates and
transactions, and

• evaluates deduction rules which may be recursive; it is complete and terminating for
Datalog (function free Horn clauses).

The PROTOS window manager PWM ([Jasper, 1991], [Schenk, 1991])

• provides a simple but flexible, object-oriented interface to OSF/Motif (AIX-Windows)

The PIE has been developed in C and runs under AIX 2.2.1 on IBM RT/PC 6150 cou-
pled with SQL/RT, and under AIX 3.1 on IBM RS/6000 coupled with ORACLE and
OSF/Motif.

The compiler for PROTOS-L supports the separate compilation and loading of modules,
does the static type checking and type inference in order to detect type inconsistencies
early in the program development, and produces machine code for the PIE. The compiler
is currently implemented in the TEL system ([Smolka, 1988b], [Nutt and Smolka, 1993])
which runs on Quintus Prolog.

1.2 Related work

PROTOS-L integrates concepts developed in two different research streams: the enrich-
ment of logic programming with types, and coupling logic programming with databases.

Comparing Prolog to other programming languages that are used for large systems not
only the complete lacking of types in Prolog becomes apparent. Also major software

2



engineering principles like modularization or data abstraction are not directly supported in
Prolog. Especially as applications grow larger and more complex such software engineering
principles become more important. The basis for many of these principles can be given
by a powerful type concept. It allows to detect many common programming errors at
compile time which otherwise may be difficult to locate. Additionally, in AI applications
like theorem proving it has been shown that the introduction of types with subtypes may
drastically reduce the search space of a problem (e.g. [Walther, 1985]). On the other
hand, types should not burden the programmer or knowledge engineer with requiring a
too narrow and strict discipline. Therefore, the type concept of PROTOS-L covers user
defined sorts, subsort relationships supporting multiple inheritance and parameterized
sorts in the form of parametric polymorphism.

The design of PROTOS-L has been influenced by various other languages. In the start-
ing point, there was a close connection to the development of the knowledge represen-
tation language L-LILOG ([Beierle et al., 1989], [Pletat and v. Luck, 1990]) which, like
PROTOS-L, is based on order-sorted first order predicate logic. Whereas L-LILOG sup-
ports full first order predicate logic and is much more liberal with respect to its type
system e.g. by allowing sort expressions involving features and roles, PROTOS-L sticks to
Horn clauses and sort constants, but allows additionally parametric sorts.

There are various approaches to enrich in particular logic programming with types (see e.g.
[DeGroot and Lindstrom, 1986]). An integration of parametric polymorphism as in ML
[Harper et al., 1986] with Prolog was suggested in [Mycroft and O’Keefe, 1984]. Order-
sorted type concepts were
developed by Goguen et al. and are present in OBJ [Futatsugi et al., 1985] and Eqlog
[Goguen and Meseguer, 1986]. [Huber and Varsek, 1987] extends Prolog by order-sorted
unification [Walther, 1988]. Polymorphism and order-sortedness are provided in the ap-
proach of [Dietrich and Hagl, 1988] by using modes to restrict the input/output data flow
in certain cases. No such mode restrictions are required in the work of [Smolka, 1988a],
[Smolka, 1989] where parametric polymorphism is combined with order-sortedness; this
approach is the basis for the programming language TEL [Smolka, 1988b].

The type system of PROTOS-L has been derived from TEL which offers a slightly ex-
tended notion of subtypes and polymorphism: As opposed to TEL, polymorphic types in
PROTOS-L may not have any explicitly defined subtypes ([Beierle, 1990]).

The availability of the TEL system also influenced the design of PROTOS-L: In order to be
able to reuse TEL’s compile time type, mode and module checking facilities, the current
syntax of PROTOS-L for types, modules, relations, and functions is oriented towards
TEL. Thus, the front-end of the PROTOS-L compiler could be derived from the TEL
compiler’s front-end by appropriate extensions and modifications. However, currently the
TEL system does not offer a correct implementation of the required typed unification: The
current implementation of TEL is not correct since it maps the runtime unification onto
Quintus Prolog’s ordinary term unification ([Smolka, 1988b], [Nutt and Smolka, 1993]).
In contrast, the PROTOS-L compiler generates code for the PAM that provides a correct
implementation of polymorphic order-sorted unification as required by PROTOS-L’s type
system.

3



No order-sortedness but another form of polymorphism is suggested in [Hanus, 1988],
[Hanus, 1989]. The logic programming language Gödel ([Hill and Lloyd, 1992]) offers
many-sorted types with parametric polymorphism; its main emphasis is to provide a
declarative meaning for meta-logical facilities. For more complete surveys on type concepts
for logic programming see e.g. [Hanus, 1988] or [Smolka, 1989].

The Abstract Machine of PROTOS-L is coupled to an external relational database by a
separate component called DataBase Interpreter (DBI). A variety of coupling alternatives
between logic programming and databases is discussed in [Vassiliou, 1986]. The DBI
realizes a tight coupling in order to make intelligent use of the selection conditions at run
time and to take advantage of the full power of the DB query processing facilities.

Some Prolog systems, e.g. IBM Prolog [IBM, 1989], provide an ad hoc means to access
an external database by special built-in predicates which evaluate a query formulated in
the DB query language like SQL or QUEL. In other systems the DB access is formulated
transparently by deduction rules, often restricted to ’Datalog’. While only one level views
can be formulated in Quintus Prolog [Quintus, 1987] other research systems allow mul-
tilevel views and recursion, e.g. [Bocca, 1986]. In PROTOS-L embedded SQL as well as
(recursive) Datalog rules are allowed. At the level of module interfaces the database access
is fully transparent.

A distinguishing feature of deductive databases is the ability to cope with recursively
defined predicates. There are many algorithms and ideas how to evaluate rules on a
DBMS ranging from top down Prolog like evaluation over variations of the Magic Set ap-
proach [Bancilhon et al., 1986] to pure bottom up methods [Bayer, 1985, Bancilhon, 1986];
[Bancilhon and Ramakrishnan, 1986] gives a good overview. The DBI in PROTOS-L uses
a mixed top down and bottom up strategy, combining ideas from [Vieille, 1988] and
[Hulin, 1989]. For a more complete overview on combining logic programming systems
with databases see [Ceri et al., 1990].

Acknowledgements: PROTOS-L was developed within the EUREKA Project PROTOS (EU 56)

at IBM in Stuttgart. Many people contributed directly or indirectly to its design and implementa-

tion. As research staff members and guest scientists Udo Pletat and Kurt Rothermel contributed

to a first design, Gert Smolka brought in his experience with the TEL system and polymorphic

order-sorted unification, and Heinrich Jasper developed an approach for the integration of the

OSF/Motif system. A great deal of design and development work was done in the framework of

a number of project and Diploma theses that were carried out in the framework of the PROTOS

project. Bernd Müller completed the first order-sorted version of the PROTOS Abstract Machine.

Heiner Semle implemented the polymorphic version of the PAM and a first version of a compiler

for PROTOS-L, and made various additional contributions to the development of the PROTOS

system. Martin Zeller realized the module concept in the code generator of the compiler. Irmgard

Hauner implemented a first database coupling for PROTOS-L. In his PhD thesis, Christos Garidis

made a study how a clustering concept of Prolog code can help to reduce dynamic loading at run

time, and Jürgen Zink implemented an evaluation system for it. Michael Schenk implemented the

interface to the OSF/Motif system. Holger Wittman and Gerhard Urban developed some advanced

applications in PROTOS-L, and Ralph Scheubrein worked on the coupling with the non-standard

4



database system LILOG-DB. The majority of our Diploma students also worked as summer stu-

dents at various times in the project, as well as, among others, Ralf Hauser, Frank Hunziker,

Andreas Molitor, Peter Sanders, Ralf Scheidhauer, Hinrich Schütze, Markus Walther, and Oliver

Wauschkuhn. The work of all of them greatly contributed to the success of the PROTOS project.

Thanks also go to U. Geske and H.-J. Goltz who made some detailed and helpful comments on an

earlier version of this paper.

5



2 Types

There are two different forms of type definitions in PROTOS-L, monomorphic and poly-
morphic ones.

type definition −→

mono type definition

| poly type definition

Each type definition consists of a left-hand side that contains in particular the name of
the type and a right-hand side that defines (directly or indirectly) the elements of that
type.

A note on notation: We will present parts of the formal syntax definition of PROTOS-L
in the various sections (a complete syntax definition will be given in Section 11) for which
we use slanted type face as in the syntax rule above. PROTOS-L program text is printed
in ordinary type writer face. Like in Prolog, constants, predicate names, etc. start with
a lower case letter, whereas variables start with an upper case letter.

2.1 Monomorphic Types

A simple monomorphic type definition is

car := { ford, opel, mercedes }.

which defines the type constant car. The type car has exactly the three elements denoted
by the value constants ford, opel, and mercedes. These constants are also called the
(value) constructors for the type car, and car is the least type of them.

Given another type definition

airplane := { boing747, dc10, airbus }.

one can also define the union of types like

vehicle := car ++ airplane.

The last definition states that car and airplane are subtypes of the type vehicle. Thus,
e.g. opel and dc10 are both also of type vehicle but their least type is car and airplane,
respectively.

So far, the constructors of a type have all been constants. The type definition

stack := { empty,

push: car x stack }.

introduces a constant constructor

empty: → stack

and a binary constructor

6



push: car x stack → stack

taking two arguments of type car and stack, respectively, and yielding a term of type
stack. Thus,

empty

push(ford, empty)

push(opel, push(ford, empty))

are all terms of type stack. However, given the definitions above the term

push(dc10, push(ford, empty)) (1)

would be ill-typed. But if the definition of stack were changed to

stack := { empty,

push: vehicle x stack }.

then (1) would be a well-typed term of type stack.

In a single type definition one can also have both subtypes and the definition of construc-
tors, e.g.

vehicle := car ++ airplane ++

{ train: train type,

bike: bike type }.

where e.g. train type could be

train type := { local, intercity, eurocity }.

Then

train(intercity)

opel

airbus

are all terms of type vehicle, their least type being vehicle, car, and airplane, respec-
tively.

Note that every (ground) term and thus in particular every constant must have a unique
least type. Thus, it is not allowed to define

car := { flying car, surface plane, ford, opel, mercedes }.
airplane := { flying car, surface plane, boing747, dc10, airbus }.

since e.g. flying car would not have a unique least type. On the other hand, it is possible
to define the intersection of types since a type may have more than one supertype:

drive and fly := { flying car, surface plane }.
car := drive and fly ++ { ford, opel, mercedes }.
airplane := drive and fly ++ { boing747, dc10, airbus }.

7



In this case the least type of flying car is drive and fly while the least type of ford is
still car.

Another technical condition is that if two types have more than one common subtype then
there must be a greatest common subtype, i.e. the sort hierarchy must form a semi-lattice
(c.f. [Walther, 1988]). This condition ensures the completeness of the underlying deduction
mechanism and can be satisfied easily by introducing a new type where necessary.

All declarations and definitions in PROTOS-L come in modules (see Section 5). Each
(monomorphic) type may be used as a subtype within the same module. If a type is not
used as a subtype within the module where it is introduced it is automatically assumed
that this type is a maximal type that will not be used as a subtype. However, if one does
want to use such a type t that is maximal in its own module as a subtype in another
module then t has to be declared as a non-maximal type which is indicated by the key
word nmtype.

For instance, the definition

nmtype vehicle := car ++ airplane.

introduces vehicle as a non-maximal type that may occur in a subtype position in any
other module. The distinction between maximal types and non-maximal types is made not
only for readability of the program, but also in order to support faster program execution
since type information for maximal types can be neglected at runtime ([Smolka, 1989],
[Beierle, 1990]). In particular, this means that if all types are maximal then no type
information is necessary at run-time, a situation that corresponds to ordinary Prolog.

The subtype relationship may not introduce any cycle, i.e. a type is never a proper subtype
of itself.

In the formal syntax definition for monomorphic type definitions we use the following
notation:

• A terminal form ‘T’ means that the token T must appear physically.

• The symbol ‘|’ separates alternatives.

• An optional form [F ] means that the form F is optional.

• A list form {F} means that the form F appears either once or more than once
separated by commas ‘,’ .

• A star form (F)* denotes a possibly empty sequence of Fs.

mono type definition −→

mono type dec lhs ‘:=’ mono type def rhs ‘.’

mono type dec lhs −→

[ ‘nmtype’ ] type identifier

8



mono type def rhs −→

(subtype specification ‘++’ )*
subtype specification ‘++’

subtype specification

| (subtype specification ‘++’ )*
‘{’ {mono constructor def } ‘}’

note that in the actual PROTOS-L system there may be a restriction
on the maximal number of direct subtypes

subtype specification −→

type identifier

Examples for monomorphic constructor definitions were already given above in the al-
ternative definitions for stack. However, in the general case the argument type of a
monomorphic constructor may not only be a type identifier but also a ground instance of
a polymorphic type (c.f. Section 2.2). For example,

stack := { empty,

push: list(car) x stack }.

introduces a two-argument constructor

push: list(car) x stack → stack

where list(car) is a ground instance of the polymorphic type list. list(car) is called
a (ground) type term. Other examples of such type terms are

list(vehicle)

list(airplane)

pair(car, list(vehicle))

We close the introduction of monomorphic types with the syntax definition of monomor-
phic type constructors:

mono constructor def −→

constr designator [ ‘:’ ground domain ]

constr designator −→

identifier

ground domain −→

ground type term [ ‘x’ ground domain ]

2.2 Polymorphic Types

In a typed language the definition of parametric types plays an important role. For in-
stance, one wants to have typed lists, i.e. lists over different ground types. In PROTOS-L

9



this is achieved by so-called polymorphic types. A polymorphic type has parameter vari-
ables that range over the set of types. In the previous subsection we gave three alternative
definitions for a type stack where the types of the elements in the stack were car, vehicle,
and list(car), respectively.

A more economic and flexible way is to introduce a polymorphic type definition

stack(T) := { empty,

push: T x stack(T) }.

In this definition, the variable T is a type variable which stands for any type or type term.
Syntactically, type variables start with a capital letter, just as ordinary variables. The
constructor

push: T x stack(T) → stack(T)

is a polymorphic (value) constructor that yields a term of type stack(T).

All polymorphic types are monotonic with respect to the subtype relationship. If car is
a subtype of vehicle then stack(car) is a subtype of stack(vehicle). Here are some
terms together with their least type:

a term : its least type

push(ford, empty) : stack(car)

push(opel, push(ford, empty)) : stack(car)

push(boing747, empty) : stack(airplane)

In general, a term push(t1, push(t2, empty)) is only a well-typed term if there is a
type such that both t1 and t2 are of this type (which is not necessarily the least type of
any of the two terms).

A built-in type in PROTOS-L is the polymorphic list type

list(T) := { nil,

. : T x list(T) }.

where the list constructor ‘.’ is treated as a right-associative infix operator. Thus, the
list containing the two elements opel and ford is written as

opel.ford.nil (2)

instead of .(opel,.(ford,nil)).

The type list(car) is a subtype of list(vehicle), and list(list(car)) is a subtype
of list(list(vehicle)) according to the monotonicity of polymorphic types. The least
type of (2) is list(car), but the least type of

opel.ford.airbus.nil

is list(vehicle).

From a computational point of view it is desirable to be able to reduce the subtype
relationship between instances of polymorphic types to the relationship between the type
constants (i.e. the monomorphic types). Therefore, polymorphic types or instances thereof
may not occur in a subtype position in any type definition - this is the reason why a subtype

10



specification in a monomorphic type definition is a type identifier but not a type term such
as list(car) (c.f. the syntax rules given above). On the other hand, polymorphic type
definitions do not contain an explicit subtype specification and therefore, all polymorphic
types are automatically maximal. These observations make up the differences between
monomorphic and polymorphic type definitions:

poly type definition −→

poly type dec lhs ‘:=’ ‘{’ {poly constructor definition} ‘}’ ‘.’

every variable that occurs in the left-hand side must occur in the
right-hand side and vice versa

poly type dec lhs −→

type identifier ‘(’ {type variable} ‘)’

the occurring variables must be pairwise distinct

poly constructor definition −→

constr designator [ ‘:’ domain ]

domain −→

type term [ ‘x’ domain ]

We close this subsection by giving an example definition for labelled trees. Each node in
a tree is labelled with an element of a parameter type. A tree may consist just of a single
node (which is a leaf), it may contain only a left or only a right subtree, and it may have
both a left and a right subtree.

bin tree(T) := { leaf: T,

left: bin tree(T) x T,

right: T x bin tree(T),

both: bin tree(T) x T x bin tree(T) }.

Now the term

both(both(leaf(1), 2, leaf(5)), 3, left(leaf(4), 6))

is a term of type bin tree(nat) where nat is the built-in type of natural numbers
{0, 1, 2, 3, . . . }. It represents the binary tree

"
"

"
"

""

A
A
A
A

b
b

b
b

bb

¡
¡

¡
¡¡

¶
¶

¶
¶

1

2

5

3

6

4

11



2.3 Built-in Types

There are several built-in types in PROTOS-L. Here we only give an overview (see also
Section 10); a complete description of them is given in [Meyer and Beierle, 1994].

• Monomorphic types:

nat natural numbers

int integers

zero contains only the number 0

posint positive integers

negint negative integers

char characters

string strings

byte bytes used in file I/O (see also Section 8)

pwm object objects for Motif interface (see Section 9)

pwm attribute attibutes for Motif interface (see Section 9)

pwm goal call-back procedures for Motif interface (see Section 9)

• Polymorphic types:

list(T) lists

array(T) (one-dimensional) arrays

instream(T) streams for file input (see also Section 8)

outstream(T) streams for file output (see also Section 8)

term database(T) term databases

12



3 Relations

3.1 Relation declarations

A relation definition in Prolog consists of a sequence of clauses. The same is true for
PROTOS-L but with the additional information that the types of the arguments of the
relation are declared. For instance, the relation declaration

rel speed: car x ?nat.

introduces a two-argument relation symbol speed taking a car term as first argument
and a nat term as second argument. Additionally, data flow information is given: The
first argument is declared as an input argument and the second argument is an output
argument, indicated by the question mark ‘?’. At calling time the input arguments should
not contain any variables, and after evaluation the arguments in an output position will
be ground, i.e. they will not contain any variables. The compiler enforces this discipline,
but by declaring a variable as open (see below in 3.2) it is possible to pass also a variable
into an input position and to obtain a non-ground value in an output position. This mech-
anism yields the flexible input-output behaviour which is of course one of the distinctive
advantages of logic programming.

An example of a polymorphic relation declaration is

rel append: list(T) x list(T) x ?list(T).

which declares the arity and the argument types of the usual append predicate. The
question mark indicates that the third argument of append is an output argument while
the first two arguments are input arguments.

Here is the syntax of a relation declaration which is part of a complete relation definition:

relation definition −→

relation declaration

relational clause

(relational clause)*

relation declaration −→

rel class relation designator ‘:’ io domain ‘.’

| ‘proc’ relation designator ‘.’

| ‘tproc’ relation designator ‘.’

13



rel class −→

‘rel’

| ‘drel’
| ‘trel’
| ‘tdrel’
| ‘proc’
| ‘tproc’
| ‘urel’
| ‘trans’

io domain −→

[ ‘?’ ] type term [ ‘x’ io domain ]

relation designator −→

identifier

For the discussion of relation classes we refer to Section 3.3; here we will only deal with
”ordinary” relations which are indicated by the relation class designator rel. In the
following, we will sometimes use the terms relation and predicate as synonyms.

Before moving to the definition of predicates with clauses let us look at some queries and
how they are checked for type consistency with respect to the declarations. In the query

PROTOS> append(1.2.3.nil, 4.5.nil, L).

both the first and the second argument are of type list(nat) and thus, the type of the
variable L is derived to be list(nat) also. Likewise, in the query

PROTOS> append(ford.nil, opel.nil, L).

both the first and the second argument are of type list(car) and thus, the type of the
variable L is list(car). In the query

PROTOS> append(ford.opel.nil, airbus.nil, L).

the first argument is of type list(car) and the second argument is of type list(airplane).
The common supertype of both arguments is list(vehicle) which is the type that is de-
rived for L. However, the query

PROTOS> append(ford.opel.nil, 4.5.nil, L).

would be rejected as being ill-typed since car and nat and thus also list(car) and
list(nat) do not have a common supertype. The query

PROTOS> append(1.2.3.nil, 4, L).

is also ill-typed since the second argument is not even a list.

14



3.2 Relation definitions

A simple relation declaration together with its definition is

rel speed: car x ?nat.

speed(opel, 120).

speed(ford, 140).

speed(mercedes, 160).

Here, the three defining clauses for speed are simple facts without a conditional part.
Since the output in both arguments will always be ground independent of the input argu-
ments, the modes for speed could just as well be declared as

rel speed: ?car x ?nat.

in this case.

Here is an example of a polymorphic relation definition:

rel append: list(T) x list(T) x ?list(T).

append(nil, L, L).

append(H.T, L, H.TL) <-- append(T, L, TL).

Thus, as usual, appending the empty list nil to any other list L yields L, and appending
a list with head H and tail T to a list L yields the list with head H and tail TL if appending
T and L yields TL.

Note that the two clauses of append are exactly as in ordinary Prolog. However, in Prolog
a goal like

append(nil, 3, 3). (3)

would succeed although append is supposed to operate on lists only. In PROTOS-L the
additional typing information is used by the type checker to correctly reject (3) as being
ill-typed. Other type checking examples have already been given above.

Since append is defined as a polymorphic predicate it is applicable to all instances of list.
Here are some queries and their results that are computed by the PROTOS-L system:

PROTOS> append(1.2.3.nil, 4.5.nil, L).

L = 1.2.3.4.5.nil

PROTOS> append(ford.nil, opel.nil, L).

L = ford.opel.nil

PROTOS> append(ford.opel.nil, airbus.nil, L).

L = ford.opel.airbus.nil

Note that the first two arguments of append are declared as input arguments. However,
one of the specialities of Prolog is that input and output arguments can be freely mixed
and interchanged. Correspondingly, in our situation with mode declarations one may like
to put a variable or a non-ground term in an input position, and also to be able to have
e.g. a non-ground term in an output position. In order to indicate these cases, one can

15



declare a variable as being an open variable. Such a declaration has the effect that the
mode checker treats the variable as being a ground term. Thus, it is possible to pass a
variable into an input position or to obtain a non-ground term in an output position.

The syntax for such an open variable declaration is

!X

A PROTOS-L query involving open variables is

PROTOS> !L1 & !L2 & append(ford.L1, L2, ford.opel.mercedes.nil).

where append is not used for appending two given lists but where the list resulting from
appending two lists is already given. Via backtracking PROTOS-L computes all possible
solutions as demonstrated by the following dialog:

PROTOS> !L1 & !L2 & append(ford.L1, L2, ford.opel.mercedes.nil).

PAM started

L1 = nil

L2 = opel.mercedes.nil

MORE ANSWERS? (Y/N)? y

L1 = opel.nil

L2 = mercedes.nil

MORE ANSWERS? (Y/N)? y

L1 = opel.mercedes.nil

L2 = nil

MORE ANSWERS? (Y/N)? y

NO (MORE) ANSWERS

PROTOS>

In order to describe in more detail which variables in a PROTOS-L program have to
be declared as open, we have to understand the principle of dataflow used in the mode
checking algorithm: The head and each goal of a PROTOS-L clause divide the variables
occurring in it into two disjunct groups: the input block containing all variables inside the
input arguments of the corresponding predicate (those having no ’?’ in its declaration)
and the output block containing all other variables. Note that it is possible for either
block to be empty. Now look at the following diagram showing the dataflow graph of a
single clause:

16



p0( IN , OUT ) <--

p1( IN , OUT ) & ... & pn( IN , OUT ) .

environment

produce consume

consume produce consume produce

. . .

. . . . . .

@¡@¡ ¡@¡@

µ ´

¶ ³

µ ´

³µ

There are some entrypoints of the environment that are denoted by produce and some by
consume saying that all variables contained in the corresponding input or output block are
produced resp. consumed at this point of the dataflow graph. The mode checking algorithm
requires that each variable that is consumed at a given position, needs to be produced at an
earlier point in the dataflow graph. When this requirement is not fulfilled for any variable
X, the programmer has to produce this variable before the critical consuming point by
declaring it as open by !X.

Other examples of the use of open variables are given in the map colouring program in
Section 5.

If there is a hierarchy of types it makes sense to test at runtime whether the value of a
variable belongs to a certain subtype. For instance,

E:technician (4)

tests whether the value bound to E belongs to the type technician. Thus, (4) is called
a membership condition. However, if E is still a free variable then (4) represents a very
powerful mechanism of PROTOS-L, namely the possibility to constrain a variable to a
subtype without binding it to a particular value of that type. For instance, suppose that
the relation (for the complete example program see Appendix A)

rel can repair : technician x model.

can repair(T, M) <-- T:pc technician & M:pc model.

can repair(T, M) <-- T:mainframe technician & M:mainframe model.

is called with

can repair(T, pc1)

where T is a free variable and pc1 is of type pc model. Then T is not bound to an element
of type pc technician but it is constrained to that type. Thus, the deduction process
uses the more abstract level of set-denoting types rather than the level of individuals. This
yields not only more compact intensional answers but it may also save a lot of expensive
backtracking.

17



Similarly to the mode checking algorithm which sometimes requires a open variable dec-
laration, the type checking algorithm will sometimes require that a variable X is restricted
to a subtype by X:s if a following subgoal consumes X and expects X to be of type s.
However, if the type checker has been able to automatically infer that X is of type s (or a
subtype thereof), then no such declaration is necessary.

Further examples of the use of explicit subtype restrictions as well as the use of open
variables are given Appendix A and B; in particular in the relations can repair and
can do job in A, query in B.1, print map line in B.2, create entries in B.4, all countries

in B.5, or complement in B.6.

Apart from calling a relation, declaring a variable as open, and testing for membership
there are currently the following other types of conditions that may occur in the condition
part of a PROTOS-L relation definition:

• An equation of the form t1 = t2 succeeds if t1 and t2 can be unified.

• A comparison of two arithmetic expressions like X + Y < Z requires that all vari-
ables occurring in it are bound to an integer value at runtime. The expressions are
evaluated and compared w.r.t. the given relation symbol.

• A comparison of two string expressions where string is another built-in type.

• The ”negation-as-failure” as known from Prolog which is denoted by naf.

• The “if-then-else” conditional: the condition if a then b else c fi is evaluated
as follows: First, a is evaluated (only once - no backtracking will occur back into a).
If a succeeds, b will be selected as the next subgoal, possibly with backtracking over
b, but c will never be considered. Vice versa, if a fails, b will not be considered and
c will be taken instead, again possibly with backtracking over c.

Note that the operational semantics of the “if-then-else” conditional is defined as if
it was a shorthand. I.e., a subgoal of the form

if <a> then <b> else <c> fi

is a shorthand for a subgoal defined by the two clauses

. . . <-- <a> & protos cut & <b>.

. . . <-- <c>.

where protos cut corresponds to the the cut operator known from Prolog.
(Warning: Thus be careful when using protos cut explicitly in <a>, <b>, or <c>

which will have a local effect.)

• Similar to the user-defined relation also a built-in predicate may be called (see Section
10).

Here is the formal syntax for a relational clause:

relational clause −→

relation clause head [ ‘<--’ condition part ] ‘.’

18



relation clause head −→

relation designator [ ‘(’ {var term} ‘)’ ]

relation designator −→

identifier

condition part −→

condition [ ‘&’ condition part ]

condition −→

relation call

| meta predicate relation call

| conditional

| variable ‘islistof’ var term ‘where’ relation call

| relation call parameter ‘:’ ground type term

| relation call parameter bool op relation call parameter

| ‘!’ variable

meta predicate −→

‘naf’

| ‘insert’
| ‘delete’
| ‘dbassert’
| ‘dbdelete’

conditional −→

‘if’ condition part

‘then’ condition part

(‘elsif’ condition part ‘then’ condition part )*
[ ‘else’ condition part ]
‘fi’

relation call −→

relation designator [ ‘(’ {relation call parameter} ‘)’ ]

3.3 Relation classes

Relation declarations are usually introduced with the keyword rel as in

19



rel p : . . .

However, there are also additional types of relations.

The declaration

drel p : . . .

introduces a deterministic relation. Operationally, this means that no backtracking will
occur on p. Once a clause of p has been completed successfully all other choices for p will
be discarded. Thus, p will yield always at most one solution.

trel p : . . .

introduces a total relation. Operationally, this means that during runtime it is checked
that every call of p eventually yields a success. If a call of p fails, a run-time error with
an appropriate error message will be generated. (Note that also exhaustive backtracking
over a non-deterministic total relation will eventually cause this run-time error to occur).

tdrel p : . . .

introduces a relation that is both total and deterministic.

urel p : . . .

introduces a relation that can be updated. This means that during runtime tuples may
be added to or deleted from p dynamically by

insert p(. . . )

and

delete p(. . . )

respectively. (See Section 7 for more details on updatable relations).

trans p : . . .

introduces a transaction relation. The effect of inserting or deleting a tuple in an updatable
relation is usually undone on backtracking. However, all operations within a transaction
relation p will become permanent once p has been completed successfully. No backtracking
will occur over p in this case; thus, a transaction relation is a special case of a deterministic
relation.

For compatibility reasons with a previous version there are also relations which are clas-
sified as procedures.

proc p : . . .

introduces such a relation and

tproc p : . . .

introduces a relation that is a total procedure. Any relation that contains a call to a proc

or tproc relation must be itself a proc or tproc relation.

20



3.4 Some Built-in Relations

There are built-in relations dealing with types, arithmetic, file handling etc. In this subsec-
tion we only present some of the built-in relations that are not directly related to particular
built-in types (like arithmetic or files); the latter are presented in the separate sections.
All built-ins are described in the PROTOS-L User’s Manual [Meyer and Beierle, 1994].

The built-in relation

rel var : T.

succeeds if its argument is a free variable; otherwise it fails.

The built-in relation

rel nonvar : T.

succeeds if its argument is not a free variable (regardless of any type restrictions for it);
otherwise it fails.

The built-in relation

rel ground : T.

succeeds if its argument is a ground term, i.e. it may not contain a free variable.

The built-in relation

rel nonground : T.

succeeds if its argument is not a ground term; otherwise it fails.

The membership condition X:t test the actual type of X and may thereby change the type
of X to a subtype. The next three built-in predicates also test the type of a variable (or
more generally, of a term) but they never change the type of its argument.

The built-in relation

rel sort eq: T x ground type term.

checks whether the first argument has exactly the type given in the second argument.
Thus,

!X & X:car & sort eq(X, car).

succeeds, whereas

!X & X:car & sort eq(X, vehicle).

fails.

The built-in relation

rel sort le: T x ground type term.

checks whether the first argument has a type which is a subtype of the second argument.
Thus, both

21



!X & X:car & sort le(X, vehicle).

!X & X:car & sort le(X, car).

succeed, whereas

!X & X:vehicle & sort le(X, car).

fails.

The built-in relation

rel sort glb: T x ground type term.

checks whether the type of its first argument and the type given in the second argument
have a common subtype (i.e. a greatest lower bound exists). Thus, whenever sort le(X,t)

succeeds then also sort glb(X,t) succeeds. In addition to that,

!X & X:car & sort glb(X, boat).

would succeed in a type hierarchy where amphibious vehicle is a subtype of both car

and boat, whereas

!X & X:car & sort glb(X, airplane).

fails if the two types have no common subtype.

The built-in relations

rel instantiate: T x ?list(T).

rel instantiate1: T x ?list(T).

take a variable in its first argument and yield the list of all possible instantiations.
instantiate goes recursively also to the subsorts, whereas instantiate1 yields a vari-
able for each subsort instead. Thus,

!X & X:car & instantiate(X, L)

might yield

L = opel.ford.mercedes.amphi1.amphi2.nil

whereas

!X & X:car & instantiate1(X, L)

would give us

L = opel.ford.mercedes.A:amphibious vehicle.nil

Additional built-in relations and functions are sketched in Section 10 and described in
detail in [Meyer and Beierle, 1994].

22



4 Functions

4.1 Function declarations and definitions

A well-known disadvantage of purely relational notation is that functions with fixed input-
output behaviour can not be written as such and that functional nesting is not available.
Suppose we have a function

append: list(T) x list(T) --> list(T).

that appends two lists and a predicate

rel p: list(T) x nat.

Applying p to the result of appending two lists should be written as

. . . & p(append(L1, L2), N) & . . . (1)

In relational style append would be a three-place relation and (1) would be written as

. . . & append(L1, L2, L3) & p(L3, N) & . . .

with two subgoals instead of one and an additional ”transfer variable” L3.

In order to have the advantage of functional notation available PROTOS-L allows the
definition of functions. Here is an example:

append: list(T) x list(T) --> list(T).

append(nil, L) = L.

append(H.T, L) = H.append(T,L).

Another syntactic variant for a function definition leaves out the function name in the
right hand side of the equations:

append: list(T) x list(T) --> list(T).

nil, L |> L.

H.T, L |> H.append(T,L).

Thus, a function consists of a function declaration and a list of equations which may also
be conditional equations, for instance:

number of cars: list(vehicle) --> nat.

number of cars(nil) = 0.

number of cars(H.T) = 1 + number of cars(T) <-- H:car.

number of cars(H.T) = number of cars(T). % H is not a car.

The equations are tried in top-down order. As soon as a left-hand-side of an equation
is unifiable with the term to be rewritten and the (possibly empty) condition for that
equation succeeds, the right-hand-side of the equation is taken as the value of the given
function application. No other equation will then be considered. Furthermore, if at
runtime none of the equations can be applied a runtime error will be generated. Thus, in
this sense a function corresponds to a total deterministic relation.

The syntax for function definitions is a follows:

23



function definition −→

function declaration

functional clause

(functional clause)*

function declaration −→

function designator ‘:’ domain ‘-->’ type term ‘.’

functional clause −→

function clause head ‘=’ relation call parameter [ ‘<--’ condition part ] ‘.’

| {var term} ‘|>’ relation call parameter [ ‘<--’ condition part ] ‘.’

function clause head −→

function designator ‘(’ {var term} ‘)’

The conditions allowed in a function definition are exactly the same as in the definition of
a relation (c.f. Section 3.2).

4.2 Built-in Functions

Most of the built-in functions are related to particular built-in types (like arithmetic types
or streams) and are therefore presented in separate sections.

The built-in function

new var : T --> T.

serves the following purpose: Suppose we want to generate a free variable New with a
certain type restriction at runtime, but we do not know the type restriction at compile
time. Instead, we want to restrict New to the actual type of another variable X. Then

New = new var(X)

introduces a new variable New whose type restriction is given by the type of X. The argu-
ment X must be a free variable.

24



5 Modules

In order to support modular program development with separate type checking and com-
pilation each PROTOS-L program consists of a set of modules. Each module in turn
consists of an interface and a body. As e.g. in Modula-2, the purpose of the interface of
a module is to define the set of exported names which are introduced in this module or
transferred from other modules. The user of a module needs only to see its interface, and
not the body. A compilation unit is either an interface or a body. In order to compile
such a compilation unit the interfaces of all imported modules must have been compiled,
but not their bodies. The compilation of a module body of course additionally requires
that its own interface has been compiled.

Besides hierarchical structuring, program bodies provide e.g. a means for the implemen-
tation of abstract data types.

Different from Modula-2, there may also be interfaces without a body, called views (as in
TEL). The purpose of a view is to provide a name space that consists of names exported
from other modules. Thus, a view is a language construct that combines a set of modules
to a layer. A user of such a view must then only import this view, and has not to consider
the modules behind that view.

Different from all other modules concepts, PROTOS-L provides a single type of module
interface but two types of module bodies: program bodies and database bodies. Modules
are the primary means for structuring PROTOS-L programs. On the interface level the
structuring is transparent; thus an interface could describe both the interface to a program
body or to a database body. Database bodies provide a means for structured database
access, i.e. external databases can be accessed by using a database module.

In this section, only program bodies will be presented; database bodies are described in
Section 6.

In the following we will first present various aspects of the module concept by working
through an example, before giving the full definition of the module concept.

5.1 The Map Colouring Problem

Consider the module structure depicted in Figure 1. The top module map introduces
predicates for colouring a given map with four colours such that no two neighbouring
countries have the same colour. The definition of this top-level functionality is structured
into the modules discussed in the following (for the complete example see the appendix
B). We present the modules in bottom-up order and start with the module m country

which describes the set of countries to be coloured. Its interface

interface m_country.

nmtype country := { d, f, a, cs, i, be, h, ch, l, yu, ne,

e, p, pl, gb }.

% country will be a subtype of area in

25



³³³³³³

HHHHH

³³³³³

XXXXXXX
XXXXXXX

m output

m layout m adt

m country m colour

map

Figure 1: The module hierarchy for the map colouring problem

% the module m_layout - thus it’s an

% ’non-maximal type’ (nmtype)

rel all_countries : ?list(country).

% yields a list of all countries

rel all_neighbours : country x ?list(country).

% for a given country yields the list

% of its neighbours

endinterface.

introduces the type country which contains (most of) the countries of Europe. The
relation all neighbours gives for each country the list of its neighbouring countries.

The module m layout provides the layout for the map to be painted. For simplicity of the
presentation, we assume that we have rows of equal-sized rectangles, and every rectangle
belongs to either a country or to the sea. Such a map layout can be represented by n lists
(where n is the number of rows of the map visualization), each of which will be of length
m (where m is the number of columns). Thus we have:

interface m_layout.

imports m_country.

from m_country : country.

area := country ++ { s }.

% sea

rel layout : ?list(list(area)).

% yields a simple layout for the map of Europe,

% represented as a list of lists of area

endinterface.

26



Note that country can be used as a subtype of area since country was introduced as a
non-maximal type (nmtype) in m country. The declaration

from m_country : country.

is a transfer declaration stating that the type country is exported from m layout with the
definition as provided in m country. This ensures that the exported signature of m layout

is self-contained in the sense that all names occurring in it have also a definition in that
exported signature. If e.g. this transfer declaration was dropped from the interface, the
PROTOS-L system would complain that the definition of area in the export signature
of m layout refers to a type name (country) that is not itself contained in exported
signature.

The interface m colour

interface m_colour.

colour := r_y_g ++ r_y_b ++ r_g_b ++ y_g_b.

r_y_g := r_y ++ r_g ++ y_g.

r_y_b := r_y ++ r_b ++ y_b.

r_g_b := r_g ++ r_b ++ g_b.

y_g_b := y_g ++ y_b ++ g_b.

r_y := r ++ y.

r_g := r ++ g.

r_b := r ++ b.

y_g := y ++ g.

y_b := y ++ b.

g_b := g ++ b.

r := { red }.

y := { yellow }.

g := { green }.

b := { blue }.

rel select_colour : ?colour.

% this is the non-deterministic colour choice

rel constrain_neighbours : list(colour) x colour.

% neighbours given country

colour_to_string : colour --> string.

% give a string representation for a colour

endinterface.

27



"
"

"
"

"
"

"
""

£
£

£
££

\
\

\
\\

HHHHHHHHHHHH

¶
¶

¶
¶

¶
¶

A
A
A
A
A
A

aaaaaaaaaaaaaaaa

©©©©©©©©©©©©

L
L
L
L
L
L

aaaaaaaaaaaaaaaa

©©©©©©©©©©©©

¡
¡

¡
¡

¡¡

aaaaaaaaaaaaaaa

@
@

@
@

@
@

¦
¦
¦
¦
¦¦

,
,

,
,

,
,

,

T
T
T
T
TT









"
"

"
"

"
"

"
"

""

Q
Q

Q
Q

Q
Q

Q
Q

QQ

"
"

"
"

"
"

"
"

""

³³³³³³³³³³³³³³³³³

b
b

b
b

b
b

b
b

b
bb

¦
¦
¦
¦
¦¦

!!!!!!!!!!!!!!

aaaaaaaaaaaaaaaa

B
B
B
B
BB

¢
¢

¢
¢

¢
¢

colour

r y g r y b r g b y g b

r y r g r b y g y b g b

r y g b

Figure 2: The colour type hierarchy for the map colouring problem

introduces a hierarchy of colour types as depicted in Figure 2.

Thus, the type colour represents the four possible colour values red, yellow, green, and
blue. The subtypes of colour represent any of the possible restrictions the colour of a
country must observe. For instance, if a country’s colour is red then all of its neighbours
must have a colour that is a subtype of y g b, and if a country has a red neighbour and
also a green one then its own colour must belong to the type y b.

Two relations are exported by the module m colour: one for selecting a colour and another
one for constraining the colours of all neighbours with respect to a given colour.

The implementation of the relations is contained in the body of m colour. The implemen-
tation of select colour is simply a non-deterministic relation with four ground facts:

rel select_colour : ?colour.

select_colour(red).

select_colour(yellow).

select_colour(green).

select_colour(blue).

Given any of the four colours for a country, the colour of every neighbour of it must belong
to the complement type of that colour:

28



rel constrain_neighbours : list(colour) x colour.

% neighbours given colour

constrain_neighbours(nil, _).

constrain_neighbours(Col.ColL, GivenColour) <--

complement(GivenColour, Col) &

constrain_neighbours(ColL, GivenColour).

The complement of a given colour is given by the corresponding subtype of the type
colour:

rel complement : colour x ?colour.

complement(red, Comp) <-- !Comp & Comp : y_g_b.

complement(yellow, Comp) <-- !Comp & Comp : r_g_b.

complement(green, Comp) <-- !Comp & Comp : r_y_b.

complement(blue, Comp) <-- !Comp & Comp : r_y_g.

Note that the declaration for complement defines its second argument to be an output
argument which should be completely instantiated after execution. However, in the com-
plement relation the second argument is restricted to a subtype of colour, but it may still
be a variable. Therefore, the variable Comp is declared as an open variable in the subgoal
!Comp. The notation !Comp indicates to the mode checker to consider the variable as if it
were bound to a ground term (c.f. Section 3.2). This achieves both: a strict mode checking
discipline with enables the system to detect data flow inconsistencies while retaining the
full power of Prolog’s arbitrary input/output arguments in the case of open variables.

The exported function colour to string yields a string representation for each colour,
to be used in the simple layout of the map:

colour_to_string : colour --> string.

colour_to_string(red) = "rr". % in this simple version just

colour_to_string(yellow) = "yy". % print the first chararcter

colour_to_string(green) = "gg". % of a colour twice

colour_to_string(blue) = "bb". % ...

Whereas the module m layout implements the layout of the visualization of the map, the
module m adt provides a representation of the map that is more suitable for the problem
solving task of colouring the map. However, the representation itself is independent of
the other parts of the colouring process. Thus, these other parts should not depend on
the representation; they do not have to know it. In particular, they should only use the
operations that are provided on the representation to the other parts of the program.
Thus, the map representation should be an abstract data type.

interface m_adt.

imports m_country, m_colour, utilities.

from m_country : country.

29



from m_colour : colour,

r_y_g, r_y_b, r_g_b, y_g_b,

r_y, r_g, r_b, y_g, y_b, g_b,

r, y, g, b.

from utilities: pair_of.

map := abstract. % abstract data type (adt).

rel init_map : ?map. % creates the initial map which does

% not yet contain a colour binding

% for any country

rel set_colours : list(pair_of(country, colour)) x map.

% initializes the map with the colours

% given in the list

rel ready : map. % succeeds if there is no more country

% to be painted

rel select_country : map x ?colour x ?list(colour) x ?map.

% given colour of

% map neighbours

% colour of remaining

% country map

% selects the next country to be painted,

% yields its colour restriction, the

% colours of its neighbours, and the

% remaining map still to be painted

drel get_country_colour : map x country x ?colour.

% yields a country’s colour

endinterface.

The interface m adt introduces the type map as an abstract type (which is similar to an
opaque type in Modula-2): No subtypes nor any constructors are given for that type.
Therefore, the internal structure of the type map can not be investigated by another
module. The only possibility for another module to use the map type is via the operations
exported by m adt (map abstract data type):

rel init_map : ?map.

creates the representation of the initial map when starting the program. The initially
created map does not yet contain any bindings of a country to a particular colour.

rel set_colours : list(pair_of(country, colour)) x map.

30



provides the possibility to set the colour of some countries in advance, where the poly-
morphic type definition pair of is imported from the library module utilities. We will
not give the full definition of that module but assume that the definition

pair_of( T1, T2 ) := { pair : T1 x T2 }.

is contained in its export interface. The relation

rel ready : map.

succeeds if there is no more country to be painted. The relation

rel select_country : map x ?colour x ?list(colour) x ?map.

% given colour of

% map neighbours

% colour of remaining

% country map

contains the heuristics which selects the next country to be painted (but without painting
it yet). In the subgoal

select_country(Map, Col, ColNeigh, MapRest)

Map is the given map, Col is the colour variable of the selected country to be painted next,
ColNeigh is the list of colours of its neighbours, and MapRest is the remaining map still
to be painted.

The relation

drel get_country_colour : map x ?country x ?colour.

yields a country and its colour in a given map.

Note that the abstraction achieved indeed does not say anything about how the selection of
the country is done, or how the mapping from a country to its colour or to its neighbours
is realized. These things are solely defined in the module body of m adt and could be
changed independently from the modules using m adt. (For a particular realization see
the appendix).

The module m output combines the information on the layout of a map and the colours
selected within the abstract data type representation for maps. It produces a graphical
visualization of the coloured map, together with a printed list of the countries and their
colours:

31



interface m_output.

imports m_adt.

from m_adt: map abstract. % map is an abstract data type

drel print_map : map. % shows a coloured map-picture

% of a part of europe on the

% screen and prints out the

% countries with its colours.

endinterface.

The module map is the top-level module of the map colouring program:

interface map.

imports m_country, m_colour, utilities.

from m_country: country.

from m_colour : colour,

r_y_g, r_y_b, r_g_b, y_g_b,

r_y, r_g, r_b, y_g, y_b, g_b,

r, y, g, b.

from utilities: pair_of.

rel europe : list(pair_of(country,colour)).

rel query : int.

endinterface.

The relation europe colours a map of Europe with predefined colours for the countries
given in its argument list. For instance,

rel europe(pair(d, blue).pair(i,blue).nil))

sets the colour of both Germany (d) and Italy (i) to blue before colouring the rest of
Europe. The relation query contains some predefined queries for demonstration purposes.

The definition of europe initializes the map, sets the predefined colours, colours the map,
and prints the result:

module map.

imports m_country, m_colour, m_adt, m_output.

rel europe : list(pair_of(country, colour)).

europe(PairL) <--

init_map(Map) & % initialize map

set_colours(PairL, Map) & % set predefined colours

paint(Map) & % do the colouring

print_map(Map). % display the result

rel paint : map.

32



paint(Map) <--

if ready(Map)

then succeed

else select_country(Map, Col, ColNeigh, Map2) &

% select (variable) Col

select_colour(Col) & % select value for Col

constrain_neighbours(ColNeigh, Col) &

% neighbours of Col

paint(Map2) % the rest without Col

fi.

rel query : int.

query(0) <-- europe(pair(d,blue).nil).

% set Germany to blue

query(1) <-- europe(pair(d,blue).pair(i,blue).nil).

% set Germany and Italy to blue

...

query(6) <-- !DCol & DCol : g_b &

!FCol & FCol : g_b &

europe(pair(d,DCol).pair(f,FCol).nil).

% restrict Germany and France to green or blue

...

endmodule.

If a map Map has not been completely coloured yet, the relation paint selects (the colour
variable of) a country and chooses a colour Col for it, constrains the colours ColNeigh of
its neighbours to the complement of Col and paints the remaining part Map2 of the map.
The appendix B contains the complete map colouring program.

5.2 Module Interfaces, Bodies and Views

Here is the syntax definition for module interfaces, bodies and views. The details for
database bodies are given in Section 6.

view −→

‘view’ module name ‘.’

‘imports’ {module name} ‘.’

transfer declaration

(transfer declaration)*
‘endview’ ‘.’

interface −→

program interface | simple interface

33



simple interface −→

‘interface’ module name ‘.’

(simple rel declaration)*
‘endinterface’ ‘.’

a simple interface does not allow imports or type definitions. This
definition describes the subset of interfaces which can be used for
database bodies.

program interface −→

‘interface’ module name ‘.’

[ ‘imports’ {module name} ‘.’

[ (transfer declaration)*
declaration ] ]

(declaration)*
‘endinterface’ ‘.’

body −→

program body | db body

program body −→

‘module’ module name ‘.’

[ ‘imports’ {module name} ‘.’ ]
(prog definition)*

‘endmodule’ ‘.’

db body −→

‘database body’ module name ‘using’ {db name} ‘.’

(db definition)*
‘endmodule’ ‘.’

module name −→

identifier

db name −→

db identifier | path name

a db identifier is the name of an AIX environment variable; thus it may
also start with a capital letter
a path name is a path name of the operating system written as a string

34



6 Database access in PROTOS-L

This section describes how database access is embedded in the programming language
PROTOS-L, i.e. how database access is expressed within database bodies. The basic
idea is to give the PROTOS-L programmer a uniform high-level database programming
language. The impedance mismatch of other language integrations, e.g. the integration of
SQL into C, should be avoided.

Like other implementation details access to an external database shall be transparent for
the user of a module. Therefore, in an interface of a module it is not visible, whether or
not the corresponding implementation of the body accesses an external database. Instead,
PROTOS-L offers two kinds of module bodies: program bodies and database bodies. Pro-
gram bodies support logic programming with backtracking and database bodies support
access to relational databases and the definition of deductive databases, using set-oriented
evaluation strategies (c.f Section 6.2).

PROTOS-L supports backtracking on top of set-oriented retrieval by allowing that pro-
gram bodies import predicates from modules which are implemented by database bodies,
but the database bodies can not import predicates from program bodies (and currently,
also not from other database bodies).

6.1 The database module as a link to a relational database

If the implementation of a module is a database body, then there is expected to be a
corresponding extensional database. In the header of the database body the logical name
of the external relational database is specified. The definition of database names depends
on the specific DBMS which is used. We will consider here the definition of relations which
is independent from the DBMS; the technical details are given in the PROTOS-L User’s
Manual [Meyer and Beierle, 1994].

For every database relation declared in the database body there has to exist a corre-
sponding database relation in the database schema of the DBMS and the types of the
arguments of the declared relation have to be compatible to the types of the attributes
of the underlying database relation. That is why the argument types of a declared re-
lation are restricted to the attibute types supported by the underlying database system,
i.e. to integer and string. The definition of relations of the external database, called base
relations in our context, is marked with the keywords dbrel ... is ... In this way a
PROTOS-L predicate is linked to the corresponding database relation which is described
by a relation name and a sequence of attribute names. These attributes are mapped one
by one onto the argument positions of the predicate. Logically, this notation can be seen
as a shorthand for a sequence of all tuples of the extensional DB-relation.

Example:

database body production plan using schedule DB .

35



rel used machines : ?string x ?int x ?int x ?int .

% machine name used from used until for order

% Which machine is used in which time interval for which order ?

% If the machine is available in the time interval

% then the 4th argument has the value 0.

dbrel used machines is Machine Rel (Mname, UsedFrom, Until, Order) .

2

rel step machines : ?int x ?string .

% production step machine name

% Which production step can be done by which machine ?

dbrel step machines is Machines for Step (Step, Machinename) .

...

endmodule.

This database body requires that there are at least two relations in the database sched-
ule DB: Machine Rel and Machines for Step. Further, Machine Rel must have at least
the four attributes Mname of type string, and UsedFrom, Until and Order of the type
integer. Similarly, Machine for Step must have at least the attributes Step of the type
integer and Machinename of type string. This is checked by the PROTOS-L system at
the time when the module production plan is opened. Note that the number and order
of attributes of a relation can be different from the sequence of attributes listed in the
database body. The latter ones only have to be a subset of the former.

6.2 The database module as a deductive database

The full power of the deductive database component appears when inference rules are
defined. A PROTOS-L database body may contain function free database rules in order
to implement predicates specified in the module’s interface. A function free database rule
consists of a head and a number of goals, each of which does not contain a function symbol.
Rules in database bodies may contain the following kinds of goals:

database relation goals e.g. used machines(Machine, From, Until, Order)

virtual relation goals e.g. available machines(Machine, F, U)

comparison goals e.g. F ≤ From,
Interval 6= 2 * (Until - From)

Note that the PROTOS-L programmer may program recursive and non-recursive rules in
database bodies. This distinction is non-trivial in the field of Deductive Databases. The
database body given in section 6.1 may for example additionally contain the two rules
shown below. The first rule computes which machines are available in which time interval,
and the second rule computes which available machines can be used for a production step
in a given time interval.

2Note: The DB-systems don’t like SQL-keywords, e.g. ’from’, as attribute name.

36



database body production plan using schedule DB .

...

rel available machines : ?string x ?int x ?int .

% machine name used from used until

% Which machines are available in which time interval ?

available machines(Machine, From, Until)

<-- used machines(Machine, From, Until, 0) .

rel step can use machine : ?int x ?string x int x int .

% step machine name from until

% Which machines can be used for a production step and

% are available in a given time interval ?

step can use machine(Step, Machine, From, Until)

<-- step machines(Step, Machine) &

available machines(Machine, F, U) &

F ≤ From &

U ≥ Until .

endmodule.

In database modules, PROTOS-L supports the built-in goals = , 6= , ≤ , ≥ , < and > in
order to compare arithmetic expressions and the built-in goals = , 6= and “like” in order
to compare strings. Arithmetic expressions may contain integer constants and variables,
brackets and the operators + , – , * and // .

Since rules in program bodies and view definitions in database bodies are expressed in
the same way, the PROTOS-L programmer has to learn only one single language for
deductive databases and application programs. This avoids the impedance mismatch of
other integrations of database query languages into host programming languages, e.g. of
the integration of SQL into C.

Different from the rules in program bodies which are evaluated by backtracking, the rules in
database bodies are evaluated by set-oriented query evaluation strategies. Recursive rules
are evaluated by a mixed top-down and bottom-up strategy. These methods are described
in [Meyer, 1989]. Set-oriented query evaluation strategies are especially advantageous if
the accessed data sets are large.

6.3 Using the module concept of PROTOS-L in order to choose the

evaluation strategy of rules

Whenever a rule uses facts that are stored in a database the programmer has the choice
to select an adequate evaluation strategy for this rule. When the programmer assumes
that there are many results of a rule R needed to solve a goal, he may prefer set-oriented
evaluation of the rule R. In this case, he codes the rule R in a database body, and the

37



PROTOS-L system evaluates the rule set-oriented. On the other hand, if he assumes that
there are only few results of a rule R needed to solve a goal, he may prefer an evaluation
by backtracking and stop the evaluation when no more answers to the rule R are needed.
In this case, he codes the same rule R in a program body, and the PROTOS-L system
evaluates the rule by backtracking.

Example continued:

If it is assumed that in order to solve the rule step can use machine many calls of
step machines are needed, then the rule step can use machine is preferable implemented
in a database body as shown in the last example, because the database body performs a
set-oriented evaluation of the rule. However, if it is assumed that only a few solutions of
step machines is needed in order to solve the planning problem, and therefore backtrack-
ing is preferred, then the rule should be implemented in a program body instead of the
database body. Hence, whether a rule accessing database relations should be implemented
in a database body or in a program body depends on the desired evaluation strategy for
this rule.

6.4 Integrating the knowledge of multiple databases

PROTOS-L can integrate the knowledge of many databases within a single application
program. Different databases in the PROTOS-L context correspond to different areas
which are under control of one database system. It is not possible to work with multiple
instances of (different) database management systems. Usually every database is enclosed
in its own module. The information of several databases can be integrated within program
bodies that import all the predicates they need from the different database modules.

In order to provide more flexibility it is also possible to access different databases within
one module. First, the ’using’ part of the module header has to contain a list of all needed
databases. Second, a relation definition is augmented by ’from <dbname>’ stating that the
relation is stored in the database given by <dbname>.

Example:

database body plan2 using plantDB, localDB .

rel products : ?string x ?int .

% product name cost

dbrel products is ProdRel(Name, Cost) from plantDB .

rel orders : ?name x ?string .

% customer product

dbrel orders is Order (Customer, ProductId) from localDB .

If no ’from’ part is specified the first database name from the list given in the module
header is used by default.

38



The complete syntax of database bodies is given in Section 11. For subgoals in rule bodies
it is essentially the same as in program bodies apart from the restriction to function free
subgoals.

6.5 Embedded SQL

A major goal in designing the database bodies was to provide a high-level interface to rela-
tional databases which conforms to the design of program bodies. The database program-
ming language defined up to now is independent from the specific database systems and
their communication protocols. Furthermore, it does not depend on the query language
of the DBMS, although only SQL-based systems are currently supported. By providing
(recursive) deduction rules the computational power of the resulting language goes beyond
that of standard relational query languages, e.g. SQL.

On the other hand there are some useful features in SQL like sorting and functions to
compute the minimum and maximum of values which are not (yet) part of PROTOS-L.
Although there are several ideas how to extend the expressive capability of inference rules
we decided, (due to limited man-power) to include embedded SQL queries directly into
the database language. This is for practical reasons in order to take advantage of the full
power and efficiency of complex SQL queries. The syntax of the embedded SQL used in
PROTOS-L is almost the same as used for other host languages.

Example:

rel q : int x ?int x ?int

q(X,Y,Z) <-- p1(X,Y,Z).

q(X,Y,Z) <-- EXEC SQL

SELECT MIN(R.B), MAX(R.B)

INTO :2, :3

FROM someRel R

WHERE R.A = :1

END SQL .

The body of any rule may be replaced by an SQL query. The query itself is parameterized
by the variables occurring in the head of the clause. In the query, X, Y, Z are referred to
by :1, :2, :3, respectively. At run time the current argument bindings are propagated
into the SQL query which is then evaluated by the DBMS. The resulting selected values are
placed into the appropriate output variables. Currently, all variables used in the WHERE
part must be bound at run time and all other (output) variables have to be free. The
embedded SQL query is enclosed by the keywords EXEC SQL and END SQL followed by a
dot. Because SQL queries and normal deduction rules are used in the same manner we
have an almost orthogonal integration.

Maybe at some time in the future PROTOS-L will allow deduction rules like

39



q(X,Y,Z) <-- L = aggregate(A, p(A,X)) &

Y = min(L) &

Z = max(L).

replacing the SQL query shown above and thereby regaining uniformity with the other
rules in database and program bodies.

40



7 Updatable relations and transactions

Besides the other kinds of relations (rel, drel, trel, tdrel, proc, . . . ) which may
only be evaluated but may not be modified, PROTOS-L offers a special kind of updatable
relations which may be modified.

The concept of an updatable relation (which uses the keyword urel) has been introduced
into PROTOS-L in order to keep the logic programs readable and to avoid programming
errors. Currently, only database relations may be updatable, i.e. an updatable relation
must be implemented in a database body, and it must not be defined by rules.

urel produce on : string x int x int x string .

% product from until machine

% Which product is produced in which time interval on which machine ?

dbrel produce on is Production Plan(Product, UsedFrom, Until, Machine) .

The facts of the updatable relation produce on are taken from the external database re-
lation Production Plan. At the interface of a module it is visible which relations are
updatable and which relations are not, because the exported updatable relations are de-
clared using the keyword urel instead of rel, drel, proc, trans, etc.

7.1 Modification of updatable relations

PROTOS-L supports insert and delete operations on updatable relations. Insert and
delete operations are only allowed on updatable relations and not on other relations. These
operations are allowed only in program bodies but not in database bodies.

Insert and delete operations are embedded in the programming language as goals in pro-
gram bodies, i.e. they can occur in any right hand side of a rule in a program body. The
operations insert and delete are used like a meta-call. For example, in order to add the
information to the database that product1 is produced during the time interval 100 ..

200 on machine1 , one can use the goal

insert produce on("product1", 100, 200, "machine1")

which inserts the tuple < ”product1”, 100, 200, ”machine1” > into the database relation
Production Plan. If this tuple is already present in the relation nothing has to be done.
Similarly, a call of

delete produce on("product1", 100, 200, "machine1")

deletes the tuple < ”product1”, 100, 200, ”machine1” > from the relation
Production Plan if present.

The general precondition for the execution of an insert or a delete operation can be sum-
marized as follows. Let r be predicate defined by a database relation R and A1, . . . , An be
arguments, i.e. Ai is either a variable or a constant. The precondition for the execution
of the operations

41



insert r(A1, . . . , An) and delete r(A1, . . . , An)

is that at the calling time of the operation all arguments are bound to constants, say
c1, . . . , cn.

Insert and delete operations are always successful in PROTOS-L, independent of the tuples
currently stored in the database relation R that corresponds to the predicate r. Note that
this is different from retract in Prolog.

The value (the interpretation) of the modified relation after the execution of the write
operation (by passing it from left to right) is the same as before the execution of the write
operation with the following exception: If Rpre is the value of the relation R before the
execution of a write operation, then

Rpre ∪ {(c1, . . . , cn)}

is the value of the relation R after the execution of the insert operation and

Rpre \ {(c1, . . . , cn)}

is the value of the relation R after the execution of the delete operation.

7.2 The integration of relation modifications and backtracking

Whenever backtracking passes a modification operation insert or delete from right to
left inside a transaction, then the modification operation is undone, i.e. backtracking
reestablishes the relation state given before this modification operation was executed.
Hence, insert and delete operations are different from dbassert and dbretract.

The following example demonstrates how insert and delete operations on updatable rela-
tions can be used in a program part of a production planning application.

The production plan, i.e. which product is produced during which time interval on which
machine, is stored in an updatable relation produce on:

urel produce on : string x int x int x string .

% product from until machine

An execution of the following rule changes the machine on which a product P is planned
to be produced from machine1 to machine2, and leaves the production time interval [ T1
, T2 ] unchanged.

rel change machine : string x int x int x string x string .

% product from until old machine new machine

change machine(P, T1, T2, OldM, NewM) <--

delete produce on(P, T1, T2, OldM) &

insert produce on(P, T1, T2, NewM).

Database modification operations may only be performed inside transactions, i.e. they
may only be called when a transaction is active.

42



7.3 Transactions in PROTOS-L

In order to describe the scope of transactions, PROTOS-L offers the language construct
transaction. A transaction is a special kind of a PROTOS-L relation and it is introduced
by using the key word trans instead of rel. The action sequence of the transaction is
programmed in the rules of the transaction.

Transactions influence the flow of program execution and backtracking.

We give the following example from our production planning application in order to demon-
strate both aspects of the PROTOS-L transaction concept. A transaction change if legal

changes the planned machine for producing a chemical product during the time interval
[T1,T2] from machine M1 to machine M2, only if the subsequent integrity checks are
successful.

trans change if legal : string x int x int x string x string .

% product from until old machine new machine

change if legal(P,T1,T2,M1,M2) ←
change machine(P,T1,T2,M1,M2) &

integrity checks(P,T1,T2,M1,M2) .

After changing the machine the integrity checks are performed. If they are successful,
i.e. if the evaluation of the rule implementing the transaction returns success, then the
transaction is committed.3 On the other hand, if the integrity checks fail, then the trans-
action execution can not be completed successfully and the transaction is aborted when
backtracking occurs.

The integration of transactions and backtracking can be summarized and generalized as
follows:

• If program execution proceeds from left to right to a goal which is implemented by
a transaction, then a BEGIN TRANSACTION statement is performed on the underlying
database system.

• If program execution returns from right to left (i.e. by backtracking with fail) from
a goal which is implemented by a transaction, then the transaction is finished. Note
that all modifications have been undone already during backtracking.

• If program execution proceeds from a goal implemented by a transaction from left to
right, i.e. the transaction execution succeeds, then a COMMIT TRANSACTION statement
is performed on the underlying database system.

Backtracking from right to left to a goal implemented by a transaction has to be prevented
from jumping to a choice point inside the transaction, because this transaction has already
been committed. Therefore, backtracking jumps to the last choice point allocated before
the beginning of the transaction.

3At commit time the modifications of the transaction are made permanent to the database.

43



In order to describe the effect of transactions in more detail, we sketch a possible im-
plementation of transactions which can be seen as a transformation where a transaction
predicate

trans change : ...

change(...) <-- r1

change(...) <-- r2

is replaced by a top-level deterministic predicate containing the transaction control. The
rules of the original transaction predicate are left unchanged while the predicate name is
substituted by a new identifier. The auxiliary predicates . . . transaction will never fail.
These predicates are used here for illustration purpose only and are not directly available
as built-ins in PROTOS-L.

drel change: ...

change(...) <-- begin_transaction &

change’(...) &

commit_transaction. % and succeed

% never coming back because

% change is deterministic

change(...) <-- abort_transaction &

fail.

rel change’ : ...

change’(...) <-- r1

change’(...) <-- r2

Nested transaction calls are not allowed in PROTOS-L. Since the modifications of trans-
actions are made permanent to the database at commit time, and backtracking is pre-
vented from jumping to a choice point inside a transaction, modifications of committed
PROTOS-L transactions are persistent.

For efficiency reasons PROTOS-L also provides write operations dbassert and dbretract

akin to assert and retractall in Prolog. As insert and delete these operations succeed only
once (note that their arguments must be ground). However, in contrast to insert and
delete the effect of these operations is not undone on backtracking.

When allowing updates which are not undone on backtracking the question is: ”Do we
have a logical or an immediate update view ?”

Example:
Having the sequence

p(1,Y) & ... & dbassert p(1,99)

44



and assuming that backtracking occurs after adding the fact p(1,99) the flow of control
may reach the subgoal p(1,Y) from right to left. According to the logical update view
backtracking of this subgoal will not find the new fact p(1,99) while the immediate view
defines this fact to be visible.

In PROTOS-L, currently only database relations are modified and the update view will
be defined by the underlying DBMS, i.e. in general it will be the logical update view.

45



8 File Input and Output

In PROTOS-L file access is realized via streams. A stream represents a file that is either
opened for reading or for writing. There are two types instream(T) and outstream(T)

and various relations for type-safe reading and writing, see [Meyer and Beierle, 1994].

9 OSF/Motif Interface

In order to support the easy development of high-level window-based end-user systems,
PROTOS-L provides a programmers interface to OSF/Motif [Jasper, 1991], [Schenk, 1991].
(Here, we will refer to AIX Windows also as OSF/Motif). The approach to integrate the
PROTOS-L system with OSF/Motif is based on the PROTOS Window Manager (PWM)
which resides between both systems. It supports and refines the object-oriented view of
OSF/Motif that can be accessed via some built-in PROTOS-L language constructs, the
so-called PWM programmer interface.

The entities manipulated by the PWM are objects of types pwm object (window ob-
jects), pwm attribute (attributes of window objects), and pwm goal (callback routines),
see [Meyer and Beierle, 1994].

Although the window interface in PROTOS-L consists of only a few built-in types and
relations, it should be noted that this conceptually simple coupling opens the door to
a complex and very useful system. Despite the fact that several (low-level) X-Window
library and tool kit functions are not accessible in PROTOS-L we found the current
capabilities sufficient to create really non-trivial user interfaces, e.g. for the knowledge
based production planning system described in [Wittmann, 1991].

10 Built-ins

There are various built-in types, functions and (meta-programming) relations for

• integers,

• characters,

• bytes,

• strings,

• lists,

• arrays,

• streams,

• testing, instantiating and generating variables,

46



• execution control,

• the window interface,

• the C interface,

• term databases, and

• the finite domain constraint solver.

The current version of all built-ins is described in [Meyer and Beierle, 1994].

47



11 Syntax

• A terminal form ‘T’ means that the token T must appear physically.

• The symbol ‘|’ separates alternatives.

• An optional form [F ] means that the form F is optional.

• A list form {F} means that the form F appears either once or more than once
separated by commas ‘,’ .

• A star form (F)* denotes a possibly empty sequence of Fs.

Comments in PROTOS-L code start with a ’%’ and last until the end of the line.

11.1 Module Interfaces, Bodies and Views

view −→

‘view’ module name ‘.’

‘imports’ {module name} ‘.’

transfer declaration

(transfer declaration)*
‘endview’ ‘.’

interface −→

program interface | simple interface

simple interface −→

‘interface’ module name ‘.’

(simple rel declaration)*
‘endinterface’ ‘.’

a simple interface does not allow imports or type definitions. This
definition describes the subset of interfaces which can be used for
database bodies.

program interface −→

‘interface’ module name ‘.’

[ ‘imports’ {module name} ‘.’

[ (transfer declaration)*
declaration ] ]

(declaration)*
‘endinterface’ ‘.’

48



body −→

program body | db body

program body −→

‘module’ module name ‘.’

[ ‘imports’ {module name} ‘.’ ]
(prog definition)*

‘endmodule’ ‘.’

db body −→

‘database body’ module name ‘using’ {db name} ‘.’

(db definition)*
‘endmodule’ ‘.’

module name −→

identifier

db name −→

db identifier | path name

a db identifier is the name of an AIX environment variable; thus it may
also start with a capital letter
a path name is a path name of the operating system written as a string

11.2 Declarations and Definitions

prog definition −→

type definition

| type abbreviation

| relation definition

| function definition

db definition −→

db base rel definition | db virt rel definition

transfer declaration −→

‘from’ module name ‘:’ {type or rel identifier} ‘.’

49



declaration −→

type declaration

| relation declaration

type or rel identifier −→

type identifier [ ‘abstract’ ]
| relation designator

11.2.1 Types

type declaration −→

abstract type declaration

| type abbreviation

| type definition

abstract type declaration −→

mono type dec lhs ‘:=’ ‘abstract’ ‘.’

| poly type dec lhs ‘:=’ ‘abstract’ ‘.’

type abbreviation −→

type identifier ‘:=’ ground type term ‘.’

| poly type dec lhs ‘:=’ type identifier ‘(’ {type variable} ‘)’ ‘.’

every variable that occurs in the left-hand side must occur in the
right-hand side and vice versa

type definition −→

mono type definition

| poly type definition

mono type definition −→

mono type dec lhs ‘:=’ mono type def rhs ‘.’

mono type dec lhs −→

[ ‘nmtype’ ] type identifier

50



mono type def rhs −→

(subtype specification ‘++’ )*
subtype specification ‘++’

subtype specification

| (subtype specification ‘++’ )*
‘{’ {mono constructor def } ‘}’

note that in the actual PROTOS-L system there may be a restriction
on the maximal number of direct subtypes

subtype specification −→

type identifier

mono constructor def −→

constr designator [ ‘:’ ground domain ]

constr designator −→

identifier

ground domain −→

ground type term [ ‘x’ ground domain ]

poly type definition −→

poly type dec lhs ‘:=’ ‘{’ {poly constructor definition} ‘}’ ‘.’

every variable that occurs in the left-hand side must occur in the
right-hand side and vice versa

poly type dec lhs −→

type identifier ‘(’ {type variable} ‘)’

the occurring variables must be pairwise distinct

poly constructor definition −→

constr designator [ ‘:’ domain ]

domain −→

type term [ ‘x’ domain ]

51



11.2.2 Relations

relation definition −→

relation declaration

relational clause

(relational clause)*

relation declaration −→

rel class relation designator ‘:’ io domain ‘.’

| ‘proc’ relation designator ‘.’

| ‘tproc’ relation designator ‘.’

rel class −→

‘rel’

| ‘drel’
| ‘trel’
| ‘tdrel’
| ‘proc’
| ‘tproc’
| ‘urel’
| ‘trans’

io domain −→

[ ‘?’ ] type term [ ‘x’ io domain ]

relation designator −→

identifier

relational clause −→

relation clause head [ ‘<--’ condition part ] ‘.’

relation clause head −→

relation designator [ ‘(’ {var term} ‘)’ ]

relation designator −→

identifier

52



condition part −→

condition [ ‘&’ condition part ]

condition −→

relation call

| meta predicate relation call

| conditional

| variable ‘islistof’ var term ‘where’ relation call

| relation call parameter ‘:’ ground type term

| relation call parameter bool op relation call parameter

| ‘!’ variable

meta predicate −→

‘naf’

| ‘insert’
| ‘delete’
| ‘dbassert’
| ‘dbdelete’

conditional −→

‘if’ condition part

‘then’ condition part

(‘elsif’ condition part ‘then’ condition part )*
[ ‘else’ condition part ]
‘fi’

relation call −→

relation designator [ ‘(’ {relation call parameter} ‘)’ ]

11.2.3 DB relations

db base rel definition −→

simple rel declaration

‘dbrel’ db relation designator ‘is’ db extern rel declaration ‘.’

53



db extern rel declaration −→

db extern rel name ‘(’ {db attribute name} ‘)’ [ ‘from’ db name ]

db extern rel name and db attribute name are names as used in the
database system; thus they may also start with a capital letter.
db name must be one of the db names following ’using’ in that module
(see Section 6.4)

db virt rel definition −→

‘rel’ db relation designator ‘:’ db rel domain ‘.’

db relational clause

(db relational clause)*

simple rel declaration −→

‘rel’ db relation designator ‘:’ db rel domain ‘.’

| ‘urel’ db relation designator ‘:’ db rel domain ‘.’

db rel domain −→

[ ‘?’ ] db type [ ‘x’ db rel domain ]

db type −→

‘string’ | ‘integer’

db relational clause −→

db relation clause head ‘<--’ db condition part ‘.’

db relation clause head −→

db relation designator ‘(’ {db var term} ‘)’

db var term −→

integer | string | variable

db condition part −→

db condition (‘&’ db condition)*
| embedded sql query

for embedded SQL queries see Section 6

54



db condition −→

db relation call

| db relation call parameter db bool op db relation call parameter

db relation call parameter is an ordinary, function-free
relation call parameter (see 11.3), i.e. without function calls, construc-
tors, and lists

db relation call −→

db relation designator ‘(’ {db relation call parameter} ‘)’

db bool op −→

bool op

| ‘like’

like corresponds to the SQL operator;
for bool op see 11.3

db relation designator −→

identifier

11.2.4 Functions

function definition −→

function declaration

functional clause

(functional clause)*

function declaration −→

function designator ‘:’ domain ‘-->’ type term ‘.’

functional clause −→

function clause head ‘=’ relation call parameter [ ‘<--’ condition part ] ‘.’

| {var term} ‘|>’ relation call parameter [ ‘<--’ condition part ] ‘.’

function clause head −→

function designator ‘(’ {var term} ‘)’

55



11.3 Terms and Tokens

relation call parameter −→

variable

| integer

| string

| function call

| expression

| constr designator [ ‘(’ {relation call parameter} ‘)’ ]
| relation call parameter ‘.’ relation call parameter

| ‘(’ relation call parameter ‘)’

the ‘.’ is a built-in infix-operator constructing a list; after ‘.’ there
may be no blank nor any other unprintable character

var term −→

variable

| integer

| string

| constr designator [ ‘(’ {var term} ‘)’ ]
| var term ‘.’ var term

| ‘(’ var term ‘)’

the ‘.’ is a built-in infix-operator constructing a list; after ‘.’ there
may be no blank nor any other unprintable character

function call −→

function designator ‘(’ {relation call parameter} ‘)’

expression −→

relation call parameter expr op relation call parameter

every variable that occurs in an arithmetic expression must be bound
to an integer or subtype of integer

expr op −→

‘+’ | ‘-’ | ‘*’ | ‘//’ | ‘mod’

bool op −→

‘=’

| ‘\=’
| arithm comparison

| string comparison

56



arithm comparison −→

‘=<’ | ‘>=’ | ‘<’ | ‘>’

string comparison −→

‘@=<’ | ‘@>=’ | ‘@<’ | ‘@>’

type term −→

type identifier [ ‘(’ {var type term} ‘)’ ]

var type term −→

type term | type variable

ground type term −→

type identifier [ ‘(’ {ground type term} ‘)’ ]

constr designator −→

identifier

function designator −→

identifier

identifier −→

small letter (alpha character)*

no key words or built-in names (e.g. interface, database body, put term,
put) may be used

alpha character −→

letter | digit | ‘ ’

integer −→

[∼ ] digit (digit)*

digit −→

‘0’ ...‘9’

57



string −→

‘"’ (char)* ‘"’

char −→

letter | digit | . . .

and symbols like $ % &

type variable −→

variable

variable −→

cap letter (alpha character)*
| wildcard

Note that the only allowed variable starting with ’ ’ (wildcard) is ’ ’
itself;
’ ’ may occur in longer variable names, but then not as the first char-
acter.

wildcard −→

‘ ’

letter −→

cap letter | small letter

cap letter −→

‘A’ ...‘Z’

small letter −→

‘a’ ...‘z’

58



"
"

"
"

"
"

HHHHHHH

model

pc model mainframe model

Figure 3: The computer models hierarchy

A A Job Planning Scenario

In order to further illustrate the type concept of PROTOS-L and its ability for typed
unification and set-oriented answers we present a small job planning scenario as an ex-
ample domain. We assume that there is a computer company offering also courses on
different subjects. The employees of the company have particular qualifications, e.g. there
are instructors who give courses and there are different types of technicians who can repair
various kinds of computer models. The jobs to be done are given by a customer identifi-
cation and an order for giving a course or for repairing some piece of hardware. A typical
question to be answered by the planning system is: Who could do all jobs from a given list
of jobs? The example given here is a slightly simplified version of an example developed
in [Beierle and Böttcher, 1989]. Figures 3 and 4 show the subtype relationships for the
types model and employee as defined in the module jobplan:

module jobplan.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %

% S O R T - D E F I N I T I O N S %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

model := pc_model ++ mainframe_model.

pc_model := { pc1, pc2, pc3 }.

mainframe_model := { main1, main2, main3, main4 }.

employee := technician ++ instructor.

technician := pc_technician ++ mainframe_technician.

pc_technician := allround_technician

++ { peter, paul, patrick, pamela }.

mainframe_technician := allround_technician

++ { mike, mary, miriam, maxwell, mark }.

allround_technician := guru ++ { alan, adam }.

59



³³³³³³³³

```````````̀

©©©©©©

PPPPPPP
J

J
J

J
J

J
J

J
J

JJ

(((((((((((((((

XXXXXXXX

!!!!!!

employee

instructor technician

allround technician

guru

pc technician mainframe technician

Figure 4: The subtype hierarchy for employee

instructor := guru ++ { ingrid, ivan }.

guru := { george, gregor }.

course := { os2, db2, lp, xps }.

customer_id := { customer : int }.

job := { repair : customer_id x model,

teach : customer_id x course }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %

% P R E D I C A T E S %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

rel can_repair : technician x model.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

can_repair(T, M) <-- T:pc_technician & M:pc_model.

can_repair(T, M) <-- T:mainframe_technician & M:mainframe_model.

60



rel can_do_job : job x employee.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

can_do_job(repair(CID, Model), E) <-- E:technician & can_repair(E,Model).

can_do_job(teach(CID, Course), E) <-- E:instructor.

rel can_do_all_jobs : list(job) x employee.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

can_do_all_jobs(nil,E).

can_do_all_jobs(Job.Rest, E) <--

can_do_job(Job, E) &

can_do_all_jobs(Rest, E).

rel can_do_given_jobs : ?employee.

%%%%%%%%%%%%%%%%%%%%%%%%%

can_do_given_jobs(E) <--

!E & can_do_all_jobs(repair(customer(290),pc2)

.repair(customer(440),main1)

.repair(customer(290),pc3).nil, E).

endmodule.

Here are some queries and the corresponding answers given by the PROTOS-L system:

PROTOS> can_do_given_jobs(adam).

MORE ANSWERS (Y/N)? y

NO (MORE) ANSWERS

PROTOS> can_do_given_jobs(peter).

NO (MORE) ANSWERS

PROTOS> can_do_given_jobs(gregor).

MORE ANSWERS (Y/N)? y

NO (MORE) ANSWERS

PROTOS> can_do_given_jobs(E).

E : allround_technician

MORE ANSWERS (Y/N)? y

NO (MORE) ANSWERS

PROTOS> can_do_given_jobs(E) & E:pc_technician.

E : allround_technician

MORE ANSWERS (Y/N)? y

61



NO (MORE) ANSWERS

PROTOS> can_do_given_jobs(E) & E:instructor.

E : guru

MORE ANSWERS (Y/N)? y

NO (MORE) ANSWERS

Note that the first and the third query succeed whereas the second one fails since peter

can not repair the mainframe main1. The last three queries do not instantiate the variable
E but yield the type restrictions for E that represent the most general answer possible for
each query.

B Map Colouring

This section contains the complete code for the map colouring problem (c.f. Section 5).

B.1 The module map

interface map.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Top module for the complete program to solve the MAP COLOURING PROBLEM.%

% %

% The program uses the following modules and interfaces: %

% m_country, m_colour, m_layout, m_adt, m_output, utilities. %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

imports m_country, m_colour, utilities.

from m_country: country.

from m_colour : colour,

r_y_g, r_y_b, r_g_b, y_g_b,

r_y, r_g, r_b, y_g, y_b, g_b,

r, y, g, b.

from utilities: pair_of.

rel europe : list(pair_of(country,colour)).

% colours a map of Europe with four colours; initial values may

% be given in the parameter list (which may also be nil), e.g.

% europe(pair(f,blue).pair(h,blue).nil).

% sets France and Hungary to blue

rel query : int. % some predefined calls of ’europe’

endinterface.

module map.

imports m_country, m_colour, m_adt, m_output.

62



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% RELATIONS

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

rel europe : list(pair_of(country, colour)).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

europe(PairL) <--

init_map(Map) & % initialize map

set_colours(PairL, Map) & % set predefined colours

paint(Map) & % do the colouring

print_map(Map). % display the result

rel paint : map.

%%%%%%%%%%%%%%%%

paint(Map) <--

if ready(Map)

then succeed

else select_country(Map, Col, ColNeigh, Map2) & % select (variable) Col

select_colour(Col) & % select value for Col

constrain_neighbours(ColNeigh, Col) & % neighbours of Col

paint(Map2) % the rest without Col

fi.

rel query : int.

%%%%%%%%%%%%%%%%

query(0) <-- europe(pair(d,blue).nil).

% set Germany to blue

query(1) <-- europe(pair(d,blue).pair(i,blue).nil).

% set Germany and Italy to blue

query(2) <-- europe(pair(p,blue).pair(gb,blue).pair(f,blue).pair(ne,blue)

.pair(pl,blue).pair(h,blue).nil).

% set Portugal, Great Britain, France, The Netherlands,

% Poland, and Hungary to blue

query(3) <-- !Col & europe(pair(d,Col).pair(e,Col).pair(i,Col).nil).

% set Germany, Spain, and Italy to the s a m e colour

% (but it doesn’t matter which one)

query(4) <-- europe(pair(d,blue).pair(f,blue).nil).

% set Germany and France to blue

% (should fail!)

query(5) <-- !Col & europe(pair(d,Col).pair(f,Col).nil).

% set Germany and France to the s a m e colour

% but it doesn’t matter which one ( - should also fail!)

query(6) <-- !DCol & DCol : g_b &

63



!FCol & FCol : g_b &

europe(pair(d,DCol).pair(f,FCol).nil).

% restrict Germany and France to green or blue

% (should succeed!)

endmodule.

B.2 The module m output

interface m_output.

imports m_adt.

from m_adt: map abstract. % map is an abstract data type

drel print_map : map. % shows a coloured map-picture of a part of europe

% on the screen and prints out the countries with

% its colours.

endinterface.

module m_output.

imports m_country, m_colour, m_layout, m_adt.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% RELATIONS

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

drel print_map : map. % shows a coloured map-picture of a part of europe

%%%%%%%%%%%%%%%%%%%% % on the screen and prints out the countries with its

% colours.

print_map(Map) <--

layout(MapLayout) & % get the layout

print_map_picture(Map, MapLayout) & % print the map

nl &

all_countries(Countries) & % get list of countries

print_map_colours(Countries, Map, 0). % .. and print their colours

drel print_map_picture : map x list(list(area)).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

print_map_picture(_, nil). % print each line

print_map_picture(Map, HMapC.TMapC) <-- % of the map

print_map_line(Map, HMapC) &

print_map_picture(Map, TMapC).

drel print_map_line : map x list(area).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

print_map_line(_, nil) <-- nl.

64



print_map_line(Map, Area.Tail) <--

if Area = s

then put_string(user_output, " ") % sea background

else

Area:country &

get_country_colour(Map, Area, Colour) & % get its colour

CS = colour_to_string(Colour) & % .. and colour string

put_string(user_output, CS) % and write it

fi &

print_map_line(Map, Tail).

drel print_map_colours : list(country) x map x int.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

print_map_colours(nil, _ ,_).

print_map_colours(Country.CL, Map, No) <--

get_country_colour(Map, Country, Col) &

write(Country) &

write_string(" : ") &

write(Col) &

write_string(" ") &

M = No+1 & % after every five

if M mod 5 = 0 then nl fi & % countries start a nl

print_map_colours(CL, Map, M).

endmodule.

B.3 The module m layout

interface m_layout.

imports m_country.

from m_country : country.

area := country ++ { s }.

% sea

rel layout : ?list(list(area)).

% yields a simple layout for the map of Europe,

% represented as a list of lists of area

endinterface.

module m_layout.

imports m_country.

area := country ++ { s }.

% sea

rel layout : ?list(list(area)).

% yields a simple layout for the map of Europe,

65



% represented as a list of lists of area

layout(Layout) <-- Layout =

(s .s .s .gb.s .s .s .s .s .s .s .s .s .s .s .s .s .s .s .s .nil)

.(s .s .gb.gb.s .s .s .s .s .s .s .s .s .s .s .s .s .s .s .s .nil)

.(s .s .gb.gb.s .s .s .s .s .s .s .s .s .s .s .s .s .s .s .s .nil)

.(s .s .s .gb.gb.s .s .s .s .s .d .s .s .s .s .pl.pl.s .s .s .nil)

.(s .s .s .gb.gb.gb.s .s .ne.d .d .d .s .s .pl.pl.pl.pl.s .s .nil)

.(s .s .s .gb.gb.gb.s .ne.ne.d .d .d .d .pl.pl.pl.pl.pl.s .s .nil)

.(s .s .gb.gb.gb.gb.s .be.be.d .d .d .d .pl.pl.pl.pl.pl.s .s .nil)

.(s .s .s .s .s .s .s .f .l .d .d .d .d .cs.cs.cs.pl.s .s .s .nil)

.(s .s .s .s .f .f .f .f .f .d .d .d .d .a .cs.cs.cs.cs.s .s .nil)

.(s .s .s .s .s .f .f .f .f .ch.ch.a .a .a .h .h .h .h .s .s .nil)

.(s .s .s .s .s .f .f .f .f .i .i .i .i .yu.yu.h .h .h .s .s .nil)

.(s .s .s .s .s .f .f .f .f .i .i .i .i .s .yu.yu.yu.yu.s .s .nil)

.(s .s .e .e .e .e .e .f .s .s .s .i .i .s .s .yu.yu.yu.s .s .nil)

.(s .s .p .e .e .e .e .e .s .f .s .s .i .i .s .s .s .s .s .s .nil)

.(s .s .p .e .e .e .e .s .s .s .i .s .s .s .i .i .s .s .s .s .nil)

.(s .s .p .e .e .e .e .s .s .s .s .s .s .s .i .s .s .s .s .s .nil)

.(s .s .p .e .e .e .s .s .s .s .s .s .i .i .s .s .s .s .s .s .nil)

.nil.

endmodule.

B.4 The module m adt

interface m_adt.

imports m_country, m_colour, utilities.

from m_country : country.

from m_colour : colour,

r_y_g, r_y_b, r_g_b, y_g_b,

r_y, r_g, r_b, y_g, y_b, g_b,

r, y, g, b.

from utilities: pair_of.

map := abstract. % abstract data type (adt).

rel init_map : ?map. % creates the initial map which does

% not yet contain a colour binding

% for any country

rel set_colours : list(pair_of(country, colour)) x map.

% initializes the map with the colours

% given in the list

rel ready : map. % succeeds if there is no more country

% to be painted

rel select_country : map x ?colour x ?list(colour) x ?map.

% given colour of

% map neighbours

% colour of remaining

% country map

% selects the next country to be painted,

% yields its colour restriction, the

66



% colours of its neighbours, and the

% remaining map still to be painted

drel get_country_colour : map x country x ?colour.

% yields a country’s colour

endinterface.

module m_adt.

imports m_country, m_colour.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% DEFINITIONS

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

map := list(map_entry). % defines a representation for

% the abstract type map

map_entry := { entry : country x % the country

colour x % its colour

list(colour) x % colours of its neighbours

list(map_entry) }. % entries of its neighbours

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% RELATIONS

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

rel init_map : ?map. % creates the initial map

%%%%%%%%%%%%%%%%%%%%

init_map(Map) <--

all_countries(CountL) & % get list of all countries

create_entries(CountL, Map) & % create map entries for all of them

connect_entries(Map, Map). % .. and connect the entries

rel create_entries : list(country) x ?map.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% creates the map-entries with open variables for colour- and neighbour-lists

create_entries(nil, nil).

create_entries(Country.CountryList,

entry(Country, Colour, ColourList, EntryList).Map) <--

create_entries(CountryList, Map) &

!Colour & % its colour variable

!ColourList & % list of colours of its neighbours

!EntryList. % list of entries of its neighbours

% ... these three variables are still free here;

% they must be declared as ’open’ variables

% since they occur in an output position

67



rel connect_entries : map x map.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% initializes the ’colour’ and ’entry’ list-variables for every country

connect_entries(nil, Map).

connect_entries(entry(Count, _, ColL, EntL).MapRest, Map) <--

all_neighbours(Count, NeighbL) & % this will generate

connect(NeighbL, ColL, EntL, Map) & % a cyclic structure

connect_entries(MapRest, Map). % for map !

rel connect : list(country) x list(colour) x list(map_entry) x map.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% generates the list of variables for the neighbours of a country

connect(nil, nil, nil, Map).

connect(Count.CountL, Col.ColL, Ent.EntL, Map) <--

get_entry(Count, Map, Ent) &

entry(_, Col, _, _) = Ent &

connect(CountL, ColL, EntL, Map).

drel get_entry : country x map x ?map_entry.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% yields the entry for a given country of the map

get_entry(Count, Ent.Map, Ent) <--

entry(Count, _, _, _) = Ent.

get_entry(Count, Ent1.Map, Ent2) <--

get_entry(Count, Map, Ent2).

rel ready : map.

%%%%%%%%%%%%%%%%%%%%

% succeeds, if there is no more country to be painted

ready(nil).

rel select_country : map x ?colour x ?list(colour) x ?map.

% given colour of

% map neighbours

% colour of remaining

% country map

% This relation contains the heuristic which, from the given map,

% selects the next country to be painted, yields its colour restriction,

% the colours of its neighbours, and the remaining map still to be

% painted.

% In this case the selected country is simply the first one in the

% map representation

select_country(entry(Count, Col, ColL, _).Map, Col, ColL, Map).

rel set_colours : list(pair_of(country, colour)) x map.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

68



% initializes the map with the colours given in the list

set_colours(nil, _).

set_colours(pair(Count, Col).PairL, Map) <--

get_entry(Count, Map, entry(Count, Col, ColL, _)) &

if var(Col) % if Col is not a

then succeed % variable, constrain

else constrain_neighbours(ColL, Col) % the neighbour’s colours

fi &

set_colours(PairL, Map).

drel get_country_colour : map x country x ?colour.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% yields a country’s colour

get_country_colour(entry(Count, Col, _, _)._, Count, Col).

get_country_colour(_.Map, Count, Col) <--

get_country_colour(Map, Count, Col).

endmodule.

B.5 The module m country

interface m_country.

nmtype country := { d, f, a, cs, i, be, h, ch, l, yu, ne, e, p, pl, gb }.

% country will be a subtype of area in the module

% m_layout - thus it’s an ’non-maximal type’ (nmtype)

rel all_countries : ?list(country).

% yields a list of all countries

rel all_neighbours : country x ?list(country).

% for a given country yields the list of its neighbours

endinterface.

module m_country.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% DEFINITIONS

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

nmtype country := { d, f, a, cs, i, be, h, ch, l, yu, ne, e, p, pl, gb }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% RELATIONS

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

69



rel all_countries : ?list(country).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

all_countries(L) <-- !C & C:country & instantiate(C, L).

rel all_neighbours : country x ?list(country).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

all_neighbours(d, ne.be.l.f.ch.a.cs.pl.nil).

all_neighbours(f, e.be.l.d.ch.i.nil).

all_neighbours(cs, d.a.h.pl.nil).

all_neighbours(a, d.ch.i.yu.cs.h.nil).

all_neighbours(i, f.ch.a.yu.nil).

all_neighbours(be, ne.f.l.d.nil).

all_neighbours(h, cs.a.yu.nil).

all_neighbours(ch, d.f.i.a.nil).

all_neighbours(l, be.f.d.nil).

all_neighbours(yu, i.a.h.nil).

all_neighbours(ne, be.d.nil).

all_neighbours(e, p.f.nil).

all_neighbours(p, e.nil).

all_neighbours(pl, d.cs.nil).

all_neighbours(gb, nil).

endmodule.

B.6 The module m colour

interface m_colour.

colour := r_y_g ++ r_y_b ++ r_g_b ++ y_g_b.

r_y_g := r_y ++ r_g ++ y_g.

r_y_b := r_y ++ r_b ++ y_b.

r_g_b := r_g ++ r_b ++ g_b.

y_g_b := y_g ++ y_b ++ g_b.

r_y := r ++ y.

r_g := r ++ g.

r_b := r ++ b.

y_g := y ++ g.

y_b := y ++ b.

g_b := g ++ b.

r := { red }.

y := { yellow }.

g := { green }.

b := { blue }.

rel select_colour : ?colour.

% this is the non-deterministic colour choice

rel constrain_neighbours : list(colour) x colour.

70



% neighbours given country

colour_to_string : colour --> string.

% give a string representation for a colour

endinterface.

module m_colour.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% TYPE DEFINITIONS

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

colour := r_y_g ++ r_y_b ++ r_g_b ++ y_g_b.

r_y_g := r_y ++ r_g ++ y_g.

r_y_b := r_y ++ r_b ++ y_b.

r_g_b := r_g ++ r_b ++ g_b.

y_g_b := y_g ++ y_b ++ g_b.

r_y := r ++ y.

r_g := r ++ g.

r_b := r ++ b.

y_g := y ++ g.

y_b := y ++ b.

g_b := g ++ b.

r := { red }.

y := { yellow }.

g := { green }.

b := { blue }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% RELATIONS

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

rel select_colour : ?colour.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

select_colour(red).

select_colour(yellow).

select_colour(green).

select_colour(blue).

rel complement : colour x ?colour.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

complement(red, Comp) <-- !Comp & Comp : y_g_b.

complement(yellow, Comp) <-- !Comp & Comp : r_g_b.

complement(green, Comp) <-- !Comp & Comp : r_y_b.

complement(blue, Comp) <-- !Comp & Comp : r_y_g.

71



rel constrain_neighbours : list(colour) x colour.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

constrain_neighbours(nil, _).

constrain_neighbours(Col.ColL, GivenColour) <--

complement(GivenColour, Col) &

constrain_neighbours(ColL, GivenColour).

colour_to_string : colour --> string.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

colour_to_string(red) = "rr". % in this simple version just

colour_to_string(yellow) = "yy". % print the first chararcter

colour_to_string(green) = "gg". % of a colour twice

colour_to_string(blue) = "bb". % ...

% another simple alternative would

% be to use escape characters, e.g.:

% colour_to_string(red) = S <-- C=nat_to_char(219) &

% S = list_to_string(C.C.nil).

% colour_to_string(yellow) = S <-- C=nat_to_char(176) &

% S = list_to_string(C.C.nil).

% colour_to_string(green) = S <-- C=nat_to_char(177) &

% S = list_to_string(C.C.nil).

% colour_to_string(blue) = S <-- C=nat_to_char(178) &

% S = list_to_string(C.C.nil).

endmodule.

B.7 The module utilities

The module utilities is not given completely here; we only assume that its interface
contains the polymorphic type definition for pairs used above:

interface utilities.

pair_of(T1, T2) := {pair : T1 x T2}.

...

endinterface.

72



References

[Bancilhon and Ramakrishnan, 1986] Francois Bancilhon and Raghu Ramakrishnan. An
Amateur’s Introduction to Recursive Query Processing Strategies. In Int. Conf. on
Management of Data, ACM SIGMOD, Washington D.C., May 1986.

[Bancilhon et al., 1986] F. Bancilhon, D. Maier, Y. Sagiv, and J.D. Ullman. Magic Sets
and other strange ways to implement logic programs. In Proc. ACM SIGACT-SIGMOD
Symp. on Principles of Database Systems, 1986.

[Bancilhon, 1986] Francois Bancilhon. Naive Evaluation of Recursive Defined Relations.
In Brodie and Mylopoulos, editors, On Knowledge Base Management Systems (topics
in information systems). Springer, 1986.

[Bayer, 1985] Rudolf Bayer. Database Technology for Expert Systems. In GI-Kongress:
Wissensbasierte Systeme, München, 1985. Inf. FB 112, Springer.

[Beierle and Börger, 1992] C. Beierle and E. Börger. Correctness proof for the WAM with
types. In E. Börger, H. Kleine Büning, G. Jäger, and M. M. Richter, editors, Computer
Science Logic - CSL’91, volume 626 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin, 1992.

[Beierle and Böttcher, 1989] C. Beierle and S. Böttcher. PROTOS-L: Towards a knowl-
edge base programming language. In W. Brauer and C. Freksa, editors, Proceedings
GI-Kongreß Wissensbasierte Systeme. Springer-Verlag, 1989.

[Beierle and Meyer, 1994] C. Beierle and G. Meyer. Run-time type computations in the
Warren Abstract Machine. The Journal of Logic Programming, 18(2):123–148, February
1994.

[Beierle et al., 1989] C. Beierle, J. Dörre, U. Pletat, C.-R. Rollinger, and R. Studer. The
knowledge representation language L-LILOG. In E. Börger, H. Kleine Büning, and
M. M. Richter, editors, CSL’88 - 2nd Workshop on Computer Science Logic, volume
385 of Lecture Notes in Computer Science, pages 14–51. Springer-Verlag, Berlin, 1989.

[Beierle et al., 1991a] C. Beierle, S. Böttcher, and G. Meyer. Draft report of the logic pro-
gramming language PROTOS-L. IWBS Report 175, IBM Germany, Scientific Center,
Inst. for Knowledge Based Systems, Stuttgart, 1991.

[Beierle et al., 1991b] C. Beierle, G. Meyer, and H. Semle. Extending the Warren Abstract
Machine to polymorphic order-sorted resolution. In V. Saraswat and K. Ueda, editors,
Logic Programming: Proceedings of the 1991 International Symposium, pages 272–286,
Cambridge, MA, 1991. MIT Press.

[Beierle, 1990] C. Beierle. Types, modules and databases in the logic programming lan-
guage PROTOS-L. In K. H. Bläsius, U. Hedtstück, and C.-R. Rollinger, editors, Sorts
and Types for Artificial Intelligence, volume 418 of Lecture Notes in Artificial Intelli-
gence. Springer-Verlag, Berlin, 1990.

73



[Beierle, 1992] C. Beierle. Logic programming with typed unification and its realization
on an abstract machine. IBM Journal of Research and Development, 36(3):375–390,
May 1992.

[Beringer and De Backer, 1994] H. Beringer and B. De Backer. Combinatorial problem
solving in constraint logic programming with cooperating solvers. In C. Beierle and
L. Plümer, editors, Logic Programming: Formal Methods and Practical Applications,
Studies in Computer Science and Artificial Intelligence. North-Holland, 1994. (to ap-
pear).

[Bocca, 1986] J. Bocca. On the evaluation strategy of EDUCE. In Proc. ACM-SIGMOD
Conference, Washington, D.C., 1986.

[Böttcher and Beierle, 1989] S. Böttcher and C. Beierle. Data base support for the
PROTOS-L system. Microprocessing and Microprogramming, 27, August 1989.

[Böttcher, 1990] S. Böttcher. How to use PROTOS-L as a logic-based database program-
ming language. In The EUREKA Project PROTOS, 1990.

[Ceri et al., 1990] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases.
Surveys in Computer Science. Springer Verlag, 1990.

[DeGroot and Lindstrom, 1986] D. DeGroot and G. Lindstrom, editors. Functional and
Logic Programming. Prentice Hall, 1986.

[Dietrich and Hagl, 1988] R. Dietrich and F. Hagl. A polymorphic type system with sub-
types for Prolog. In Proceedings of the 2nd European Symposium on Programming,
Lecture Notes in Computer Science, pages 79–93, Berlin, 1988. Springer-Verlag.

[Futatsugi et al., 1985] K. Futatsugi, J. Goguen, J.-P. Jouannaud, and J. Meseguer. Prin-
ciples of OBJ2. In B. Reid, editor, Proceedings of 12th ACM Conference on Principles
of Programming Languages, pages 52–66. ACM, 1985.

[Goguen and Meseguer, 1986] J. A. Goguen and J. Meseguer. Eqlog: Equality, types, and
generic modules for logic programming. In D. DeGroot and G. Lindstrom, editors, Logic
Programming, Functions, Relations, and Equations, pages 295–363. Prentice Hall, 1986.

[Hanus, 1988] M. Hanus. Horn Clause Specifications with Polymorphic Types. PhD thesis,
FB Informatik, Universität Dortmund, 1988.

[Hanus, 1989] M. Hanus. Horn clause programs with polymorphic types: Semantics and
resolution. In Proceedings TAPSOFT’89. Springer-Verlag, 1989.

[Harper et al., 1986] R. Harper, D. MacQueen, and R. Milner. Standard ML. Report
ECS-LFCS-86-2, Dep. of Computer Science, Univ. of Edinburgh, 1986.

[Hauner, 1989] I. Hauner. Database access for PROTOS-L. Diplomarbeit, EWH Koblenz
und IBM Deutschland GmbH, Stuttgart, December 1989. (in German).

[Hill and Lloyd, 1992] P. M. Hill and J. W. Lloyd. The Gödel Report. TR-91-02, Dept.
of Computer Science, University of Bristol, Bristol, UK, Revised Version, June 1992.

74



[Huber and Varsek, 1987] M. Huber and I. Varsek. Extended Prolog for order-sorted reso-
lution. In Proceedings of the 4th IEEE Symposium on Logic Programming, pages 34–45,
San Francisco, 1987.

[Hulin, 1989] Guy Hulin. Parallel Processing of Recursive Queries in Distributed Archi-
tectures. In Proc. 15th Int. Conf. on VLDB, Amsterdam, 1989.

[IBM, 1989] IBM. IBM Prolog for 370: Language Reference. International Business Ma-
chines Corporation, 1989.

[Jasper, 1991] H. Jasper. A logic-based programming environment for interactive appli-
cations. In Proc. Human Computer Interaction International, Stuttgart, 1991.

[Meyer and Beierle, 1994] G. Meyer and C. Beierle. PROTOS-L Users’s Manual. Working
Paper No 5, IBM Germany, Scientific Center, Inst. for Logics and Linguistics, Heidel-
berg, July 1994.

[Meyer et al., 1994] G. Meyer, C. Beierle, and R. Scheubrein. Aspects of coupling logic
programming and databases. In H. H. Bock, W. Lenski, and M. M. Richter, editors,
Information systems and data analysis, volume 4 of Studies in Classification, Data
Analysis, and Knowledge Organization. Springer-Verlag, 1994. (to appear).

[Meyer, 1989] G. Meyer. Rule evaluation on databases in the PROTOS-L system. Diplo-
marbeit Nr. 630, Universität Stuttgart and IBM Deutschland GmbH, Stuttgart, De-
cember 1989. (in German).

[Mycroft and O’Keefe, 1984] A. Mycroft and R. A. O’Keefe. A polymorphic type system
for Prolog. Artificial Intelligence, 23:295–307, 1984.

[Nutt and Smolka, 1993] W. Nutt and G. Smolka. Implementing TEL. SEKI-Report, FB
Informatik, Universität Kaiserslautern, 1993. (in preparation).

[Pletat and v. Luck, 1990] U. Pletat and K. v. Luck. Knowledge representation in LILOG.
In K. H. Bläsius, U. Hedtstück, and C.-R. Rollinger, editors, Sorts and Types for Artifi-
cial Intelligence, volume 418 of Lecture Notes in Artificial Intelligence. Springer-Verlag,
Berlin, 1990.

[Quintus, 1987] Quintus. Quintus Prolog Data Base Interface Manual. Quintus Computer
Systems Inc., California, 1987.

[Schenk, 1991] M. Schenk. Graphical user interface for the PROTOS-L system. Diplomar-
beit Nr. 763, Universität Stuttgart und IBM Deutschland GmbH, Stuttgart, January
1991. (in German).

[Semle, 1989] H. Semle. Extension of an abstract machine for order-sorted prolog to poly-
morphism. Diplomarbeit Nr. 583, Universität Stuttgart and IBM Deutschland GmbH,
Stuttgart, April 1989. (in German).

[Smolka, 1988a] G. Smolka. Logic programming with polymorphically order-sorted types.
In J. Grabowski, P. Lescanne, and W. Wechler, editors, Algebraic and Logic Program-
ming, Berlin, 1988. Akademie-Verlag.

75



[Smolka, 1988b] G. Smolka. TEL (Version 0.9), Report and User Manual. SEKI-Report
SR 87-17, FB Informatik, Universität Kaiserslautern, 1988.

[Smolka, 1989] G. Smolka. Logic Programming over Polymorphically Order-Sorted Types.
PhD thesis, FB Informatik, Univ. Kaiserslautern, 1989.

[Vassiliou, 1986] Yannis Vassiliou. Knowledge Based and Database Systems: Enhance-
ments, Coupling or Integration. In Brodie and Mylopoulos, editors, On Knowledge
Base Management Systems (topics in information systems). Springer, 1986.

[Vieille, 1988] Laurent Vieille. From QSQ towards QoSaQ: Global Optimization of Re-
cursive Queries. In Proc. 2nd Int. Conf. on Expert Database Systems, Virginia, April
1988.

[Walther, 1985] C. Walther. A mechanical solution of Schubert’s steamroller by many-
sorted resolution. Artificial Intelligence, 26:217–224, 1985.

[Walther, 1988] C. Walther. Many-sorted unification. Journal of the ACM, 35(1):1–17,
January 1988.

[Warren, 1983] D. H. D. Warren. An Abstract PROLOG Instruction Set. Technical Report
309, SRI, 1983.

[Wittmann, 1991] H. Wittmann. An example for knowledge based production planning
with PROTOS-L. Diplomarbeit, Universität Stuttgart und IBM Deutschland GmbH,
Stuttgart, 1991. (in German).

[Zeller, 1990] M. Zeller. Extension of a compiler for PROTOS-L by a module concept.
Diplomarbeit, Universität Stuttgart und IBM Deutschland GmbH, Stuttgart, January
1990. (in German).

76


