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Preface

Knowledge representation encompasses a variety of methods and formalisms to
encode and process all types of knowledge, belief, and information. It provides the
theoretical foundation for rational and intelligent behaviour in real environments,
focusing on topics like default logics and uncertain reasoning, belief change, ontolo-
gies, and argumentation, among many others. Moreover, in a thematical respect,
knowledge representation is closely related to the areas of machine learning and
knowledge discovery the methods of which allow the acquisition of useful informa-
tion to build up knowledge bases.

Knowledge representation has made substantial progress over the last decade
by devising sophisticated methods for inference and reasoning. Nevertheless, the
connection to learning still holds undeveloped potential in methodological and
technical respects which might be crucial for practical applications. Furthermore,
the handling of relational information, i.e. the explicit representation of knowl-
edge about objects and its linking to knowledge about classes, is still a challenge
for many subareas of knowledge representation. Ontologies, logic programming
and probabilistic relational models are just some important examples of areas of
research that address both of these points.

This volume contains the contributions that were presented at the Workshop
Relational Approaches to Knowledge Representation and Learning on September
15, 2009, in Paderborn, Germany, co-located with the 32nd Annual German Con-
ference on AI (KI-2009), and organized by the Special Interest Group on Knowledge
Representation and Reasoning of the Gesellschaft für Informatik (GI-Fachgrupppe
Wissensrepräsentation und Schließen). The particular focus of this workshop was
to strengthen the connection between knowledge representation and learning by
focusing on relational and first-order approaches to all areas of knowledge repre-
sentation and learning.

The workshop started with an invited talk Relevance, Conditionals, and Defea-
sible Reasoning by James Delgrande. He investigates the notion of relevance in the
context of defeasible reasoning, and presents an approach for incorporating irrel-
evant properties in a conditional knowledge base. It is argued that this approach
exactly captures defeasible reasoning with commonsense normative conditionals.

The beliefs of an agent can be represented by a designated predicate in a sel-
freferential first-order language. However, such first-order theries often lead to
pardoxes. In his paper LogAB: An Algebraic Logic of Belief, Haythem Ismail de-
velops a family of algebraic logics of beliefs that is almost as expressive as first-order
theories, but at the same time weak enough to avoid pardoxes of self-reference.

Probabilistic logic is the general topic of the following three papers. With the
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origins of probabilistic logic based on propositional logic, the introduction of proba-
bilistic graphical models, in particular the popular Markov and Bayesian networks,
enabled practical applications and spurred the research efforts in this area.

In his contribution First-Order Probabilistic Conditional Logic - Introduction
and Representation, Jens Fisseler presents a first-order extension of a propositional
probabilistic representation formalism, allowing in particular the representation
of prababilistic if-then rules. The semantics employs the principle of maximum
entropy, selecting a model that is as unbiased as possible. In order to tame the
complexity of the resulting optimization problem to be solved, sufficient syntactic
criteria for its simplification are developed.

Currently, the most prominent approaches to lifting propositional probabilis-
tic logic to the first-order case, are Bayesian logic programs (BLP) and Markov
logic networks (MLN). Both BLPs and MLNs as well as a new approach for using
maximum entropy methods in a relational context are supported by the KReator
toolbox that aims at providing a common and simple interface for working with
different relational probabilistic approaches. This integrated development environ-
ment is presented by Marc Finthammer, Sebastian Loh, and Matthias Thimm in
their contribution Towards a Toolbox for Relational Probabilistic Knowledge Rep-
resentation, Reasoning, and Learning.

In his paper Representing Statistical Information and Degrees of Belief in First-
Order Probabilistic Conditional Logic, Matthias Thimm proposes a formal seman-
tics for first-order probabilistic conditionals that matches common sense and avoids
ambiguities between statistical and subjective interpretations. Moreover, he shows
how the principle of maximum entropy can also be applied in this framework, and
proves formal properties of the resulting inference operator.

Finally, the last two papers deal with approaches based on logic program-
ming. The paper Reinforcement Learning for Golog Programs by Daniel Beck and
Gerhard Lakemeyer presents an approach of using the action language Golog to
constrain the action state space to be explored in a reinforcement learning situa-
tion. The authors develop a Golog dialect using a semi-Markov Decision Process
representation, and give a completely declarative specification of a learning Golog
interpreter.

In general, conflicts may arise when pieces of information depend on each other,
and so, Patrick Krümpelmann makes dependencies the atomic concept to study
conflicts. In Towards Dependency Semantics for Conflict Handling in Logic Pro-
grams, he presents a formal framework for conflict resolution that is based on de-
pendencies and involves consequences and preferences. As an application, he shows
how this can be related to answer set semantics and the causal rejection principle.

We would like to thank all Program Committee members as well as the ad-
ditional external reviewer Mauŕıcio Reis for detailed and high-quality reviews for
all submitted papers. Many thanks also to the organizers of KI-2009 for host-
ing the workshop at the KI-2009 conference. Finally, we would like to thank the
Gesellschaft für Informatik, the TU Dortmund, and the FernUniversität in Hagen
for supporting this workshop.

August 2009 Gabriele Kern-Isberner and Christoph Beierle
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Relevance, Conditionals, and Defeasible
Reasoning

James P. Delgrande

School of Computing Science,
Simon Fraser University,

Burnaby, B.C.,
Canada V5A 1S6.
jim@cs.sfu.ca

This talk discusses the notion of relevance as it pertains to statements of nor-
mality and defeasible reasoning in Artificial Intelligence. The role of relevant
properties in defeasible reasoning is first covered, along with a discussion of
how relevance has been addressed in different approaches to nonmonotonic rea-
soning. Following this, an approach for incorporating irrelevant properties in a
conditional knowledge base is presented; and a notion of defeasible reasoning is
introduced, based on this approach.

In the approach, a closure operation is defined, so that from a theory of de-
feasible conditionals an extension is obtained wherein irrelevant properties are
satisfactorily incorporated. The approach is shown to have desirable formal prop-
erties and handles various commonsense examples appropriately. It is also shown
that this approach can be captured in an iterative definition. In conclusion, it
is argued that defeasible reasoning with commonsense normative conditionals is
exactly captured via a sufficiently strong logic of defeasible conditionals together
with this means of handling relevance.
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LogAB: An Algebraic Logic of Belief

Haythem O. Ismail

German University in Cairo
Department of Computer Science
haythem.ismail@guc.edu.eg

Abstract. LogAB is a family of logics of belief. It holds a middle ground
between the expressive, but prone to paradox, syntactical first-order the-
ories and the often inconvenient, but safe, modal approaches. In this
report, the syntax and semantics of LogAB are presented. LogAB is al-
gebraic in the sense that it is a language of only terms; there is no notion
of a formula, only proposition-denoting terms. The domain of propo-
sitions is taken to be a Boolean lattice, which renders classical truth
conditions and definitions of consequence and validity theorems about
LogAB structures. LogAB is shown to be sufficiently expressive to ac-
commodate complex patterns of reasoning about belief while remaining
paradox-free. A number of results are proved regarding paradoxical self-
reference. They are shown to strengthen previous results, and to point
to possible new approaches to circumventing paradoxes in syntactical
theories of belief.

1 Introduction

Belief is usually viewed as a relation between a believing agent and a believed
entity, typically a proposition or a sentence. Logics of belief come in two main
flavors: the modal and the syntactical. Modal approaches [1–4, for instance] rep-
resent belief by a modal operator and employ some version of possible-worlds
semantics. Syntactical theories [5–9, for instance] employ self-referential first-
order languages, where belief is represented by a (typically) dyadic predicate
of agents and sentences of the language. The semantics is standard Tarskian se-
mantics, but complications arise due to the need to employ theories of arithmetic
or string manipulation. On one hand, first-order logics are more expressive and
more well-understood than their modal rivals. On the other hand, a result by
Thomason [10] (following a similar result by Montague for the case of knowl-
edge [11]) shows that, assuming some desirable properties of belief, first-order
doxastic theories are paradoxical, whereas modal ones are not.

In this paper, I present LogAB, a family of algebraic logics of belief. LogAB is
algebraic in the sense that it only contains terms, algebraically constructed from
function symbols. No sentences are included in a LogAB language. Instead, there
are terms of a distinguished syntactic type that are taken to denote propositions.
The inclusion of propositions in the ontology, though non-standard, has been
suggested by a few authors [6, 12, for instance]. I refer the reader to Shapiro’s
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article [12] for arguments in favor of adopting this approach in the representation
of propositional attitudes in artificial intelligence. It turns out that, in addition
to Shapiro’s arguments, recognizing propositions as first-class inhabitants of our
ontology has the additional benefit of avoiding the doxastic paradoxes referred
to above. In particular, LogAB holds a middle ground between modal and first-
order syntactical theories of belief. On one hand, it is almost as expressive as
the first-order theories; on the other hand, it is weak just enough to avoid the
paradoxes to which those theories are susceptible.

Chalupsky and Shapiro [13] present a logic of belief, SL, based on Shapiro’s
proposal. LogAB and SL differ in several important respects. Chiefly among
these is that SL is fully-intensional; it adopts an excessively fine-grained repre-
sentation of propositions [13, p. 168] and has no room for notions of truth, logical
consequence, and validity.1 LogAB is much closer in spirit to standard exten-
sional first-order theories. In the LogAB ontology, propositions are structured in
a Boolean lattice. This gives us, almost for free, all standard truth conditions,
standard notions of consequence and validity, and an individuation of proposi-
tions that is neither too fine-grained, nor too coarse-grained, for a doxastic logic.2

Moreover, Chalupsky and Shapiro are primarily concerned with simulative belief
ascription, and include no mention of doxastic paradoxes of self-reference.

The paper is organized as follows. In Section 2, the syntax and semantics of
LogAB are presented. Section 3 shows how an account of truth may be associ-
ated with the otherwise truth-independent semantics of LogAB. Proof theory is
briefly discussed in Section 4. Section 5 analyzes the notion of belief in terms of
properties of LogAB semantic structures. In Section 6, the expressivity of LogAB
is demonstrated by showing how notions of common and distributed belief (cf.
[2]) may be accounted for. Results pertaining to paradoxes of self-reference are
presented in Section 7: We (i) show that LogAB is not susceptible to paradox,
(ii) strengthen a previous result of Bolander’s [9], and (iii) point out possible new
approaches to circumventing paradox in syntactical theories. For completeness,
an appendix includes relevant background on Boolean algebra.

2 LogAB Languages

LogAB is a class of languages that share a common core of logical symbols and
differ in a signature of non-logical symbols. A LogAB language is a set of terms
partitioned into two base syntactic types, σP and σI . Intuitively, σP is the set
of terms denoting propositions and σI is the set of terms denoting anything
else. A distinguished subset σA of σI comprises agent-denoting terms. In more
specialized uses of LogAB, the set σI may be further partitioned into more fine-
grained syntactic types. For example, in a temporal setting, we can have a type
for time-, state-, or event-denoting terms.
1 Which is just fine for the purposes of Chalupsky and Shapiro in [13].
2 The use of Boolean lattices may be seen as an application of the Boolean-valued

models of set theory [14], or an extension of the mereology-based algebraic semantics
of Link to the domain of propositions [15].
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2.1 Syntax

As is customary in type-theoretical treatments, an alphabet of LogAB is made up
of a set of syncategorematic punctuation symbols and a set of denoting symbols
each from a set σ of syntactic types. The set σ is the smallest set containing all
of the following types.

1. σP .
2. σI .
3. τ1 −→ τ2, for τ1 ∈ {σP , σI} and τ2 ∈ σ.

Intuitively, τ1 −→ τ2 is the syntactic type of function symbols that take a single
argument of type σP or σI and produce a functional term of type τ2. Given the
restriction of the first argument of function symbols to base types, LogAB is, in
a sense, a first-order language.

A LogAB alphabet is a union of four disjoint sets: Ω ∪ Ξ ∪ Σ ∪ Λ. The set
Ω, the signature of the language, is a non-empty set of constant and function
symbols. Each symbol in the signature has a designated syntactic type from σ
and a designated adicity. (As usual, constants may be viewed as 0-adic function
symbols.). Ω is what distinguishes one LogAB language from another.

The set Ξ = {xi, ai, pi}i∈N is a countably infinite set of variables, where
xi ∈ σI , ai ∈ σA, and pi ∈ σP , for i ∈ N. Σ is a set of syncategorematic symbols,
including the comma, various matching pairs of brackets and parentheses, and
the symbol ∀. The set Λ is the set of logical symbols of LogAB, defined as the
union of the following sets.

1. {¬} ⊆ σP −→ σP
2. {∧,∨} ⊆ σP −→ σP −→ σP
3. {B} ⊆ σA −→ σP −→ σP

A LogAB language with signature Ω is denoted by LΩ. It is the smallest set
of terms formed according to the following rules, where t and ti (i ∈ N) are terms
in LΩ.

– Ξ ⊂ LΩ

– c ∈ LΩ, where c ∈ Ω is a constant symbol.
– f(t1, . . . , tn) ∈ LΩ, where f ∈ Ω is of type τ1 −→ . . . −→ τn −→ τ and ti is

of type τi.
– ¬t ∈ LΩ, where t ∈ σP .
– (t1 ⊗ t2) ∈ LΩ, where ⊗ ∈ {∧,∨} and t1, t2 ∈ σP .
– ∀x(t) ∈ LΩ, where x ∈ Ξ and t ∈ σP .
– B(t1, t2) ∈ LΩ, where t1 ∈ σA and t2 ∈ σP .

As usual, terms involving ⇒, ⇔, and ∃ may be introduced as abbreviations in
the standard way.
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2.2 Semantics

The basic ingredient of the LogAB semantic apparatus is the notion of a LogAB
structure.

Definition 1 A LogAB structure is a triple S = 〈D,A, b〉, where

– D, the domain of discourse, is a set with two disjoint, non-empty, countable
subsets P and A.

– A = 〈P,+, ·,−,⊥,>〉 is a complete, non-degenerate Boolean algebra.
– b : A×P −→ P.

Intuitively, the domain D is partitioned by a set of propositions P, structured
as a Boolean lattice, and a set of individuals P, among which at least one agent
in the set A of agents.3 These stand in correspondence to the syntactic sorts of
LogAB. In what follows, we let DσP

= P, DσI
= P, and DσA

= A.

Definition 2 Let LΩ be a LogAB language. A valuation V of LΩ is a pair
〈S, vΩ〉, where S is a LogAB structure; and vΩ is a function that assigns to
each constant of sort τ in Ω an element of Dτ , and to each n-adic (n ≥ 1)
function symbol f ∈ Ω of sort τ1 −→ . . . −→ τn −→ τ an n-adic function

vΩ(f) :
n×
i=1

Dτi −→ Dτ .

Definition 3 Let LΩ be a LogAB language and let V be a valuation of LΩ.
For a variable assignment vΞ : Ξ −→ D, where, for every i ∈ N, vΞ(xi) ∈ P,
vΞ(ai) ∈ A, and vΞ(pi) ∈ P, an interpretation of the terms of LΩ is given by a
function [[·]]V,vΞ :

– [[x]]V,vΞ = vΞ(x), for x ∈ Ξ
– [[c]]V,vΞ = vΩ(c), for a constant c ∈ Ω
– [[f(t1, . . . , tn)]]V,vΞ = vΩ(f)([[t1]]V,vΞ , . . . , [[tn]]V,vΞ), for an n-adic (n ≥ 1)

function symbol f ∈ Ω
– [[(t1 ∧ t2)]]V,vΞ = [[t1]]V,vΞ · [[t2]]V,vΞ
– [[(t1 ∨ t2)]]V,vΞ = [[t1]]V,vΞ + [[t2]]V,vΞ
– [[¬t]]V,vΞ = −[[t]]V,vΞ
– [[∀x(t)]]V,vΞ =

∏
a∈Dτ

[[t]]V,vΞ[a/x], where x is of sort τ , vΞ[a/x](x) = a, and
vΞ[a/x](y) = vΞ[a/x](y) for every y 6= x

– [[B(t1, t2)]]V,vΞ = b([[t1]]V,vΞ , [[t2]]V,vΞ)

In LogAB, logical consequence is defined in pure algebraic terms without
alluding to the notion of truth. This is achieved using the natural partial order
≤ associated with A. (See the appendix for details.)

3 I will have nothing much to say about the contentious issue of what propositions
really are. I take propositions at least to be abstract particulars that are distinct
from sentences or terms denoting them.
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Definition 4 Let LΩ be a LogAB language. For every φ ∈ σP and Γ ⊆ σP , φ
is a logical consequence of Γ, denoted Γ |= φ, if, for every LΩ valuation V and
LogAB variable assignment vΞ,

∏
γ∈Γ

[[γ]]V,vΞ ≤ [[φ]]V,vΞ .

By the above definition, and the algebraic properties of S, we can easily
verify the validity of the following typical examples of logical consequence:

{φ ∧ ψ} |= φ, {φ} |= φ ∨ ψ, {φ⇒ ψ, φ} |= ψ, {⊥} |= φ, {φ} |= >
In the appendix it is shown that |= has the distinctive properties of classical
Tarskian logical consequence.

Proposition 1 Let LΩ be a LogAB language with φ ∈ LΩ and Γ,∆ ⊆ LΩ.

1. If φ ∈ Γ, then Γ |= φ.
2. If Γ |= φ and Γ ⊆ ∆, then ∆ |= φ.
3. If Γ |= ψ and Γ ∪ {ψ} |= φ, then Γ |= φ.

Definition 5 Let LΩ be a LogAB language. For every φ, ψ ∈ σP , φ is logically
equivalent to ψ, denoted φ ≡ ψ, if, for every LΩ valuation V and LogAB variable
assignment vΞ, [[φ]]V,vΞ = [[ψ]]V,vΞ . φ is logically valid if [[φ]]V,vΞ = >, for every
LΩ valuation V and LogAB variable assignment vΞ.

Again, all the standard logical equivalences are valid in our system as a direct
corollary to the properties of Boolean algebras. Thus, for example, φ ∧ ψ and
ψ ∧ φ are two different terms denoting the same proposition, and, hence, are
logically equivalent.

3 Truth

As is clear from the previous section, the semantics of LogAB has no place for
a notion of truth. While we can happily accommodate the standard semantic
relations of consequence and equivalence and the property of logical validity, our
semantic apparatus has nothing to say about truth. But perhaps this is fine; for
truth in the world and the language we use to describe that world and to carry
out reasoning about it are not necessarily dependent.

However, it seems that we should at least provide truth conditions for σP
terms of a LogAB language. In standard Tarskian semantics, truth conditions of
propositions are part of the definition of the interpretation of the language (Def-
inition 3, in our case). We, however, seem to need more. What we need is what
I shall call a world structure—a structure describing exactly which propositions
in a LogAB structure are true in the world.

Definition 6 For every LogAB structure S = 〈D,A, b〉, a bivalent world struc-
ture W2(S) is a countably-complete ultrafilter of A.4

4 For the definition of ultrafilters, check the appendix. In future work, n-valent world
structures are to be considered.
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Intuitively, the world structure W2(S) comprises the set of propositions that
are true. Members of the corresponding maximal ideal W2(S) are the false
propositions.

In what follows, a bivalent model of a LogAB language LΩ is a tripleM2 =
〈W2(S),V, vΞ〉, where W2(S) is a bivalent world structure, V = 〈S, vΩ〉 is an
LΩ valuation, and vΞ is a LogAB variable assignment.

Definition 7 Let LΩ be a LogAB language. A σP -term φ ∈ LΩ is true in a
bivalent modelM2 = 〈W2(S),V, vΞ〉, denoted TrueM2(φ), if [[φ]]V,vΞ ∈W2(S).
Otherwise, φ is false in M2, denoted FalseM2(φ).

With a bivalent world structure, a LogAB logic satisfies the laws of bivalence,
excluded-middle, and non-contradiction.

Proposition 2 Let LΩ be a LogAB language with a bivalent model M2. For
every φ ∈ σP the following is true.

1. TrueM2(φ) or FalseM2(φ)
2. TrueM2(φ) or TrueM2(¬φ)
3. It is not the case that both TrueM2(φ) and TrueM2(¬φ)

The classical truth conditions for compound propositions follow from the
above definition.

Proposition 3 Let LΩ be a LogAB language with a bivalent model M2 =
〈W2(S),V, vΞ〉 and let φ, ψ ∈ σP and x ∈ τ .
– TrueM2(¬φ) if and only if FalseM2(φ).
– TrueM2(φ ∧ ψ) if and only if TrueM2(φ) and TrueM2(ψ).
– TrueM2(φ ∨ ψ) if and only if TrueM2(φ) or TrueM2(ψ).
– TrueM2(∀x(φ)) if and only if TrueMb

2
(φ), for all b ∈ Dτ , where Mb

2(φ) is
identical to M2(φ) with vΞ replaced by vΞ[b/x].

Typically, Proposition 3 is given as the definition of truth conditions. In our
system, the definition is given by membership in some ultrafilter of the under-
lying Boolean algebra of propositions. Now, one might suspect that there is
something unsatisfying about the current state of affairs. For, whereas Propo-
sition 3 provides the classical truth conditions for compound propositions, it is
silent about atomic ones. The only thing that we have to say about the truth
conditions of atomic propositions is said in Definition 7. But, according to this
definition, an atomic propositional term such as Dog(fido) is true if the propo-
sition it denotes is true—something that is determined by fiat. This does not
seem to explain much if compared to the classical assignment of truth based on
Fido’s membership in the extension of the predicate Dog.

Nevertheless, the membership test for atomic propositions features, albeit in
a slightly different guise, in our semantics. Given a structure S, the semantics
of a LogAB symbol like Dog is a function from individuals to propositions that
those individuals are dogs. However, a model M (including a world structure
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for S) gives rise to a derived function from individuals to truth values, roughly
TrueM ◦ vΩ(Dog). But this is clearly the characteristic function of the classical
set of dogs provided by a Tarskian model. Thus, whatever notion of meaning
is provided by classical semantics is also inherent in our algebraic semantics. In
addition, we seem to provide a level of meaning (the proposition), independent
of a world structure, which is not explicitly available in classical theories.

4 Proof Theory

Our proof theory assumes a (possibly empty) finite knowledge base K ⊂ σP
and an inference canon. I will take the inference canon to be a set of Fitch-style
natural deduction rules of inference. Such rules come in two forms:

Γ
φ

and
Γ,∆
φ

where φ ∈ σP , Γ is a finite subset of σP -terms, and ∆ is a finite set of items
of the form Γi ` ψi, Γi ∪ {ψi} ⊂ σP . As usual, the first form is interpreted as
follows: If Γ ⊆ K, then φ may be added to K. For the second form, if Γ ⊆ K and
ψi is derivable by the rules of inference with Γi as the knowledge base, for every
Γi ` ψi ∈ ∆, then φ may be added to K. The notion of derivation is given the
standard definition in terms of a finite sequence of justified σp-terms that ends
with the derived expression. I will have nothing more to say about the proof
theory here, but any system of Fitch-style natural deduction that is sound and
complete for first-order logic will also be sound and complete for LogAB. I will
also not commit myself to any particular set of rules or axiom schema for belief
at this point, but Sections 5 and 7 present a thorough discussion of what the
possibilities are.

5 Properties of Belief

Given the LogAB semantics presented so far, our notion of belief, beside being
a relation between agents and propositions, is otherwise totally unconstrained.
Although flexibility is a virtue, we may still want our notion of belief to have
certain reasonable properties. In what follows, I list some of these.

Definition 8 Let S = 〈D,A, b〉 be a LogAB structure.

1. S is injective if b is injective.
2. S is non-trivial if Range(b)∩W2(S) 6⊆ {>}, for every bivalent world struc-

ture W2(S).
3. S is meet-distributive if b(a, p · q) = b(a, p) · b(a, q), for every p, q ∈ P,

a ∈ A.
4. S is join-distributive if b(a, p) + b(a, q) = b(a, p + q), for every p, q ∈ P,

a ∈ A.
5. S is consistent if for every (a, p) ∈ A× P, b(a,−p) ≤ −b(a, p).
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6. A pair (a, p) ∈ A × P is an autoepistemic pair if −b(a, p) ≤ b(a,−p). S is
autoepistemic if every (a, p) ∈ A× P is an autoepistemic pair.

7. S is positively- (negatively-) introspective if, for every (a, p) ∈ A × P,
q ≤ b(a, q), for q = b(a, p) (respectively, −b(a, p)).

8. S is faithful if, for every (a, p) ∈ A× P, b(a, b(a, p)) ≤ b(a, p).5

For injection, the intuition is that the proposition that a believes p is different
from the proposition that b believes q, unless a = b and p = q. This property
is, in general, absent for other D-valued functions. For example, the father of
John may be identical to the father of Mary, and the proposition that John is
a sibling of Mary may be identical to the proposition that Mary is a sibling of
John. Note, however, that full injection may lead to awkward structures in the
presence of other properties. For example, if S is both positively-introspective
and faithful, then b(a, p) = b(a, b(a, p)), for any (a, p) ∈ A×P. Injection implies
that p = b(a, p), which trivializes the whole notion of belief. Careful definition
of b is, thus, recommended to avoid such anomalies.6

A trivial structure is one for which some world structure only admits either
non-believing agents (practically, automata), or agents that believe only what
they are bound to believe. While it might not seem reasonable to assume that
> ∈ Range(b), we do not rule out this possibility. For example, someone might
argue that b(a,>) = >, mirroring the rule of necessity in modal doxastic logic: It
is logically valid to believe what is logically valid. Also, sometimes the condition
of conceit, b(a,−b(a, p) + p) = >, is advisable (cf. [1, 10]).7 Nevertheless, this
will not be very useful in the absence of non-trivial beliefs.

Meet-distributivity is a strong condition that implies logical omniscience (cf.
Observation 1 below). In general, this property should not be tolerated if we
would like to account for realistic agents. The same applies to join-distributivity.
Typically, only one direction of join-distributivity is desirable, namely b(p) +
b(q) ≤ b(p+q). Unfortunately, this direction is equivalent to logical omniscience.
Better than meet- and join-distributivity, a syntactic version involving ∧ and ∨
instead of · and + is preferred.8

The above properties of belief are not independent. The following observation
lists some dependencies that will turn out to be important in Section 7.

Observation 1 Let S = 〈D,A, b〉 be a LogAB structure.

1. If S is meet-distributive (join-distributive) and p ≤ q, for p, q ∈ P, then
b(a, p) ≤ b(a, q), for any a ∈ A.

2. If S is autoepistemic, consistent, and meet-distributive, then it is join-distributive.

5 The label “faithful” is inspired by [16].
6 In their fully-intensional logic, Chalupsky and Shapiro [13] avoid these anomalies by

refraining from making any assumptions about belief, including positive introspec-
tion and faithfulness.

7 The label “conceit” is due to [17].
8 In that case, our B will behave similar to Levesque’s modality of explicit belief [3,

p. 201].

9



3. If S is consistent and negatively-introspective, then it is faithful.
4. If S is autoepistemic, consistent, positively-introspective, and meet-distributive

then it is negatively-introspective.
5. If S is autoepistemic and faithful, then it is negatively-introspective.

6 Expressivity

How expressive is LogAB? As expected, it is more expressive than modal the-
ories of belief. In particular, we can quantify over beliefs, which allows us, for
example, to limit properties like introspection to any intensionally characterized
set of agents. To demonstrate the expressivity of LogAB, consider the following
example.

Example 1. In [2], the authors describe a proposition to be common knowledge
for a group of agents if all agents in the group know it, all agents in the group
know that all agents in the group know it, etc. In the modal framework adopted
in [2], the authors had to introduce a new modal operator (actually, a class
thereof, one operator for each possible group) to capture this notion of common
knowledge. In LogAB, we can make use of our ability to quantify over propo-
sitions in order to represent the corresponding notion of common belief. If our
group of agents is intensionally characterized by G, we first introduce a non-
logical function symbol B∗

G, which is akin to the reflexive transitive closure of
B (viewed relationally):

∀p [B∗
G(p, p)]

∀a, p [B∗
G(p,B(a, p))⇔ G(a)]

∀p, q, r [B∗
G(p, q) ∧B∗

G(q, r)⇒ B∗
G(p, r)]

Common belief (CB) can be defined as follows.

CBG(p) =def ∀a [G(a)⇒ ∀q [B∗
G(p, q)⇒ B(a, q)]]

In [2], the related notion of distributed knowledge characterizes those proposi-
tions that are implied by the collective knowledge of a group. Again, the authors
introduced a new modal operator to model distributed knowledge. In LogAB, we
need a non-logical function symbol capturing the collective beliefs of the group:

B∪
G(p)⇔ ∃a[G(a) ∧B(a, p)] ∨ ∃q, r[B∪

G(q) ∧B∪
G(r) ∧ (p⇔ (q ∧ r))]

We may now define distributive belief as follows.

DBG(p) =def ∃q [B∪
G(q) ∧ (q ⇒ p)]

ut
Though more expressive than modal theories, LogAB is, in a certain sense,

less expressive than syntactical first-order theories. In particular, LogAB lan-
guages are not self referential.
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7 Self-Reference

Results of Montague [11] and Thomason [10] show that a first-order treatment
of epistemic modalities (respectively, knowledge and belief) yield inconsistent
systems. Of course, it is a particular mix of assumptions about the modalities
that gives rise to inconsistencies. The inconsistencies appear as paradoxes of
self-reference, akin to the famous Liar paradox. How does our system fair in
this regard? Interestingly, our system is immune to such paradoxes for the same
reason why it is not a classical first-order logic. Let me explain. First-order dox-
astic theories are syntactical, they include a dyadic belief predicate (akin to our
functional B) whose first argument is an agent-denoting term and whose second
argument is a term that denotes a formula of the same language. It is this ability
of the language to refer to its own syntactic structures that makes such theories
syntactical. However, such ability does not come for free; there are, in general,
two methods to achieve syntacticity. The first is to equip the language with
an axiomatization of arithmetic and denote formulas of the language by their
Gödel numbers [18, 9, for instance]. The second is to provide the language with
systematic means to manipulate strings, together with devices for substitution,
quotation, and un-quotation [7, for instance].

In syntactical theories, we can have formulas that refer to themselves. For
example, a formula P (p123q) may have as its Gödel number the very same 123,
encoded by the string p123q. In fact, the diagonalization lemma (see [19, for
example]) states that, in a syntactical first-order theory, there is a formula φ such
that φ⇔ p(pφq) is a theorem, for any (possibly complex) monadic predicate p.
Note that φ⇔ p(pφq) is a theorem—we have no way of avoiding it—not just a
sentence generated by the grammar of the language. It is this result that leads
to doxastic paradoxes, when p is λx.¬B(α, x) and B is the belief predicate.

As demonstrated by several authors [20, 8, 21], it is the syntacticity of a
system that is the catalyst for paradox, not whether it is first-order or modal.
Interestingly, LogAB, which has all the advantages that a first-order doxastic
theory has over a modal one (see Section 6), is not syntactical. There is no way for
a LogAB language to refer to its own terms. In particular, no σP term can refer
to itself, since, tout court, the proper-substring relation is irreflexive. Granted,
we can write expressions such as φ⇔ ¬B(α, φ) (or even φ = ¬B(α, φ)); we can
have such expressions in our knowledge base; and, with a certain notorious suite
of assumptions on B, we shall get a contradiction. But this inconsistency is an
inconsistency of the knowledge base, not a natural product of our proof theory:
paradoxical, self-referential expressions are not theorems of our logic.

Now, the immunity of LogAB to paradox is clearly rooted in its relative
expressive weakness, compared to syntactical theories, when it comes to rep-
resenting its own syntax. However, syntactical theories have almost exclusively
been employed to account for the propositional attitudes, which a LogAB ap-
proach seems to effectively accommodate. Perlis [7, 8] argues that languages with
self-reference are essential for commonsense reasoning in general. I might have
something to say about this, but that is a story for another day.
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Notwithstanding LogAB’s immunity to paradox, we can certainly construct
LogAB structures in which, for some p ∈ P, p = −b(a, p). Such structures will
be incompatible with some of the properties in Definition 8. Syntactically, this
means that (knowledge-base) inconsistency looms given φ⇔ B(α, φ) and specific
axiomatizations of belief. In what follows, we prove several results, indicating
exactly when that happens. We start with the following two useful lemmas.9

Lemma 1. If S is a consistent, positively-introspective LogAB structure, then
p = −b(a, p) implies p = > for every (a, p) ∈ A× P.
Proof. Suppose that p = −b(a, p). By consistency, b(a,−b(a, p)) = b(a, p) ≤
−b(a, b(a, p)). On the other hand, by positive introspection, b(a, p) ≤ b(a, b(a, p)).
It follows that, b(a, p) ≤ −b(a, b(a, p)) ·b(a, b(a, p)) = ⊥. Thus, b(a, p) = ⊥ and,
hence, p = > (by the definition of ≤ and B7.1 in the appendix). ut
Lemma 2. If S is a negatively-introspective LogAB structure, then p = −b(a, p)
implies p = ⊥ for every (a, p) ∈ A× P.
Proof. Assume that p = −b(a, p). It follows from negative introspection that
−b(a, p) ≤ b(a,−b(a, p)). Then −b(a, p) ≤ b(a, p), and, consequently, −b(a, p) =
p = ⊥ (by the definition of ≤ and B5.2 in the appendix). ut
Our first theorem is a variant of Theorem 4.7 in [9, p. 76], where the inconsistency
result of Thomason [10] is regenerated by trading conceit (b(a,−b(a, p)+p) = >)
for the more subjective negative introspection.

Theorem 1. If S is a consistent, positively-, and negatively-introspective LogAB
structure, then there is no (a, p) ∈ A× P such that p = −b(a, p).
Proof. Assume (a, p) ∈ A×P such that p = −b(a, p). By Lemma 1, p = >. By
Lemma 2, p = ⊥. Consequently, ⊥ = >, which is impossible since the algebra A
is non-degenerate. ut

The following theorem shows that positive introspection is not responsible,
after all, for the inconsistency.

Theorem 2. If S is a consistent, negatively-introspective, and meet-distributive
LogAB structure, then there is no (a, p) ∈ A× P such that p = −b(a, p).
Proof. Assume (a, p) ∈ A×P such that p = −b(a, p). By negative introspection
and Lemma 2, p = ⊥. Consequently, b(a, p) = b(a,⊥) = >. Now, let q ∈ P be
an arbitrary proposition. Since ⊥ = q · −q, it follows that b(a, q · −q) = >. By
meet-distributivity, b(a, q · −q) = b(a, q) · b(a,−q). By consistency, b(a, q · −q) ≤
b(a, q) · −b(a, q) = ⊥, which is impossible since A is non-degenerate. ut

Even though we require S to be meet-distributive, the direction of meet-
distributivity actually used in the proof (b(a, p · q) ≤ b(a, p) · b(a, q)) is provably
equivalent to logical omniscience (p ≤ q implies b(a, p) ≤ b(a, q)). Logical omni-
science is already a property of the systems of both Thomason [10] and Bolander

9 Strictly speaking, standard results pertain to sentences, not propositions. But see
[22] for a discussion of how such results extend to propositions.
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[9]. Hence, the above result is a strengthening of Bolander’s in that it shows that
negative-introspection, consistency, and omniscience are sufficient—without pos-
itive introspection—to regenerate Thomason’s paradox. In addition, the result
also shows that negative introspection is problematic enough to induce an in-
consistency if it replaces Thomason’s conceit and positive introspection.

But, while negative introspection is rightly incriminated by the above re-
sult, it certainly is not necessary for the inconsistency. The following theorem
shows that replacing negative-introspection with the less controversial property
of faithfulness gives rise to inconsistency when a non-pervasive version of au-
toepistemology is enforced.10

Theorem 3. If S is a consistent, positively-introspective, and faithful LogAB
structure, then there is no autoepistemic pair (a, p) such that p = −b(a, p).
Proof. Assume there is an autoepistemic pair (a, p) ∈ A × P such that p =
−b(a, p). By Lemma 1, p = −b(a, p) = >. Since (a, p) is an autoepistemic
pair, −b(a, p) ≤ b(a,−p) = b(a, b(a, p)). By faithfulness and transitivity of ≤,
> = −b(a, p) ≤ b(a, p) = ⊥. Consequently, ⊥ = >, which is impossible since the
algebra A is non-degenerate. ut

In the spirit of [23], we present the following non-theorem, demonstrating the
necessity of autoepistemology for the above result.

Non-Theorem 1 If S is a consistent, positively-introspective, and faithful LogAB
structure, then there is no (a, p) ∈ A× P such that p = −b(a, p).
Counterexample 1. Let STWO = 〈D2,A2, b2〉. Take D2 = {a,⊥,>}, A2 =
〈{⊥,>},+, ·,−,⊥,>〉, and Range(b2) = {⊥}. STWO is trivially consistent.
In addition, it is both positively-introspective and faithful, since b2(a, p) =
b2(a, b2(a, p)) = ⊥ for p ∈ P . In this structure, > = −⊥ = −b2(a,>).

Our first counterexample, though falsifies the non-theorem, constructs a
rather trivial structure. Our second example is more general.
Counterexample 2. Consider two disjoint sets P = {p1, . . . , pn} and Q =
{q1, . . . , qn} of propositions. Let AP = 〈P ′,+, ·,−,⊥,>〉 and AQ = 〈Q′,+, ·,−,⊥,>〉
be the Boolean algebras generated by P and Q, respectively, and let A∪ =
〈(P ∪ Q)′,+, ·,−,⊥,>〉 be the Boolean algebra generated by P ∪ Q. Take i to
be an isomorphism from AP to AQ, where i(pi) = qi for pi ∈ P . Now, define
SISO = 〈{a} ∪ (P ∪Q)′,A∪, bi〉, where bi is defined as follows.

bi(a, x) =


⊥ if x ∈ {⊥,>}
i(x) if x ∈ P ′ \ {⊥,>}
x if x ∈ Q′ \ {⊥,>}
z if x = y ¯ z, where ¯ ∈ {·,+}, y ∈ P ′ \ {⊥,>},

and z ∈ Q′ \ {⊥,>}
It could be shown, by induction on the structure of x, that bi is well-defined.

We now show that it satisfies the conditions stated in the non-theorem. First,
10 Faithfulness is a theorem of Thomason’s system [10]. Hence, the following result is,

in a sense, a strengthening of Thomason’s.
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consider consistency. The case of ⊥ and > is similar to Counterexample 1. For
p ∈ P ′ \ {⊥,>}, bi(a,−p) = i(−p) = −i(p) = −bi(a, p). For q ∈ Q′ \ {⊥,>},
bi(a,−q) = −q = −bi(a, q). For x = y·z, with y ∈ P ′\{⊥,>} and z ∈ Q′\{⊥,>},
bi(a,−x) = bi(a,−y + −z) = −z = −bi(a, y · z). Similarly for x = y + z. Note
that, not only is S consistent, but it is also the case that every pair (a, x) ∈
A× (P ∪Q)′ \ {⊥,>} is autoepistemic.

Similar to Counterexample 1, bi(a, x) = bi(a, bi(a, x)), for x ∈ {⊥,>}. Oth-
erwise, bi(a, x) ∈ Q′ \ {>} and is, hence, identical to bi(a, bi(a, x)). Thus, S is
both positively-introspective and faithful. Finally, similar to Counterexample 1,
note that > = −⊥ = −bi(a,>). ut

In the LogAB structure SISO of Counterexample 2, all propositions, except
the paradoxical one, are autoepistemic and satisfy the negative introspection
schema. In addition, SISO is almost meet-distributive (and join-distributive),
which means that it almost satisfies logical omniscience (cf. Observation 1).
Thus, not only have we shown that consistency, positive-introspection, and faith-
fulness are tolerant to the p = −b(a, p) possibility, but we have also shown that
the tolerance persists even in the presence of a high degree of logical omniscience.
We are pretty close to Thomason’s system.

It should be clear that SISO could be varied along different dimensions. We
may allow multiple agents, where instead of the single set Q, we have a fam-
ily of sets indexed by A. Omniscience may also be avoided by constructing the
isomorphism differently. For example, instead of standing in 1-1 correspondence
to the set P , Q can be defined to correspond 1-1 to the elements of the algebra
generated by P . We may also construct a structure in which we are more con-
servative about which propositions are autoepistemic. One way to achieve this
is to change the definition of b such that b(a,−p) = −b(a, p) · AE(p), where
AE(p) = > only for some p ∈ P (those that are intuitively autoepistemic). Note
that this definition of b maintains the property of consistency.

Theorem 3 and Non-theorem 1 tell us the following: For consistent, positively-
introspective, and faithful (and almost omniscient) structures, a pair (a, p) will
satisfy p = −b(a, p) if and only if it is not autoepistemic. What is interesting here
is that the offensive property—autoepistemology—is one that naturally applies
only to select propositions (and agents) by fiat. For example, whereas my having
a brother is plausibly autoepistemic, my first-grade teacher’s being asleep right
now is clearly not. Thus, if pressed, we may deem a proposition p, such that
p = −b(a, p), non-autoepistemic. Now, while it might be easy to semantically
implement this decree (and to perhaps philosophically justify it), it is not im-
mediately clear how we can syntactically enforce it. But the results obtained in
[23, 18, 9] give us some hope. Based on purely syntactic properties, we may be
able to quarantine some σP terms which are believed to give rise to paradoxi-
cal self-reference. Unlike [23, 18, 9], where the recommendation is to suspend the
application of all doxastic schema on the quarantined expressions, we only need
to make sure that we do not label any of them as autoepistemic. We, thus, get
the full force of rational belief (for example, consistency, positive introspection,
faithfulness), and the limited application of negative introspection to the au-
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toepistemic agent-proposition pairs (cf. Observation 1). The exact ramifications
of this result for syntactical theories is to be explored in future work.

8 Conclusions

By admitting propositions as first-class individuals in our ontology, we achieve
two things: (i) the expressivity and semantic simplicity of first-order doxastic
theories and (ii) the consistency and syntactic simplicity of rival modal theories.
I hope I have managed to convince the reader of the above claim through the
presentation of LogAB. No paradoxical self-referential propositional term is a
theorem of LogAB, but results of Thomason’s and Bolander’s feature as condi-
tions of incompatibility of certain properties of LogAB’s semantics structures.
This leads to one direction of future work: How may the results presented here
(in particular those pertaining to the interrelations among autoepistemology,
faithfulness, conceit, and negative introspection) be applied to syntactical theo-
ries in order to avoid paradox, while minimally sacrificing the pervasive adoption
of desirable properties of belief?

Other directions for future research include developing similar algebraic ac-
counts for other propositional attitudes, notably knowledge (within a LogAK
framework). Also, as pointed out earlier, non-bivalent world structures of LogAB
may be studied. In particular, a trivalent world structure, corresponding to a
three-valued logic, may be defined as a filter (as opposed to an ultrafilter) of
the underlying Boolean algebra. Similarly, a quad-valent world structure could
be defined as a filter-ideal pair. Connections of such systems to existing many-
valued logics (for example, [24, 25]) are then to be systematically studied.
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Appendix: Boolean Algebra

For the sake of completeness, I hereafter present some basic results about Boolean
algebra that are relevant to the development of LogAB. The presentation is based
primarily on [26]. All proofs are omitted for limitations of space; the interested
reader may consult [26] or any standard text on the topic.

A Boolean algebra is a sextuple B = 〈B,+, ·,−,⊥,>〉 where B is a non-
empty set and {⊥,>} ⊆ B. B is closed under the two binary operators + and ·
and the unary operator −. The operators satisfy the following conditions.
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B1.1: a+ b = b+ a (Commutativity)
B1.2: a · b = b · a
B2.1: a+ (b+ c) = (a+ b) + c (Associativity)
B2.2: a · (b · c) = (a · b) · c
B3.1: a+ (a · b) = a (Absorption)
B3.2: a · (a+ b) = a
B4.1: a · (b+ c) = (a · b) + (a · c) (Distribution)
B5.1: a+−a = > (Complements)
B5.2: a · −a = ⊥

The following properties of Boolean algebras immediately follow.

B4.2: a+ (b · c) = (a+ b) · (a+ c)
B6.1: a · a = a
B6.2: a+ a = a
B7.1: a · ⊥ = ⊥
B7.2: a+> = >
B8: a · > = a+⊥ = a
B9: − (−a) = a
B10.1: − (a · b) = (−a) + (−b)
B10.2: − (a+ b) = (−a) · (−b)

A Boolean algebra B = 〈B,+, ·,−,⊥,>〉 is complete if, for every A ⊆ B,∑
a∈A a ∈ B and

∏
a∈A a ∈ B. B is degenerate if ⊥ = >, otherwise, it is non-

degenerate. Elements of B are partially-ordered by the relation ≤, where a ≤ b
if and only if a · b = a. By B3.1 and B3.2, it follows that a ≤ b if and only if
a+ b = b.

A filter of B is a subset F of B such that

F1. > ∈ F
F2. a, b ∈ F implies a · b ∈ F
F3. a ∈ F and a ≤ b imply b ∈ F

F is an ultrafilter of B if it is maximal with respect to not including ⊥. The
following properties of ultrafilters follow from the definitions.

F4. For every a ∈ B, exactly one of a and −a belong to F .
F5. For every a, b ∈ B, a+ b ∈ F if and only if a ∈ F or b ∈ F .

Moreover, F is countably-complete if it satisfies

F6. For every A ⊆ F , if A is countable, then
∏
a∈A

a ∈ F .
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To illustrate the relevance of the above properties of Boolean algebras to
LogAB, I present proofs for Propositions 1 and 3. (Proposition 2 follows imme-
diately from F4.)

Proof of Proposition 1.

1. Suppose that φ ∈ Γ. Then, for every LΩ valuation V and LogAB variable
assignment vΞ,

∏
γ∈Γ

[[γ]]V,vΞ = (
∏

φ 6=γ∈Γ

[[γ]]V,vΞ) · [[φ]]V,vΞ . By B2.2 and B6.1,

(
∏
γ∈Γ

[[γ]]V,vΞ) · [[φ]]V,vΞ = (
∏

φ 6=γ∈Γ

[[γ]]V,vΞ) · ([[φ]]V,vΞ · [[φ]]V,vΞ) =
∏
γ∈Γ

[[γ]]V,vΞ

Hence, Γ |= φ.
2. Suppose that Γ |= φ and Γ ⊆ ∆. Thus, there is a set Γ′ such that ∆ = Γ∪Γ′

and Γ ∩ Γ′ = ∅. By B1.2 and B2.2,

(
∏
δ∈∆

[[δ]]V,vΞ) · [[φ]]V,vΞ = (
∏
γ′∈Γ′

[[γ′]]V,vΞ) · [(
∏
γ∈Γ

[[γ]]V,vΞ) · [[φ]]V,vΞ ]

Since Γ |= φ, it follows that

(
∏
δ∈∆

[[δ]]V,vΞ) · [[φ]]V,vΞ = (
∏
γ′∈Γ′

[[γ′]]V,vΞ) · (
∏
γ∈Γ

[[γ]]V,vΞ) =
∏
δ∈∆

[[δ]]V,vΞ

Hence, ∆ |= φ.
3. Suppose Γ |= ψ and Γ ∪ {ψ} |= φ. By definition of |=,

(
∏
γ∈Γ

[[γ]]V,vΞ) · [[ψ]]V,vΞ ≤ [[φ]]V,vΞ

But, since Γ |= ψ,∏
γ∈Γ

[[γ]]V,vΞ = (
∏
γ∈Γ

[[γ]]V,vΞ) · [[ψ]]V,vΞ ≤ [[φ]]V,vΞ

Hence, Γ |= φ. ut
Proof of Proposition 3.

1. TrueM2(¬φ) iff−[[φ]]V,vΞ ∈W2(S) iff [[φ]]V,vΞ 6∈W2(S) (by F4) iff FalseM2(φ).
2. TrueM2(φ ∧ ψ) iff [[φ]]V,vΞ · [[ψ]]V,vΞ ∈ W2(S) iff [[φ]]V,vΞ ∈ W2(S) and

[[ψ]]V,vΞ ∈W2(S) (by F2 and F3) iff TrueM2(φ) and TrueM2(ψ).
3. TrueM2(φ ∨ ψ) iff [[φ]]V,vΞ + [[ψ]]V,vΞ ∈ W2(S) iff [[φ]]V,vΞ ∈ W2(S) or

[[ψ]]V,vΞ ∈W2(S) (by F5) iff TrueM2(φ) or TrueM2(ψ).
4. Similar to the case of ∧, using F6 instead of F2. ut
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First-Order Probabilistic Conditional Logic

Introduction and Representation

Jens Fisseler

Faculty of Mathematics and Computer Science, FernUniversität in Hagen, Germany

Abstract. Combining probability and first-order logic has been the sub-
ject of intensive research during the last ten years. This paper intro-
duces first-order probabilistic conditional logic, a first-order extension
of a propositional probabilistic logic representation formalism, which al-
lows for the adequate representation of probabilistic if -then-rules. As
the representation of the models of first-order probabilistic conditional
logic requires solving a complex entropy-optimization problem, we devise
syntactic conditions for the simplification of this optimization problem.

1 Introduction

Knowledge representation and reasoning is one of the main research topics of
artificial intelligence. As most real-world knowledge is uncertain rather than
certain, knowledge representation formalisms should be able to deal with this
uncertainty. One approach to represent and process uncertain knowledge is prob-
ability theory [1,2], which, with the introduction of probabilistic graphical models,
has seen increasing research interest during the last two decades. Markov and
Bayesian networks are two well-known classes of probabilistic graphical models
[3,4], but only allow the representation of propositional probabilistic knowledge.

However, as many real-world knowledge representation tasks require the abil-
ity to represent uncertain knowledge about a varying number of objects and their
(uncertain) relationships, several approaches for combining probabilistic graph-
ical models and some subset of first-order logic have been developed, see Chap-
ter 10 of [5] as well as [6] for an overview. The best known of these formalisms are
probabilistic relational models (PRMs), Bayesian logic programs (BLPs), and
Markov logic networks (MLNs), see corresponding Chapters in [5]. Although
their models are defined by “templates”, specified by using some subset of first-
order logic, for inference, these formalisms work at a propositional level: PRMs
and BLPs induce a Bayesian network, whereas MLNs induce a Markov network.
The formulas of PRMs and BLPs are parametrized with conditional probability
functions, whereas a MLN consists of weighted formulas. Therefore, MLNs are
not as easily comprehensible, and it is also difficult to specify them by hand, e.g.
as background knowledge for learning. However, formalisms which are mapped
to Bayesian networks have difficulties representing circular dependencies.

In this paper, we introduce an alternative approach for combining a subset of
first-order logic and probabilistic models which allows to specify models via prob-
abilistic conditionals. Because these probabilistic conditionals do not specify a
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unique model, we use the principle of maximum entropy as a model selection cri-
terion, which yields a convex optimization problem, with one optimization vari-
able for each ground instance of a first-order probabilistic conditional. As solving
this optimization problem is computationally infeasible for all but the smallest
sets of ground instances, we develop syntactic conditions which ensure that some
or all ground instances of the same conditional “share” the same entropy-optimal
parameter value, which greatly simplifies the entropy-optimization problem.

The following section motivates the need for first-order probabilistic condi-
tional logic by pointing out some drawback of other formalisms. Section 3 intro-
duces syntax and semantics of our novel formalism, and Section 4 presents some
example knowledge bases. Section 5 discusses the representation of maximum-
entropy models of first-order probabilistic conditional logic, presenting syntac-
tical conditions which ensure “sharing” of the same entropy-optimal parameter
value between ground instances of the same first-order probabilistic conditional.
Section 6 concludes.

2 Motivating First-Order Probabilistic Conditional Logic

Assume we want to formalize the following uncertain knowledge about having
resp. catching a common cold:

R1: common-cold(U) [0.01]
R2: if susceptible(U)

then common-cold(U) [0.1]
R3: if contact(U, V )

and common-cold(V )
then common-cold(U) [0.6]

(1)

The uncertain if -then-rule R1 states that one normally does not have a common
cold, i.e. only with a diminutive probability of 0.01. Rule R2 denotes that a
person catches a common cold with probability 0.1 if this person is susceptible
to it, and rule R3 represents the knowledge that person U , which is in contact
with another person V which has the common cold, also gets a common cold
with probability 0.6.

Formalisms based on directed graphical models cannot represent this un-
certain knowledge, as rule R3 depicts a circular dependency, which cannot be
modeled with Bayesian networks. Hence, one could try to encode this knowledge
base with Markov logic, representing the if -then-rules using material implica-
tion, which is denoted here by “←”:

R1ML : common-cold(U). [w1]

R2ML : common-cold(U) ← susceptible(U). [w2]

R3ML : common-cold(U) ← contact(U, V ) [w3]∧common-cold(V ).

(2)
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Having defined the Markov logic formulas, the next step is to specify their weights
w1–w3. For Markov logic, there is no direct method for computing the formulas’
weights from prescribed probabilities, but [7] gives an intuitive interpretation
for the weight of a formula F when it is the only formula of a MLN: its weight
w can be viewed as the log-odds between a world where F is true and a world
where it is false, other things being equal.

Though Equation (2) contains three formulas, one might still choose their
weights based on this intuition, which yields w1 := log 1

100 , w2 := log 1
10 , and

w3 := log 6
10 . However, as the ground instances of the formulas R1ML–R3ML

share some of their ground atoms, they influence each other, and therefore this
näıve approach for specifying the weights is not suitable. For example, with con-
stant symbols C = {a, b}, the probability (cf. Equation (4) in [7]) of person
a having a common cold is p(common-cold(a)) = 0.066416, which is signifi-
cantly higher than the desired probability 0.01, which has been used to spec-
ify w1. On the other hand, the probability of a ground instance of R3ML, e.g.
p(common-cold(a) | contact(a, b) ∧ common-cold(b)), is 0.031946, which is much
lower than the prescribed probability of 0.6. Therefore, the intuitive interpre-
tation of the weight of a formula is not appropriate for computing the weights
from prescribed formula probabilities.

As there is no direct method for calculating the weights of Markov logic for-
mulas from prescribed probabilities, a pragmatic way to obtain these parameters
is learning them from data. While this approach is more or less unproblematic
when learning MLNs from data, for knowledge representation, only prescribed
probabilities for the given formulas are available. Therefore, an appropriate data
set must be generated first, within which the given formulas should hold with
their desired probabilities. From this data set, the formulas’ weights can subse-
quently be learned. For complex knowledge bases, the generation of an appropri-
ate data set is all but straightforward, as the formulas influence or interact with
each other, i.e. changing some parts of the data set to get the desired probability
of one formula right might change the probability of another formula.

Though feasible, due to lack of space, we cannot go into details of how to gen-
erate an appropriate data set which represents the formulas R1ML–R3ML with
their prescribed probabilities. Instead, we point out another drawback of Markov
logic networks: their inability to model conditional probabilities. The weights at-
tached to the formulas of a Markov logic network—despite their non-probabilistic
interpretation—correspond to marginal probabilities for their associated formu-
las. Even material implications, which have been used to model the conditional
statements represented by the uncertain if -then-rules R1–R3, can only be quan-
tified by weights corresponding to marginal probabilities. However, uncertain
conditional statements can only be adequately quantified by conditional proba-
bilities [8,9], which cannot be represented by Markov logic networks.

In summary, we have shown that several well known approaches for combin-
ing first-order logic and probabilistic graphical models have problems represent-
ing a knowledge base consisting of probabilistic if -then-rules. Formalisms using
Bayesian networks cannot represent circular dependencies, whereas Markov logic
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networks are not easily specified by hand. Furthermore, MLNs cannot represent
conditional probabilities, which are the only adequate quantification of prob-
abilistic conditionals. The following sections present and discuss a formalism
addressing these issues.

3 First-Order Probabilistic Conditional Logic

This section introduces the syntax and semantics of first-order probabilistic con-
ditional logic ( FO-PCL), which can be viewed as a restricted first-order exten-
sion of (propositional) probabilistic conditional logic, see [10]. Please note that
a similar formalism has been previously presented in [11].

3.1 Syntax

Let Σ = (S,D,Pred) be a function-free, many-sorted signature1, consisting of a
non-empty set S of sorts, an S-indexed family of pairwise disjoint, non-empty
sets of constant symbols D = {D(s)}s∈S , and a non-empty, S∗-indexed set Pred
of predicate symbols. As the sets of constant symbols are pairwise disjoint, we
can assume D =

⋃
s∈S D

(s). Furthermore, Pred can also be assumed to be a
single set instead of a family of sets. Every predicate symbol ps1...sn

∈ Pred has
an associated index s1 . . . sn ∈ S∗, and ps1...sn

is also written as p/〈s1, . . . , sn〉,
where n denotes the arity of p. The empty sequence of sorts is denoted by ε,
and nullary predicate symbols (which correspond to propositions) are written as
p/ε. Every many-sorted signature Σ contains some predefined predicate symbols,
which consist of >/ε and ⊥/ε, as well as =(s)/〈s, s〉, for every sort s ∈ S.

For every sort s ∈ S, V (s) denotes an enumerable set of variables of sort
s, and the set of all variables is defined as V :=

⋃
s∈S V

(s). The set Term(s)
Σ of

terms of sort s is defined as Term(s)
Σ := V (s) ∪D(s), and the set of all terms is

denoted by TermΣ :=
⋃
s∈S Term(s)

Σ = V ∪ D.
Analogous to other formalisms combining a subset of first-order logic and

probabilistic graphical models, FO-PCL knowledge bases are propositional-
ized by substituting the variables of each FO-PCL “template”—probabilistic
conditionals—with all admissible combinations of constant symbols. But con-
trary to the other approaches, straightforward instantiation of FO-PCL condi-
tionals might easily results in inconsistencies. This can be illustrated on rule R3
depicted in Equation (1):

R3: if contact(U, V )
and common-cold(V )
then common-cold(U) [0.6]

If the variables U and V would be substituted by the same constant symbol,
the resulting ground instance of R3 would state that a person which has the
1 We use many-sorted signatures to allow for some computational savings when in-

stantiating an FO-PCL knowledge base.
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common cold with certainty, i.e. with probability 1.0, and which is in contact
with itself, has the common cold with a probability of 0.6 only, which is obvi-
ously inconsistent. Therefore, to avoid inconsistencies by restricting the set of
admissible substitutions, first-order probabilistic conditional logic uses so-called
constraint formulas, which are used to represent syntactical equalities and dise-
qualities between terms, see [12,13] for a general introduction. Hence FO-PCL
uses two different kinds of formulas, logical formulas and constraint formulas.

The set of logical formulas is the least set that contains atomic logical for-
mulas of the form p(t1, . . . , tn), with p/〈s1 . . . sn〉 ∈ Pred \ {=(s)/〈s, s〉 | s ∈ S}
and t1 ∈ Term(s1)

Σ , . . . , tn ∈ Term(sn)
Σ , nullary predicate symbols, and which is

closed under the logical connectives ¬, ∨, and ∧.
The set of constraint formulas is the least set that contains equality constraint

formulas of the form =(s)(t1, t2), with t1, t2 ∈ Term(s)
Σ , s ∈ S, >/ε and ⊥/ε, and

which is closed under the logical connectives ¬, ∨, and ∧. A negated equality
constraint formula ¬(t1 =(s) t2) is also written as t1 6=(s) t2, and is called a
disequality constraint formula.

A first-order probabilistic conditional is an expression 〈(φ |ψ)[ξ], C〉, con-
sisting of two logical formulas ψ (the premise) and φ (the conclusion), con-
ditional probability ξ ∈ [0, 1], and constraint formula C. The variables of the
constraint formula must be a subset of the variables of premise and conclusion:
vars(C) ⊆ (vars(φ) ∪ vars(ψ)), where vars(·) denotes the set of variables of a
logical or constraint formula.

Before defining the semantics of first-order probabilistic conditional logic, we
present an example to further illustrate the syntactical concepts introduced in
this section.

Example 1 (“Common Cold”).
The “Common Cold” example models the uncertain knowledge pertaining to

the causes for catching a common cold. This is an FO-PCL knowledge base for
the uncertain if -then-rules presented in Equation (1):

CC1: 〈(common-cold(U))[0.01],>〉
CC2: 〈(common-cold(U) | susceptible(U))[0.1],>〉
CC3: 〈(common-cold(U) | contact(U, V )

∧common-cold(V ))[0.6], U 6= V 〉

(3)

The signature ΣCC = (SCC,DCC,PredCC) of this example contains only
one sort, Person. Its set DCC = D(Person) of constant symbols may contain
any number of persons, and its set PredCC of predicate symbols consists of
common-cold/〈Person〉, susceptible/〈Person〉 and contact/〈Person,Person〉, as
well as the predefined predicate symbols =/〈Person,Person〉, >/ε, and ⊥/ε.

The conditionals CC1–CC3 should be self-explanatory, except perhaps for
the constraint “U 6= V ” of CC3, which simply states that no person is in contact
with itself. Within the context of CC3, this means that no person can infect itself
with the common cold, which avoids inconsistencies, see the discussion above.
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3.2 Semantics

First-order probabilistic conditional logic uses a possible worlds semantics [14],
analogous to most other formalisms for combining first-order logic and proba-
bilistic graphical models. Therefore, we must define the set of possible worlds
induced by a given set R = {R1, . . . , Rm} of probabilistic conditionals Rk,
1 ≤ k ≤ m, and we must specify a probability function of these possible worlds,
resp. their corresponding random variables.

Analogous to the templates used by PRMs, BLPs and MLNs, the FO-PCL
conditionals R are instantiated, which is done by substituting the variables of
each conditional Rk ∈ R by all admissible ground substitutions. A ground sub-
stitution is a sort-respecting mapping θ : V → TermΣ , which is the identity for
all but a finite set of variables, its domain dom(θ), and which maps the variables
in dom(θ) onto constant symbols in D. For any set of variables V ⊂ V, ΘΣ(V )
denotes the set of all ground substitutions for V . The application of a ground
substitution θ ∈ ΘΣ(V ), V ⊂ V, on a logical or constraint formula ρ is denoted
by θ(ρ). If vars(ρ) ⊆ dom(θ), θ(ρ) is ground.

The set of admissible ground substitutions for a first-order probabilistic con-
ditional R = 〈(φ |ψ)[ξ], C〉 is restricted by its constraint formula C. A ground
substitution θ ∈ ΘΣ(vars(φ)∪vars(ψ)) is admissible, if [[θ(C)]] = true, where the
constraint evaluation of equality constraint formulas is defined as

[[t1 =(s) t2]] :=

{
true iff t1 and t2 depict the same term in Term(s)

Σ , s ∈ S,
false otherwise,

which is canonically extended to composite constraint formulas. The set of all
admissible ground substitutions for the conditional R = 〈(φ |ψ)[ξ], C〉 is defined
as Sol(C, vars(φ)∪ vars(ψ)) := {θ ∈ ΘΣ(vars(φ)∪ vars(ψ)) | [[θ(C)]] = true}, and
the set of ground instances of R is denoted by

gnd(R) := {〈(θ(φ) | θ(ψ))[ξ],>〉 | θ ∈ Sol(C, vars(φ) ∪ vars(ψ))} , (4)

which is canonically extended to the set gnd(R) of ground instances of a set R
of FO-PCL conditionals.

The set gnd(R) of ground instances of a first-order probabilistic conditional
R = 〈(φ |ψ)[ξ], C〉 induces a set X(R) of binary random variables, which cor-
responds to the set of all syntactically different ground atoms of the ground
instances in gnd(R), and which is also the Herbrand base H(R) of R. Any subset
M ⊆ H(R) is a Herbrand interpretation, and corresponds to a unique config-
uration x ∈ X (R) := {true, false}|H(R)| of the random variables X(R). The
configurations resp. Herbrand interpretations correspond to the possible worlds,
and an FO-PCL interpretation is simply a joint probability function pX(R) of
X(R). Based on these definitions, the probability of a ground logical formula ρ
with respect to a joint probability function pX(R) is defined as

pX(R)(ρ) :=
∑

x∈X (R),
x|=ρ

pX(R)(x), (5)
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where |= denotes the usual Herbrand satisfiability. An FO-PCL interpretation
pX(R) for R = 〈(φ |ψ)[ξ], C〉 is an FO-PCL model for R, iff

∀θ ∈ Sol(C, vars(φ) ∪ vars(ψ)) : pX(R) (θ(φ) ∧ θ(ψ)) = ξ · pX(R) (θ(ψ)) . (6)

This can be equivalently represented by

∀gR ∈ gnd(R) :
∑

x∈X (R)

fgR
(x)pX(R)(x) = ξ, (7)

where, for every ground instance gR = 〈(θgR
(φ) | θgR

(ψ))[ξ],>〉 ∈ gnd(R), which
is generated by a unique ground substitution θgR

∈ Sol(C, vars(φ) ∪ vars(ψ)),
the function fgR

: X (R) → [0, 1] denotes the feature function of gR, which is
defined as:

fgR
(x) :=


1 iff x |= (θgR

(φ) ∧ θgR
(ψ)),

0 iff x |= (¬θgR
(φ) ∧ θgR

(ψ)),
ξ iff x |= (¬θgR

(ψ)).
(8)

A pair (f, ξ), consisting of a feature function f and its associated expected values
ξ, is called a probabilistic constraint.

All these definitions are canonically extended to sets R = {R1, . . . , Rm} of
FO-PCL conditionals, and the set of all FO-PCL models for R is denoted by
ModFO-PCL(R).

Similar to propositional probabilistic conditional logic, the set ModFO-PCL(R)
of all FO-PCL models for R is generally infinite, as it is a convex set: one can
show that any convex combination sX(R)(x) := δpX(R)(x) + (1− δ)qX(R)(x) of
two models pX(R), qX(R) ∈ ModFO-PCL(R), with δ ∈ [0, 1], is again an FO-PCL
model ofR. Therefore, in order to obtain point probabilities for queries, one must
select a single model from ModFO-PCL(R). The principle of maximum entropy
is a suitable model selection criterion, which yields the most unbiased model
in ModFO-PCL(R), see [15,16] for axiomatic derivations and a more thorough
discussion. Using Lagrange optimization techniques [17], one can show that the
FO-PCL model with maximum entropy,

p∗X(R) := argmax
pX(R)∈ModFO-PCL(R)

− ∑
x∈X (R)

pX(R)(x) log pX(R)(x)

 , (9)

can be represented as

p∗X(R)(x) =
1
Z

exp

 m∑
k=1

∑
gRk
∈gnd(Rk)

λ∗gRk
fgRk

(x)

 , (10)

hence p∗X(R) is a so-called Gibbs distribution. The fgRk
are the feature functions

defined for each ground instance gRk
∈ gnd(Rk), Rk ∈ R, according to (8),

and λgRk
are the parameters which have to be optimized to find the Gibbs

distribution representing the joint probability function with maximum entropy.
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In order to compute the entropy-optimal values λ∗gRk
of the parameters λgRk

,
each must be iteratively adjusted until convergence, as there is no closed formula
relating the expected values of the feature functions fgRk

to their entropy-optimal
parameter values. This is completely different from other formalisms combining
first-order logic and probabilistic models, which reuse the same parametrization
for each ground instance of a knowledge representation template.

The requirement to iteratively compute the entropy-optimal parameter val-
ues might seem to prevent the practical application of FO-PCL from the outset,
as there may be hundreds or thousands of ground instances of every FO-PCL
conditional Rk, and solving this entropy-optimization problem is computation-
ally infeasible for all but the smallest FO-PCL knowledge bases. But the fol-
lowing examples show that there seem to exist conditions which ensure that
some or all ground instances of the same FO-PCL conditional share the same
entropy-optimal parameter value. This is advantageous for two reasons: on the
one hand, parameter sharing represents the fact that an FO-PCL knowledge
base contains identical knowledge pertaining to ground instances sharing the
same entropy-optimal parameter value. On the other hand, this allows for com-
putational savings when computing the entropy-optimal parameter values.

4 Examples

This section illustrates the concept of “sharing” the same entropy-optimal pa-
rameter value on two examples.

Example 2 (“Common Cold” semantics).
Varying the number of constant symbols in the domain DCC = D(Person) of

the “Common Cold” example between two and four, different complete ground
instances of the first-order probabilistic conditionals CC1–CC3 are created. The
expert system shell SPIRIT [18] is then used to compute the entropy-optimal
parameter values for these ground instances.

Although the algorithm used for computing the entropy-optimal parameter
values has no information about the way the probabilistic conditionals have been
generated, i.e. does not know which propositional probabilistic conditionals are
ground instances of the same first-order probabilistic conditional, for any fixed
set DCC = D(Person) of constant symbols, all ground instances of the same
first-order probabilistic conditional share the same entropy-optimal parameter
value. Due to space restrictions, no table depicting all ground instances and their
entropy-optimal parameter value can be shown here. Instead, Table 1 depicts
the entropy-optimal value shared by all ground instances of the same FO-PCL
conditional, differentiated by the number

∣∣D(Person)
∣∣ of constant symbols.

The left column of Table 1 shows the number of constants for which the
complete ground instance was generated, and the right column presents the
entropy-optimal parameter values shared by all ground instances of CC1–CC3,
respectively.

The “Common Cold” example clearly demonstrates parameter sharing be-
tween all ground instances of the same first-order probabilistic conditional. Fur-
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Table 1. Entropy-optimal parameter values for the ground instances of the first-order
probabilistic conditionals of the “Common Cold” example.˛̨̨

D(Person)
˛̨̨

Entropy-optimal parameter value

2
λCC1 =−35.78381574
λCC2 = 31.00000000
λCC3 = 5.21711313

3
λCC1 =−35.26652281
λCC2 = 31.00000000
λCC3 = 4.47891786

4
λCC1 =−34.85353605
λCC2 = 31.00000000
λCC3 = 3.73955124

thermore, as there is no reason to assume that there is anything particular or
exceptional about the actual ground instances used for showing parameter shar-
ing, we assert that any ground instance of the “Common Cold” example has
this property of parametric uniformity.

However, the following example shows that parameter sharing is no intrinsic
property of FO-PCL, i.e. it does not necessarily apply to all ground instances
of any FO-PCL conditional. This should be obvious, because parameter sharing
reflects that the FO-PCL knowledge base contains the same information about
the ground instances sharing the same entropy-optimal parameter value. Any
conditional representing exceptional knowledge will therefore affect parameter
sharing.

Example 3 (“Misanthrope” example and semantics).
The “Misanthrope” example is a simple model about the friendship relations

between a (finite) group of people, with one exceptional member, a misanthrope.
In general, people like each other, i.e. if a person V likes another person U ,

then it is very likely that U likes V , too. But there is one person, identified with
the constant symbol a, which does not like other people, i.e. likes them only with
a diminutive probability. This can be expressed as follows:

MI1: 〈(likes(U, V ) | likes(V,U))[0.9], U 6= V 〉
MI2: 〈(likes(a, V ))[0.05], V 6= a〉

Recalling the results of the previous examples, one might assume that all
ground instances of MI1 resp. MI2 also share the same entropy-optimal parame-
ter value. However, when generating ground instances for a specific set D(Person)

of constant symbols, one can easily see that the “Misanthrope” example is dif-
ferent from the “Common Cold” example.

Table 2 depicts the ground instances of MI1, gMI1,1–gMI1,6, and MI2, gMI2,1

and gMI2,2, generated for the constant symbols D(Person) = {a, b, c}. Whereas
all ground instances of MI2 share the same entropy-optimal parameter value,
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Table 2. Ground instances and entropy-optimal parameter values of the first-order
probabilistic conditionals of the “Misanthrope” example, generated for the constant
symbols D(Person) = {a, b, c}.

Ground instance Entropy-optimal
parameter value

gMI1,1 〈(likes(a, b) | likes(b, a))[0.9],>〉 8.40249157
gMI1,2 〈(likes(a, c) | likes(c, a))[0.9],>〉 8.40249157
gMI1,3 〈(likes(b, a) | likes(a, b))[0.9],>〉 2.32967585
gMI1,4 〈(likes(b, c) | likes(c, b))[0.9],>〉 2.88175000
gMI1,5 〈(likes(c, a) | likes(a, c))[0.9],>〉 2.32967585
gMI1,6 〈(likes(c, b) | likes(b, c))[0.9],>〉 2.88175000

gMI2,1 〈(likes(a, b)[0.05],>〉 −5.46553416
gMI2,2 〈(likes(a, c)[0.05],>〉 −5.46553416

there are three different entropy-optimal parameter values for different ground
instances of MI1.

Example 3 shows that, although not all ground instances of an FO-PCL con-
ditional share the same entropy-optimal parameter value, they can be partitioned
into several groups, with the ground instances in each group again sharing the
same entropy-optimal parameter value. This leads to the question which prop-
erties of an FO-PCL knowledge base give rise to parameter sharing. Ideally,
this would be syntactic properties, as these could be verified without actually
computing the entropy-optimal parameter values.

Some motivation for the quest for syntactic properties may be derived from
Example 3, by observing the way the ground instances of MI1 share ground
atoms with ground instances of MI2. Ground instances gMI1,1 and gMI1,2 both
share the ground atom in their conclusion (ground atom likes(a, b) resp. likes(a, c))
with one ground instance of MI2. The ground instances gMI1,3 and gMI1,5 on
the other hand share the ground atom in their premise (again, likes(a, b) resp.
likes(a, c)) with one ground instance of MI2, whereas gMI1,4 and gMI1,6 do not
share any ground atom with a ground instance of MI2. These different patterns
of sharing of ground atoms directly correspond to the sharing of entropy-optimal
parameter values.

5 Representing Maximum-Entropy Models for FO-PCL

Before we can try to develop syntactic conditions which ensure the semantic
notion of parameter sharing, we must first formally define this property.

Given a signature Σ = (S,D,Pred) and a set R = {R1, . . . , Rm} of FO-
PCL conditionals defined over Σ, two ground instances gRk

, g′Rk
∈ gnd(Rk)

with associated feature functions fgRk
, fg′Rk

are called parametrically equivalent
with respect to the complete ground instance gnd(R) of R and the maximum-
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entropy model p∗X(R) ∈ ModFO-PCL(R), cf. Equation (10), iff they share the
same entropy-optimal parameter values, i.e. λ∗gRk

= λ∗g′Rk

.
It is obvious that parametric equivalence is an equivalence relation, whose

equivalence classes consist of those ground instances sharing the same entropy-
optimal parameter value. This partitioning corresponds to the fact that the
FO-PCL knowledge base R contains the same information about each ground
instance in a given equivalence class. Furthermore, the partitioning can be uti-
lized to obtain a simpler entropy-optimization problem: as the same optimization
parameter is shared by all ground instances in an equivalence class, only this sin-
gle parameter has to be computed for all ground instances in the equivalence
class.

The partitioning of the ground instances of Rk = 〈(φk |ψk)[ξk], Ck〉 ∈ R can
be represented intentionally, by restating Ck as a disjunction Ck,1 ∨ . . . ∨Ck,nk

,
with Ck,i ∧ Ck,j ≡ ⊥, for all 1 ≤ i, j ≤ nk, i 6= j. Each constraint for-
mula Ck,i represents the ground instances belonging to the same equivalence
class of gnd(Rk). To simplify all further expositions, we assume that the sin-
gle conditional Rk = 〈(φk |ψk)[ξk], Ck〉 is replaced by nk conditionals Rk,1 =
〈(φk |ψk)[ξk], Ck,1〉, . . . , Rk,nk

= 〈(φk |ψk)[ξk], Ck,nk
〉, each having identical com-

ponents, except for their constraint formulas. Hence every FO-PCL conditional
only has a single associated parameter, instead of one for each of its equiva-
lence classes. Its joint probability function with maximum entropy can then be
represented as

p∗X(R)(x) =
1
Z

exp

 m∑
k=1

λ∗Rk

∑
gRk
∈gnd(Rk)

fgRk
(x)

 .

The main idea underlying the syntactic condition for parameter sharing is
that, since parametric equivalence represents the fact that an FO-PCL knowl-
edge base R essentially contains identical knowledge about two ground instances
gRk

, g′Rk
∈ gnd(Rk), Rk ∈ R, one should be able to “exchange” gRk

and g′Rk
, and

still obtain the same joint probability function p∗X(R) with maximum entropy.
Because p∗X(R) is a Gibbs distribution, it is defined by a unique set λ∗ of La-
grange multipliers, given some mild conditions2 on R. Now, if gRk

and g′Rk
can

be exchanged without changing p∗X(R), this shows that the ground instances gRk

and g′Rk
are parametrically equivalent. If arbitrarily chosen gRk

, g′Rk
∈ gnd(Rk),

can be transposed, this shows that Rk is parametrically uniform, i.e. all ground
instances of the same FO-PCL conditional Rk share the same entropy-optimal
parameter value.

To show parametric equivalence of two ground instances of the same FO-
PCL conditional, we use so-called probabilistic constraint involutions. Please
2 It is required that the ground instances resp. their feature functions are linearly

independent. However, although the results generally do not hold for linearly de-
pendent ground instances—as the set of Lagrange multipliers is not unique—there
seem to exist sets of Lagrange multipliers such that the results also apply to linearly
dependent ground instances.
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recall that every ground instance gRk
= 〈(θgRk

(φk) | θgRk
(ψk))[ξk],>〉 ∈ gnd(Rk)

of a first-order probabilistic conditional Rk = 〈(φk |ψk)[ξk], Ck〉 ∈ R is generated
by a unique ground substitution θgRk

∈ Sol(Ck, vars(φk) ∪ vars(ψk)), and has
an associated feature function fgRk

. Furthermore, the pair (fgRk
, ξk) constitutes

a probabilistic constraint, and the set of all probabilistic constraints associated
with the set gnd(R) of all ground instances is denoted by

F(R) :=
{(
fgRk

, ξk

) ∣∣∣ Rk = 〈(φk |ψk)[ξk], Ck〉 ∈ R, gRk
∈ gnd(Rk)

}
. (11)

A probabilistic constraint involution transposes pairs of ground instances of
the same FO-PCL conditional Rk ∈ R. These transpositions can be modeled
by a pair (πF(R), πX(R)) of permutations, with πF(R) : F(R) → F(R) and
πX(R) : X(R) → X(R). The permutations πF(R) and πX(R) are not indepen-
dent of each other but are interrelated, as both model the same transpositions
of ground instances, only on different levels: πF(R) acts on the set F(R) of
probabilistic constraints, whereas πX(R) acts on the set X(R) of random vari-
ables. Furthermore, πF(R) and πX(R) are involutions, i.e. permutations which
are their own inverse. Because πF(R) is assumed to only transpose probabilistic
constraints corresponding to ground instances of the same FO-PCL conditional,
it partitions F(R) into three sets F (1)(R), F (2)(R) and F (3)(R), such that the
following holds:

∀
(
f (1)
gRk

, ξk

)
∈ F (1)(R) ∃

(
f (2)
gRk

, ξk

)
∈ F (2)(R) :

πF(R)

((
f (1)
gRk

, ξk

))
=
(
f (2)
gRk

, ξk

)
,

∀
(
f (3)
gRk

, ξk

)
∈ F (3)(R) : πF(R)

((
f (3)
gRk

, ξk

))
=
(
f (3)
gRk

, ξk

)
.

(12)

The interrelations of πF(R) and πX(R) can be illustrated with the help of an-
other involution πX (R) : X (R) → X (R), which is induced by πX(R): whereas
πX(R) transposes random variables, πX (R) transposes configurations in X (R),
by exchanging the values of those random variables which are transposed by
πX(R). That is, πX (R) is defined as

πX (R)(x) = πX (R)((x1, . . . , x|X(R)|)) := (xπX(R)(X1), . . . , xπX(R)(X|X(R)|)).
(13)

Because the value of any feature function fgRk
belonging to a probabilistic con-

straint
(
fgRk

, ξk

)
∈ F(R) only depends on the values of the random variables

corresponding to the ground atoms fgRk
is defined over, the interrelations of

πF(R) and πX(R) resp. πX (R) can be formalized as follows:

∀x ∈ X (R) ∀
(
f (1)
gRk

, ξk

)
∈ F (1)(R) ∀

(
f (2)
gRk

, ξk

)
∈ F (2)(R) :

πF(R)

((
f (1)
gRk

, ξk

))
=
(
f (2)
gRk

, ξk

)
⇒ f (1)

gRk
(x) = f (2)

gRk
(πX (R)(x)) ,

∀x ∈ X (R) ∀
(
f (3)
gRk

, ξk

)
∈ F (3)(R) : f (3)

gRk
(x) = f (3)

gRk
(πX (R)(x)).

(14)
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This property states that, for any probabilistic constraints
(
f

(1)
gRk

, ξk

)
∈ F (1)(R)

and
(
f

(2)
gRk

, ξk

)
∈ F (2)(R) with πF(R)

((
f

(1)
gRk

, ξk

))
=
(
f

(2)
gRk

, ξk

)
, f (1)

gRk
evaluates

on x ∈ X (R) to the same value as f (2)
gRk

does on πX (R)(x), and vice versa,
whereas the probabilistic constraints in F (3)(R) are not influenced by πX (R).

We illustrate the concept of probabilistic constraints involutions on the “Mis-
anthrope” knowledge base.

Example 4 (“Misanthrope” probabilistic constraint involution).
We can define a probabilistic constraint involution (πF(RMI), πX(RMI)) for

the “Misanthrope” example as

πF(RMI) := (gMI1,1 gMI1,2)(gMI1,3 gMI1,5)
(gMI2,1 gMI2,2),

and

πX(RMI) := (likes(a, b) likes(a, c))
(likes(b, a) likes(c, a)).

Although the “Misanthrope” example is not parametrically uniform, by com-
paring the feature functions resp. ground instances transposed by πF(RMI) and
their entropy-optimal parameter values depicted in Table 2, one can observe an
interesting property: those ground instances which are transposed by πF(RMI)

share the same entropy-optimal parameter value.
This is no coincidence: one can formally proof that those ground instances

transposed by a probabilistic constraint involution share the same entropy-
optimal parameter value. Though the proof cannot be presented here due to
space restrictions, we can further substantiate this proposition by showing that
there cannot be a probabilistic constraint involution transposing two ground
instances having different entropy-optimal parameter values, e.g. gMI1,1 and
gMI1,3. One may try to construct an involution transposing gMI1,1 and gMI1,3

by defining πF(RMI) := (gMI1,1 gMI1,3) and πX(RMI) := (likes(a, b) likes(b, a)).
Although gMI1,1 and gMI1,3 are correctly transposed, involution πX(RMI) also
affects ground instance gMI2,1 = 〈(likes(a, b))[0.05],>〉, for which there is no
corresponding ground instance of MI2, which would be 〈(likes(b, a))[0.05],>〉.
Hence there exists no involution πF(RMI) which transposes gMI1,1 and gMI1,3,
which correlates to the fact that these ground instances have different entropy-
optimal parameter values. Similar arguments apply when trying to transpose
other ground instances of MI1 with different entropy-optimal parameter values.

For the “Misanthrope” example, a single probabilistic constraint involution
is sufficient to proof the parametric equivalence between the ground instances
depicted in Table 2. But for other FO-PCL knowledge bases, or larger ground
instances of the “Misanthrope” knowledge base, more probabilistic constraint
involutions are necessary in order to show parametric equivalence between all
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ground instances of an equivalence class of an FO-PCL conditional. If all ground
instances of an equivalence class shall share the same entropy-optimal parameter
value, they should all be interchangeable, i.e. one should be able to arbitrarily
permute the members of an equivalence class, any should still obtain the same
maximum-entropy model. This can be done with a set of probabilistic constraint
involutions, which can be composed to yield any permutation for the elements of
any equivalence class. As this is a rather straightforward extension, we don not
go into details, but demonstrate how the “Misanthrope” knowledge base can be
transformed in order to obtain a parametrically uniform knowledge base.

As stated in the discussion at the end of Section 4, it is the different “pat-
terns” according to which ground instances of MI1 share ground atoms—i.e.
random variables—with ground instances of MI2, which cause the parametric
non-uniformity of this FO-PCL knowledge base. For example, the parametri-
cally equivalent ground instances gMI1,1 and gMI1,2 (see Table 2) share the ground
atom in their conclusion with one ground instance of MI2. The parametrically
equivalent ground instances gMI1,3 and gMI1,5 share the ground atom in their
premise with one ground instance of MI2, and parametrically equivalent ground
instances gMI1,4 and gMI1,6 share none of their ground atoms with a ground
instance of MI2.

It is these different “patterns” of sharing ground atoms with ground instances
of MI2 which have to be taken into account when transforming MI1 in order to
obtain a parametrically uniform knowledge base. This transformation is accom-
plished by replacing conditional MI1 by three conditionals MI1-1–MI1-3, which
yields the following FO-PCL knowledge base:

MI1-1: 〈(likes(U, V ) | likes(V,U))[0.9], U 6= V ∧ U 6= a ∧ V 6= a〉
MI1-2: 〈(likes(a, V ) | likes(V, a))[0.9], V 6= a〉
MI1-3: 〈(likes(U, a) | likes(a, U))[0.9], U 6= a〉
MI2 : 〈(likes(a, V ))[0.05], V 6= a〉

It can be easily seen that the ground instances of MI1-1–MI1-3 form a partition-
ing of the ground instances of the original FO-PCL conditional MI1, but each
of the conditionals MI1-1–MI1-3 is parametrically uniform.

We assert that similar transformations can be applied on any FO-PCL
knowledge base in order to make it parametrically uniform, which would greatly
simplify the entropy-optimization problem for FO-PCL.

6 Conclusions

This paper has introduced FO-PCL, a first-order extension of probabilistic con-
ditional logic, which allows for the adequate representation of relational prob-
abilistic if -then-rules. Similar to most other formalisms combining a subset of
first-order logic and probabilistic graphical models, FO-PCL knowledge bases
are propositionalized, which in case of first-order probabilistic conditional logic
yields a complex optimization problem. We have developed syntactic conditions
which can be utilized to simplify this optimization problem, by showing which
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ground instances of an FO-PCL conditional share the same entropy-optimal
parameter value.

The results presented are only a first step towards an applicable FO-PCL.
Further work is necessary to develop an algorithm for transforming arbitrary
FO-PCL knowledge bases into parametrically uniform sets of conditionals. In
addition to this, efficient algorithms for solving the entropy-optimization problem
have to be devised.

Acknowledgments. The research reported here was partly supported by the DFG
– Deutsche Forschungsgemeinschaft (grant BE 1700/7-1).
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Abstract. This paper presents KReator, a versatile and easy-to-use
toolbox for statistical relational learning currently under development.
The research on combining probabilistic models and first-order theory
put forth a lot of different approaches in the past few years. While every
approach has advantages and disadvantages the variety of prototypi-
cal implementations make thorough comparisons of different approaches
difficult. KReator aims at providing a common and simple interface
for representing, reasoning, and learning with different relational prob-
abilistic approaches. We give an overview on the system architecture of
KReator and illustrate its usage.

1 Introduction

Probabilistic inductive logic programming (or statistical relational learning) is a
very active field in research at the intersection of logic, probability theory, and
machine learning, see [1, 2] for some excellent overviews. This area investigates
methods for representing probabilistic information in a relational context for
both reasoning and learning. Many researchers developed liftings of propositional
probabilistic models to the first-order case in order to take advantage of methods
and algorithms already developed. Among these are the well-known Bayesian
logic programs [3] and Markov logic networks [4] which extend respectively Bayes
nets and Markov nets [5] and are based on knowledge-based model construction
[6]. Other approaches also employ Bayes nets for their theoretical foundation
like logical Bayesian networks [7] and relational Bayesian networks [8]; or they
are influenced by other fields of research like probabilistic relational models [9]
by database theory and P-log [10] by answer set programming. There are also
some few approaches to apply maximum entropy methods to the relational case
[11, 12]. But because of this variety of approaches and the absence of a common
interface there are only few comparisons of different approaches, see for example
[13, 14].

In this paper we describe the KReator toolbox, a versatile integrated de-
velopment environment for knowledge engineering in the field of statistical re-
lational learning. KReator is currently under development and part of the
ongoing KReate project3 which aims at developing a common methodology for
3 http://www.fernuni-hagen.de/wbs/research/kreate/index.html
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learning, modelling and inference in a relational probabilistic framework. As sta-
tistical relational learning is a (relatively) young research area there are many
different proposals for integrating probability theory in first-order logic, some
of them mentioned above. Although many researchers have implementations of
their approaches available, most of these implementations are prototypical, and
in order to compare different approaches one has to learn the usage of different
tools. KReator aims at providing a common interface for different approaches
to statistical relational learning and to support the researcher and knowledge
engineer in developing knowledge bases and using them in a common and easy-
to-use fashion. Currently, the development of KReator is still in a very early
stage but already supports Bayesian logic programs, Markov logic networks, and
in particular a new approach for using maximum entropy methods in a relational
context [11].

The rest of this paper is organized as follows. In Sec. 2 we give an overview
on the approaches of statistical relational learning that are currently supported
by KReator, i. e. Bayesian logic programs, Markov logic networks, and the
relational maximum entropy approach. We go on in Sec. 3 with presenting the
system architecture of KReator and motivate the main design choices. In Sec. 4
we give a short manual-style overview on the usage of KReator and in Sec. 5
we give some hints on future work and conclude.

2 Relational Probabilistic Knowledge Representation

In the following we give some brief overview on frameworks for relational proba-
bilistic reasoning that are already implemented in KReator. These are Bayesian
logic programs originally due to Kersting et. al. [3], Markov logic networks orig-
inally due to Domingos et. al. [4], and a framework employing reasoning with
maximum entropy methods that is currently in development [11]. We illustrate
the use of these frameworks on a common example, the well-known burglary
example [5, 1].

Example 1. We consider a scenario where someone—let’s call him James—is on
the road and gets a call from his neighbor saying that the alarm of James’ house
is ringing. James has some uncertain beliefs about the relationships between bur-
glaries, types of neighborhoods, natural disasters, and alarms. For example, he
knows that if there is a tornado warning for his home place, then the probability
of a tornado triggering the alarm of his house is 0.9. A reasonable information
to infer from his beliefs and the given information is “What is the probability of
an actual burglary?”.

2.1 Bayesian Logic Programs

Bayesian logic programming is an approach to combine logic programming and
Bayesian networks [3]. Bayesian logic programs (BLPs) use a standard logic
programming language and attach to each logical clause a set of probabilities,
which define a conditional probability distribution of the head of the clause given
specific instantiations of the body of the clause.
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In contrast to first-order logic, BLPs employ an extended form of predicates and
atoms. In BLPs, Bayesian predicates are predicates that feature an arbitrary set
as possible states that are not necessarily the boolean values {true, false}. For
example, the Bayesian predicate bloodtype/1 may represent the blood type of
a person using the possible states S(bloodtype) = {a, b, ab, 0} [3]. Analogously
to first-order logic, Bayesian predicates can be instantiated to Bayesian atoms
using constants and variables and then each ground Bayesian atom represents a
single random variable. If A is a Bayesian atom of the Bayesian predicate p we
set S(A) = S(p).

Definition 1 (Bayesian Clause, Conditional Probability Distribution).
A Bayesian clause c is an expression (H | B1, . . . , Bn) with Bayesian atoms
H,B1, . . . , Bn. With a Bayesian clause c with the form (H | B1, . . . , Bn) we
associate a function cpdc : S(H)× S(B1)× . . .× S(Bn)→ [0, 1] that fulfills

∀b1 ∈ S(B1), . . . , bn ∈ S(Bn) :
∑

h∈S(H)

cpdc(h, b1, . . . , bn) = 1 .

We call cpdc a conditional probability distribution. Let CPDp denote the set of
all conditional probability distributions {cpdH|B1,...Bn | H is an atom of p}.
A function cpdc for a Bayesian clause c expresses the conditional probability
distribution P (head(c) | body(c)) and thus partially describes an underlying
probability distribution P .

Example 2. We represent Ex. 1 as a set {c1, c2, c3} of Bayesian clauses with

c1 : (alarm(X) | burglary(X))
c2 : (alarm(X) | lives in(X,Y), tornado(Y))
c3 : (burglary(X) | neighborhood(X))

where S(tornado/1 ) = S(lives in/2 ) = S(alarm) = S(burglary) = {true, false}
and S(neighborhood) = {good, average, bad}. For each Bayesian clause ci, we
define a function cpdci which expresses our subjective beliefs, e. g., for clause c2
we define

cpdc2(true, true, true) = 0.9 cpdc2(true, true, false) = 0.01
cpdc2(true, false, true) = 0 cpdc2(true, false, false) = 0
cpdc2(false, true, true) = 0.1 cpdc2(false, true, false) = 0.99
cpdc2(false, false, true) = 1 cpdc2(false, false, false) = 1

Considering clauses c1 and c2 in Ex. 2 one can see that it is possible to have
multiple clauses with the same head. BLPs facilitate combining rules in or-
der to aggregate probabilities that arise from applications of different Bayesian
clauses. A combining rule crp for a Bayesian predicate p/n is a function crp :
P(CPDp) → CPDp that assigns to the conditional probability distributions of
a set of Bayesian clauses a new conditional probability distribution that rep-
resents the joint probability distribution obtained from aggregating the given
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clauses4. For example, given clauses c1 = (b(X) | a1(X)) and c2 = (b(X) |
a2(X)) the result f = crb({cpdc1 , cpdc2}) of the combining rule crb is a function
f : S(b) × S(a1) × S(a2) → [0, 1]. Appropriate choices for such functions are
average or noisy-or, cf. [3].

Example 3. We continue Ex. 2. Suppose noisy-or to be the combining rule
for alarm. Then the joint conditional probability distribution cpdc′ for c′ =
(alarm(X) | burglary(X), lives in(X,Y), tornado(Y)) can be computed via

cpdc′(t1, t2, t3, t4) = Z ∗ (1− (1− cpdc1(t1, t2)) ∗ (1− cpdc2(t1, t3, t4)))

for any t1, t2, t3, t4 ∈ {true, false}. Here, Z is a normalizing constant for main-
taining the property of conditional probability distributions to sum up to one
for any specific head value.

Now we are able to define Bayesian logic programs as follows.

Definition 2 (Bayesian Logic Program). A Bayesian logic program B is a
tuple B = (C,D,R) with a (finite) set of Bayesian clauses C = {c1, . . . , cn},
a set of conditional probability distributions (one for each clause in C) D =
{cpdc1 , . . . , cpdcn}, and a set of combining functions (one for each Bayesian
predicate appearing in C) R = {crp1 , . . . , crpm}.
Semantics are given to Bayesian logic programs via transformation into the
propositional case, i. e. into Bayesian networks [5]. Given a specific (finite) uni-
verse U a Bayesian network BN can be constructed by introducing a node for
every grounded Bayesian atom in B. Using the conditional probability distribu-
tions of the grounded clauses and the combining rules of B a (joint) conditional
probability distribution can be specified for any node in BN . If BN is acyclic this
transformation uniquely determines a probability distribution P on the grounded
Bayesian atoms of B which can be used to answer queries.

A detailed description of the above (declarative) semantics and an equivalent
procedural semantics which is based on SLD resolution are given in [3].

2.2 Markov Logic Networks

Markov logic [4] establishes a framework which combines Markov networks [5]
with first-order logic to handle a broad area of statistical relational learning
tasks. The Markov logic syntax complies with first-order logic5, however each
formula is quantified by an additional weight value. The semantics of a set of
Markov logic formulas is explained by a probability distribution over possible
worlds. A possible world assigns a truth value to every possible ground atom
(constructible from the set of predicates and the set of constants). The prob-
ability distribution is calculated as a log-linear model over weighted ground
formulas.
4 P(S) denotes the power set of a set S.
5 Although Markov logic also covers functions, we will omit this fact, and only consider

constants.
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The fundamental idea in Markov logic is that first-order formulas are not handled
as hard constraints. Instead, each formula is more or less softened depending
on its weight. So a possible world may violate a formula without necessarily
receiving a zero probability. Rather a world is more probable, the less formulas
it violates. A formula’s weight specifies how strong the formula is, i. e. how much
the formula influences the probability of a satisfying world versus a violating
world. This way, the weights of all formulas influence the determination of a
possible world’s probability in a complex manner. One clear advantage of this
approach is that Markov logic can directly handle contradictions in a knowledge
base, since the (contradictious) formulas are weighted against each other anyway.
Furthermore, by assigning appropriately high weight values to certain formulas,
it can be enforced that these formulas will be handled as hard constraints, i. e.
any world violating such a hard formula will have a zero probability. Thus,
Markov logic also allows the processing of purely logical first-order formulas.

Definition 3 (Markov logic network). A Markov logic network (MLN) L is
a set of first-order logic formulas Fi, where each formula Fi is quantified by a
real value wi, its weight. Together with a set of constants C it defines a Markov
network ML,C as follows:

– ML,C contains a node for each possible grounding of each predicate appearing
in L.

– ML,C contains an edge between two nodes (i. e. ground atoms) iff the ground
atoms appear together in at least one grounding of one formula in L.

– ML,C contains one feature (function) for each possible grounding of each
formula Fi in L. The value of the feature for a possible world x is 1, if the
ground formula is true for x (and 0 otherwise). Each feature is weighted by
the weight wi of its respecting formula Fi.

According to the above definition, a MLN (i. e. the weighted formulas) defines
a template for constructing ground Markov networks. For a different set C ′ of
constants, a different ground Markov network ML,C′ emerges from L. These
ground Markov networks may vary in size, but their general structure is quite
similar, e. g. the groundings of a formula Fi have the weight wi in any ground
Markov network of L. The ground Markov network ML,C specifies

P (X = x) =
1
Z

exp

(∑
i

wini(x)

)

as the probability distribution over possible worlds x (whereas Z is a normaliza-
tion factor). For each formula Fi, the binary result values of its feature functions
have been incorporated into the counting function ni(x), so ni(x) compactly
expresses the number of true groundings of Fi in the possible world x.

Example 4. In the following example, we model the relations described in Ex. 1
as a MLN (using the Alchemy syntax [15] for MLN files). The “!” operator
used in the predicate declarations of lives in and neighborhood enforces that
the respective variables will have mutually exclusive and exhaustive values,
i. e. that every person lives in exactly one town and one neighborhood (in
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terms of ground atoms). The weights of the formulas are to be understood
exemplary (since “realistic” weights cannot be estimated just like that, but
requires learning from data). We declare the typed predicates alarm(person),
neighborhood(person, hood state!), lives in(person, town!), burglary(person), the
types and constants person = {James,Carl}, town = {Freiburg ,Yorkshire,
Austin}, hood state = {Bad ,Average,Good}, and add the following weighted
formulas:

2.2 burglary(x) => alarm(x)
2.2 lives in(x, y) ∧ tornado(y) => alarm(x)
−0.8 neighborhood(x,Good) => burglary(x)
−0.4 neighborhood(x,Average) => burglary(x)

0.4 neighborhood(x,Bad) => burglary(x)

2.3 Relational Maximum Entropy

In this paper we also consider a specific approach for reasoning under maximum
entropy on first-order probabilistic conditional logic [11]. Knowledge is captured
in RME using probabilistic conditionals as in probabilistic conditional logic, cf.
[16].

Definition 4 (RME conditional). A RME conditional r = (φ | ψ)[α][c] con-
sists of a head literal φ, a list of n body literals ψ = ψ1, . . . , ψn, a real value
α ∈ [0, 1], and a list of meta-constraints c = c1, . . . , cm, which allows the re-
striction of the substitution for certain variables. A meta-constraint is either an
expression of the form X 6= Y or X /∈ {k1, . . . , kl}, with variables X,Y and
{k1, . . . , kl} ⊆ U . A conditional r is called ground iff r contains no variables.
The set of all RME conditionals is determined as the language (L | L)rel and the
set of all ground conditionals is referred to by (L | L)relU .

Definition 5 (RME knowledge base). A RME knowledge base KB is a quadru-
ple KB = (S,U, P,R) with a finite set of sorts S, a finite set of constants U , a
finite set of predicates P , and a finite set of RME conditionals R. Any constant of
the universe U is associated with one sort in S and Uσ determines the constants
with sort σ. Each argument of a predicate p(σ1, . . . , σk) ∈ P is also associated
with a sort in S, σi ∈ S, 1 ≤ i ≤ k. Furthermore, all variables Var(R) occurring
in R are associated with a sort in S, too. Constants and variables are referred
to as terms t.

Example 5. We represent Ex. 1 as a RME knowledge base KB which consists
of sorts S = {Person,Town,Status}, constants UPerson = {carl , stefan} of
sort Person, UTown = {freiburg , yorkshire, austin} of sort Town, UStatus =
{bad , average, good} of sort Status, predicates P = {alarm(Person), burglary
(Person), lives in(Person,Town), neighbourhood(Person, Status)}, and condi-
tionals R = {c1, . . . , c7}.
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c1 = (alarm(X) | burglary(X)) [0.9]
c2 = (alarm(X) | lives in(X,Y), tornado(Y)) [0.9] }
c3 = (burglary(X) | neighborhood(X, bad)) [0.6]
c4 = (burglary(X) | neighborhood(X, average)) [0.4]
c5 = (burglary(X) | neighborhood(X, good)) [0.3]

c6 = (neighborhood(X,Z) | neighborhood(X,Y)) [0.0] [Y 6= Z]
c7 = (lives in(X,Z) | lives in(X,Y)) [0.0] [Y 6= Z]

Notice, that conditionals c6 and c7 ensure mutual exclusion of the states for
literals of neighborhood and lives in.

Semantics are given to RME knowledge bases by grounding R with a grounding
operator (GOP)6 to a propositional probabilistic knowledge base and calculating
the probability distribution with maximum entropy PME

Gχ(R). A GOP (see Fig. 1)
is a type of substitution pattern that facilitates the modeling of exceptional
knowledge. For example, we could add the exceptional rule

c8 = (alarm(X) | lives in(X, freiburg), tornado(freiburg)) [0.1]

to KB in order to model that in Freiburg tornados are usually not strong enough
to cause an alarm. Then the GOP Gpriority would prefer all instances of c8 above
all instances of c2, in which the constant freiburg occurs (for details see [11]).

After R is grounded, Gχ(R) is treated as a propositional knowledge base and
PME
Gχ(R) can be calculated as in the propositional case [16]. A RME conditional
Q ∈ (L | L)rel is fulfilled under the grounding Gχ(R) by the RME knowledge base
R if the following hold:

R |=ME
Gχ Q ⇐⇒ PME

Gχ(R) |= Gχ(Q) ⇐⇒ ∀q ∈ Gχ(Q) : PME
Gχ(R) |= q.

The RME inference process can be divided into three steps: 1.) ground the KB
with a certain GOP Gχ, 2.) calculate the probability distribution PME

Gχ(R) with
maximum entropy for the grounded instance Gχ(R), and 3.) calculate all prob-
abilistic implications of PME

Gχ(R).

A more elaborated overview on the framework of relational maximum entropy
as introduced here is given in [11].

6 In [11] the naive-, cautious-, conservative-, and priority-grounding strategies are
presented and analyzed.
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Grounding Operator:

Gχ : P((L | L)rel) → P((L | L)relU )

RME KB:

R ⊆ (L | L)rel

Query:

Q ∈ (L | L)rel

Max-Ent-Reasoner

Gχ(R) ⊆ (L | L)relU

PME
Gχ(R) |= Gχ(Q)

R

q

Gχ(R)

PME
Gχ(R)

Gχ(q)

Fig. 1. RME semantics overview. A RME KB R is transformed into a propositional
representation by the GOP Gχ. The result Gχ(R) is used to calculate the Max-Ent-
distribution PME

Gχ(R) in order to answer the ground query Gχ(q).

3 System Architecture

KReator7 is an integrated development environment for representing, reason-
ing, and learning with relational probabilistic knowledge. Still being in develop-
ment KReator aims to become a versatile toolbox for researchers and knowl-
edge engineers in the field of statistical relational learning. KReator is written
in Java and thus is designed using the object-oriented programming paradigm.
It facilitates several architectural and design patterns such as model-view con-
trol, abstract factories, and command patterns. Central aspects of the design
of KReator are modularity, extensibility, usability, reproducibility, and its in-
tended application in scientific research.

Modularity and Extensibility KReator is modular and extensible with respect
to several components. In the following we discuss just two important aspects.
First, KReator separates between the internal logic and the user interface us-
ing an abstract command structure. Each top-level functionality of KReator is
internally represented and encapsulated in an abstract KReatorCommand. Con-
sequently, the user interface can be exchanged or modified in an easy and un-
problematic way, because it is separated from the internal program structure
by this KReatorCommand layer. As a matter of fact, the current version of
KReator features both a graphical user interface and a command line inter-
face (the KReator console) which processes commands in KReatorScript
syntax (see Sec. 4.1). Second, KReator was designed to support many dif-
ferent approaches for relational knowledge representation, cf. Sec. 2. As a con-
sequence, KReator features very abstract notions of concepts like knowledge
bases, queries and data sets that can be implemented by a specific approach.
At the moment, KReator supports knowledge representation using Bayesian
logic programs (BLPs), Markov logic networks (MLNs), and the relational max-
imum entropy (RME) approach described in Sec. 2.3. Other formalisms will be
integrated in the near future.

7 The “KR” in KReator stands for “Knowledge Representation” and the name
KReator indicates its intended usage as a development environment for knowl-
edge engineers.
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Usability and Reproducibility An important design aspect of KReator and es-
pecially of the graphical user interface is usability. While prototypical implemen-
tations of specific approaches to relational probabilistic knowledge representation
(and approaches for any problem in general) are essential for validating results
and evaluation, these software solutions are often very hard to use and differ
significantly in their usage. Especially when one wants to compare different so-
lutions these tools do not offer an easy access for new users. KReator features
a common and simple interface to different approaches of relational probabilistic
knowledge representation within a single application.

Application in Scientific Research Both usability and reproducibility are im-
portant aspects when designing a tool for conducting scientific research. Besides
that, other important features are also provided within KReator. For example,
KReator can export knowledge base files as formatted LATEX output, making
the seamless processing of example knowledge bases in scientific publications
very convenient. KReator records every user operation (no matter whether it
was caused by GUI interaction or by a console input) and its result in a report.
Since all operations are reported in KReatorScript syntax, the report itself
represents a valid script. Therefore the whole report or parts of it can be saved
as a KReatorScript file which can be executed anytime to repeat the recorded
operations.

Used frameworks KReator makes use of well-established software frameworks
to process some of the supported knowledge representation formalisms. Per-
forming inference on MLNs is handled entirely by the Alchemy software pack-
age [15], a console-based tool for processing Markov logic networks. Alchemy
is open source software developed by the inventors of Markov logic networks
and can freely be obtained on http://alchemy.cs.washington.edu/. To pro-
cess ground RME knowledge bases, an appropriate reasoner for maximum en-
tropy must be utilized. KReator does not directly interact with a certain rea-
soner. Instead, KReator uses a so-called ME-adapter to communicate with a
(quite arbitrary) MaxEnt-reasoner. Currently, such an adapter is supplied for
the SPIRIT reasoner [16]. SPIRIT is a tool for processing (propositional) condi-
tional probabilistic knowledge bases using maximum entropy methods and can
be obtained on http://www.fernuni-hagen.de/BWLOR/spirit int/. An ap-
propriate adapter for the MEcore reasoner [17] has also been developed.

4 Usage

KReator comes with a graphical user interface and an integrated console-based
interface. The main view of KReator (see Fig. 2) is divided into the menu and
toolbars and four main panels: the project panel, the editor panel, the outline
panel, and the console panel.

The project panel KReator structures its data into projects which may contain
knowledge bases, scripts written in KReatorScript (see below), query collec-
tions for knowledge bases, and sample/evidence files. Although all types of files
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Fig. 2. KReator – Main window

can be opened independently in KReator, projects can help the knowledge en-
gineer to organize his work. The project panel of KReator (seen in the upper
left in Fig. 2) gives a complete overview on the project the user is currently
working on.

The editor panel All files supported by KReator can be viewed and edited in
the editor panel (seen in the upper middle in Fig. 2). Multiple files can be opened
at the same time and the editor supports editing knowledge bases and the like
with syntax-highlighting, syntax check, and other features normally known from
development environments for programming languages.

The outline panel The outline panel (seen in the upper right in Fig. 2) gives an
overview on the currently viewed file in the editor panel. If the file is a knowledge
base the outline shows information on the logical components of the knowledge
base, such as used predicates (and, in case of BLPs, their states), constants, and
sorts (if the knowledge base uses a typed language).

The console panel The console panel (seen at the bottom in Fig. 2) contains two
tabs, one with the actual console interface and one with the report. The console
can be used to access nearly every KReator functionality just using textual
commands, e. g. querying knowledge bases, open and saving file, and so on. The
console is a live interpreter for KReatorScript, the scripting language also
used for writing scripts (see below). The console panel also contains the report
tab. Every action executed in KReator, e. g. opening a file in the graphical
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user interface or querying a knowledge base from the console, is recorded as a
KReatorScript command in the report. The whole report or parts of it can
easily be saved as script file and executed again when experiments have to be
repeated and results have to be reproduced.

4.1 The KReatorScript Language

The KReatorScript language incorporates all those commands which can
be processed by the console and by script files as well (see Fig. 3 for some
KReatorScript lines). Since there are commands available for all high-level
KReator functionalities, every sequence of working steps can be expressed
as an appropriate command sequence in a KReatorScript file. Thus, the
(re-)utilization of scripts can clearly increase the efficiency and productivity
when working with KReator. As mentioned above, the input console and re-
port work hand in hand with KReator’s scripting functionality, making the
KReatorScript language a strong instrument in the whole working process.

Fig. 3. The console with some KReatorScript

4.2 Querying a Knowledge Base

One of the most important tasks when working with knowledge bases is to
address queries to a knowledge base, i. e. to infer knowledge. For that rea-
son, KReator provides several functionalities which simplify the dealing with
queries and make it more efficient.
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KReator permits the processing of queries expressed in a unified query syntax.
This query syntax abstracts from the respective syntax which is necessary to
address a “native” query to a BLP, MLN, or RME knowledge base (and which
also depends on the respective inference engine). That way, a query in unified
syntax can be passed to an appropriate BLP, MLN, and RME knowledge base as
well. The idea behind this functionality is, that some knowledge (cf. Ex. 1) can
be modeled in different knowledge representation approaches (cf. Ex. 2, Ex. 4,
and Ex. 5) and the user is able to compare these approaches in a more direct
way. Such a comparison can then be done by formulating appropriate queries
in unified syntax, passing them to the different knowledge bases, and finally
analyzing the different answers, i. e. the probabilities. A KReator query in
unified syntax consists of two parts: In the “head” of the query there are one
or more ground atoms whose probabilities shall be determined. The “body” of
the query is composed of several evidence atoms. For each supported knowledge
representation formalism, KReator must convert a query in unified syntax in
the exact syntax required by the respective inference engine. KReator also
converts the respective output results to present them in a standardized format
to the user. Figure 4 illustrates the processing of a query in unified syntax.

 KReator  

BLP
KBase
Input

RME
KBase
Input

MLN
KBase
Input

Query in
Unified
Syntax

MECoRe
SPIRIT

Alchemy

BLP | MLN | RME
Answers

BLP
Reasoner

GOP
Algo.

BLP
KBase
Repres.

MLN
KBase
Repres.

RME
KBase
Repres.

Alchemy
Adapter

ME
Adapter

BLP
Query

Converter

RME
Query

Converter

MLM 
Query

Converter

Fig. 4. Processing query in unified syntax

KReator offers the user an easy way to address a query to a knowledge base,
simply by calling its query dialogue. In this dialogue (Fig. 5), the user can
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input the atoms to be queried and he can conveniently specify the evidence.
Since evidence usually consists of several atoms and is often reused for different
queries, the user has the option to specify a file which contains the evidence
to be to considered. While processing a query, the output area of the dialogue
informs about important steps of the inference process. The calculated answer
is clearly displayed in the lower part of the dialogue.

Fig. 5. Querying a knowledge base

Besides the capability of passing individual (i. e. ad-hoc) queries to a knowledge
base, KReator also supports so-called query collections. A query collections is
a file which contains several queries (either in unified or native syntax). Such a
query collection can be passed to a knowledge base, so that all included queries
are processed one after another. That way, KReator supports a persistent
handling and batch-style processing of queries.

Example 6. Continuing our previously introduced burglary example consider the
following evidence:

lives in(james, yorkshire), lives in(stefan, freiburg), burglary(james),
tornado(freiburg),neighborhood(james) = average,neighborhood(stefan) = bad

Table 1 shows three queries and their respective probabilities inferred from each
of the example knowledge bases. The nine separate calculations altogether took
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about three seconds. Each of the three knowledge bases represents Ex. 1 by a
different knowledge representation approach. Nevertheless, the inferred proba-
bilities are quite similar, except for the significant lower BLP probability of the
query alarm(stefan). This results from using noisy-or as combing rule in the BLP
calculations and from the fact that the CPDs of the BLP knowledge base carry
some information not incorporated in the MLN and BLP knowledge bases.

BLP MLN RME

alarm(james) 0.900 0.896 0.918

alarm(stefan) 0.650 0.896 0.907

burglary(stefan) 0.300 0.254 0.354

Table 1. Exemplary queries on different representations of the burglary example.

5 Summary and Future Work

In this paper we presented KReator and illustrated its system architecture and
usage. Although KReator is still in an early stage of development it already
supports Bayesian logic programs, Markov logic networks, and relational maxi-
mum entropy. Thus KReator is a versatile toolbox for probabilistic relational
reasoning and alleviates the researcher’s and knowledge engineer’s work with
different approaches to statistical relational learning.

Since KReator is still in an early development stage, there are a lot of plans
on future development. The integration of adequate learning algorithms will be
one of our major tasks in the near future, as our main focus so far was the inte-
gration of reasoning components. We also plan to integrate an extended version
of the CONDOR system [18] and other formalisms for relational probabilistic
knowledge representation such as logical Bayesian networks [7] and probabilistic
relational models [9], as well as to use KReator as a testbed to evaluate other
approaches for relational probabilistic reasoning under maximum entropy.

We plan to enhance KReator’s unified query syntax to allow more com-
plex queries. This requires more sophisticated conversion patterns to translate
a unified query to the respective target syntax, e.g. to handle multi-state BLP
predicates in an automated way. The enhancement of the query syntax will go
along with the development of an even more challenging feature: We plan on
introducing some kind of unified knowledge base (template) format. The final
goal is to be able to formulate (at least) the central aspects of a knowledge base
in a unified syntax and to have this knowledge base be converted to different tar-
get languages (at least semi-)automatically. Having this functionality available
would dramatically improve the handling and comparison of different knowledge
representation formalisms.

KReator is available under the GNU General Public License and can be ob-
tained from http://ls6-www.cs.uni-dortmund.de/kreator/. The future de-
velopment of KReator will also be strongly influenced be the feedback of early
users. We will include such feedback in our development decisions and try to
priorities such aspects which are most important to the users.
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Representing Statistical Information and
Degrees of Belief in First-Order Probabilistic

Conditional Logic

Matthias Thimm

Information Engineering Group, Department of Computer Science,
Technische Universität Dortmund, Germany

Abstract. Employing maximum entropy methods on probabilistic con-
ditional logic has proven to be a useful approach for commonsense rea-
soning. Yet, the expressive power of this logic and similar formalisms is
limited due to their foundations on propositional logic and in the past few
years a lot of proposals have been made for probabilistic reasoning in re-
lational settings. Most of these proposals rely on extensions of traditional
graph-based probabilistic models like Bayes nets or Markov nets whereas
probabilistic conditional logic does not presuppose any graphical struc-
ture underlying the model to be represented. In this paper we take an
approach of lifting maximum entropy methods to the relational case by
using a first-order version of probabilistic conditional logic. Furthermore,
we take a specific focus on representing relational probabilistic knowledge
by differentiating between different intuitions on relational probabilistic
conditionals, namely between statistical interpretations and interpreta-
tions on degrees of belief. We develop a list of desirable properties on
an inference procedure that supports these different interpretations and
propose a specific inference procedure that fulfills these properties. We
furthermore discuss related work and give some hints on future research.

1 Introduction

Applying probabilistic reasoning to relational representations of knowledge is a
very active and controversy research area. In the past few years the fields of
probabilistic inductive logic programming and statistical relational learning put
forth a lot of proposals that deal with combining traditional probabilistic models
of knowledge like Bayes nets or Markov nets [1] with first-order logic, see [2, 3]
for some excellent surveys. For example, two of the most prominent approaches
for extending propositional approaches to the relational case are Bayesian logic
programs [4] and Markov logic networks [5]. While Bayesian logic programs
extend Bayes nets using a logic programming language Markov logic networks
extend Markov nets using a restricted form of first-order logic. Both frameworks
use knowledge-based model construction techniques [6, 7] to reduce the problem
of probabilistic reasoning in a relational context to probabilistic reasoning in a
propositional context. In both frameworks—and also in most other approaches—
this is done by appropriately grounding the parts of the knowledge base that are
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needed for answering a particular query and treating this grounded parts as a
propositional knowledge base. While most approaches to relational probabilistic
reasoning employ graphical models for probabilistic reasoning, in this paper we
take another direction by lifting probabilistic conditional logic [8, 9] to the first-
order case and applying maximum entropy methods [10–12] for reasoning.

In (propositional) probabilistic conditional logic knowledge is captured using
conditionals of the form (φ |ψ)[α] with some formulas φ, ψ of a given proposi-
tional language and α ∈ [0, 1]. A probabilistic conditional of this form partially
describes an (unknown) probability distribution P ∗ by stating that P ∗(φ |ψ) = α
holds. In contrast to Bayes nets probabilistic conditional logic does not demand
to fully describe a probability distribution but only to state constraints on it. On
the one hand this is of great advantage because normally the knowledge engineer
cannot fully specify a probability distribution for the problem area at hand. For
example, if one has to represent probabilistic information on the relationships
between symptoms and diseases then (usually) one can specify the probability of
a specific disease given that a specific symptom is present but not if the symptom
is not present. Probabilistic conditional logic avoids such problems by allowing
to only partially specify a probability distribution. On the other hand, an in-
complete specification of the problem area may lead to inconclusive inferences
because there may be multiple probability distributions that satisfy the speci-
fied knowledge. The näıve approach to reason in probabilistic conditional logic
is to compute upper and lower bounds for specific queries by consulting every
probability distribution that is a model of the given knowledge base. While this
skeptical form of reasoning may be appropriate for some applications, usually the
inferences of this approach tend to be too weak to be meaningful. As a credulous
alternative, one can select a specific probability distribution from the models of
the knowledge base and do reasoning by just using this probability distribution.
A reasonable choice for such a model is the one probability distribution with
maximum entropy [10–12]. This probability distribution satisfies several desir-
able properties for commonsense reasoning and is uniquely determined among
the probability distributions that satisfy a given set of probabilistic conditionals,
see [10–12] for the theoretical foundations.

While applying maximum entropy methods in a direct fashion onto a first-
order probabilistic conditional logic has already been investigated for example in
[13–15], in this paper we take a special focus on relational probabilistic knowledge
representation, namely the differentiation between statistical information and
degrees of belief [16–18]. When considering conditionals, the modeled knowledge
becomes ambiguous by introducing variables. Consider the following example
inspired by [19]:

(likes(X,Y ) | elephant(X) ∧ keeper(Y ))[0.8]
(likes(X, fred) | elephant(X) ∧ keeper(fred))[0.4]
(likes(clyde, fred) | elephant(clyde) ∧ keeper(fred))[0.6]

The first conditional represents the information that with a probability of 0.8 a
(typical) elephant likes his (typical) keeper. The second conditional states that
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a (typical) elephant likes the keeper fred with a probability of 0.4 and the third
conditional states that the elephant clyde likes the keeper fred with a probability
of 0.6. From a commonsensical point of view this knowledge base makes perfect
sense. Given an adequate population of elephants and keepers this knowledge
base says that typically an elephant likes his keeper, fred is an exception and
mostly unpopular, but clyde likes fred still a bit more. But when treating the
first two conditionals as schemas for their propositional instantiations (given a
finite universe) then the grounded knowledge base becomes inconsistent because
there are instantiations of the first two conditionals that are in direct conflict
with each other and with the third conditional. The problem of inconsistency
arises when treating conditionals like the first one as schemas for conditionals
on the degrees of belief. But presumably what one really want to model when
representing conditionals of this form is some kind of statistical information or
maybe a default rule [19]. In the example above, the first conditional describes
some form of statistical distribution on the all pairs of elephants and keepers and
the second conditional describes a distribution on all elephants. In contrast to
the first two conditionals the third conditional does not mention any variable. In
fact, it mentions only ground instances regarding the constants clyde and fred
thus describing a degree of belief on the truth-value of likes(clyde, fred) given
that clyde is an elephant and fred is a keeper. As a consequence, the knowledge
represented by the third conditional describes some belief on the distribution of
possible worlds rather than on the individuals of the universe. In this paper, we
argue that an explicit differentiation of this two types of knowledge is important
in order to reason with relational probabilistic knowledge bases.

The rest of this paper is organized as follows. In the following Section 2
we give a brief overview on (propositional) probabilistic conditional logic and
continue in Section 3 with syntax and semantics of its extension to the first-order
case. In Section 4 we propose some properties a reasonable inference mechanism
should fulfill in order to interpret a relational probabilistic knowledge base in
the sense described above and present our approach for an inference mechanism
afterwards. In Section 5 we discuss our approach and review related work. In
Section 6 we conclude.

2 Preliminaries

Before introducing probabilistic conditional logic for a relational language we
begin by giving an overview on (propositional) probabilistic conditional logic.
We extend this framework to the relational case in the subsequent section. But
first, we consider a framework of propositional variables. Let V = {V1, . . . , Vn}
be a set of propositional variables with finite domains Dom(V1), . . . ,Dom(Vn).
An expression of the form Vi = vi is called a literal if vi is in the domain of Vi, i. e.
vi ∈ Dom(Vi). The language LV is generated using the connectives ¬, ∧, and ∨
on the literals in V in the usual way. For arbitrary formulas φ, ψ we abbreviate
conjunctions φ ∧ ψ by φψ and negation ¬φ by overlining φ. If V is a binary
variable, i. e., it is Dom(V ) = {true, false}, we abbreviate V = true by just V and
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V = false by V . We write > for tautological formulas, e. g. φ∨φ ≡ >. A possible
world (interpretation) assigns to each variable Vi ∈ V a value in Dom(Vi). If ω
is a possible world, then ω |= (Vi = vi) if and only if ω assigns vi to Vi. For an
arbitrary formula φ the expression ω |= φ evaluates in the usual way. Let ΩV be
the set of all possible worlds of LV .

Propositional probabilistic knowledge bases are build using propositional
probabilistic conditionals, that impose certain restrictions on the conditional
probabilities of the models of the knowledge base. A (propositional) probabilistic
conditional r is an expression of the form r = (φ |ψ)[α] with formulas φ, ψ and
α ∈ [0, 1]. If ψ ≡ > we write (φ)[α] instead of (φ | >)[α]. A set of probabilistic con-
ditionals R = {r1, . . . , rm} is called a (propositional) knowledge base. The models
of a knowledge base R are the probability distributions P : ΩV → [0, 1] that ful-
fill all restrictions on the conditional probabilities imposed by the probabilistic
conditionals in R. More specifically, a probability distribution P : ΩV → [0, 1] is
a model for a knowledge base R, written P |= R, if and only if P |= r for every
r ∈ R. That is

P |= (φ |ψ)[α] :⇐⇒ P (φ |ψ) = α and P (ψ) > 0

⇐⇒ P (φψ)
P (ψ)

= α and P (ψ) > 0

with
P (φ) =

∑
ω∈ΩV ,ω|=φ

PR(ω) .

A knowledge base R made of probabilistic conditionals describes incomplete
knowledge. Usually, one is interested in performing inductive representation tech-
niques and thus in computing a single probability distribution that describes R
best and gives a complete description of the problem area at hand. This can
be done using methods based on maximum entropy, which feature several nice
properties [11, 10, 12, 20]. The entropy H(P ) of a probability distribution P is
defined as

H(P ) = −
∑
ω∈ΩV

P (ω) logP (ω)

and measures the amount of indeterminateness inherent in P . By selecting the
probability distribution P ∗ among all probability distributions that satisfy a
given knowledge base R, i. e. by computing the solution to the optimization
problem

P ∗ := ME(R) = arg max
P |=R

H(P ) ,

we get the one probability distribution that satisfies R and adds as little infor-
mation as necessary.

3 Syntax and Semantics of First-Order Conditional Logic

In the following we give an extension of probabilistic conditional logic to the
relational case similar as in [21, 14]. To simplify presentation we use the same
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names for logical constructs as in propositional conditional language, e. g. we will
refer to relational probabilistic conditionals just by probabilistic conditionals.

Let LD be a first-order language with a fixed finite universe (domain) D with-
out quantifiers and functions. We denote variables with a beginning uppercase,
constants with a beginning lowercase letter, and vectors of these in boldface. We
use greek letters φ and ψ for formulas and ξ for sentences (formulas with no
free variables). For a first-order formula φ let free(φ) denote the set of (free)
variables appearing in φ. We will write φ(X) to explicitly name the variables X
in φ and we denote by φ(c) the grounded instance of φ with constants c. Let
groundC(φ) denote the set of grounded instances of φ with respect to a set of
constants C.

Definition 1 (Probabilistic Conditional). An expression of the form

(φ |ψ)[α]

with first-order formulas φ, ψ (not necessarily ground) and a real α ∈ [0, 1] is
called a probabilistic conditional. A probabilistic conditional (φ |ψ)[α] is ground
if free(φ) = free(ψ) = ∅.
As above we abbreviate (φ | >)[α] by (φ)[α]. For a probabilistic conditional
(φ |ψ)[α] let groundC((φ |ψ)[α]) denote the set of all grounded probabilistic con-
ditionals of (φ |ψ)[α] with respect to the set of constants C.

Definition 2 (Knowledge base). A finite set R of probabilistic conditionals
is called a knowledge base. A knowledge base R is ground if every probabilistic
conditional in R is ground. Let R denote the set of knowledge bases and RP ⊆ R
the set of ground knowledge bases.

Remark 1. Bear in mind that a ground knowledge base R ∈ RP is equivalent to
a propositional knowledge base R′ by interpreting ground atoms in R as ordi-
nary propositional atoms. For the rest of this paper we treat ground relational
knowledge bases and propositional knowledge bases interchangeably.

The informal semantics of a probabilistic conditional (φ |ψ)[α] are as follows.

– If free(φψ) = ∅ we interpret (φ |ψ)[α] as an uncertainty assessment over
the possible worlds as in propositional probabilistic conditional logic, thus
specifying a degree of belief on a conditional probability.

– If free(φψ) 6= ∅ we interpret (φ |ψ)[α] as a statistical assessment stating
that in the actual world a portion α of all ψ’s are φ’s.

We illustrate our intuition behind this informal semantics by means of an exam-
ple.

Example 1. Consider again the scenario from the introduction. Let R be a knowl-
edge base given as follows.

R = { (likes(X,Y ) | elephant(X) ∧ keeper(Y ))[0.8]
(likes(X, fred) | elephant(X) ∧ keeper(fred))[0.4]
(likes(clyde, fred) | elephant(clyde) ∧ keeper(fred))[0.6] } .
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In R we can assign the following informal meanings to the individual probabilistic
conditionals:

– (likes(clyde, fred) | elephant(clyde) ∧ keeper(fred))[0.6]
This conditional states that our subjective degree of belief of clyde liking
fred is 0.6. So, if we know that clyde is an elephant and fred is a keeper we
expect in 60 % of all occasions that clyde likes fred.

– (likes(X, fred) | elephant(X) ∧ keeper(fred))[0.4]X
This conditional states that we expect 40 % of all elephants to like fred.

– (likes(X,Y ) | elephant(X) ∧ keeper(Y ))[0.8]X,Y
This conditional states that we expect for 80 % of all elephant-keeper com-
binations that the elephant likes the keeper.

For a knowledge base R we denote by Bel(R) its projection on RP , i. e., it is
Bel(R) = {r ∈ R | free(r) = ∅}. In other words, Bel(R) contains all uncertainty
assessments. Analogously, let Stat(R) = R\Bel(R) denote the set of all statistical
assessments of R.

Formal semantics for first-order conditional logic are given by probability
distributions. The probability distributions under consideration are defined over
the possible worlds of the given first-order language LD. A possible world ω for
L is a tuple ω = 〈D, I〉 with domain D and interpretation I which maps in the
usual way constants to domain elements, unary predicate symbols to subsets of
D and so on. As a simplification we interpret constants by themselves, i. e., for
any constant c it is I(c) = c in any possible world ω. As D is fixed for all possible
worlds we will identify ω = 〈D, I〉 with I when appropriate. Let ΩD be the set of
all these possible worlds with domain D and so we are interested in probability
distributions P : ΩD → [0, 1]. Let ProbD be the set of probability distributions
for domain D. P ∈ ProbD is extended on first-order sentences (ground formulas)
ξ by

P (ξ) =
∑
ω|=ξ

P (ω) .

Interpreting uncertainty assessments with probability distributions can be done
analogously like in the propositional case. The problem at hand arises when
considering statistical assessments like

c = (likes(X, fred) | elephant(X) ∧ keeper(fred))[0.5] .

What is an appropriate satisfaction relation |=cp such that for a probability
distribution P the statement P |=cp c describes our intuition on statistical as-
sessments described above? We propose a new satisfaction relation |=cp

D on prob-
abilistic conditionals that specifies when a probability distribution P ∈ ProbD
satisfies a given probabilistic conditional r. For the case of an uncertainty as-
sessment (φ(c) | ψ(c)), we define the satisfaction relation |=cp

D through

P |=cp
D (φ(c) |ψ(c))[α] :⇔ P ((φ(c) | ψ(c))) = α (1)

as in the propositional case. For a statistical assessment (φ(X) |ψ(X))[α], we
say that a probability distribution P satisfies (φ(X) |ψ(X))[α] if the average of
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the conditional probabilities of all instantiations of (φ(X) |ψ(X))[α] is α. So it
is P |=cp

D (φ(X) |ψ(X))[α] if and only if∑
(φ(c)|ψ(c))∈groundD((φ(X)|ψ(X))) P (φ(c) | ψ(c))

|groundD(φ(X) | ψ(X))| = α . (2)

Notice, that Equation (2) also subsumes the case of uncertainty assessments in
Equation (1) as a special case. As usual, a probability distribution P satisfies a
knowledge base R, denoted P |=cp

D R, if P satisfies every probabilistic conditional
r ∈ R. We say that R is consistent iff there is at least on P with P |=cp

D R,
otherwise R is inconsistent.

4 Inference in First-Order Conditional Logic

We are interested in finding a “good” probability distribution P that satisfies all
probabilistic conditionals of a given knowledge base R. More specifically, we are
interested in a function SRME(R) (Statistical relational maximum entropy) that
takes a knowledge base R and gives a probability distribution P = SRME(R)
as output such that P describes R “best” in a commonsensical manner. In the
following we state some properties on the operator SRME that derive from our
intuition and afterwards describe such a function that fulfills these properties.

4.1 Desirable Properties

When considering knowledge bases like the one in Example 1 we want to be
able to name a single probability distribution P that is the “best” model of
R. Taking a näıve approach by grounding all conditionals in R universally and
taking this groundingR′ as a propositional knowledge base, we can not determine
any probability distribution that satisfies R′ due to its inherent inconsistency
[15]. So our first demand on an appropriate operator SRME is its well-definedness.
In the following, let SRME : R→ ProbD be an operator that maps a knowledge
base R ∈ R onto a probability distribution P = SRME(R) ∈ ProbD such that P
commonsensical describes R.

(Well-Definedness) If R is a consistent then SRME(R) is well-defined.

We need some further notation to go on. For a formula φ let φ[d/c] denote
the formula that is the same as φ except that every occurrence of the term c
(either a variable or a constant) is substituted with the term d. More generally,
let φ[d1/c1, . . . , dn/cn] denote the formula that is the same as φ except that
every occurrence of ci is substituted with di for 1 ≤ i ≤ n simultaneously. The
substitution operator [·] is extended on sets of formulas and conditionals in the
usual way.

When considering knowledge bases based on a relational language the beliefs
one gains on specific individuals is of special interest. An important demand
to made is that the information one gains for different individuals is the same
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when these individuals are indistinguishable. More specifically, if the explicit in-
formation encoded in R for two different individuals c1, c2 ∈ D is the same the
probability distribution P should treat them indistinguishable. We can formal-
izing this indistinguishable property by introducing an equivalence relation on
constants.

Definition 3 (Syntactical Equivalence). Let R be a knowledge base. The
constants c1, c2 ∈ D are syntactical equivalent, denoted by c1 ≡R c2, if and only
if R = R[a1/a2, a2/a1].

Observe that ≡R is indeed an equivalence relation, i. e., it is reflexive, transitive,
and symmetric. The equivalence classes of ≡R are called R-equivalence classes
and the set of all R-equivalence classes is denoted by SR. Note, that the notion of
syntactical equivalence bears a resemblance with the notion of reference classes
[17] but on a pure syntactical level.

Using syntactical equivalence we can state our demand for equal treatment
of indistinguishable individuals as follows.

(Prototypical Indifference) Let R be a knowledge base and ξ a ground sen-
tence. For any c1, c2 ∈ D with c1 ≡R c2 it is

SRME(R)(ξ) = SRME(R)(ξ[c1/c2, c2/c1]) .

From (Prototypical Indifference) some generalizations follow naturally.

Proposition 1. Let SRME satisfy (Prototypical Indifference).

1. Let R be a knowledge base and ξ1, ξ2 be two ground sentences. For c1, c2 ∈ D
with c1 ≡R c2 it holds

SRME(R)(ξ1 | ξ2) = SRME(R)(ξ1[c1/c2, c2/c1] | ξ2[c1/c2, c2/c1]) .

2. Let S ∈ SR, c1, . . . , cn ∈ S, and σ : S → S a permutation on S, i. e. a
bijective function on S. Then it holds for a ground sentence ξ

SRME(R)(ξ) = SRME(R)(ξ[σ(c1)/c1, . . . , σ(cn)/cn]) .

Proof.

1. Because of (Prototypical Indifference) it holds directly

SRME(R)(ξ2) = SRME(R)(ξ2[c1/c2, c2/c1]) and
SRME(R)(ξ1 ∧ ξ2) = SRME(R)((ξ1 ∧ ξ2)[c1/c2, c2/c1])

and hence

SRME(R)(ξ1 | ξ2) =
SRME(R)(ξ1 ∧ ξ2)

SRME(R)(ξ2)

=
SRME(R)(ξ1 ∧ ξ2[c1/c2, c2/c1])

SRME(R)(ξ2[c1/c2, c2/c1])
= SRME(R)(ξ1[c1/c2, c2/c1] | ξ2[c1/c2, c2/c1])

due to (ξ1 ∧ ξ2)[xi/yi]i=1,...,n = ξ1[xi/yi]i=1,...,n ∧ ξ2[xi/yi]i=1,...,n.
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2. This follows from the fact that every permutation can be represented as a
product of transpositions [22], i. e. permutations that exactly transpose two
elements. Let σ1, . . . , σm be these transpositions of σ and let σ1...i = σi ◦
. . . ◦ σ1 for i = 1, . . . ,m. Note, that σ1...1 = σ1 and σ1...m = σ. Due to
(Prototypical Indifference) it holds

SRME(R)(ξ) = SRME(R)(ξ[σ1(c1)/c1, . . . , σ1(cn)/cn])

and for any i = 2 . . . ,m it holds

SRME(R)(ξ[σ1...i−1(c1)/c1, . . . , σ1...i−1(cn)/cn])
= SRME(R)(ξ[σ1...i(c1)/c1, . . . , σ1...i(cn)/cn]) .

Via transitivity and σ1...m = σ it follows

SRME(R)(ξ) = SRME(R)(ξ[σ(c1)/c1, . . . , σ(cn)/cn]) .

ut
Another aspect that should be satisfied by the operation SRME is some form
of compatibility to the propositional case. For (relational) knowledge bases that
are equivalent to propositional knowledge bases, i. e., ground knowledge bases,
the operation SRME should coincide with the ME operator on propositional
knowledge bases, cf. Section 2.

(Compatibility I) Let R be a ground knowledge base. If ξ is a ground sentence
then it is ME(R)(ξ) = SRME(R)(ξ).

Moreover, as the uncertainty assessments of a knowledge base R describe “strict”
uncertain knowledge the probability distribution SRME(R) should reflect this
knowledge faithfully.

(Compatibility II) Let R be a knowledge base. If (φ(c) |ψ(c))[α] ∈ R is an
uncertainty assessment it is

SRME(R)(φ(c) | ψ(c)) = α .

So far, we have not taken into account the intention for representing statistical
assessments. Given a statistical assessment r = (φ(X) |ψ(X))[α] our intention
in representing r in a knowledge base R is that for every instantiation r′ =
(φ(c) |ψ(c))[α] of r the conditional probability of φ(c) given ψ(c) “should” be
α. But how do we capture this intention? Surely, we cannot guarantee that
every possible instantiation r′ of r will conform to a strict interpretation of this
demand. This follows mainly from the fact, that using uncertainty assessments
we should be able to give exceptions to this rule, cf. Example 1. What we are
really want to describe when representing a statistical assessment r is that given
an adequate large domain the conditional probability of the bigger part of the
interpretations (neglecting exceptions) will converge towards α. This behavior
resembles the intuition behind the “Law of Large Numbers” [23].
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(Convergence) Let R1, R2, . . . be knowledge bases on LD1 ,LD2 , . . . with R1 =
R2 = . . . and D1 ⊂ D2 ⊂ . . . (for i ∈ N+). For a statistical assessment
r = (φ(X) |ψ(X))[α] ∈ R1 let r′ = (φ(c) |ψ(c))[α] be a proper instantiation
of r with constants c that do not appear in R1. For any such r and r′ it is

lim
i→∞

SRME(Ri)(φ(c) | ψ(c)) = α

Another aspect of statistical assessments is their capability to comprehend for
exceptions. Usually, statistical assessments are defined to model some kind of
expected value over the set of instantiations. As such, if the probability of one
instantiation of a statistical assessment lies below the value of the statement
there has to be another instantiation with a probability higher than the value
of the statement in order to compensate for the other exception (remember that
the domain D is assumed to be finite).

(Compensation) Let R be a knowledge base and (φ(X) |ψ(X))[α] ∈ R a
statistical assessment with α ∈ (0, 1) (the open interval). If c1 is a vector
of constants such that SRME(R)(φ(c1) | ψ(c1)) < α then there is another
vector of constants c2 with SRME(R)(φ(c2) | ψ(c2)) > α.

4.2 Statistical Relational Maximum Entropy

In the following we define a function SRME1 : R→ ProbD that fulfills the desired
properties defined in the previous section. We define the function SRME1(R) us-
ing the the proposed semantics |=cp

D analogously like in the propositional case by
selecting a probability distribution with maximum entropy among all probability
distributions that satisfy R.

SRME1(R) = arg max
P |=cp

D R
−
∑
ω∈Ω

P (ω) logP (ω) (3)

Remark 2. Note, that it seems that the optimization problem defined by Equa-
tion (3) is (in general) not uniquely solvable because the set of probability distri-
butions defined by Equation (2) is non-convex. However, preliminary experimen-
tal results indicate that the probability distribution in Equation (3) is uniquely
determined. As the formal proof has yet to be made, we assume for the rest
of this paper that in Equation (3) an arbitrary probability distribution with
maximum entropy will be chosen. Nonetheless, if R is consistent there is at
least one probability distribution with maximum entropy that can be chosen in
Equation (3).

Example 2. We continue Example 1. Let LD be a first-order language with
predicates elephant/1, keeper/1, and likes/2 and domain D = {clyde, dumbo,
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catty, giddy, fred, dave}. Let R be given by

(elephant(clyde))[1] (4)
(elephant(dumbo))[1] (5)
(elephant(catty))[1] (6)
(elephant(giddy))[1] (7)
(keeper(fred))[1] (8)
(keeper(dave))[1] (9)
(likes(X,Y ) | elephant(X) ∧ keeper(Y ))[0.5] (10)
(likes(X, fred) | elephant(X) ∧ keeper(fred))[0.25] (11)
(likes(clyde, fred) | elephant(clyde) ∧ keeper(fred))[0.1] (12)

Here, the conditional (10) states that in 50 % of the elephant/keeper combi-
nations the elephant likes the keeper, conditional (11) states, that 25 % of the
elephants like fred and conditional (12) states that the probability of clyde lik-
ing fred is 0.1. In the following we give the probabilities of several instantiations
of likes in SRME1(R). Notice, how the probabilities of the instantiations of the
conditionals (10) and (11) change in order to compensate for the exceptional
instantiations involving clyde and fred.

SRME1(R)(likes(clyde, dave)) = 0.75
SRME1(R)(likes(dumbo, dave)) = 0.75

SRME1(R)(likes(catty, dave)) = 0.75
SRME1(R)(likes(giddy, dave)) = 0.75
SRME1(R)(likes(clyde, fred)) = 0.1

SRME1(R)(likes(dumbo, fred)) = 0.3
SRME1(R)(likes(catty, fred) = 0.3

SRME1(R)(likes(giddy, fred)) = 0.3

As there is no additional information on the elephants in R except clyde they
have to be treated in the same manner. Due to conditional (11) every elephant is
equally likely to like fred with a probability 0.3 and due to conditional (12) clyde
likes fred with probability 0.1. Due to conditional (10) the total percentage of like
relations that hold have to be 50 %. This information increases the probability
of the elephants liking dave accordingly to 75 %.

Considering the comments in Remark 2 we first state the following conjecture.

Conjecture 1. SRME1 satisfies (Well-Definedness).

In the following we give some theoretical results mostly in form of proof sketches
that show that the proposed operator SRME1 indeed fulfills the desired properties
discussed in Section 4.1.

Proposition 2. SRME1 satisfies (Prototypical Indifference).
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Proof. (Sketch) This is ensured by selecting in Equation (3) a probability dis-
tribution with maximum entropy. Suppose (φ(X) |ψ(X))[α] ∈ R is a statistical
assessment, c1, c2 vectors of constants that only differ in constants that do not
appear in R. If p1 = SRME1(R)(φ(c1) |ψ(c1)) 6= SRME1(R)(φ(c2) |ψ(c2)) = p2,
then the probability distribution P with

P (φ(c1) |ψ(c1)) = P (φ(c2) |ψ(c2)) =
p1 + p2

2

yields a higher entropy than SRME1(R) but still fulfills Equation (2). ut

Proposition 3. SRME1 satisfies (Compatibility I).

Proof. Let R be a ground knowledge base. Now, only Equation (1) is used for
determining the space of probability distributions, so |=cp

D is equivalent to |= in
the propositional case, cf. Section 2. Then Equation (3) also becomes equivalent
to the propositional case and it is ME(R′)(ξ) = SRME1(R)(ξ) for any ground
sentence ξ. ut

Proposition 4. SRME1 satisfies (Compatibility II).

Proof. This is ensured by Equation (1). ut

Proposition 5. SRME1 satisfies (Convergence).

Proof. (Sketch) This property follows from (Prototypical Indifference). When
the number of constants grows towards infinity, most of the instantiations of a
statistical assessment have the same probability in SRME1(R) and in order to
fulfill Equation (1) these probabilities must converge to α. ut

Proposition 6. SRME1 satisfies (Compensation).

Proof. Let R be a knowledge base and (φ(X) |ψ(X))[α] ∈ R a statistical assess-
ment with α ∈ (0, 1). Suppose

SRME1(R)(φ(c) | ψ(c)) < α

for all (φ(c) |ψ(c))[α] ∈ groundD(φ(X) | ψ(X)). Then (for finite D) it is∑
(φ(c)|ψ(c))∈groundD((φ(X)|ψ(X))) P (φ(c) | ψ(c))

|groundD(φ(X) | ψ(X))|
<
α · |groundD(φ(X) | ψ(X))|
|groundD(φ(X) | ψ(X))|

= α

contradicting SRME1(R) |=cp
D R. ut
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5 Discussion and Related Work

The work discussed in this paper is at a preliminary stage and more investiga-
tions and experiments have to be undertaken in order to demonstrate usability
and usefulness of the proposed approach. To this end the KReate project1

investigates different approaches for combining relational representations and
probabilistic reasoning under maximum entropy. Within this project there are
some approaches of applying maximum entropy methods to relational knowl-
edge bases without taking into account statistical information explicitly. Loh
[15] and Fisseler [14] both employ the principle of maximum entropy directly on
a grounded version of the relational knowledge base. In [15] inconsistencies in
the grounded knowledge base are handled by removing contradictory instances
of the individual conditionals. This results in a consistent propositional knowl-
edge base for which the probability distribution with maximum entropy can
be computed as in the propositional case. Consequently, these approaches treat
conditionals with variables as schemas for their instances and thus use only an
interpretation of conditionals based on the degree of belief. Nevertheless, it seems
that even these approaches satisfy all properties discussed in this paper except
(Compensation). So it seems reasonable to assume that the list of properties is
incomplete for describing the intuition behind statistical assessments as well as
uncertainty assessments. For future work we plan to investigate these properties
in more depth and find new properties that characterize this intuition.

6 Summary

In this paper we investigated relational probabilistic reasoning from the point of
view of maximum entropy methods and by taking into account the differences
of statistical information and degrees of belief. We defined common sense prop-
erties for inference in first-order probabilistic conditional logic that represent
this distinction and proposed an inference operator that fulfills this properties.
Finally, we closed with some discussions.

As mentioned above the work reported here is at a preliminary stage and
further investigations of the topic are mandatory. A comprehensive comparison
of our approach and the approaches discussed in the previous section is part of
current research.
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Abstract. A special feature of programs in the action language Golog
are non-deterministic actions, which require an agent to make choices
during program execution. In the presence of stochastic actions and re-
wards, Finzi and Lukasiewicz have shown how to arrive at optimal choices
using reinforcement learning techniques applied to the first-order MDP
representations induced by the program. In this paper we extend their
ideas in two ways: we adopt a first-order SMDP representation, which
allows Q-updates to be limited to the non-deterministic choice points
within a program, and we give a completely declarative specification of
a learning Golog interpreter.

1 Introduction

In classical reinforcement learning (RL) and Markov Decision Processes (MDPs),
we are given a set of states, actions which stochastically take us from a given
state into one of a number of states, and a reward function over states. The
goal of learning is to find the optimal policy, which tells us for each state which
action to select to maximize our expected reward. In principle this is well under-
stood with methods such as Q-learning solving the problem. However, for most
practical applications the huge state and action space is a concern, as explicit
representations usually are not viable computationally. To address this problem,
state abstraction mechanisms have been explored [1], including FOMDPs [2],
which employ first-order logic to characterize a possibly infinite state space us-
ing a finite set of formulas.

In this paper, we take this idea further by also constraining the action space
using programs written in the action language Golog. Roughly, instead of a state
and a set of primitive actions to choose from, we are given a formula describing
the current state and a program we need to follow. In the extreme case, when the
program is completely deterministic, there is nothing to learn, as the program
tells us exactly what the next action is. However, in general the program allows
for non-deterministic choices, and here we again need to learn what choices are
the best ones in terms of maximizing expected rewards. As we will see, the idea
of Q-learning can be adapted to this setting.

More precisely, based on earlier work [2, 3], we start by presenting a method
to compute, for a given reward function and Golog program, first-order state
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formulas describing the possible states before the program is executed. Roughly,
these formulas specify sets of states which are equivalent in the sense that the
expected rewards are identical when following a policy which is compliant with
the program. Moreover, only those properties of the states which are relevant to
the expected reward are reflected in those state formulas.

In a way similar to [1], we then construct a joint semi-MDP (SMDP) over a
state space which is made up of tuples consisting of a subprogram of the given
program which starts off with a non-deterministic choice and a corresponding
state formula.

Lastly, we give the semantics for our new Golog dialect QGolog which in-
corporates reinforcement learning techniques to learn the optimal decisions for
the choice points of a program by means of executing it and observing the out-
comes. In essence, we integrate a Q-learning algorithm for the SMDP described
above. While [3] also considers a form of Q-learning, their approach is different
in that they ignore the SMDP-nature of Golog programs. Perhaps more impor-
tantly, we give a completely declarative specification of learning, which we feel
is more transparent and better lends itself to formal analysis.

We remark that, since the semantics of Golog requires to axiomatize the
dynamics of actions, it is not possible to be completely model-free as in standard
RL. Thus, we still assume that the effects of deterministic actions (and thus the
successor states) are known; also, the possible outcomes of a stochastic action
are known. But we do not assume that the probability distribution over these
outcomes is known.

The rest of the paper is organized as follows. After giving a very brief intro-
duction to the situation calculus and Golog, Sect. 3 considers the generation of
state-partition formulas. In Sect. 4, we discuss the SMDP induced by a Golog
program and specify how Q-learning works in this setting. We then present first
experimental results, discuss related work and conclude.

2 Foundations

2.1 The Situation Calculus and Golog

The situation calculus is a sorted first-order1 language with equality and sorts of
type action and situation. A situation is a history of executed actions; the initial
situation is denoted by S0; the successor situation which results from executing
action a in situation s is denoted as do(a, s). Properties of the world that might
change from situation to situation are described by means of (relational) fluents,
which are ordinary predicate symbols which have a situation term as their last
argument. Formulas which mention only a single situation term σ and which
do not quantify over situations are called uniform in σ. We sometimes consider
situation-suppressed formulas which are obtained by removing all situation argu-
ments from the fluents. If φ is a situation-suppressed formula, then φ[σ] denotes
the formula which restores the situation σ in all the fluents mentioned.
1 There are also some second-order features, which do not concern us here.
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The preconditions for each action A are given by Poss(A(x), s) ≡ ΠA(x, s).2

According to Reiter’s solution of the frame problem [4] the effects of actions are
encoded as so-called successor-state axioms (SSAs),one for each fluent:

F (x, do(a, s)) ≡ ΦF (x, a, s).

A basic action theory (BAT) D consists of the foundational axioms Σ, which
define the space of situations, the successor state axioms Dssa, the action pre-
conditions Dap, the unique name axioms for actions Duna, and a set DS0 of
first-order sentences uniform in S0 which describe the fluent values in the initial
situation.

Example. Consider the blocks world domain. The fluent on(b1, b2, s) ex-
presses that block b1 is on top of block b2. The action move(b1, b2) moves block
b1 on block b2. It can only be performed iff there is, in the current situation, no
other block on b1 and on b2 except if b2 is the table. Furthermore, b1 and b2 have
to be distinct.

Poss(move(b1, b2), s) ≡ ¬∃z.on(z, b1, s)∧
(b2 6= table ⊃ ¬∃z.on(z, b2, s)) ∧ b1 6= b2

A block b1 is on top of b2 iff it has just been moved there or iff it has been there
before and wasn’t moved away with the last action.

on(b1, b2, do(a, s)) ≡ a = move(b1, b2) ∨ on(b1, b2, s) ∧ ¬∃z.a = move(b1, z)

Besides deterministic primitive actions like move we also include stochastic
actions. The idea is that, when a stochastic action is executed, nature chooses
one of a finite number of deterministic actions [5]. Formally, for a stochastic
action as the possible choices of primitive actions n1, . . . , nk are defined as

choice(as(x), a) ≡
k∨
i=1

a = ni(x).

We denote the probability with which ni(x) is chosen as the outcome of action
as(x) in situation s by prob(ni(x), as(x), s). Axioms of the form

k∑
i=1

prob(ni(x), as(x), s) = 1

ensure that we indeed obtain proper probability distributions.
If the probability distribution with which nature chooses is known, this can

also be specified. In our setting, the distribution is generally not known. More-
over, the distributions may change from situation to situation, but not arbitrar-
ily. We assume that there are situation suppressed formulas θ1, . . . , θr, which
2 In formulas like these free variables are understood to be implicitly universally quan-

tified.
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partition the set of situations (see Definition 1 below for what that means) so
that situations which satisfy the same θj agree on the distribution over the ni.
Formally, we include axioms of the form

θj(s) ∧ θj(s′) ⊃ prob(ni(x), as(x), s) = prob(ni(x), as(x), s′).

Note that in the simple case where the distribution does not change at all, there
is only one θ = true.

To ensure full observability it has to be possible to determine the actual
outcome of a stochastic action. Therefore, sensing conditions senseCond(ni) ≡
ϕi are defined such that by means of the special action senseEffect(as) the truth
value of ϕi and thus the actual outcome can be determined.

The regression of a formula φ through an action a is a formula φ′. The idea
is that, for a given BAT, φ holds after executing a just in case φ′ held before
the execution of a. Suppose that the SSA for fluent F is F (x, a, s) ≡ ΦF (x, a, s).
Then we inductively define the regression of a formula which is uniform in the
situation do(a, s) as:

Regr(F (x, do(a, s)) = ΦF (x, a, s)
Regr(¬φ) = ¬Regr(φ)
Regr(φ1 ∧ φ2) = Regr(φ1) ∧Regr(φ2)
Regr(∃x.φ) = ∃x.Regr(φ)

According to the regression theorem (Theorem 4.5.4 in [5]) two formulas φ(x, s)
and φ′(x, do(a, s)) where φ(x, s) = Regr(φ′(x, do(a, s))) are logically equivalent
wrt a given BAT, that is, D |= φ ≡ φ′.

The high-level agent programming language Golog [6] is based on the situa-
tion calculus. Roughly, Golog allows us to write programs where the primitive
actions are those defined by a basic action theory. Here we consider the fol-
lowing language constructs: primitive actions (a), test actions (ϕ?), sequences
([δ1; δ2]), conditionals (if ϕ then δ1 else δ2 end), loops (while ϕ do δ end),
non-deterministic choice ([δ1 | δ2]), non-deterministic choice of arguments
(pick(x, δ(x))), non-deterministic iteration (δ∗), and procedures
(proc P (x) δ end).

The meaning of a Golog program can be defined with the help of two spe-
cial predicates Final(δ, s) and Trans(δ, s, δ′, s′), which can be read as “δ can
legally terminate in situation s” and “executing the first action of program δ
in situation s leads to situation s′ with remaining program δ′.” For example,
if A is a primitive action, then Trans([A; ρ], s, δ′, s′) holds iff Poss(A, s) holds,
s′ = do(A, s), and δ′ = ρ. For lack of space, we will define Trans only for the new
constructs introduced in this paper and refer to [7] for the others. To start with,
for a stochastic action as, T rans is defined as Trans(as, s, δ, s′) ≡ s = s′ ∧ δ =
senseEffect(as), that is, as is simply replaced by the sensing action, which senses
the actual outcome of the action. The idea is that, when senseEffect(as) is ex-
ecuted by the Golog interpreter, as gets executed first before the sensing takes
place. See the description of the interpreter (Section 4) for how this is done.
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2.2 Markov Decision Processes

A Markov Decision Process (MDP) is a tuple M = 〈S,A, T ,R〉 where S is a
set of states, A a set of actions, T (s, a, s′) assigns probabilities to the transitions
from state s to state s′ with action a, and R(s, a, s′) assigns a reward to getting
from s to s′ by performing action a. A solution of a MDP is represented by a
policy π which maps states to actions; π∗ is the optimal policy and achieves
the maximal expected reward. A semi-MDP (SMDP) allows the actions to have
different durations. Then, T defines a mapping S × N × S × A → [0, 1] where
N are the natural numbers. It specifies the probability of getting from a state s
in n time steps to state s′ by performing action a.

3 Generating Partitions

For a set of situation suppressed state formulas S(x) = {φ1(x), . . . , φn(x)},
S(x)[s] denotes the set of state formulas S′ = {φi(x)[s] | 1 ≤ i ≤ n}.

In the following we make the assumption that DS0 is completely specified,
i.e., for every state formula φ either DS0 |= φ[S0] or DS0 |= ¬φ[S0] holds.

Definition 1. A set P (x) = {φ1(x), . . . , φn(x)} of state formulas φi is a par-
tition iff the following conditions hold for all completely specified DS0 and an
arbitrary ground situation term σ:

1. D |= ∀x.∨ni=1 φi(x)[σ] and

2. D |= ∀x.φi(x)[σ] ⊃ ¬
(∨

j 6=i φj(x)[σ]
)

.

Definition 2. Let S1(x1) and S2(x2) be sets of state formulas. Then, S1(x1)⊗
S2(x2) is defined as:

S1(x1)⊗ S2(x2) = {φ1(x1) ∧ φ2(x2) |φ1 ∈ S1, φ
2 ∈ S2}

Lemma 1. If P1(x1) and P2(x2) are state partitions then P1(x1) ⊗ P2(x2)
is also a partition according to Def. 1. Also, {({φ} ⊗ P1),¬φ} and {({φ} ⊗
P1), ({¬φ} ⊗ P2)} are partitions.

3.1 The Reward Partition

The reward function rew(s) defines a mapping from the space of situations into
the reals. We assume that the reward function can be written in the following
form:

rew(s) = r ≡ φrew1 [s] ∧ r = r1 ∨ . . . ∨ φrewm [s] ∧ r = rm

where the ri are distinct numeric constants. To ensure that rew(s) is well-defined
it is necessary to require that P rew = {φrew1 , . . . , φrewm } is a partition.
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SP (nil)

∃z. green(z) ∧ on(z, table)

¬∃z. green(z) ∧ on(z, table)

SP (move(b1, table))

∃z. green(z) ∧ on(z, table)
∧¬∃z′. on(z′, b1)

¬∃z. green(z) ∧ on(z, table)
∧green(b1) ∧ ¬∃z′. on(z′, b1)

¬∃z. green(z) ∧ on(z, table)
∧¬green(b1)¬∃z′. on(z′, b1)

∃z. on(z, b1)

SP (move(b2, table))

∃z. green(z) ∧ on(z, table)
∧¬∃z′. on(z′, b2)

¬∃z. green(z) ∧ on(z, table)
∧green(b2) ∧ ¬∃z′. on(z′, b2)

¬∃z. green(z) ∧ on(z, table)
∧¬green(b2)¬∃z′. on(z′, b2)

∃z. on(z, b2)

⊗

SP (pick(x, [b1, b2], move(x, table)))

∃z. green(z) ∧ on(z, table)
∧¬∃z′. on(z′, b1)
∧¬∃z′′. on(z′, b2)

∃z. green(z) ∧ on(z, table)
∧¬∃z′. on(z′, b1)
∧∃z′′. on(z′′, b2)

¬∃z. green(z) ∧ on(z, table)
∧green(b1) ∧ ¬∃z′. on(z′, b1)
∧green(b2) ∧ ¬∃z′′. on(z′′, b2)
¬∃z. green(z) ∧ on(z, table)
∧green(b1) ∧ ¬∃z′. on(z′, b1)
∧¬green(b2) ∧ ¬∃z′′. on(z′′, b2)
¬∃z. green(z) ∧ on(z, table)
∧green(b1) ∧ ¬∃z′. on(z′, b1)

∧∃z′′. on(z′′, b2)

. . .

∃z. on(z, b1) ∧ ∃z′. on(z′, b2)

Fig. 1. The partition induced by the program pick(x, [b1, b2], move(x, table)). In
case there is a green block on the table a reward of 10 is received otherwise
the reward is 0. Consequently, the reward partition is P rew = {∃z.green(z) ∧
on(z, table),¬∃z.green(z) ∧ on(z, table)}.

3.2 Partitions Induced by Golog Programs

Given a reward function rew(s) a Golog program δ induces a partition which
separates those states from each other that (potentially) have different expected
rewards when executing program δ. The partition that is induced by the program
δ given the reward function rew(s) is denoted by SP (δ | rew(s)) (often we omit
to explicitly mention the reward function when it is clear what reward function
is meant and just write SP (δ)).

The partition SP (δ) is recursively defined over the structure of the remain-
ing program. Consequently, SP (δ) is not well-defined for programs that have
infinite execution traces. To avoid those we preprocess the programs and replace
potentially dangerous constructs. In particular, these are:

– [while ϕ do δ′ end; δ] is replaced by a finite number of nested conditionals:

[if ϕ then [δ′; if ϕ then [δ′; . . .]
else nil end] else nil end; δ]

– The star-operator is reduced to a non-deterministic choice between a finite
number of repetitions: δ∗ is replaced by nondet(nil, δ, δ2, . . . , δn), where δi

stands for the i-fold repetition of δ.

Further, we have to disallow recursive procedure calls in order to guarantee a
finite execution trace. Moreover, we assume that the program is nil-terminated,
i.e., it has the form [γ;nil] where γ is an arbitrary (but finite) Golog program.
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The partitions induced by this class of finite Golog programs can then be defined
as follows.

The partition induced by the empty program is given by the reward par-
tition, i.e., the (empty) program does not affect the expected reward.

SP (nil) = P rew.

For programs that start with a sequence the first element of the sequence
determines the induced partition.

SP ([[δ1; δ2]; δ3]) = SP ([δ1; [δ2; δ3]])

To determine the partition induced by a program that starts with a primi-
tive action a regression is the key. Regression allows to compile state formulas
which describe the state before executing a from the state formulas in the parti-
tion induced by the remaining program. Further, we make sure that the action’s
preconditions hold, split up the state formulas according to the reward parti-
tion, and complete the partition by adding a state formula for the case where
the preconditions are not given.

SP ([a(x); δ])[s] = {{Regr(φi[do(a(x), s)]) ∧ Poss(a(x), s) |φi ∈ SP (δ)}
⊗ P rew[s]} ∪ {¬Poss(a(x), s)}

A leading test action introduces a further distinguishing feature to the
partition induced by the remaining program: either the test condition holds or
it does not.

SP ([ϕ?; δ]) = {ϕ} ⊗ SP (δ) ∪ {¬ϕ}
Analogously, the partition induced by a program starting with a conditional

is defined as:

SP ([if ϕ then δ1 else δ2 end; δ]) = {ϕ} ⊗ SP ([δ1; δ]) ∪ {¬ϕ} ⊗ SP ([δ2; δ])

The model of a stochastic action is described by a number of possible
outcomes and and a situation-dependent probability distribution over those.
As already said above the ϑ which define the probability distribution over the
outcomes of the stochastic actions as form a partition: P pras

= {ϑ1, . . . , ϑr}.
The partition induced by a program starting with a stochastic action can

then be defined as:

SP ([as(x); δ]) = P pras
⊗
(

k⊗
i=1

SP ([ni(x); δ])

)

In case of a non-deterministic branching the partition is made up of the
combination of the partitions induced by each of the possible branches.

SP ([[δ1 | δ2]; δ]) = SP ([δ1; δ])⊗ SP ([δ2; δ])
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Since we restricted the non-deterministic choice of argument to a selec-
tion from a given set of arguments the partition induced by a program beginning
with a non-deterministic choice of argument is the combination of the partitions
induced by the remaining program with the different arguments:

SP ([pick(x, [v1, . . . , vn], γ); δ]) =
n⊗
i=1

SP ([γxvi
; δ])

For a program starting with a procedure call the partition it induces is com-
puted as the partition induced by a program where the name of the procedure is
replaced with its body. Assume a procedure P is defined as proc P (x) δP end,
then

SP ([P (t); δ]) = SP ([δP x
t ; δ]).

Theorem 1. For a Golog program δ and a reward function rew(s), SP (δ |P rew)
describes a state partition according to Def. 1.

Proof. by induction on the structure of the program.

1. SP (nil) is a partition by definition.
2. For the proof that SP ([a; δ]) is a partition we assume a slightly different

definition of SP ([a; δ]). The one given below is “finer grained” since it also
partitions the cases where Poss(a, s) does not hold.

SP (a(x); δ)[s] = {Regr(φ[do(a(x), s)]) |φ ∈ SP (δ)}
⊗ {Poss(a(x), s),¬Poss(a(x), s)} ⊗ P rew[s]

According to the regression theorem {Regr(φ[do(a(x), s)]) |φ ∈ SP (δ)} is a
partition iff SP (δ) is a partition. Then, according to Lemma 1, SP ([a; δ])
as given above is also a partition. This also holds for the original, “coarser”
definition of SP ([a; δ]) since it combines all cases where the preconditions
are not given into a single state formula and does not partition this case
further as it is done by the alternative definition above.

3. According to Lemma 1 SP ([ϕ?; δ]), SP ([if ϕ then δ1 else δ2 end; δ]),
SP ([as(x); δ]), and SP ([[δ1 | δ2]; δ]) are partitions iff SP (δ) is a partition.

Theorem 2. The space abstraction defined by the partitioning scheme is safe,
i.e., for a program δ, ground situations σ1 and σ2 it holds that if D |= φ[σ1] and
D |= φ[σ2] for a φ ∈ SP (δ) then the expected reward for executing δ in σ1 and
in σ2 is the same.

An example for the incremental generation of the partition induced by a
Golog program and a reward function is depicted in Fig. 1.
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4 The QGolog Interpreter

In this section we describe how the joint SMDP alluded to in the introduction is
defined exactly, how Q-learning works for such an SMDP, and we show how that
is embedded in our QGolog interpreter by specifying its formal semantics.

The statespace S of the SMDP underlying the Golog program consists of
tuples 〈φ, δ〉 where δ is a choicepoint in the program, i.e., a subprogram that
begins with either a non-determinstic branching or a non-deterministic choice
of argument, and φ ∈ SP (δ). For all 〈φ, δ〉 ∈ S, A(〈φ, δ〉) is the set of pos-
sible actions in the state 〈φ, δ〉. If δ = [[δ1 | δ2]; δ′] then A(〈φ, δ〉) = {δ1, δ2};
if δ = [pick(x, [v1, . . . , vn], γ); δ′] then A(〈φ, δ〉) = {γxv1 , . . . , γxvn

}. By uniquely
identifying the SMDP-actions by Golog programs which correspond to the re-
sepective choices at the choicepoints it is possible to derive a legal execution
trace of the program from a given policy for the SMDP. Particularly, the opti-
mal choices at the choicepoints in the program can be derived from the optimal
SMDP-policy.

The rewards received for performing a SMDP-action are computed as the sum
of the rewards obtained for executing a sequence of primitive actions which leads
the program to the next choicepoint in the program and which corresponds to
the SMDP-action under consideration. Let k be the number of primitive actions
in that sequence then

Rt = rt + γrt+1 + γ2rt+2 + . . .+ γk−1rt+k−1

The update of the Q-value for performing action At in state 〈φ, δ〉t can then
be formulated as

Q(〈φ, δ〉t , At)← Q(〈φ, δ〉t , At) +

α ·
(
Rt + γk · max

A∈A(〈φ,δ〉)
Q(〈φ, δ〉t , A)−Q(〈φ, δ〉t , At)

)
where α is the learning rate and k the number of primitive actions executed
while performing At.

The Q-table storing the Q-values for all state-action pairs is realized as a
fluent q(φ, δ, A, v, s) that is initialized in DS0 in such a way that all state-action
pairs in the SMDP from above are assigned a value. The value for a particular
pair can be updated with the action setQ(φ, δ, A, v):

q(φ, δ, p, v, do(a, s)) ≡ a = setQ(φ, δ, p, v)
∨ q(φ, δ, p, v, s) ∧ ¬∃v′.a = setQ(φ, δ, p, v′)

Likewise, the fluent ε(s) denotes the probability to deviate from the current
policy and to explore another action in situation s. The action setEpsilon(p)
changes the fluent’s value. Moreover, we assume that the sensing action senseRnd(r)
returns a random number r ∈ [0, 1].

The new construct learn(δ) initiates the learning for the program δ. In a
program configuration 〈learn(δ), s〉 the program may proceed to a configuration

72



where the situation is unchanged and the remaining program equals the policy
computed by the predicate QDo(φ∗, δ∗, A∗, δ, s, k, r, π). The arguments of QDo
are the SMDP state 〈φ∗, δ∗〉 corresponding to the last seen choicepoint, the action
A∗ taken at that state, the current program configuration 〈δ, s〉, the number k
of primitive actions encountered since the last choicepoint, and the cumulative,
discounted reward r obtained since then. Formally:

Trans(learn(δ), s, δ′, s′) ≡ ∃π.QDo(φstart, δ, Astart, δ, s, 0, 0, π)∧δ′ = π∧s′ = s

where 〈φstart, δ〉 is a distinguished start state that is added to S; the only possible
action in the state is the start action Astart.

The policy computed by QDo is a Golog program that describes a valid
continuation of the remaining program. Embedded in the policy are setQ actions
to update the Q-table, sensing actions to determine the actual outcome of a
stochastic action, etc. Also, the policy handles the exploration of the state space,
i.e., with a certain probability a non-optimal action (wrt. the current state-action
values) is chosen.

The predicate QDo is defined in dependence on the beginning of the remain-
ing program.

The remaining program is the empty program:

Do(φ∗, δ∗, A∗, nil, s, k, r, π)
def.
= π = [setQ(φ∗, δ∗, A∗, r); setEpsilon(η · ε)]

where η ∈ (0, 1].
The remaining program starts with a primitive action:

QDo(φ∗, δ∗, A∗, [a; δ], s, k, r, π)
def.
= Poss(a, s) ∧ ∃rt, π′. rt = rew(s)

∧QDo(φ∗, δ∗, A∗, δ, do(a, s), k + 1, r + γk · rt, π′)
∧ π = [a;π′]
∨ ¬Poss(a, s) ∧ π = setQ(φ∗, δ∗, A∗, rfail)

rfail is a domain independent negative reward to punish the unsuccessful exe-
cution of the program.

The remaining program starts with a test action:

QDo(φ∗, δ∗, A∗, [ϕ?; δ], s, k, r, π)
def.
= ϕ[s] ∧QDo(φ∗, δ∗, A∗, δ, s, k, r, π)

∨ ¬ϕ[s] ∧ π = setQ(φ∗, δ∗, A∗, rfail)

The remaining program starts with a stochastic action:

QDo(φ∗, δ∗, A∗, [as; δ], s, k, r, π)
def.
=

π = [as; senseEffect(as);
if ϕ1 then

l(φ∗, δ∗, A∗, δ, k + 1, r + γk · rew(do(n1, s))
elsif ϕ2 then . . .

end]
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where the ϕi are the sensing conditions for the outcomes ni of the stochastic
action as. Here, the computation of the policy is interrupted since it is necessary
to determine the actual outcome of executing as first, before the policy for the
remaining program δ is computed. The construct l(. . .) mentioned by the policy
is comparable to learn(. . .) but it allows to memorize the last SMDP state, the
action taken there, and the number of primitive actions performed since then
and the reward obtained for those.

Trans(l(φ∗, δ∗, A∗, δ, k, r), s, δ′, s′) ≡ ∃π.QDo(φ∗, δ∗, A∗, δ, s, k, r, π)
∧ δ′ = π ∧ s′ = s

This way the computation of the policy can be continued after executing the
stochastic action and observing its outcome.

The remaining program starts with a conditional:

QDo(φ∗, δ∗, A∗, [if ϕ then δ1 else δ2 end; δ], s, k, r, π)
def.
=

ϕ[s] ∧QDo(φ∗, δ∗, A∗, [δ1; δ], s, k, r, π)
∨ ¬ϕ[s] ∧QDo(φ∗, δ∗, A∗, [δ2; δ], s, k, r, π)

The remaining program starts with a procedure call P (t) and the procedure
is defined as proc P (v) δP end:

QDo(φ∗, δ∗, A∗, [P (t); δ], s, k, r, π)
def.
= QDo(φ∗, δ∗, A∗, [δP v

t ; δ], s, k, r, π)

The remaining program starts with a non-deterministic branching:

QDo(φ∗, δ∗, A∗, [[δ1 | δ2]; δ], s, k, r, π)
def.
=∨

φ∈SP ([[δ1 | δ2);δ]
φ[s] ∧ ∃qt. q(φ∗, δ∗, A∗, qt, s)

∧ ∃q, A.QMax(φ, [[δ1 | δ2]; δ], A, q, s)

∧ ∃qt+1. qt+1 = qt + α · (r + γk · q − qt
)

∧ π = [setQ(φ∗, δ∗, A∗, qt+1); senseRnd(r);
if r > ε then

l(φ, [[δ1 | δ2]; δ], A, [A; δ], 0, 0)

elsif r ≤ ε

2
then

l(φ, [[δ1 | δ2]; δ], δ1, [δ1; δ], 0, 0)
else

l(φ, [[δ1 | δ2]; δ], δ2, [δ2; δ], 0, 0)
end]

Again, the computation of the policy needs to be interrupted here since it needs
to be decided randomly whether to explore or to exploit (after updating the Q-
value of the last SMDP-state). The auxiliary predicate QMax(φ, δ, A, qmax, s)
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determines the action A with the maximal Q-value qmax for the state 〈φ, δ〉 in
situation s. It is defined as:

QMax(φ, δ, A, qmax, s)
def.
=∨

A′∈A(〈φ,δ〉)
∃qA′ .q(φ, δ, A′, qA′ , s)∧

∧
B∈A(〈φ,δ〉),

B 6=A′

∃qB .q(φ, δ,B, qB , s) ∧ qB ≤ qA′∧

A = A′ ∧ qmax = qA′

The remaining program starts with a non-deterministic choice of argument:

QDo(φ∗, δ∗, A∗, [pick(x, [v1, . . . , vn], γ); δ], s, k, r, π)
def.
=∨

φ∈SP ([pick(x,[v1,...,vn],γ);δ])

φ[s] ∧ ∃qt. q(φ∗, δ∗, A∗, qt, s)

∧ ∃A, q.QMax(φ, [pick(x, [v1, . . . , vn], γ); δ], A, q, s)

∧ ∃qt+1. qt+q = qt + α · (r + γk · q − qt
)

∧ π = [setQ(φ∗, δ∗, A∗, qt+1); senseRnd(r);
if r > ε then

l(φ, [pick(x, [v1, . . . , vn], γ); δ], A, [A; δ], 0, 0)

elsif r ≤ 1
n
· ε then

l(φ, [pick(x, [v1, . . . , vn], γ); δ], γxv1 , [γ
x
v1 ; δ], 0, 0)

elsif . . .

elsif
n− 1
n
· ε < r ≤ ε then

l(φ, [pick(x, [v1, . . . , vn], γ); δ], γxvn
, [γxvn

; δ], 0, 0)
end]

5 Evaluation

We implemented the QGolog interpreter in Prolog and tested it in the blocks
world domain with the following program which either does nothing (the prim-
itive action noop) or non-deterministically picks a block, moves that block on
the table, and then moves block b1 on block b2.

[[pick(x, [b2, . . . , b5],move(x, table));move(b1, b2)]|noop]
The reward function assigns the value ten to situations where block b1 is on
top of block b2 and zero to all others. If the program reaches a configuration
in which it cannot be executed further since a precondition is not fulfilled a
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Fig. 2. The graph shows the accumulated reward obtained when executing the program
in random, 5-block instances of the blocksworld averaged over 10 runs. For better
readability the results are additionally smoothed. Additionally, the number of updated
entries in the Q-table is depicted.

negative reward of -10 is given. The values in the Q-table are initialized with -1.
Throughout the experiments the learning rate and the exploration probability
were kept constant at 0.1.

For each iteration, that is, for each run of the program a new 5-block instance
of the blocksworld domain was generated. The results of the experiments are
averaged over ten runs and are shown in Fig. 2. For instances in which the
program cannot achieve a situation in which block b1 is on top of block b2,
i.e., the maximally achievable reward is 0 we set the reward to 10 in case an
accumulated reward of 0 was achieved to honor the successful execution of the
program. Additionally Fig. 2 shows the number of seen state-action combinations
during the execution of the program over the course of the experiments.

Although even after the 1500 iterations new state-action combinations are
encountered the average accumulated reward crosses the 50% mark after 600
iterations. That is, after 600 iterations the interpreter selects an execution trace
that yields an accumulated reward of 5 and above (in average). Admittedly, the
results do not look that impressive at first glance. But just reconsider that we
have two choicepoints in the program with two and four choices, respectively,
and the number of ground configurations of a 5-blocks blocksworld is already in
the thousands. That implies that it would take much longer for “flat” Q-learning
to explore the state space and find the “good” actions.

Furthermore, the experiments showed that the current way of generating
the partition for a pick by basically grounding the state formula results in an
exponential number of elements in the partitions (wrt the number of elments in
the partition induced by the remaining program). Finding a way to characterize
the choice of a domain element by a first-order formula would greatly improve
the abstraction.
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6 Related Work

Restricting the space of policies by means of (partial) programs has been pro-
posed and implemented multiple times. The differences can be mainly found in
the expressiveness of the proposed languages in which those partial program are
formulated. The HAM-language [8] allows the programmer to define a hierarchi-
cal structure of machines whose states can either be action-states which trigger
the execution of an action, be a choice state in which the next machine state is
selected non-deterministically, or a call state which executes another machine.
In [9] the language was extended by parametrization, aborts/interrupts, and
memory variables. This raises the expressiveness which allows for more com-
pact programs. These languages were superseded by the language ALisp which
extends standard Lisp. In comparison to those languages Golog has a clearly
defined semantics which allows to automatically generate abstract state descrip-
tions as it was shown in this paper. State abstraction in ALisp requires the
programmer to manually provide abstraction functions [1].

Logic-based representation languages are employed by several approaches
for relational reinforcement learning to describe state and action in an abstract
fashion. Though, the expressiveness is usually less than the expressiveness of full
first-order languages (e.g., quantification is only incorporated implicitly). The
approach for symbolic dynamic programming as it was proposed in [2] employs
the full expressiveness of a first-order language but at the cost that full theorem
proving is required to develop a first-order representation of the value functions.
Though, in our approach we make use of the full first-order expressiveness, too,
syntactic manipulation of the formulas is sufficient since the structure of the
value functions is assumed to be given by the program. This might result in a
separation of states which would be joined in the symbolic dynamic programming
approach but this is only possible if the complete model is known.

The work which inspired our approach is described in [3]. We refine their
approach in several ways. First, we do not employ a horizon in the generation of
the partition induced by Golog programs. Only where it is necessary we rewrite
the programs to ensures finite execution traces. A consequence thereof is that
the horizon is not part of the state description. Secondly, we tightly integrate
the reinforcement learning process in the language Golog and do not handle the
learning externally. And lastly, we do the Q-update only for the choicepoints and
not for every single primitive action. This seems to be reasonable since only at
the choicepoints a decsision has to be made—if the program tells the interpreter
to execute a primitive action it has no choice. This leads to a faster convergence
of the Q-values.

7 Conclusion

In this paper we showed how reinforcment learning can be integrated into the
Golog action language framework. We demonstrated how a Golog progam to-
gether with its underlying basic action theory gives rise to a first-order SMDP
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and we gave a completely declarative specification of a learning Golog inter-
preter.

In ongoing work we are investigating a number of extensions such as these:

– We want to generalize pick to allow for an arbitrary choice of arguments
instead of choosing from a finite list of given objects. The advantage would
be that state-partition formulas can be generated which are independent of
the actual objects in the domain. For example, it would not matter whether
the blocks world contained 5 or 500 blocks.

– Perhaps more importantly, we are working on a form of hierarchical rein-
forcement learning along the lines of [10]. The idea is that procedure calls
within programs form a natural hierarchy, and under certain conditions the
choices within procedures can be learned independently from those in other
procedures. For example, the task of building a tower of a certain color can
be divided into collecting blocks of the specified color and then calling a sub-
routine to build the tower, where learning how to build a tower is completely
independent of the color in question.
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Abstract. We present a dependency framework for the definition of
semantics for non conflict free non-monotonic belief bases represented
by extended logic programs. In particular, we define general tools for
handling conflicts in such belief bases leading to a modular framework
for the specification of possible ways to handle conflicts. Furthermore,
we make use of these possibilities and define concrete instantiations,
showing relations to other approaches. Based on this we present ways to
improve these by means of changes to modules of the framework which
lead to the definition of improved approaches to conflict handling in logic
programming based knowledge bases.

1 Introduction

This work deals with dynamic knowledge bases which are represented by non-
monotonic formalisms and in particular by extended logic programs. Mechanisms
for treating dynamic knowledge bases are needed in many areas, with multiagent
systems being one very prominent, and dominant, area. In a multiagent system
an agent interacts with its environment as well as with other agents in the system
and thus unavoidably acquaints new information during runtime which is likely
to lead to conflicting beliefs which has to be dealt with in a sensible manner.
Logic programming is intensively used for knowledge representation and proofed
to play an important role for the development of intelligent systems and advanced
reasoning tasks in those, cf. [1].

In this paper we define a general framework of dependencies for extended
logic programs and sequences of these in the spirit of [2] and [3,4] which we
will then use to analyse and compare common approaches, and to find improve-
ments of these. This framework is intended to be based on logic programming,
but to detach from the syntactic approach towards a semantic view of conflict
handling in the dynamics of logic programming. Thus, this framework provides
dependency based semantics for logic programs and sequences of these, includ-
ing conflicts and the solution of these. This semantics can be used to acquaint
more in-depth insights into the detection and elimination of conflicts as it gives
a formal definition of these methods. We construct the framework in a modular
way by making key definitions variable. Hereby, several instantiations of this
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framework can be defined for means of comparison, analysis and for different
scenarios of application. In this work, we are going to start elaborating on the
properties and possibilities of this kind of semantics and show similarities and
differences with a big class of current approaches. We also show that this can
lead to deeper insights and to the definition of more powerful ways of treating
dynamics of beliefs. This formal representation can, and is intended to, find new
approaches to conflict handling and provides the means for general and powerful
operations, incorporating many aspects of dynamics in non-monotonic logics.
First results in this direction are presented in this paper.

Section 2 gives some preliminary notations of extended logic programs and
program sequences. In Section 3 we will define a general dependency framework
for inconsistent extended logic programs and program sequences including se-
mantics for these. Section 4 describes and analyses different instantiations of the
framework presenting new approaches. Section 5 gives a brief discussion of the
presented work.

2 Preliminaries

An extended logic program consists of rules over a set of atoms using strong
negation ¬ and default negation not. A literal L can be an atom A or a negated
atom ¬A. The complement of a literal L is denoted by ¬L and is A if L = ¬A
and ¬A if L = A. Let A be the set of all atoms and Lit the set of all literals
Lit = A ∪ {¬A |A ∈ A}. D = {not L |L ∈ Lit} denotes the set of all default
negated literals. And ξ = Lit ∪ D represents the set of all literals and default
negated literals. A rule r is written as

L← L0, . . . , Lm, not Lm+1, . . . , not Ln.

where the head of the rule L = H(r) is either empty or consists of a single
literal and the body B(r) = {L0, . . . , Lm, not Lm+1, . . . , not Ln} is a subset of ξ.
The body consists of a set of literals B(r)+ = {L0, . . . , Lm} and a set of default
negated literals denoted by B(r)− = {not Lm+1, . . . , not Ln}. Given this we can
write a rule as

H(r)← B(r)+,B(r)−.

If B(r) = ∅ we call r a fact. A set of literals which is consistent, i. e., it does not
contain complementary literals L and ¬L, is called an state I. A literal L is true
in I iff L ∈ I and false otherwise. The body B(r) of a given rule r is true in I
iff each L ∈ B(r)+ is true in I and each L ∈ B(r)− is false in I. A rule r is true
in I iff H(r) is true in I whenever B(r) is true in I. An state is a model of a
program P if r is true in I for all r ∈ P . The reduct PS of a program P relative
to a set S of literals is defined as:

PS = {H(r)← B+(r) | r ∈ P,B−(r) ∩ S = ∅}.

An answer set of a program P is an state I which is a minimal model of P I .
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In the sense of dynamics in logic programs, sequences of these are used to
structure the knowledge base. The agent is assumed to receive information in
the form of logic programs which can, for example, be seen as an update of the
current knowledge of the agent [5,6] or as information from different sources [7].
The agent thus accumulates a sequence of logic programs which constitutes its
knowledge base. The belief base of an agent consists therefore of a sequence of
programs as defined next.

Definition 1 (Program sequence). A program sequence is a sequence of logic
programs P = (P1, . . . , Pn) in which each Pi is preferred over all programs in the
preceding sequence of programs (P1, . . . , Pi−1) according to some total preference
relation < on the set of programs.

We use the set notation also for sequences for the sake of readability, e. g. it
can be written Pi ∈ P or P ⊆ P ′. A nonmonotonic knowledge base represented
as a program sequence needs the definition of some semantics. By defining a
framework for program sequences we acquire such an semantics as will be laid
out in the next section.

3 General Framework

In the following we will develop a general framework for the representation of
dependencies in extended logic programs and in sequences of these. In particular,
the possibilities for the resolution of conflicts shall be investigated in compar-
ison to some existing approaches. For this means we will introduce identifiers
for some definitions, turning these into modules of the framework that will be
exchanged in the following section in order to create different instantiations of
the framework which will be given by tuples of identifiers. We start by giving
the necessary formalisms for dependencies in logic programs which lead to the
definition of dependency semantics for program sequences which will later be
analysed and extended.

Non-monotonic formalisms are characterized by their use of assumptions in
what is called a default rule. In extended logic programs these are given in the
form of the negative body of a rule. These assumptions create dependencies as
other literals are inferred based on these which we will formalize in the following.

Definition 2 (Dependency relation). A dependency relation R is a set of
dependencies which are tuples of the form (L,W), where the dependant L ∈
Lit depends on a set of assumptions W ⊆ ξ, also called the premise of the
dependency.

The dependency of a literal of some, possibly default negated, literals means
that the latter have to be known or assumed in order to infer the former. The
rules of the logic program resemble basic dependencies which generate further
dependencies by means of chaining of rules. In order to reflect this generation of
dependencies we introduce the notion of dependency sequences which are chains
of sequencial applicable dependencies.
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Definition 3 (Dependency sequence). A dependency sequence consisting of
dependencies {d1, . . . , dn} ⊆ R with di = (Li,Wi) is of the form:

σ = (d1, . . . , dn), n > 1.

A dependency sequence σ is called generating for a dependency d = (L,W),
denoted by σd in a dependency relation R iff it satisfies the following conditions:

(i) dn = (L,Wn)
(ii) W ⊇W1

(iii) For each i, 1 ≤ i < n,W ∪ {L1, . . . , Li} ⊇ Wi+1

(iv) not L 6∈ W \⋃1≤i<nWi

The set of all generating dependency sequences for a dependency d is denoted by
Θd.

Based on the notion of dependency sequences we can define a closure operator
which can be seen as a combination of the transitive closure and the closure
under valid assumptions.

Definition 4 (Closure operator based on sequences).

Cl(R) = R∪ {(L,W) | ∃d = (L,W) ∧ σd = (d1, . . . , dn) ⊆ R}

This closure operator can be used to generate the dependency relations for ex-
tended logic programs as follows.

Definition 5. For an extended logic program P we define dependencies for
rules. The dependency relation for P is then defined as:

RP = Cl({〈H(r),B+(r) ∪ B−(r)〉 | r ∈ P})

Example 1.

P = { A← not B. B ← not A.

C ← A. D ← B.}

Given this program the following dependency relation is generated for it:

RP = {(A, {not B}), (B, {not A}), (C, {A}), (D, {B}), (C, {not B}),
(D, {not A}), (C, {not B, not D}), (D, {not A, not C}),
(D, {not A, not C, not D}), . . . }

Some dependencies, namely those that represent the dependence of a literal from
a set of assumptions or any subset of assumptions, have a key function as they
give a representation of literals being dependent solely on a set of default negated
literals.

82



As our aim here is to investigate semantics for sequences of logic programs we
generalize the definition of dependency relations of single programs to program
sequences.

Definition 6. The dependency relation for a program sequence P = (P1, . . . , Pn)
is given by RP = R∪Pi∈P .

This definition treats the sequences as one big program, the structure of the
sequence will be captured by a preference relation on dependencies to be intro-
duced later.

Alternative models for a default theory are generated by different sets of
assumptions which satisfy certain properties. These models can therefore be
characterised using sets of assumptions which, by use of a consequence relation,
generate the models of the theory.

Definition 7 (Consequence operator). Given a dependency relation R and
a set of assumptions ∆ the set of consequences for these is given by the following
operator:

CnR(∆) = {L | (L, δ) ∈ R, δ ⊆ ∆}

Sets of assumptions have to satisfy some conditions in order to be considered
a valid characterization of the model of the theory. These are, generally speaking,
consistency and maximality and are specified in the following definition. We will
show later how this corresponds to answer sets of extended logic programs.

Definition 8 (Valid sets of assumptions). A set of assumptions ∆ is called
a valid set of assumptions with respect to a dependency relation R iff its set of
consequence is consistent, {L,L} 6∈ CnR(∆) for no L ∈ Lit, and there exists no
set of assumptions ∆′ with ∆ ⊂ ∆′ and {L,L} 6∈ CnR(∆′) for no L ∈ Lit.

As an example for valid sets of assumptions consider the following program.

Example 2.
P = {B ← not A., A← not B.}

In this example there are two valid sets of assumptions, namely ∆1 = {not B,
not ¬B, not ¬A} and ∆2 = {not A, not ¬A, not ¬B}. The according sets of
consequences are CnRP

(∆1) = {A} and CnRP
(∆2) = {B} which are also the

only two answer sets of this program.

Consistency of information cannot be granted in many scenarios such as
dynamic information and conflicts are likely to arise. These are formalised as
follows in the dependency framework.

Definition 9 (Conflicts). A dependency relation R contains a conflict C ⊆ R
iff for some L ∈ Lit and someW ⊆ D it is the case that C = {(L,W), (¬L,W)}.
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Example 3.

P1 = { C ← not A., B ← C.}
P2 = { ¬B ← not A. }

The union of the programs of this sequence is a program and generates the
dependency relation RP1∪P2 . The only conflict in RP1∪P2 is C = {(B, {not A}),
(¬B, {not A})}.

For the solution of conflicts some information, or in this case dependencies,
have to be given up which leads to the formalisation of incision sets as follows.

Definition 10 (Incision 〈I〉). Let R be a dependency relation and C a conflict.
A set of dependencies I ⊆ R is called an incision of a conflict C iff

C 6⊆ Cl(R \ I)

and no I ′ satisfying the property above with I ′ ⊂ I exists.

Note that this definition is not equivalent to the condition C ∩ I 6= ∅, which is
necessary but not sufficient.

Example 4. Looking at the conflict C of Example 3 we get the incisions I1 =
{(B, {not A}), (B, {C})}, I2 = {(B, {not A}), (C, {not A})} and I3 = {(¬B,
{not A})}

Given that the preferences on program sequences are given by the order of the
programs, we can formalize the following preference criterion for the generated
dependencies.

Definition 11 (Preference on dependencies 〈≺dP 〉). Given the programs P
and P ′. Let d and d′ be two dependencies with d ∈ RP and d′ ∈ RP ′ . Then
d′ ≺ d iff P ′ ≺ P .

The preference relation on dependencies defined this way does not generalize
to dependencies d ∈ R∪Pi∈P \

⋃
Pi∈P RPi

, because these dependencies are not
generated by one single rule but by means of rules from multiple programs. Other
definitions of preferences that overcome this restriction are feasible and will be
discussed later. Here, we will solve conflicts based on these dependencies using
a base representation of the dependency relation which also has the advantage
of being more concise. We will introduce a base representation of dependency
relations in the following.

Definition 12 (Base Dependency). A dependency d ∈ R is called a base
dependency of the dependency relation R iff

Cl(R \ d) 6= Cl(R).

A base relation Rb for a dependency relation R is a minimal set of base depen-
dencies such that Cl(Rb) = Cl(R). A dependency sequence entirely consisting
of base dependencies is called a base sequence (d1, . . . , dn), di ∈ Rb, 1 ≤, i,≤ n.
The set of all base dependencies is denoted by Θb and the set of all base depen-
dencies for a dependency d by Θbd.
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Proposition 1. For every dependency d which has a finite generating depen-
dency sequence σd there exists a generating base sequence σbd for d.

Proof. Each non base dependency d′ of a dependency sequence σ can be replaced
by a generating dependency sequence σd

′
representing d′ such that a new de-

pendency sequence σ′ is attained. Hence, any generating dependency sequence
can be turned into a base sequence generating the same dependency.

Corollary 1. A base dependency db is atomic in the sense that Θbd = {(db)}
holds, i. e., it is only generated by one atomic sequence which consists of itself.

Proof. Assume a dependency relation R contains a sequence σ = (d1, . . . , dn)
representing the base dependency d. Then Cl(R \ d) = Cl(R) as σ generates d;
thus, d is not a base dependency.

As an example for the base representation of dependency relations consider
the following program and the generated dependency relation.

Example 5.
P = {B. ¬A. A← B.}

The dependency relation generated by this program RP is represented by the
following base dependencies.

RbP = {(B, ∅), (¬A, ∅), (A, {B})}
These three dependencies clearly correspond to the three rules in the program. In
the closure of these dependencies the transitivity of the dependencies leads to the
dependency (A, ∅). The premise closure would add the following dependencies:
(B, {not A}), (B, {not ¬A}), (B, {not A, not ¬A}), . . . .
Incisions defined in the dependency framework solve conflicts on a subset of the
dependency relation of the program sequence as

⋃
Pi∈P RPi

⊆ RP . Due to the
closure operator conflicts are reinstated in the base representation. To avoid this,
incisions need to be generalised in order to solve conflicts in RP as follows.

Definition 13 (Incision closure). Let P be a program sequence and C ∈ R
a conflict of P. Given an incision I ⊆ Q on a domain Q ⊆ Cl(R) such that
C 6⊆ Cl(Q \ I) then

ICl = RP \ Cl (Q \ I)

Base dependencies are atomic such that there is only the trivial base sequence
that expresses db. These are invalidated, i. e., removed, by simply removing d
fromRP . In order to invalidate a non atomic sequences σ one of the dependencies
d′ ∈ σ has to be invalidated in RP . This underlies the next definition of base
incisions for conflicts as every dependency can be invalidated by invalidating
base dependencies in the end.

Definition 14 (Base incision). A set of base dependencies Ib is called a base
incision of a conflict C iff

C 6⊆ Cl (RbP \ Ib)
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Example 6. For Example 3 we get the base incisions Ib1 = {(B, {C})}, Ib2 = {(C,
{not A})} and Ib3 = {(¬B, {not A})}

We can extend base incisions to general incisions in the following way.

Definition 15 (Base generated incision). Following Definition 13 the inci-
sion generated by a base incision for a dependency relation RP is defined as:

ICl = RP \ Cl
(RbP \ Ib)

Example 7. The incisions of Example 4 are generated by the base incisions of
Example 6.

The incisions constructed this way are minimal since removing any single element
from the incision would reinstate the conflict. Among these minimal incisions the
notion of preference is applied in order to select the most preferred incisions that
lead to consistent subsets of the dependency relation.

With sequences of programs, a linear ordering is granted. For the notion of
preferences of sequences under the assumption of a linear ordering the following
observations can be made. If the order on the programs of P is linear then the
order on the base dependencies RbP is linear as well. This does not hold for RP
in general, as any d ∈ RP \

⋃
Pi∈P RPi

is incomparable to any other d′ ∈ RP . For
the comparison of incisions, which are sets of dependencies, incision sequences
are defined in the following.

Definition 16 (Incision sequence). An incision sequence is of the form ΓI =
(d1, . . . , dn) and is generated by a set of dependencies I = {d1, . . . , dn} with an
ordering relation ≺ on the dependencies, such that di � di+1, 1 < i ≤ n.

The definition of incision sequences gives means to define preference criteria on
incisions more intuitively which we will use in the following definition.

Definition 17 (Incision preference 〈≺Ilex〉). Given two incisions I and I ′ of
the conflict C and their corresponding incision sequences ΓI = (d1, . . . , dn) and
ΓI′ = (d′1, . . . , d

′
l), then I ≺ I ′ holds iff one of the following conditions holds:

(i) n < l ∧ ∀i, 1 ≤ i ≤ n : di = d′i
(ii) n = l ∧ ∃j, 1 ≤ j ≤ n : dj ≺ d′j ∧ ∀i, 1 ≤ i ≤ j : di � d′i
It can be argued that this approach to preferences on incisions should be im-
proved in order to realize more reasonable operations on program sequences
but for the means of this paper we will stick to this simpler, and yet powerful,
definition. Being able to express preferences on incisions leads to the notion of
preferred incisions.

Definition 18 (Preferred incision). An incision I of a conflict C is called a
preferred incision iff there is no incision I ′ which is preferred over I.

Preferred incisions induce a selection of a subset of the dependency relation
which is consistent and can be used for a semantic characterisation by resolving
conflicts using preferred incisions as defined in the following.
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Definition 19 (Consistent subset). Given a dependency relation R that con-
tains a set of conflicts C = {C1, . . . , Cn}. We call a subset l ⊆ R of the depen-
dency relation consistent iff it has a valid set of assumptions and is constructible
as l = R \ I where:

I ∈ {⋃1≤i≤nIi | Ii is a preferred incision of the conflict Ci ∈ C}

The definition of incisions and the application of these solves conflicts and
leads to the definition of semantics for the underlying theory which is given in
as follows.

Definition 20 (Dependency semantics). The set of extensions E of a de-
pendency relation R are given by a set of pairs of the form (∆,l), where l is
a consistent subset of R and ∆ is a valid set of assumptions for l.

For consistent programs we can show that the defined dependency semantics
is sound and complete as has been indicated in Example 2 and formalized in the
following theorem.

Theorem 1. A set of assumptions ∆ ⊆ D is valid in a dependency relation
generated by a consistent extended logic program P RP iff CnR(∆) is an answer
set of P . Let S be an answer set of P , then there exists a valid set of assumptions
∆ ⊆ D w. r. t. RP such that S = CnRP

(∆).

Proof. ∆ is valid iff CnR(∆) consistent and set inclusion maximal in this prop-
erty. Thus for each dependency (L,W) with W ⊆ ∆ it holds that L ∈ CnR(∆).
By the consistency condition it holds that ∆∩CnR(∆) = ∅ and no dependency
generated by a rule r 6∈ PCnR(∆) is relevant. CnR(∆) contains therefore all lit-
erals which can be inferred by means of consistent assumptions and no more.
Hence CnR(∆) is minimal model of PCnR(∆). If CnR(∆) is an answer set for
P then CnR(∆) is consistent by definition. If ∆ would not be maximal then
CnR(∆) would not be a model of PCnR(∆) as all default negation is eliminated
by the reduct. If S is an answer set of P then it holds that S = CnRP

(∆) with
the valid set of assumptions ∆ = {not L | L ∈ Lit \ S}.

4 Analysis

In the last section we have defined a set of tools, a framework and the semantics
for a dependency relation generated by sequences of extended logic programs.
Here, we will use the possibilities of our framework to show the differences of
approaches for handling conflicts in program sequences. To this end, we will
change some previous definitions that have been defined as modules and which
can be exchanged in order to achieve different behaviours. By this, we are able
to show relations to other approaches and to show ways to improve these.
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4.1 Causal Rejection

We start to look into possible preference criteria and, at first, to look into re-
lations to the common causal rejection principle used in many approaches for
dealing with sequences of logic programs like the dynamic programming ap-
proach of Alferes et al. [6,8] as well as the inheritance programs of Buccafurri et
al. [9], the ordered logic programs of Buccafurri et al. [10] and the update pro-
grams of Eiter et al. [5]. The basics underlying the approaches of causal rejection
are that conflicting rules are identified and for each pair of these on is rejected,
or blocked from application, such that the conflict is resolved. Thus, conflicts in
programs sequences can be dealt with such that a single consistent program can
be generated. Here, a basic formalisation of this follows.

Definition 21 (Conflict between rules). A conflict is a set of two rules r, r′

which have complementary head literals. The conflict between two rule r and r′

is denoted by r ./ r′.

Definition 22 (Causal rejection principle (according to [5])1). The causal
rejection principle states that a rule r is rejected iff there is another rule r′ which
is conflicting with r, i. e., r ./ r′, is not rejected itself and is preferred over r.

A rule r could, for instance, be preferred over r′ if it represents more recent
information. In this case only rule r′ is applied and rule r is discarded, resolv-
ing the conflict between both rules by observing temporal aspects. In this work
the approach of update programs [5] is used as a representative for update ap-
proaches based on causal rejection. These approaches solve conflicts by rejection
of one rule which directly causes the conflict, i. e., its head literal is in conflict.
We call such a rule a root rule. In terms of the dependency framework this means
that only dependencies whose dependant is equal to one of the dependants of
the dependencies in the conflict can be part of an incision. Therefore, we use
the definition of an incision as module and refer to the original definition as 〈I〉
while we state a new definition 〈Iroot〉 next.

Definition 23 (Incision 〈Iroot〉). An incision I to a conflict C = {(L,W),
(¬L,W)} is a minimal set of dependencies such that I = {(L,W1, . . . , (L,Wn))}
or I = {(¬L,W1, . . . , (¬L,Wn))}.
We illustrate this instantiation of the framework, which we identify by the tuple
〈≺Pd , Iroot,≺lexI 〉, using one of the standard examples of update sequences first
mentioned in [6].

Example 8. The program sequence of the example consists of two extended logic
programs P1 and P2 with P1 ≺ P2 such that we get the program sequence
P = (P1, P2).

P1 = {r1 : sleep← not tv on. r2 : night← .

r3 : tv on← . r4 : watch tv ← tv on}
P2 = {r5 : ¬tv on← power failure. r6 : power failure←}

1 We are aware of the different definitions of this principle [8,11,12] but do not have
space to discuss these here.
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The dependency relation for this sequence of programs is generated as follows:

RP = Cl( {(sleep, {not tv on}), (night, ∅), (tv on, ∅), (watch tv, {tv on}),
(¬tv on, {power failure}), (power failure, ∅)})

In this dependency relation the following conflict exists: C = {(tv on, ∅), (¬tv on,
∅)}. The only preferred base incision for this conflict is given as: Ib = {(tv on, ∅)}
From this incision we get the extension E = {(∅,l)} with l = RP\IbCl. The con-
sequences are given by Cnl(∅) = {power failure, ¬tv on, sleep, night} which
corresponds to the resulting answer set for all semantics for update sequences
based on causal rejection.

Another example we want to give is one which involves an update by a
tautology. Updates of this type are often discussed in the literature [5,3,12] and
they seem to be a major problem semantics of update sequences. Tautologies in
logic programs are rules of the type L ← B+. with L ∈ B+. In these the head-
literal dependes on itself. A more general class are a set of rule which mediate
this self dependence like in this example P = {A← B.,B ← A} which we call a
self depending program. In terms of our framework this means that (L,W) ∈ RP
with L ∈ W. When an update sequence is extended by a self depending program
the semantics is not supposed to change as the following example, adapted from
[12] 2 , demonstrates.

Example 9.

P1 = { day ← not night. night← not day.

stars← night, not cloudy. ¬stars.
P2 = { stars← venus. venus← stars.

The first rule of the second program in this sequence is clearly self-dependent.
The only answer set of the first program alone is given by {day,¬stars}. Consid-
ering the program P1 ∪P2 we notice that it has the same set of answer sets and,
in particular, is free of conflicts. Now, according to many semantics of causal
rejection [6,8,9,5,10] there are two answer sets for the this sequence of programs,
namely the one given above and the answer set {night, stars, venus} which is
an undesired behaviour for such semantics as there is no justification for the
addition of an answer set.

In terms of the dependency semantics we can make the following obser-
vations. In this dependency relation no conflict exists as the conflicting lit-
erals stars and ¬stars depend on different sets of assumptions, namely we
have {(stars, {not cloudy, not day}), (¬stars, ∅)} ⊆ RP . Obviously, {not cloudy,
not day} is a superset of ∅ and therefore {not cloudy, not day} is not a valid set
of assumptions as {stars,¬stars} ⊆ CnRP . The dependency extension of P is
thus given by (RP , {not night}) and the consequences of this are {day,¬stars}.
2 The example has been formulated as an extended logic program instead of a general

logic program here.
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Thus, the dependency semantics of this instantiation does not show the undesired
behaviours of many semantics of causal rejection which is a good starting point
for further improvements. As a next step, we investigate another example for
which the approaches based on causal rejection show an undesired behaviour.

Example 10. The following program sequence is considered P = (P1, P2, P3).

P1 = {r1 : B.} P2 = {r2 : ¬A.} P3 = {r3 : A← B.}
In this small example, three programs with different priorities, each of which is
consisting of one single rule, are given. In a multiagent system the information
might have been received from three different agents with different credibilities
which gives rise to the prioritisation of the programs. The most preferred pro-
gram could as well represent generic knowledge of this particular agent, which
is entrenched most. The resulting answer set according to the causal rejection
principle is {B,A}. The resulting answer set shows that the second rule has been
rejected. That is, because there is a conflict, {A,¬A}, in P and as (A ← B) is
higher prioritised as (¬A) the causal rejection principle states that the latter
rule is to be rejected. This leads to a consistent answer set with respect to the
given rule-priorities.

This example of a program sequence handled by the approach of update
programs resolves the existing conflict. However, having a closer look at this
example, it can be noticed that the belief A is part of the answer set, which in
turn is solely based on B, given the rule (A ← B). The latter rule comes from
the highest prioritised program P3 and thus causes the rejection of (¬A). Taking
into consideration that it is the fact B which, by means of the rule from P3,
is responsible for the inference of A and that B is less preferred than (¬A) it
seems to be counter intuitive that (¬A) is rejected. The rule r3 is able to defeat
r2, since the priority of r3 is fixed and higher than the priority of any other rule
regardless of the actual instantiation, i. e., the priorities of the body literals, of
the rule. In opposition to this behaviour it would be more intuitive to opt for
(¬A) to be preferred over A since the only reason A is believed in is B which
again, is less preferred than (¬A).

In this scenario, the body of a rule is satisfied by information that is less
credible than the rule itself, the inferred information receives the high credibility
of the rule and the less credible base of the inference is hidden. The described
behaviour is the reason for unwanted and unintuitive results in update programs
and in the classic application of the causal rejection principle in general. This is
due to the fact that no priority information is used in the body of the rules which
could be used to evaluate the credibility of the literal that is inferred by means of
the rule. The facilitation of local, or static, prioritisation of information is a major
drawback in a multiagent setting. Now we are looking what the dependency
semantics in this instantiation is. The dependency relation is generated by:

R = Cl({(B, ∅), (¬A, ∅), (A, {B}), (A, ∅)})
In this dependency relation the following conflict exists: C = {(¬A, ∅), (A, ∅)}.
Possible base incisions for this conflict are: Ia = {(B, ∅)}, Ib = {(¬A, ∅)} and
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Ic = {(A,B)}. Here, Ib is the preferred incision which results in the extension
E = {(∅,RP2 \ ClI(Ibb )}

The consequences of these are given by Cnl(∅) = {A,B}. This corresponds
to the result of semantics based on causal rejection principle which as argued
above is not desired in this case. Our framework now allows us to consider
modifications to different parts of this instantiation for update sequences in
order to overcome this behaviour, as we will show in the following.

4.2 Improved semantics

The problems that were encountered before are due to the static treatment of
rule priorities. Within our dependency framework this means that the prefer-
ences of conflicting dependencies have to be evaluated in a bit more advanced
fashion. As stated before, Definition 11 does define preferences for a subset of the
dependencies and this in a very simple fashion. While this seems to be sufficient
to capture the causal rejection principle it also leaves space for more elaborate
definitions of dependency preferences. As shown above, there is motivation to
explore these, which has also been put forward in [13].

Particularly, in the dependency framework the dependencies that are part of
the conflict C do not have any preference assigned to them in general as they are
likely to be part of the closure. But exactly these are the important dependencies.
The preference relation on dependencies Definition 11, does not extend to closure
dependencies as discussed earlier. Hence, we create another module 〈≺〉, call
the previous definition 〈≺dP 〉 and give a new module and instantiation in the
following.

Definition 24 (Preference on dependencies 〈≺d�〉). For a base dependency
σb = (d1, . . . , dn) ⊆ Rb di ∈ σb is the least element min(σ) of σ iff there is no
dj ∈ σ such that j 6= i, di ∈ P ≺ P ′ 3 dj, P 6= P ′ and no dk ∈ σ with k < i,
di ∈ P and dk ∈ P .

Given a program sequence P and a preference relation RP generated by P. A
dependency d ∈ RP is preferred over another dependency d′ ∈ RP iff there is a
base sequence σbd which generates d and for each base sequence σbd′ that generates
d′ it holds that min(σbd′) ≺ min(σbd).

This preference criterion on dependencies determines the preference for a depen-
dency based on its generating dependency sequences. Within this, the preference
is dependent on the least preferred dependency which is part of the generation
of the dependency under consideration. Moreover, all dependency sequences for
the dependency are considered and the existence of one more preferred genera-
tion of a dependency over another dependency is sufficient to give preference to
this. This amounts to the consideration of the maximally preferred generation
of each dependency. This method of preference evaluation in logic programs can
also be found in credibility logic programs [13].

In order to adapt the dependency framework, the selection of incisions has
to be modified according to this preference relation on dependencies. This is the
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case because the preference on closure dependencies reflects the actual credibility
of the dependency while the single items used to create this dependency still have
fixed, and possibly higher, credibilities. These have to be removed as well and
would make the incision less preferred if not. In order to evaluate an incision using
the closure credibility which is less or equally preferred as any other dependency
the following preference on incision is used.

Definition 25 (Incision preference ≺1
I). An incision I for a conflict C is

preferred over an incision I ′ denoted I ≺ I ′ iff for their corresponding incision
sequences ΓI , ΓI′ it holds that d1 ≺ d′1.

Example 11. The following sequence P = {P1, P2, P3} is considered.

P1 = {r1 : B.} P2 = {r2 : ¬A.} P3 = {r3 : A← B.}

Thus now we are looking what the dependency semantics in the instantiation
〈≺dP , Iroot,≺1

I〉 is. The dependency relation is generated by:

RP = Cl({(B, ∅), (¬A, ∅), (A, {B}), (A, ∅)})

In this dependency relation the following conflict exists: C = {(¬A, ∅), (A, ∅)}.
Possible base incisions for this conflict are: Ia = {(B, ∅)}, Ib = {(¬A, ∅)} and
Ic = {(A, {B})}. In contrast to the instantiation considered before, here, Ic is
the preferred incision which results in the extension E = {(∅,l} with l =
RP2 \ ClI(Ibc ) The consequences of these are given by Cnl(∅) = {¬A,B}.

The framework instantiation considered here avoids the superficial rejection of
information without considering the reliability of the whole proof of this infor-
mation as desired. This change of the semantics has been achieved by the change
of two definitions in the framework.

5 Discussion

In this work, a versatile and comprehensive dependency framework for non-
monotonic belief bases represented by sequences of extended logic programs has
been introduced to define a modular semantical framework abstracting from
the syntactical level. We developed the framework on a general level, intro-
ducing module parts of the framework that open possibilities of investigations
of different versions and their behaviours. Based on this we showed relations
to other approaches and gave different instantiations featuring advantages over
the others. It has been shown how this modularisation can be used to model
the behaviour of other approaches by which the semantics are made explicit in
one single framework. This makes the analysis and comparison of different ap-
proaches as well as the development of new ones easier. Moreover, we presented
a new way of conflict solution by means of source rejection using an instantiation
of the framework.
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A lot of work has been done in the field of the development of mechanism
for dealing with sequences of logic programs and also on the development of
dependency semantics for non-monotonic formalisms. In terms of the use of the
latter for the expression of the former we are only aware of the work in [3].
This work is similar to that one in the basic approach but differs widely in
the definition of the semantics, representation and application as well as in the
modular representation.

Future work will clearly lie in the extension of the framework towards more
features of dynamics of logic programs and in the formalisation of achieved
results. This has the potential to lead to improved semantics and approaches to
the handling of conflicts in non-monotonic formalisms.
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