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Preface

In recent years, intelligent agents in the contexts of open environments and multi
agent systems have become a leading paradigm in AI. Acting successfully in such
environments that are uncertain, only partially accessible, and dynamic, requires
sophisticated knowledge representation and reasoning techniques for the modelling
of the epistemic state of the agent. In particular, in evolving environments, the
agent must continuously react to new observations and to any unforeseen changes
that occur. Its epistemic state must undergo corresponding changes to provide the
agent with a suitable world view at any time. Thus, modern knowledge represen-
tation methods have to deal with the evolution of knowledge and belief, due to
uncertain or incomplete information, or to changes in the environment.

This volume contains the contributions that were presented at the Workshop
Evolving Knowledge in Theory and Applications on October 4, 2011, in Berlin,
Germany, co-located with the 34th Annual German Conference on AI (KI-2011).
This workshop was the 3rd Workshop on ”Dynamics of Knowledge and Belief”
(DKB-2011) organized by the Special Interest Group on Knowledge Represen-
tation and Reasoning of the Gesellschaft für Informatik (GI-Fachgrupppe Wis-
sensrepräsentation und Schließen), following two previous workshops at KI-2007
in Osnabrück and at KI-2009 in Paderborn. The particular focus of the workshop
was on any topics of knowledge representation and reasoning that address the
epistemic modelling of agents in open environments, and in particular on processes
concerning evolving knowledge and belief both in theory and in applications.

The workshop started with a session on modelling and reasoning in probabilis-
tic approaches. In his paper On Prototypical Indifference and Lifted Inference in
Relational Probabilistic Conditional Logic, Matthias Thimm investigates the com-
plexity of probabilistic reasoning in a relational setting. Based on the notion of
prototypical indifference he shows that lifted inference is no longer exponential in
the number of domain elements when all predicates are unary, but is still infeasible
for the general case.

Markov logic is a formalism generalising both first-order logic (for finite do-
mains) and probabilistic graphical models. In the contribution Knowledge Engi-
neering with Markov Logic Networks: A Review, Dominik Jain addresses knowledge
engineering aspects with Markov logic. He describes the fundamental semantics
of Markov logic networks, explains how simple modelling invariants can be repre-
sented, and discusses some fallacious modelling assumptions.

The third paper of this session deals with notions of probabilistic inconsisten-
cies. In Analyzing Inconsistencies in Probabilistic Conditional Knowledge Bases
using Continuous Inconsistency Measures, Matthias Thimm discusses the prob-
lem of analyzing and measuring inconsistencies in probabilistic conditional logic
by investigating inconsistency measures that support the knowledge engineer in
maintaining a consistent knowledge base. He develops continuous inconsistency
measures assigning a numerical value to the severity of an inconsistency which can
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be used for restoring consistency.
In the next session, three papers investigating aspects of relational probabilistic

learning were presented. In their joint paper Learning Scenarios under Relational
Probabilistic Semantics and ME Reasoning, Marc Finthammer and Nico Potyka
present a learning scenario for relational learning which takes statistics on a popu-
lation as well as uncertainty on individuals into account. Developed as an extension
of a propositional maximum entropy framework, it is illustrated by various exam-
ples and compared to some popular statistical relational learning approaches like
Markov Logic Networks and Bayesian Logic Programs.

In Statistical Relational Learning in Dynamic Environments - An Agent-Based
Approach to Traffic Navigation Using Bayesian Logic Networks, Daan Apeldoorn
uses Bayesian Logic Networks in a navigation application in a dynamic environ-
ment. Conditional probabilities are learned by an agent moving through a sim-
ulated traffic environment, and logical rules are added to determine the agent’s
behavior. The implementation of the agent is realized with the ProbCog Toolbox,
an open-source software system for statistical relational learning.

Finally, the paper On Efficient Algorithms for Minimal ME-Learning by Nico
Potyka studies probabilistic learning in the context of the principle of maximum
entropy. This principle states that a set of probabilistic rules is best represented
by the unique probability distribution satisfying all rules and possessing maximum
entropy. While in previous work, an algebraic approach was used for realizing
learning by inverting maximumg entropy inference, here learning is addressed with
an approximative generate-and-test strategy.

We would like to thank all Program Committee members as well as the ad-
ditional external reviewer for detailed and high-quality reviews for all submitted
papers. Many thanks also to the organizers of KI-2011 for hosting the workshop
at the KI-2011 conference. Finally, we would like to thank the Gesellschaft für
Informatik, the TU Dortmund, and the FernUniversität in Hagen for supporting
this workshop.

September 2011 Gabriele Kern-Isberner and Christoph Beierle
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On Prototypical Indifference and Lifted Inference
in Relational Probabilistic Conditional Logic

Matthias Thimm

Technische Universität Dortmund, Germany

Abstract. Semantics for formal models of probabilistic reasoning rely
on probability functions that are defined on the interpretations of the un-
derlying classical logic. When this underlying logic is of relational nature,
i. e. a fragment of first-order logic, then the space needed for representing
these probability functions explicitly is exponential in both the number
of predicates and the number of domain elements. Consequently, proba-
bilistic reasoning becomes a demanding task. Here, we investigate lifted
inference in the context of explicit model representation with respect to
an inference operator that satisfies prototypical indifference, i. e. an in-
ference operator that is indifferent about individuals for which the same
information is represented. As reasoning based on the principle of maxi-
mum entropy satisfies this property we exemplify our ideas by compactly
characterizing the maximum entropy model of a probabilistic knowledge
base in a relational probabilistic conditional logic. Our results show that
lifted inference is no longer exponential in the number of domain elements
when we restrict the language to unary predicates but is still infeasible
for the general case.

1 Introduction

Applying probabilistic reasoning to relational representations of knowledge is a
topic that has been mostly investigated within the fields of statistical relational
learning and probabilistic inductive logic programming [3]. Those areas have put
forth a variety of approaches that deal with combining traditional probabilis-
tic models of knowledge like Bayes nets or Markov nets [10] with first-order
logic, see e. g. Bayesian logic programs (BLPs) [3, Ch. 10] and Markov logic
networks (MLNs) [3, Ch. 12]. Those frameworks employ knowledge-based model
construction techniques [16] to reduce the problem of probabilistic reasoning in a
relational context to probabilistic reasoning in a propositional context by appro-
priately grounding the parts of the knowledge base that are needed for answering
a particular query.

In this paper we continue work on relational probabilistic conditional logic
(RPCL) [6,15] which is a formalism for relational probabilistic knowledge repre-
sentation that is apt for default reasoning as well. In RPCL uncertain knowledge
is represented using probabilistic conditionals, i. e. if-then rules. Consider the
following conditionals which represent both generic and specific rules of how
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elephants like their keepers (the example is inspired by [2]):

r1 =def (likes(X,Y) | elephant(X) ∧ keeper(Y))[0.6]

r2 =def (likes(X, fred) | elephant(X) ∧ keeper(fred))[0.4]

r3 =def (likes(clyde, fred) | elephant(clyde) ∧ keeper(fred))[0.7]

In many approaches to statistical relational learning such as BLPs relational
rules are grounded, and the probability is attached to each instance. There, r1
becomes the set {(likes(a, b) | elephant(a) ∧ keeper(b))[0.6] | a, b ∈ U} where
U is some pool of constant symbols. As one can see, using naive grounding
approaches renders the set of probabilistic conditionals from above inconsistent
as there are instances of r1 which contradict instances of r2 and r3. In [6] two
novel semantics for relational probabilistic conditionals are introduced that avoid
this problem. Further, by employing the principle of maximum entropy [9] one
obtains a commonsense reasoning behavior [15].

Probabilistic reasoning in relational domains is, in general, a demanding task
and there has been some efforts to speed up inference by exploiting structural
equivalence in probabilistic knowledge [11]. This so-called lifted inference has
been applied to e. g. parametrized belief networks and performed well in empiri-
cal experiments, cf. [13,8]. In this paper, we investigate lifted inference in RPCL.
Our approach relies on the property of prototypical indifference which is satisfied
by the maximum entropy approaches proposed in [6,15]. Basically, this property
states that if a knowledge base R contains exactly the same information for con-
stants c1 and c2 then reasoning with R is indifferent with respect to c1 and c2.
Consequently, the maximum entropy models of [6,15] carry a lot of redundant
information. We introduce condensed probability functions as a compact way
to represent those probability functions. Condensed probability functions are de-
fined on reference worlds which subsume a whole set of first-order interpretations
that model the same situation modulo exchanging equivalent constants. Using
reference worlds and condensed probability functions we rephrase the maximum
entropy models of [6,15] in a computationally feasible way.

The rest of this paper is organized as follows. In Section 2 we briefly review
the semantical and inferential approaches of [6,15]. In Section 3 we introduce
condensed probability functions as a compact way to represent prototypically
uniform probability functions. Afterwards, we propose our approach to lifted
inference in Section 4 and analyze its advantages in Section 5. In Section 6 we
briefly discuss the issue of extending our approach to non-unary languages. In
Section 7 we review related work and in Section 8 we conclude. All proofs of
technical results can be found in an online appendix1.

2 Relational Probabilistic Conditional Logic and
Inductive Reasoning

In the following, we give a brief overview on the syntax of relational probabilistic
conditional logic (RPCL) and averaging and aggregating semantics, see [6] for a

1
http://ls1-www.cs.tu-dortmund.de/~thimm/misc/thimm_lifted_dkb11_proofs.pdf
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discussion. We consider only a fragment of a first-order language, so let Σ be a
first-order signature consisting of a finite set of predicate symbols and without
functions of arity greater than zero. We also assume that Σ contains some fixed
and finite set of constant symbols UΣ , i. e. functions of arity zero. An atom is a
predicate together with some terms (variables or constant symbols), e. g., if a/3
is a predicate of arity three, a, b ∈ UΣ and X is a variable then a(a,X, b) is an
atom. Let LΣ be the corresponding first-order language over the signature Σ that
is generated in the usual way using negation, conjunction, and disjunction, but
without quantifiers. If appropriate we abbreviate conjunctions φ ∧ ψ by φψ and
negation ¬ψ by ψ. We denote constants with a beginning lowercase, variables
with a beginning uppercase letter, and vectors of these with ~a resp. ~X.

The central notion of RPCL is the probabilistic conditional, see also [12].

Definition 1. Let ψ, φ ∈ LΣ be some formulas and d ∈ [0, 1]. Then (ψ |φ)[d] is
called a probabilistic conditional.

A probabilistic conditional (ψ |φ)[d] is meant to represent the uncertain rule “if
φ then ψ with probability d”. If φ is tautological, i. e., if φ ≡ >, we abbreviate
(ψ |φ)[d] by (ψ)[d] and call (ψ)[d] a probabilistic fact. A knowledge base R is a
finite set of probabilistic conditionals.

For a formula φ ∈ LΣ let Const(φ) ⊆ UΣ denote the set of constant symbols
appearing in ψ and let Var(ψ) denote the set of variable symbols appearing in
ψ. The operators Const(·) and Var(·) are extended to probabilistic condition-
als and knowledge bases in the usual way. Let now x be either a formula, a
probabilistic conditional, or a knowledge base. If Var(x) = ∅ then x is called
ground. Furthermore, let gndΣ(x) denote the set of ground instances of x with
respect to the constant symbols in UΣ . For example, if UΣ = {c1, c2, c3} and
a(X) ∈ LΣ then gndΣ(a(X)) = {a(c1), a(c2), a(c3)}. Note that for ground x we
have gndΣ(x) = {x}.

In order to interpret the classical formulas within conditionals we use Her-
brand interpretations, i. e. sets of ground atoms of Σ. Let Ω(Σ) denote the set
of all Herbrand interpretations for the signature Σ. If φ ∈ LΣ is ground then
ω ∈ Ω(Σ) satisfies φ, denoted by ω |=F φ, by the usual definition. Note that
every ω ∈ Ω(Σ) is finite and Ω(Σ) is finite as well as Σ contains only finitely
many predicate and constant symbols. Semantics are given to relational proba-
bilistic conditionals by means of probability functions P : Ω(Σ) → [0, 1], so let
PF(Σ) denote the set of all these probability functions. A probability function
P ∈ PF(Σ) is extended to ground formulas φ ∈ LΣ via

P (φ) =def

∑

ω∈Ω(Σ), ω|=Fφ

P (ω) . (1)

The approach of averaging semantics interprets a probabilistic conditional r =
(ψ |φ)[d] with variables by imposing that the average conditional probability of
the instances of (ψ |φ)[d] matches d. For a probability function P ∈ PF(Σ) we
abbreviate with gndPΣ(r) =def {(φ′ |ψ′)[d] ∈ gndΣ(r) | P (ψ′) > 0} the set of
ground instances of r for which the premise has a non-zero probability in P .
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Then P ∅-satisfies r = (ψ |φ)[d] (P |=pr
∅ r) iff |gndPΣ(r)| > 0 and

∑
(ψ′ |φ′)[d]∈gndPΣ((ψ |φ)[d])

P (ψ′ |φ′)

|gndPΣ((ψ |φ)[d])|
= d . (2)

The interpretation behind the above equation is that a probability function P
∅-satisfies a probabilistic conditional (ψ |φ)[d] if the average of probabilities
of the individual instances of (ψ |φ)[d] is d. By considering only those ground
instances where the premise has probability greater zero we average only over
the probabilities of ground instances that are relevant for the open conditional.

Example 1. Consider the probabilistic conditional r = (b(X) | a(X))[0.7] and UΣ =
{c1, c2, c3}. Let P be a probability function with P (a(c1)) > 0, P (a(c2)) > 0, and
P (a(c3)) > 0. If e. g. P (b(c1) | a(c1)) = 0.9, P (b(c2) | a(c2)) = P (b(c3) | a(c3)) =
0.6 then P |=pr

∅ r.

The similar approach of aggregating semantics is defined as follows2. A prob-
ability function P �-satisfies a probabilistic conditional r = (ψ |φ)[d] (P |=pr

�
(ψ |φ)[d]) iff

∑
(ψ′ |φ′)[d]∈gndPΣ((ψ |φ)[d]) P (φ′) > 0 and

∑
(ψ′ |φ′)[d]∈gndΣ((ψ |φ)[d])

P (ψ′φ′)

∑
(ψ′ |φ′)[d]∈gndΣ((ψ |φ)[d])

P (φ′)
= d .

For a knowledge base R it holds that P |=pr
∅ R (P |=pr

� R) iff P |=pr
∅ r (P |=pr

� r)
for all r ∈ R. A knowledge base R is ∅-consistent (�-consistent) if there is
a probability function P with P |=pr

∅ R (P |=pr
� R). Both averaging and ag-

gregating semantics are extensions of the standard semantics for propositional
probabilistic conditional logic. More precisely, if r = (ψ |φ)[d] is a ground prob-
abilistic conditional, i. e. Var(r) = ∅, then P |=pr

∅ r iff P |=pr
� r iff P (φ) > 0 and

P (ψ |φ) = P (ψφ)/P (φ) = d. However, the semantics are quite different in general,
see [14] for a discussion.

In the following, let ◦ ∈ {∅,�} be one of the semantics presented above.
One can define a model-based inductive reasoning operator I◦—which maps a
knowledge base R onto a “suitable” probability function I◦(R) with I◦(R) |=pr

◦
R—as follows, cf. [9]. Let the entropy H(P ) of a probability function P ∈ PF(Σ)
be defined via H(P ) = −∑ω∈Ω(Σ) P (ω)ldP (ω).3 The entropy measures the
amount of indeterminateness of a probability function P . By selecting a model
of a knowledge base R that has maximal entropy one gets a probability function
that both satisfies all conditionals in R and adds as less additional information
(in the information-theoretic sense) as possible [9].

Definition 2. Let R be ◦-consistent. Then the maximum entropy model I◦(R)
of R is defined via

I◦(R) = arg max
P |=pr◦ R

H(P ) . (3)

2 For a justification for the aggregating semantics see [6,14].
3 ldx is the binary logarithm of x with 0 ld 0 = 0.
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Note that I∅(R) has not yet proven to be well-defined in general, see [14] for a
discussion. But—as this issue is not the topic of the current work—we assume
in the following that (3) is always well-defined.

Inference via I◦ satisfies a series of rationality postulates such as the System
P properties [15] and several properties for relational probabilistic reasoning [14].
One of this properties is prototypical indifference which can be exploited for our
purpose of lifted inference. In order to state this property we need some further
notation. If x is either a formula, a probabilistic conditional, or a knowledge base
and c1, c2 ∈ UΣ then x[c1 ↔ c2] is the same as x except that every occurrence
of c1 is replaced with c2 and vice versa.

Definition 3. Let R be a knowledge base. The constants c1, c2 ∈ UΣ are R-
equivalent (c1 ≡R c2) iff R = R[c1 ↔ c2].

Observe that ≡R is indeed an equivalence relation. Two R-equivalent constants
c1 and c2 are indistinguishable with respect to knowledge base R. That is, R
models exactly the same knowledge on both c1 and c2. Also note that every two
c1, c2 ∈ UΣ with c1, c2 /∈ Const(R) are R-equivalent.

Definition 4. A set S = {c′ | c′ ≡R c} ⊆ UΣ for c ∈ UΣ is called R-equivalence
class and S(R) is the set of all R-equivalence classes.

In [6] it has been shown that I◦ satisfies the following property of prototypical
indifference.

Theorem 1 (Prototypical indifference). If R is ◦-consistent then c1 ≡R c2
implies I◦(R)(ψ) = I◦(R)(ψ[c1 ↔ c2]) for every ground formula ψ.

The above theorem implies that the probability function I◦(R) carries a lot of
redundant information. Consider the following example.

Example 2. Let UΣ =def {tweety, huey, dewey, louie} be a set of constant sym-
bols and let Rbirds =def {(flies(X))[0.8], (flies(tweety))[0.3]} be a knowledge base
stating that 80 % of all birds fly and that Tweety flies only up to a degree of
belief of 0.3. Consider now the probability function P ∗ = I◦(Rbirds) which is
defined on the set of Herbrand interpretations Ω(Σ) = {ω0, . . . , ω15} with e. g.

ω5 =def {flies(tweety),flies(huey)} ω6 =def {flies(tweety),flies(dewey)}
ω7 =def {flies(tweety),flies(louie)} ω8 =def {flies(huey),flies(dewey)}
ω9 =def {flies(huey),flies(louie)} ω10 =def {flies(dewey),flies(louie)}

The R-equivalence classes S(R) = {S1, S2} of R are given by S1 = {tweety}
and S2 = {huey, dewey, louie} and due to Theorem 1 it follows that e. g. P ∗(ψ) =
P ∗(ψ[huey ↔ dewey]) for every ground sentence ψ. In particular, as every ω ∈
Ω(Σ) can be understood as a ground conjunction we obtain P ∗(ω5) = P ∗(ω6) =
P ∗(ω7). Therefore, it suffices to represent P ∗ by only eight Herbrand interpreta-
tions as the other eight contain only redundant information.

For the rest of this paper we elaborate on the idea suggested in the above example.
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3 Condensed Probability Functions

In the previous section the notion ofR-equivalence has been introduced as a rela-
tion among constant symbols, cf. Definition 3. We can generalize this relation to
be applicable on Herbrand interpretations as follows. Let S(R) = {S1, . . . , Sn}.

Definition 5. Let ω1, ω2 ∈ Ω(Σ). Then ω1 and ω2 are R-equivalent, denoted
by ω1 ≡R ω2, if there is some G ∈ N and a set T = {(c11, c12), . . . , (cG1 , c

G
2 )}

⊆ S1 × S1 ∪ . . . ∪ Sn × Sn such that ω1 = ω2[c11 ↔ c12] . . . [cG1 ↔ cG2 ].

Basically, ω1 and ω2 are R-equivalent if we can permute elements within each R-
equivalence class such that ω2 becomes ω1, e. g. in Example 2 we have ω5 ≡Rbirds

ω6 ≡Rbirds
ω7. It is also easy to see that ≡R is an equivalence relation and,

therefore, both the R-equivalence class [ω] =def {ω′ ∈ Ω(Σ) | ω ≡R ω′} and the
quotient set Ω(Σ)/≡R =def {[ω] | ω ∈ Ω(Σ)} are well-defined.

Proposition 1. If ω1 ≡R ω2 then I◦(ω1) = I◦(ω2).

The above proposition states that the probability function I◦ carries a lot of
redundant information stemming from the R-equivalence of certain ω ∈ Ω(Σ).
In the following, we exploit this observation by using Ω(Σ)/≡R instead of Ω(Σ)
for redefining I◦. To do so, we go on by developing a method that enumerates
the elements of Ω(Σ)/≡R in an effective way.

For the rest of this section we restrain our attention to signatures containing
only unary predicates. Therefore, let Pred =def {p1, . . . , pP } be the set of unary
predicates of Σ. We discuss the issue of generalizing our approach in Section 6.

Definition 6. A truth configuration t for Pred is an expression t =def ṗ1 . . . ṗP
with ṗi ∈ {pi, pi} for i = 1, . . . , P . Let Θ denote the set of all truth configurations.

A truth configuration is meant to characterize the state of a constant c in some
interpretation as it enumerates which predicates apply for c and which do not.
For a constant c and a truth configuration t = ṗ1 . . . ṗP define t∧(c) =def ṗ1(c)∧
. . . ∧ ṗP (c). Furthermore, for a ground sentence φ and constants c1, . . . , cn let

Θ(φ, c1) =def {t ∈ Θ | t∧(c1) ∧ φ 6|=F⊥}
Θ(φ, c1, . . . , cn) =def Θ(φ, c1)× . . .×Θ(φ, cn) .

The set Θ(φ, c1) contains all those truth configurations t for a constant c1 that
are compatible with some sentence φ. The set Θ(φ, c1, . . . , cn) extends this notion
to tuples of constants.

Example 3. Let Pred =def {p1/1, p2/1} and let ψ =def p1(c) ∧ (p2(c) ∨ p2(d)).
Then it holds that Θ(φ, c) = {p1p2, p1p2}.

Definition 7. An instance assignment I is a function I : S(R) → N0 with
I(Si) ≤ |Si| for all i = 1, . . . , n. Let I denote the set of all instance assignments.

An instance assignment I assigns to each R-equivalence class the number of
constants that are part of the current instance, see below.
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Definition 8. A reference world ω̂ is a function ω̂ : Θ → I that satisfies∑

t∈Θ
ω̂(t)(Si) = |Si| (for all i = 1, . . . , n) . (4)

Let Ω̂ be the set of all reference worlds.

Basically, a reference world is a function that maps a truth configuration to the
number of constants of each R-equivalence class that satisfy this truth configu-
ration. As we show later, a reference world is a compact representation of [ω] for
some ω ∈ Ω(Σ).

Example 4. We continue Example 2. The set of truth configurations Θ = {t1, t2}
with respect to Σ and Rbirds is given via t1 = flies and t2 = flies. Consider
I, I ′ ∈ I with I(S1) = 0, I(S2) = 2, I ′(S1) = 1, I ′(S2) = 1 and ω̂ ∈ Ω̂ with
ω̂(t1) = I and ω̂(t2) = I ′. The intuitive description of ω̂ is that ω̂ represents a
state where the one element of S1 does not fly and two elements of S2 do fly.

In the following we show that Ω̂ is indeed a characterization of the quotient set
Ω(Σ)/≡R . For that, consider the following definition.

Definition 9. The equivalence mapping κ is the function κ : Ω(Σ)→ Ω̂ defined
as κ(ω) =def ω̂ with ω̂(ṗ1 . . . ṗP )(Si) =def |{c ∈ Si | ω |=F ṗ1(c) ∧ . . . ∧ ṗP (c)}|
for every ṗ1 . . . ṗP ∈ Θ and i = 1, . . . , n.

The function κ maps a ω ∈ Ω(Σ) onto a reference world ω̂ ∈ Ω̂ with the intended
meaning that κ(ω) is the (unique) reference world that represents ω. It holds that
κ(ω) = ω̂ whenever ω̂ assigns the same number of elements of an R-equivalence
class Si to some truth configuration t as ω contains specific instances of this
truth configuration for elements in Si. Also note that κ is surjective.

Let the span number ρω̂ of a reference world ω̂ ∈ Ω̂ be defined as4

ρω̂ =def

n∏

i=1

( |Si|
ω̂(t1)(Si), . . . , ω̂(tT )(Si)

)

withΘ = {t1, . . . , tT }. Note that ρω̂ is well-defined as ω̂(t1)(Si)+. . .+ω̂(tT )(Si) =
|Si| for every ω̂. The span number of ω̂ is exactly the number of Herbrand
interpretations that are subsumed by ω̂.

Proposition 2. It holds that |κ−1(ω̂)| = ρω̂ for every ω̂ ∈ Ω̂.

The following proposition states that Ω̂ indeed characterizes Ω(Σ)/≡R .

Proposition 3. The function ι : Ω(Σ)/≡R → Ω̂ with ι([ω]) = κ(ω) is a bijec-
tion.

After having established the equivalence of Ω(Σ)/≡R and Ω̂ we now turn to the
issue of representing I◦ on the basis of Ω̂.

4
(

n
k1,...,kr

)
=def

n!
k1!···kr ! is the multinomial coefficient indexed by n and k1, . . . , kr with

n = k1 + . . .+ kr and
(

n
k1,...,kr

)
=def 0 if any ki < 0 for i = 1, . . . , n.
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Definition 10. A probability function P : Ω(Σ)→ [0, 1] is called prototypically
uniform wrt. R iff for ω1, ω2 ∈ Ω(Σ) with ω1 ≡R ω2 it follows that P (ω1) =
P (ω2).

Note that I◦(R) is prototypically uniform wrt. R. Prototypically uniform prob-
ability functions can be be concisely represented as follows.

Definition 11. Let P be a probability function P : Ω(Σ)→ [0, 1] that is proto-
typically uniform wrt. R. Then the condensed probability function P̂ for P is the
probability function P̂ : Ω̂ → [0, 1] defined via P̂ (ω̂) =def P (ω) for some ω with

κ(ω) = ω̂ and for all ω̂ ∈ Ω̂. Let P̂ denote the set of all condensed probability
functions.

As κ(ω1) = κ(ω2) implies P (ω1) = P (ω2) for prototypically uniform P the
function P̂ is well-defined. It also holds that the mapping between prototypically
uniform probability functions and condensed probability functions is bijective.

Proposition 4. Let P1, P2 be prototypically uniform probability functions wrt.
R. It holds that P1 = P2 iff P̂1 = P̂2.

For a prototypically uniform probability function P , its condensed probability
function P̂ , and a ground sentence ψ it follows directly by definition that

P̂ (ψ) =def P (ψ) =
∑

ω∈Ω(Σ), ω|=Fψ

P̂ (κ(ω)) . (5)

As one can see, one can determine the probability of any ground sentence using
P̂ instead of P . However, the sum in the above equation still considers every
ω ∈ Ω(Σ). In the next section we consider the question of how to determine the
probability of ψ without considering Ω(Σ) but only Ω̂ instead.

4 Lifted Inference

Looking closer at Equation (5) one can see that the probability of a ω̂ ∈ Ω̂ may
occur more than once within the sum as for different ω, ω′ ∈ Ω(Σ) with ω |=F ψ
and ω′ |=F ψ it may hold that κ(ω) = κ(ω′). Therefore, (5) can be rewritten to

P̂ (ψ) =
∑

ω̂∈Ω̂

Λ(ω̂, ψ)P̂ (ω̂) . (6)

with Λ(ω̂, ψ) = |{ω ∈ Ω(Σ) | κ(ω) = ω̂ ∧ ω |=F ψ}| ∈ N0, i. e., Λ(ω̂, ψ) is the
number of ω ∈ Ω(Σ) in (5) that satisfy ψ and are mapped by κ to ω̂. Note, how-
ever, that determining Λ(ω̂, ψ) by its definition above still requires considering
all ω ∈ Ω(Σ). By exploiting combinatorial patterns within the structure of Ω(Σ)
we can avoid considering Ω(Σ) as a whole and characterize Λ(ω̂, ψ) as follows.

Proposition 5. Let ψ be a conjunction of ground literals, let Const(ψ) = {c1,
. . . , cm}, and let Θ = {t1, . . . , tT }. Then

Λ(ω̂, ψ) =
∑

(t′1,...,t
′
m)∈Θ(ψ,c1,...,cm)

n∏

i=1

( |Si \ Const(φ)|
αt1i (t′1, . . . , t

′
m), . . . , αtTi (t′1, . . . , t

′
m)

)

with αti(t
′
1, . . . , t

′
m) =def ω̂(t)(Si)− |{k | t′k = t ∧ ck ∈ Si}|.
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Note that there is no more reference to Ω(Σ) in the above characterization of
Λ(ω̂, ψ).

In order to determine P̂ (ψ) for an arbitrary ground sentence ψ remember
that ψ can be rewritten to be in disjunctive normal form. Assume ψ to be in
disjunctive normal form and let c(ψ) denote the set of conjuncts of ψ. Then we
can write

P̂ (ψ) =
∑

ψ′∈c(ψ)
P̂ (ψ′)−

∑

(ψ′,ψ′′)∈c(ψ)2, ψ′ 6=ψ′′
P̂ (ψ′ ∧ ψ′′) .

As for P̂ , for every ψ′, ψ′′ ∈ c(ψ) the terms P̂ (ψ′) and P̂ (ψ′∧ψ′′) are well-defined
by Equation (6) and Proposition 5.

So far, we have shown how that P̂ ∗ compactly represents P ∗ = I◦(R) and
that P̂ ∗ can be used for reasoning just as P ∗. Nonetheless, in order to determine
P̂ ∗ one needs to compute P ∗ first using Equation (3). In the following, we show
that we can modify (3) in a straightforward fashion to determine P̂ ∗ directly.
Note, although the approach of condensed probability distributions is applicable
to any inductive inference mechanism that obeys prototypical indifference we
restrain our attention to I◦.

For a condensed probability function P̂ we define the entropy H(P̂ ) of P̂ to
be the entropy of P , i. e. H(P̂ ) =def H(P ), which is equivalent to

H(P̂ ) = −
∑

ω̂∈Ω̂

ρω̂P̂ (ω̂)ld P̂ (ω̂)

and thus can be determined by just considering Ω̂.

Proposition 6. Let S be a set of prototypical uniform probability functions wrt.
R and

Ŝ =def {P̂ | P ∈ S} .

If the probability function P1 = arg maxP∈S H(P ) is uniquely determined so is
Q̂ = arg maxP̂∈Ŝ H(P̂ ) and it holds that Q̂ = P̂1.

Proposition 7. Let S =def {P | P |=pr
◦ R} and let S ′ ⊆ S be its subset of

prototypical uniform probability functions with respect to R. If arg maxP∈S H(P )
is uniquely determined then it holds that

arg max
P∈S′

H(P ) = arg max
P∈S

H(P ) .

The implications of the above two propositions are as follows. Instead of de-
termining first P ∗ = I◦(R) via (3) and then determining P̂ ∗ we can directly
determine P̂ ∗ by rewriting (3) to

Î◦(R) = arg max
P̂∈P̂ and P̂ |=pr∅ R

H(P ) (7)

Note that P̂ |=pr
◦ R can be checked directly for P̂ by employing Equation (6)

and Proposition 5.
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5 Analysis

We now analyze the computational benefits of using P̂ ∗ instead of P ∗ = I◦(R).
In particular, we are interested in the question how the cardinality of Ω̂ com-
pares to the cardinality of Ω(Σ) with respect to the number of constants |UΣ |
considered. It is easy to see that |Ω(Σ)| = 2|UΣ ||Pred| (remember that Pred is
the set of (unary) predicates in Σ) and therefore the space needed to represent
P ∗ is exponential in both |UΣ | and |Pred |. We do not expect to avoid an expo-
nential blow-up in the number of predicates in Pred but we show that |Ω̂| is not
exponential in |UΣ | any more. Remember that each ω̂ ∈ Ω̂ satisfies

∑

t∈Θ
ω̂(t)(Si) = |Si| (for all i = 1, . . . , n) .

This means, that for each ω̂ the constants of each Si are distributed among the
truth configurations in Θ. Note that |Θ| = 2|Pred|. A distribution of constants
of Si among Θ can be combined with any distribution of constants of Sj for
every i 6= j, yielding a single reference world ω̂. In order to count the number
of reference worlds we need to multiply the number of combinations one can
distribute the constants of Si onto the truth configurations in Θ with the number
of combinations for every other Sj (i 6= j). Then we get

|Ω̂| =
n∏

i=1

|{(l1, . . . , l2|Pred|) ∈ N2|Pred|
0 | l1 + . . .+ l2|Pred| = |Si|}| . (8)

Each factor in the product of the above equation represents the number of com-
binations the constants of a single R-equivalence class can be distributed among
the possible truth configurations in Θ. The condition l1 + . . . + l2|Pred| = |Si|
ensures that each constant is exactly assigned one truth configuration in every
combination. Still, Equation (8) gives no direct hint on the space needed to rep-
resent Ω̂ in terms of |UΣ | and |Pred |. But it is possible to rewrite (8) as follows.

Definition 12. The cardinality generator gc is the function gc : N2
0 → N0 de-

fined via

gc(n1, n2) =def





∑n2

i=0 gc(n1 − 1, n2 − i) if n2 > 0 and n1 > 0
1 if n2 = 0
0 otherwise

.

The intuition behind using gc to enumerate the number of reference worlds is as
follows. The first argument of gc is meant to represent the number of truth con-
figurations and the second the number of constants in an R-equivalence class. By
defining gc(n1, n2) = gc(n1−1, 0)+ . . .+gc(n1−1, n2) we say that the number of
combinations to distribute n2 constants on n1 truth configuration is equal to the
number of combinations to distribute zero constants on n1 − 1 truth configura-
tions plus the number of combinations to distribute one constant on n1−1 truth
configurations, and so on. The first case describes a setting where we assign all
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n2 constants to the n1th truth configuration and as there are no remaining con-
stants left this amounts to the number of gc(n1 − 1, 0) remaining combinations.
The second case describes a setting where we assign n2−1 constants to the n1th
truth configuration and the remaining single constant to the remaining n1 − 1
truth configurations. The final case describes the setting of assigning no constant
the n1th truth configuration and the remaining n2 constants to the remaining
n1 − 1 truth configurations. Consider gc(1, 3) as the number of combinations to
distribute three constants on one truth configuration. Applying the first case of
the definition of gc yields gc(1, 3) = gc(0, 0) + gc(0, 1) + gc(0, 2) + gc(0, 3) and
therefore the number of combinations to distribute three constants on one truth
configuration is to assign all three constants to the one truth configuration, or
to assign zero, one, or two to it. Obviously, the latter cases are not valid and
the only valid assignment is that three constants are assigned to the one truth
configuration. Due to the third case in the definition of gc the terms gc(0, 1),
gc(0, 2), and gc(0, 3) are set to zero.

Proposition 8. It holds that

|Ω̂| =
n∏

i=1

gc(2
|Pred|, |Si|) . (9)

Still, Equation (9) does not allow to get an idea of the size of |Ω̂|. However, the
function gc can be bounded from above as follows.

Lemma 1. It holds that gc(n1, n2) ≤ (n2 + 1)n1 for every n1, n2 ∈ N0.

Theorem 2. It holds that |Ω̂| ≤ (|Const(R)|+ 1)(|UΣ |+ 1)2
|Pred|

.

The obvious observation to be made when comparing |Ω(Σ)| to the upper bound
of |Ω̂| is that the latter is not exponential in the number of constants |UΣ |.
But note that the complexity increases with respect to |Pred |. While |Ω(Σ)| is
exponential in |Pred |, the above bound for |Ω̂| is exponential in 2|Pred|. However,
we believe that this is due to a very coarse estimation in Lemma 1. Experiments
suggest that gc can be much better estimated.

Conjecture 1. It holds that gc(n1, n2) ≤ (n2 + 1)2ldn1 (with ld 0 = 0).

The above conjecture would result in an upper bound of (|Const(R)|+ 1)(|UΣ |+
1)2|Pred| which is far more beneficial than the result of Theorem 2. However, until
now no formal proof for the above conjecture has been found.

Table 1 shows some exemplary cardinalities of Ω(Σ) and Ω̂ for different
values of |UΣ | and |Pred |. The knowledge base R used to determine the R-
equivalences classes in Ω̂ mentions a single constant yielding S(R) = {{c}, UΣ \
{c}} for Const(R) = {c}. Table 1 shows that especially for this kind of scenarios
employing Ω̂ rather than Ω(Σ,D) is computationally beneficial. The numbers
in Table 1 also justify the belief in Conjecture 1.

6 Generalizing Lifted Inference

In contrast to the case without non-unary predicates there is no simple and com-
pact representation of Ω(Σ)/≡R if Σ contains at least one non-unary predicate
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|Pred | |UΣ | |Ω(Σ)| |Ω̂| |Pred | |UΣ | |Ω(Σ)| |Ω̂|
1 2 4 4 2 2 16 16
1 8 256 16 2 4 256 64
1 32 4294967296 64 2 8 65536 256

Table 1. Comparison of |Ω(Σ)| and |Ω̂| with respect to a knowledge base R with
|Const(R)| = 1

and, in particular, no compact way to enumerate the elements of Ω(Σ)/≡R .
Consider a predicate p/2 and R-equivalence classes S1 and S2. Then there are
six different instantiations of p that have to be considered as essentially differ-
ent with respect to R-equivalence. For constants c1 ∈ S1 and c2 ∈ S2 we have
the variants p(c1, c2) and p(c2, c1); for c1 ∈ Si we have p(c1, c1) for i = 1, 2;
for c1, c2 ∈ Si with c1 6= c2 we have p(c1, c2) for i = 1, 2. An extended notion
of truth configuration must adhere to this combinatorial observation and also
take the relations into account that arise by transitivity. In the unary case, we
used truth configurations to be able to enumerate the elements of Ω(Σ)/≡R in
an effective way without considering Ω(Σ) itself. In the non-unary case there
seems to be no simple way to extend the concept of truth configuration. This
observation has also been made by Grove et. al. in [5] when they attempted to
generalize the notion of entropy of an interpretation to non-unary languages, see
[5] on page 67 for a discussion.

However, the approach of lifted inference developed in this chapter can be
applied for non-unary languages by determining first Ω(Σ) and afterwards (by
pair-wise comparisons) merge R-equivalent interpretations to reference worlds
(yielding the quotient set Ω(Σ)/≡R). Note that we lose the computational ad-
vantage of avoiding to consider the full set Ω(Σ) in this approach. It is also
questionable whether using Ω(Σ)/≡R instead of Ω(Σ) for inference is beneficial.
Table 2 shows the cardinalities of both Ω(Σ) and Ω(Σ)/≡R , depending on the
size of UΣ and with respect to a signature containing a single binary predicate
and a knowledge base R with Const(R) = ∅. As R mentions no constants there
is only one single R-equivalence class which makes this scenario the simplest
imaginable. Nonetheless, the cardinality of Ω(Σ)/≡R—although being signifi-
cantly smaller than the cardinality of Ω(Σ)—still seems to grow exponentially
in the number of constants considered. Until now, no formal proofs for lower or
upper bounds on the growing behavior of |Ω(Σ)/≡R | have been found. However,
Table 2 gives reason to believe that there is no polynomial upper bound for
|Ω(Σ)/≡R | in |UΣ |. As a consequence, lifted inference in RPCL can be doubted
to be beneficial at all for non-unary languages.

7 Related Work

The notion of lifted inference used in this paper has been adopted from the works
[11,13,8] which also use this notion to describe effective reasoning procedures for
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|UΣ | |Ω(Σ)| |Ω(Σ)/≡R | |UΣ | |Ω(Σ)| |Ω(Σ)/≡R |
1 2 2 3 512 244
2 16 10 4 65536 12235

Table 2. Comparison of |Ω(Σ)| and |Ω(Σ)/≡R | with respect to a signature that con-
tains a single binary predicate and a knowledge base R with Const(R) = ∅

relational probabilistic knowledge, see also [1,4] for some recent work.. Although
the knowledge representation formalisms of those approaches differ to our ap-
proach, the motivation and ideas of those approaches are similar to ours. The
work [13]—which extends work begun in [11]—develops an algorithm for lifted
probabilistic inference in parametrized belief networks. The basic idea of [11,13]
is the observation that in order to determine the probability of some query the
information used to infer the probability can be partitioned with respect to the
information we have for specific individuals. This approach uses the technique
of variable elimination to simplify computation of probabilities with respect to
equivalencies of undistinguishable constants. We do not give a formal description
of the algorithms developed in [11,13] but rather give an idea of the approach
by means of an example. Consider the clause c =def (p(X) | q(X,Y), r(Y)) and
a function cpdc (conditional probability distribution) which maps each possible
truth configuration to a probability, e. g. cpdc(true, true, false) = 0.7 states that
the probability of observing p(c1) given that q(c1, c2) is true and r(c2) is false
is 0.7 (for all constant symbols c1, c2). Note that c can be instantiated using
different assignments for Y but with the same X. In this case, one can employ a
combining rule such as noisy-or [10] to aggregate probabilities, i. e., the noisy-or
of two probabilities p1 and p2 is defined as 1−(1−p1)(1−p2). Let now En,m =def

{q(c, d1), . . . , q(c, dn+m)} ∪ {r(d1), . . . , r(dn),¬r(dn+1), . . . ,¬r(dn+m)} be some
observed evidence with n,m ∈ N and consider determining the probability
P (p(c) |E). In e. g. ordinary BLPs [3, Ch. 10] one has to instantiate a ground
Bayesian network for the node p(c) with parents q(d1), . . . , q(dn+m), r(c, d1), . . . ,
r(c, dn+m), and combine the probabilities using noisy-or. This amounts to

P (p(c) |E) = 1− (1− P (p(c) | q(c, d1), r(d1))) · . . . ·
(1− P (p(c) | q(c, dn+m), r(dn+m))) .

Note that we have the same information for the constant symbols d1, . . . , dn and
dn+1, . . . , dm, respectively. It follows that

P (p(c) | q(c, d1), r(d1)) = . . . = P (p(c) | q(c, dn), r(dn))

= cpdc(true, true, true)

P (p(c) | q(c, dn+1), r(dn+1)) = . . . = P (p(c) | q(c, dn+m), r(dn+m))

= cpdc(true, true, false)

and therefore

P (p(c) |E) = 1− (1− cpdc(true, true, true))
n(1− cpdc(true, true, false))

m .

13



As one can see, we can avoid grounding the full BLP by just considering pro-
totypical groundings for c. In [11,13] this idea is elaborated and a series of al-
gorithms is developed that apply this approach to general parametrized belief
networks (or BLPs). Obviously, the ideas of [11,13] are very similar to ours and
differences lie mainly on the framework used for knowledge representation and
the technical implementation. The work [11] uses parametrized belief networks
and inference bases on Bayesian networks and [13] uses a framework similar to
MLNs [3, Ch. 12]. However, note that both formalisms are first-order extensions
of probabilistic networks but we use RPCL and inference based on the princi-
ple of maximum entropy. Furthermore, we developed an explicit computational
model for representing prototypical uniform probability functions and showed
that the use of this model is beneficial in terms of computational complexity.
In [11] no hints on the computational advantages of applying first-order variable
elimination are given but [13] gives an experimental evaluation that resembles
our observations from Conjecture 1.

8 Summary and Conclusion

We developed a computational account for effective probabilistic inference with
relational probabilistic conditionals. In particular, we introduced the notions of
reference worlds and condensed probability functions which allow for a compact
representation of probability functions that arise from the application of inference
operators satisfying prototypical indifference. Condensed probability functions
are defined on the set of reference worlds and exhibit the same reasoning behavior
as the original probability functions, given that those are indifferent with respect
to constants from the sameR-equivalence class. Furthermore, we showed that the
inference operators from [6] can be modified in order to compute the condensed
maximum entropy function in a single step without considering the Herbrand
interpretations at all. We analyzed the computational benefits of our approach
and concluded that we avoid the exponential blow-up in the number of constants
that have to be considered. Our approach is—using the given formalization—only
applicable for unary languages and we briefly discussed the issues that arise when
considering non-unary languages.

The approach developed in this paper gives some first directions for efficient
implementation of reasoning based on the principle of maximum entropy. How-
ever, the work reported is only a first step towards this goal and suffers from
two major discrepancies. Firstly, we restricted lifted inference to the case of
unary languages which, in practice, is a demand that cannot be easily fulfilled.
One of the main advantages of first-order extensions of probabilistic reasoning
is the capability to reason over relations. However, note that even by restrict-
ing attention to unary languages we do not get the equivalence to propositional
probabilistic models due to our semantical notions. For example, the knowledge
base R =def {(flies(X))[0.9], (flies(tweety))[0.3]} cannot be represented using
a propositional probabilistic model that exhibits the same inference behavior.
Secondly, in order to determine the (condensed) maximum entropy model of a
knowledge base R we have to solve a complex optimization problem. However,
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there are approaches to avoid solving problems like (3) for the propositional case.
For example, in [7] an approximate algorithm for computing the maximum en-
tropy model for propositional probabilistic conditional logic is developed. The
algorithm of [7] benefits from several characteristic properties of the maximum
entropy model in the propositional case and it is to investigate if these prop-
erties (or similar ones) can be found for our semantical approaches which may
lead to the development of algorithms for approximate inference in relational
probabilistic conditional logic.
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FernUniversität in Hagen, Germany (1997)

8. Milch, B., Zettlemoyer, L.S., Kersting, K., Haimes, M., Kaelbling, L.P.: Lifted
Probabilistic Inference with Counting Formulas. In: Procedings of AAAI’08 (2008)

9. Paris, J.B.: The Uncertain Reasoner’s Companion – A Mathematical Perspective.
Cambridge University Press (1994)

10. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann (1998)

11. Poole, D.: First-Order Probabilistic Inference. In: Proceedings of IJCAI’03. pp.
985–991. Morgan Kaufmann (2003)

12. Rödder, W.: Conditional logic and the principle of entropy. Artificial Intelligence
117, 83–106 (2000)

13. de Salvo Braz, R., Amir, E., Roth, D.: Lifted First-Order Probabilistic Inference.
In: Proceedings of IJCAI’05. pp. 1319–1325 (2005)

14. Thimm, M.: Probabilistic Reasoning with Incomplete and Inconsistent Beliefs.
Ph.D. thesis, Technische Universität Dortmund, Germany (2011), submitted

15. Thimm, M., Kern-Isberner, G., Fisseler, J.: Relational probabilistic conditional
reasoning at maximum entropy. In: Proceedings of ECSQARU’11 (2011)

16. Wellman, M.P., Breese, J.S., Goldman, R.P.: From Knowledge Bases to Decision
Models. The Knowledge Engineering Review 7(1), 35–53 (1992)

15



Knowledge Engineering with Markov Logic

Networks: A Review

Dominik Jain

Intelligent Autonomous Systems Group
Technische Universität München

jain@cs.tum.edu

Abstract. Within the realm of statistical relational knowledge represen-
tation formalisms, Markov logic is perhaps one of the most �exible and
general languages, for it generalises both �rst-order logic (for �nite do-
mains) and probabilistic graphical models. Knowledge engineering with
Markov logic is, however, not a straightforward task. In particular, mod-
elling approaches that are too �rmly rooted in the principles of logic often
tend to produce unexpected results in practice. In this paper, we collect
a number of issues that are relevant to knowledge engineering practice:
We describe the fundamental semantics of Markov logic networks and
explain how simple probabilistic properties can be represented. Further-
more, we discuss fallacious modelling assumptions and summarise condi-
tions under which generalisation across domains may fail. As a collection
of fundamental insights, the paper is primarily directed at knowledge en-
gineers who are new to Markov logic.

1 Introduction

In arti�cial intelligence (AI), the uni�cation of statistical and relational knowl-
edge within a single representation formalisms is an important line of research,
for it addresses two of the most pressing needs of AI systems: the ability to deal
with the uncertainty inherent in real-world domains and the complex interac-
tions between entities that are relevant to an agent, which can adequately be
described using relations. In recent years, we have seen tremendous advances
in the �eld that has emerged as statistical relational learning (SRL) and rea-
soning [2]. One of the most fundamental principles of knowledge representation
formalisms developed in SRL is generalisation across domains (shallow transfer),
i.e. models are to represent not a concrete probability distribution but rather a
set of general principles that can be applied to an arbitrary set of entities and
the relations between them in order to obtain a concrete probabilistic model.

A representation formalism that has garnered much attention � owing to
its generality and conceptual simplicity � is Markov logic [7], which generalises
both �rst-order logic and probabilistic graphical models (Markov networks) by
attaching weights to formulas in �rst-order logic. Collectively, the weighted for-
mulas de�ne a template for the construction of a graphical model that speci�es a
distribution over possible worlds. In essence, the probability of a possible world
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is proportional to the exponentiated sum of weights of formulas that are satis�ed
in that world.

As an example, consider the following Markov logic network (MLN),

w1 = 0.000 ∀p. female(p)
w2 = −1.735 ∀p. vegetarian(p)
w3 = 1.400 ∀p. female(p)⇒ vegetarian(p)
w4 = 1.300 ∀p1, p2. friends(p1, p2) ∧ vegetarian(p1)⇒ vegetarian(p2)
w5 = 2.300 ∀p, d. orders(p, d) ∧ ¬vegetarian(p)⇒ ¬vegetarianDish(d)
w6 =(hard) ∀p, d. orders(p, d) ∧ vegetarian(p)⇒ vegetarianDish(d)

which represents a scenario where people go to a restaurant to order a dish. In
addition to the weighted formulas themselves, MLNs typically contain declara-
tions that de�ne the types of entities to which predicates can be applied. In our
scenario, the predicates are applicable to person and dish entities. Furthermore,
predicates/relations can be declared as being functional, as this is a particularly
common requirement in relational domains. In our example, orders is declared
as functional, such that every person is required to order exactly one dish.

The weights in the MLN determine the degree to which the formulas they are
attached . By attaching a zero weight to the �rst formula, we essentially make
no statement about whether being female or not being female is more probable.
Most people, however, are not vegetarians; hence the negative weight w2. The
positive weight w3 is intended to express that females are more likely to be veg-
etarians. The fourth formula considers a social network structure de�ned by the
friends relation and states that friends of vegetarians are more likely to them-
selves be vegetarians. The last two formulas express consumption preferences:
Non-vegetarians are inclined to order non-vegetarian dishes; vegetarians always
order vegetarian dishes. The latter constraint is hard, meaning that any world
that does not satisfy the formula is to have zero probability.

The above MLN seems to be an intuitive representation of this very simple
scenario. However, it displays some perhaps unexpected behaviour. First, we ob-
serve that, for any given domain of people and dishes, the probability of being
female is not 0.5, yet female appears only in the �rst formula, which expresses no
inclination in either direction, and in the antecedent of an implication (formula
3). Further, the probability is not only far from 0.5, it also varies depending
on the number of people and dishes in the domain. For instance, if there are
two dishes that can be ordered, then the probability of being female for cases
where the number of persons is one, two and three, we obtain approximately1

0.223, 0.211 and 0.204 respectively. For vegetarian and vegetarianDish, we ob-
serve particularly wide variations: The probabilities for a dish being vegetarian
are 0.182, 0.120 and 0.07 and the probabilities for a person being a vegetarian are
0.084, 0.044 and 0.020 respectively. While at least some of these observations are
certainly obvious if one ponders the underlying mathematical de�nitions, they
suggest that a careful consideration of MLN semantics is the very foundation of
any knowledge engineering endeavour.

1 All the inference results reported in this paper were computed with exact methods.
Where an approximation is mentioned, it refers to the result being rounded only.
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The mathematical description of the semantics of Markov logic networks
is deceivingly simple, yet the task of knowledge engineering in Markov logic
networks is, as indicated by our example, not as straightforward as it may at �rst
appear. The question of how one could manually de�ne a Markov logic network
remains largely unaddressed in the literature. Indeed, learning is often the only
way to sensibly derive suitable parameters for an MLN. However, we believe
that a thorough understanding of how we could, in principle, represent particular
probabilistic properties in an MLN is imperative to selecting the formulas that
are in fact required for a model to at all be able to re�ect the desired properties
and obtain a model that is, ideally, an adequate re�ection of the real world.
At present, there is no collection of guidelines that adequately addresses the
problem of de�ning weighted formulas for cases where a manual speci�cation
might still be feasible. With this paper, we make the following contributions:

� We provide an in-depth discussion of how simple probabilistic properties can
be represented in an MLN.

� We point out fallacious assumptions that result from a naive interpretation
of the nature of the transition from logical to probabilistic knowledge. In
particular, we discuss the fallacious use of probabilistic implications and
describe how the intended pieces of knowledge can be represented by other
means.

� We summarise practical issues pertaining to the way in which models in
Markov logic � be they learnt from data or manually de�ned � generalise
across domains.

2 Markov Logic Networks

Formally, an MLN L is given by a set of pairs 〈Fi, wi〉 [7], where Fi is a formula
in �rst-order logic and wi is a real-valued weight. For each �nite domain of
discourse D (set of constants), an MLN L de�nes a ground Markov network

ML,D = 〈X,G〉 as follows:
1. X is a set of boolean variables. For each possible grounding of each predicate

appearing in L, we add to X a boolean variable (ground atom). We denote
by X := B|X| the set of possible worlds, i.e. the set of possible assignments
of truth values to the variables in X (see Fig. 1).

2. G is a set of weighted ground formulas, i.e. a set of pairs 〈F̂j , ŵj〉, where
F̂j is a ground formula and ŵj is a real-valued weight. For each possible

grounding F̂j of each formula Fi in L, we add to G the pair 〈F̂j , ŵj = wi〉.
With each such pair, we associate a feature f̂j : X → {0, 1}, whose value for
x ∈ X is 1 if F̂j is satis�ed in x and 0 otherwise, and whose weight is ŵj .

In practice, we typically use a typed logic and augment the above de�nition with
declarations that de�ne the types of entities a predicate applies to. Furthermore,
a particularly common real-world restriction is to require relations to be func-
tional and MLN implementations support the corresponding declarations as an
extension.2

2 For instance, the declaration orders(person,dish!) states that the predicate orders is
applicable to person and dish entities and that for each person, there must be exactly
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The ground Markov network ML,D speci�es a probability distribution over
the set of possible worlds X as follows,

P (X = x) =
1

Z
exp



|L|∑

i=1

wini(x)


 =

1

Z
exp



|G|∑

j=1

ŵj f̂j(x)


 (1)

where Z =
∑
x′∈X exp(

∑
i wini(x

′)) =
∑
x′∈X exp(

∑
j ŵj f̂j(x

′)) is a normaliza-
tion constant and ni(x) denotes the number of true groundings of Fi in x.

The probability of a possible world x ∈ X is thus proportional to the expo-
nentiated sum of weights of formulas that are satis�ed in x, i.e.

P (x) ∝ exp


∑

j

ŵj f̂j(x)


 =: ω(x). (2)

With s(F ) :=
∑
x∈X , x|=F ω(x), we can calculate the probability of any ground

formula F1 given any other ground formula F2 as

P (F1 | F2) =
P (F1, F2)

P (F2)
=
s(F1 ∧ F2)

s(F2)
. (3)

Fig. 1. Illustration of the grounding process

3 Fundamental Semantics

We can di�erentiate two ways in which MLN semantics can be viewed:

(V1) the top-down view, in which we seek to realise a probabilistic logic by
adding weights to formulas; Markov networks serve only as a formalism
that provides the particular probabilistic semantics;

one dish for which the predicate holds. Any possible world violating this functional
property of the relation has zero probably.
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(V2) the bottom-up view, in which MLNs are an extension of the Markov net-
work formalism and weighted formulas are a particular way of compactly
representing generalised features of Markov networks; Any ground formula
de�nes a clique in the ground Markov network and the formula's set of
models (satisfying assignments) determines the subset of the clique's con-
�gurations that is a�ected.

From the perspective of arti�cial intelligence, the top-down view is perhaps more
attractive, because the generalisation of logic to probabilistic settings was a
long-standing goal of the community. Probability theory is widely accepted as
the preferred way of dealing with the inherent uncertainty that permeates real-
world domains, and logics are well-understood formalisms for the representation
of complex, structured knowledge. To seek a sound uni�cation is, indeed, the
merest step of logic.

However, it is the bottom-up view that is imperative to a deep understanding
of MLNs. As will be shown in this report, a thorough understanding of Markov
networks and, in particular, the way in which weighted formulas translate to
features in Markov networks is the very foundation for knowledge engineering
in MLNs. Unfortunately, a modelling approach that is too �rmly rooted in the
principles of logic will often translate sub-optimally to probabilistic settings.

3.1 Quanti�er Semantics

A logical knowledge base (KB) is the conjunction of all the formulas that are
known to hold. In an MLN, we can choose to partially soften the KB and attach
weights to arbitrary parts of the full conjunction, weights indicating the degree
to which the individual formulas are required to hold. The granularity at which
we apply weighting can be selected as necessary.

The Universal Quanti�er for Parameter Sharing. In this context, the seman-
tics of the universal quanti�er are particularly relevant. In the logical case,
a formula such as ∀e. apple(e) ⇒ fruit(e) translates, for a �nite domain of
discourse D, to the conjunction

∧
E∈D apple(E) ⇒ fruit(E). In MLNs, how-

ever, the weighted formula 〈w,∀e. apple(e) ⇒ fruit(e)〉 does not result in the
weight w being attached to the conjunction but rather in the weight being
attached to each conjunct separately, i.e. its semantics can be understood as
∀E ∈ D. (〈w, apple(E) ⇒ fruit(E)〉 ∈ G). Thus, the universal quanti�er ac-
tually serves to realise parameter sharing. Parameter sharing is a fundamental
principle in relational models, which serves to achieve the generalisation across
arbitrary domains, for it enables us to apply the same probabilistic patterns to
any given set of entities (shallow transfer).

In most implementations of MLNs, a universal quanti�er at the outermost
level can be omitted � and, given its semantics, its omission may even serve to
improve clarity. We consequently chose to omit such universal quanti�ers in the
remainder of this document.

Existential Quanti�cation. Notably, the existential quanti�er does not behave
analogously; it expands to a single disjunction with weight w (as does a universal
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quanti�er at an inner level). Hence disjunctions are always evaluated strictly log-
ically. Since KBs are �naturally� dissected into conjunctions, we do not consider
this to be a practically relevant restriction, however. Nevertheless, the formal-
ism of recursive random �elds [6] was proposed to also allow disjunctions to be
evaluated in a �soft� manner.

3.2 Formula Weights

Weights as logarithmized factors. To determine the precise e�ect of a weight
in an MLN, we need only to consider the impact that weights have on the joint
distribution over X (for an arbitrary but �xed grounding). Every non-zero weight
wi of every formula Fi a�ects the sum

∑
i wini(x) for some subset of X and

thus has bearing on the distribution. Because P (X = x) is proportional to the
exponentiated sum of weights that are true in world x, weights are best viewed
as logarithmized factors. In the absence of formulas, every possible world's value
ω(x) is exp(0) = 1 and therefore all worlds are equally probable. If we now add
the pair 〈Fi, wi = log(λi)〉 to L and some possible world x satis�es a ground

instance F̂j of Fi, then ω(x) is simply multiplied by exp(wi) =: λi = λ̂j , either
increasing the probability of x (for λi > 1 ⇔ wi > 0) or decreasing it (for
λi ∈ ]0; 1[ ⇔ wi < 0). Correspondingly,

P (X = x) ∝
∏

j

exp(f̂j(x)ŵj) =
∏

j, x|=F̂j

λ̂j . (4)

When interpreting the semantics of a particular weight wi of a particular formula
Fi, it is imperative to be aware of the factor it implies and the subset of X it
will be applied to (for any imaginable instantiations of L). The impact of a
particular formula is perhaps most clearly evident if the formula is translated to
disjunctive normal form (DNF), because the conjunctions therein immediately
re�ect partial assignments in possible worlds. For instance, all of the following
are semantically equivalent,

w bird(e)⇒ �ies(e)
w ¬bird(e) ∨ �ies(e)
w (bird(e) ∧ �ies(e)) ∨ (¬bird(e) ∧ �ies(e)) ∨ (¬bird(e) ∧ ¬�ies(e))
−w bird(e) ∧ ¬�ies(e)

yet the latter two forms perhaps more clearly indicate the variable assignments
that are a�ected. In the fourth case, we negated the formula along with its weight
to obtain a more easily interpretable conjunction.3

3 An MLN retains its semantics if any of its formulas are negated along with their
weights, i.e. the probability distributions implied by an MLN L and an MLN L′

derived from L by changing a pair 〈Fk, wk〉 ∈ L to 〈¬Fk,−wk〉 ∈ L′ are the same for
all ground models. If L and L′ are instantiated for a set of constants C, for which
Fk has Nk groundings, we have

PM
L′,C

(x) =
exp

(∑
i,i 6=k wi · ni(x) − wk · (Nk − nk(x))

)

∑
x′∈X exp

(∑
i,i6=k wi · ni(x

′) − wk · (Nk − nk(x′))
)

=
exp

(∑
i wi · ni(x) − wk · Nk

)

∑
x′∈X exp

(∑
i wi · ni(x

′) − wk · Nk
) =

exp
(∑

i wi · ni(x)
)

∑
x′∈X exp

(∑
i wi · ni(x

′)
) ·((

(((exp(−wk · Nk)

((((
(

exp(−wk · Nk)
= PML,C

(x)
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While the local view of the e�ect of a formula weight on the values ω(x)
associated with possible worlds su�ciently describes the semantics of MLNs, it
is, for the most part, not very helpful from a knowledge engineering perspective.
In particular, it does not immediately answer the question of how we could de�ne
weights that will result in the model re�ecting a particular probabilistic property.

Weights as log odds between world probabilities. To determine the e�ect of
a particular weight in terms of probability, let us consider a single (ground)
formula F̂j with an associated weight wi = ŵj and let us assume that the
MLN contains no further formulas. As mentioned in [7], we can, in such a case,
interpret wj as the log odds between the probability of a world where F̂j is true

and the probability of a world where F̂j is false. Thus, if x1 |= F̂j and x2 6|= F̂j
(x1, x2 ∈ X ), then P (x1) : P (x2) = λ̂j : 1, since F̂j being true will result in

a factor of λ̂j being applied to worlds satisfying F̂j while worlds not satisfying

F̂j will keep the default factor of 1. Setting ŵj = log(P (x1)/P (x2)) will thus

establish the proper ratio between worlds satisfying F̂j and worlds not satisfying

F̂j .

Weights that determine formula probabilities. Regarding the probabilistic
properties that are to be represented in our model, the local view of ratios
between probabilities of individual worlds is clearly inadequate. We need to
consider the global impact on all possible worlds in order to asses the properties
of the distribution P (x) that are induced by a particular choice of weights, which,
in particular, necessitates taking model counts into consideration.

The perhaps most basic modelling task is to de�ne a single formula Fi with
an associated weight wi such that P (F̂j) = p for some probability p and a ground

instance F̂j of Fi � assuming, for the time being, that Fi is the only formula in

the network. If we set wi = log(p1/p2), then, for x1 |= F̂j and x2 6|= F̂j , we have
that ω(x1) : ω(x2) = p1/p2 : 1 = p1 : p2 (if x1 and x2 are equivalent as far
as the truth values of other ground instances of Fi are concerned). To compute
the probability P (F̂j), we need to consider s(F̂j) and s(¬F̂j). With #F̂j

as the

number of models of the ground formula F̂j , it follows that if #F̂j
= #¬F̂j

, then

s(F̂j) : s(¬F̂j) = p1 : p2 and therefore P (F̂j) = p1/(p1 + p2). A particularly
relevant case where #F̂j

= #¬F̂j
holds is the case where Fi is an atomic formula

such as bird(e). Thus, the probability P (bird(e)) can be set to p for all entities
e using

log(p/(1− p)) bird(e).

If, however, the weight wi applies asymmetrically to the set of possible worlds, i.e.
if #F̂j

6= #¬F̂j
, then this has to be taken into consideration. If, for example, the

formula F̂j was satis�ed in the majority of possible worlds, then using log(p/(1−
p)) as a weight would result in P (F̂j) being larger than p. To set P (F̂j) = p, we
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need to �nd a factor λ̂j such that

P (F̂j) =
s(F̂j)

s(F̂j) + s(¬F̂j)
=

#F̂j
λ̂j

#F̂j
λ̂j +#¬F̂j

1
= p

⇒ λ̂j = #¬F̂j
p/(#F̂j

(1− p)) (5)

For instance, if Fi is an implication such as bird(e) ⇒ �ies(e), then we can
achieve P (bird(e)⇒ �ies(e)) = p for all e using

log(p/(3− 3p)) bird(e)⇒ �ies(e)

since #F̂j
: #¬F̂j

= 3 : 1 in this case.

In all the above considerations, we have made the assumption that the sets
of ground atoms appearing in any two ground instances of Fi is disjoint, for if
they were to overlap, then there would be interactions between the formulas that
might already be too di�cult to manually foresee.

Weights of mutually exclusive formulas. There is one simple case where we
can easily cope with ground atoms appearing in more than one ground formula
� the case where the formulas are mutually exclusive, such that in any possible
world, at most one of the formulas is true. For instance, if we have both the
formula bird(e) and the formula ¬bird(e), then we can achieve P (bird(e)) = p
using

log(p) bird(e)
log(1− p) ¬bird(e).

Because each of the cases is considered in an explicit factor, we need not use
odds to establish the desired ratio; the above weighting will immediately ensure
that s(F̂j) : s(¬F̂j) = p : (1− p) and therefore P (F̂j) = p for all instances F̂j of
bird(e).

This procedure straightforwardly translates to larger sets of mutually exclu-
sive formulas. If, for instance, we have a predicate declared as isa(entity, type!),
i.e. an entity belongs to precisely one of several types, then if the set of types is
e.g. {Mammal,Bird,Reptile} and the corresponding probabilities are p1, p2, p3,
we could set:

log(p1) isa(e,Mammal)
log(p2) isa(e,Bird)
log(p3) isa(e,Reptile)

It is desirable for the set of formulas whose weights we set in this way to not
only be mutually exclusive but also exhaustive � i.e. exactly one of the formulas
should be true for every given world and every binding of the variables � because
cases not mentioned in our set of formulas obtain an implicit weight of 0 by
default, which in turn implies a higher probability for cases not mentioned, since
0 ≥ log(pi).

It is also important to note that for a mutually exclusive and exhaustive set
of formulas, weights are meaningful only relative to each other. In particular, for
a probability value pi ∈ [0; 1[ the corresponding weight log(pi) is smaller than

23



0, but this does not at all imply that the corresponding formula being true will
lower the probability of worlds satisfying it. In fact, we can add arbitrary o�sets
δ ∈ R to all of the formula weights without a�ecting the distribution P (X = x),
because if the formulas are mutually exclusive and exhaustive, then the o�set
will apply to each possible world in exactly the same way: If there are k ground
instances of the mutually exclusive and exhaustive set of formulas, then δ is
summed k times for each possible world x ∈ X and we thus obtain:

P (x) =
exp

(∑
j ŵj f̂j(x) + kδ

)

∑
x′∈X exp

(∑
j ŵj f̂j(x′) + kδ

) =
exp

(∑
j ŵj f̂j(x)

)

∑
x′∈X exp

(∑
j ŵj f̂j(x′)

) ·��
��exp(kδ)

����exp(kδ)
(6)

4 The Probabilistic Implication Fallacy

A causal model is often an intuitive representation of a generative stochastic
process. Causality dictates a temporal ordering in which values are assigned to
variables: If A is the cause of B, then we �rst determine whether or not A is the
case, and depending on the result, we determine whether B is the also case. In
the strictly logical case, we can use the implication A ⇒ B to represent logical
causal in�uence. In the probabilistic case, the in�uence we need to model is �If A
holds, then B holds with some probability�, which corresponds to the conditional
probability P (B | A). The probabilistic implication fallacy lies in the assumption
that a softened version of the implication A⇒ B is an adequate representation
for probabilistic causal in�uence.

Fallacy 1: Probabilistic implications are equivalent to conditional proba-

bilities. Most likely, one of the reasons for people to think of implications and
conditional probabilities as being inextricably linked is that in the strictly logical
case, there is indeed an obvious connection. Consider the classical example of
modelling the probability with which birds are able to �y. If all birds are able to
�y, P (�ies | bird) = 1. In this case, the weighted formula

(hard) bird(e)⇒ �ies(e),

which, by de�nition, implies P (bird ⇒ �ies) = 1, has related semantics. If bird
is true, we recover �ies with probability 1.

In general, however, there is no immediate correspondence between the prob-
ability of the implication and the conditional probability. If we set the probability
P (bird(e) ⇒ �ies(e)) to p ∈ ]0; 1], which we can achieve by setting the weight
of the implication to log(p/(3− 3p)) (Eq. 5) or, equivalently, by using the more
explicit group of mutually exclusive formulas

log(p/3) �ies(e)∧ bird(e)
log(p/3) �ies(e)∧ ¬bird(e)
log(p/3) ¬�ies(e)∧ ¬bird(e)
log(1− p) ¬�ies(e)∧ bird(e)

then we obtain c := P (�ies(e) | bird(e)) = (p/3)/(p/3+1−p) = p/(3−2p). This
expression is equal to p only for p = 1 and p = 0.5. For example, if p = 0.7, then
the conditional probability is actually 0.4375.
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Of course, it is possible to set the probability p of the implication such that
it will result in any given conditional probability for c (speci�cally, p/(3− 2p) =
c⇔ p = 3c/(1 + 2c)). However, as is evident from the above reformulation, the
probabilistic implication has bearing not only on the conditional probability of
�ies given bird but also on the marginal distributions of both atoms. For instance,
for p = 1 and p = 0.7, we obtain P (bird(e)) = 1/3 = 0.3 and P (bird(e)) =
7/15 = 0.46 respectively. From the equivalence bird(e) ⇒ �ies(e) ≡ ¬bird(e) ∨
�ies(e), it should be clear that a greater probability of bird(e) ⇒ �ies(e) will
result in a lower probability of bird(e).

Therefore, a probabilistic implication is clearly inappropriate for the repre-
sentation of a conditional probability.4 The probability/weight of an implication
does not correspond to a conditional probability in the general case, and im-
plications have in�uence on the distribution beyond the conditional probability
that was intended to be a�ected.

Fallacy 2: A single implication is su�cient for the representation of proba-

bilistic causal in�uence. Motivated by the top-down view (V1), it might seem
natural to replace the logical in�uence of bird on �ies, which, in a logical model,
might have been represented using the implication ∀e. bird(e)⇒ �ies(e), with a
weighted version of the same formula in an MLN. In other words, it might seem
natural to make the transition from logical to probabilistic knowledge by simply
adding weights to the formulas that are not universally true and thereby make
room for exceptions. Unfortunately, this rather intriguing concept turns out to
be insu�cient if formerly logical dependencies are to be replaced by probabilistic
dependencies.

In the strictly logical case, we want to conclude �ies from bird, i.e. if bird(e)
holds, we expect to recover �ies(e) with probability 1. When we make the transi-
tion to the probabilistic realm, a causal model will need to represent the degree
to which we can conclude �ies from bird and thus represent the conditional prob-
ability P (�ies(e) | bird(e)). As we saw above, the probabilistic implication is a
poor candidate for the representation of this probability.

To determine how to best represent such conditional probabilities, a simple
analysis su�ces. By de�nition, P (�ies(e) | bird(e)) ∝ P (�ies(e) ∧ bird(e)). The
conditional probability is thus concerned with de�ning the degree to which �ies

and bird co-occur. If bird(e) is given as evidence, we need not concern ourselves
with how P (bird(e)) may be modelled, and by attaching a weight to �ies(e) ∧
bird(e), we can establish any ratio between �ies(e)∧bird(e) and ¬�ies(e)∧bird(e).
In particular, the ratio p : 1− p can be established using

log(p/(1− p)) �ies(e) ∧ bird(e),

setting the conditional probability to p. As long as bird(e) is given, we could,
notably, have used the formula �ies(e) ⇒ bird(e) to the same e�ect. Unfortu-
nately, neither formulation leaves the marginal probability of bird(e) unchanged,

4 We are, of course, not the �rst to make this observation, as it essentially follows im-
mediately from the de�nition of the implication. Joseph Y. Halpern has, for instance,
remarked on an analogous issue in his analysis of �rst-order logics of probability [3].
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because both a�ect cases where bird(e) holds and cases where ¬bird(e) holds
asymmetrically. The addition of a causal in�uence (via conditional probabili-
ties) should, however, have no impact on the marginal probability of the cause.
Therefore, we need to �nd weighted formulas that will represent the conditional
probability we want to represent whilst guaranteeing that P (bird(e)) and there-
fore the ratio s(bird(e)) : s(¬bird(e)) (for an arbitrary but �xed e) remains
una�ected. If we consider all the con�gurations of the clique connecting bird(e)
and �ies(e) explicitly, we will have a maximum of �exibility to satisfy these
restrictions.

w1 = log(λ1) �ies(e)∧ bird(e)
w2 = log(λ2) ¬�ies(e)∧ bird(e)
w3 = log(λ3) �ies(e)∧ ¬bird(e)
w4 = log(λ4) ¬�ies(e)∧ ¬bird(e)

In order to represent the conditional probability P (�ies(e) | bird(e)) = p and
thus establish the ratio between s(�ies(e)∧ bird(e)) and s(¬�ies(e)∧ bird(e)) as
p : 1 − p, we can simply set λ1 = p and λ2 = 1 − p. If, prior to the addition
of the four above formulas to our MLN, the model contains no information
about the distribution of �ies(e) and therefore SB := s(�ies(e) ∧ bird(e)) =
s(¬�ies(e)∧ bird(e)) and S¬B := s(�ies(e)∧¬bird(e)) = s(¬�ies(e)∧¬bird(e)),
then s(bird(e)) : s(¬bird(e)) will remain una�ected if λ3 + λ4 = λ1 + λ2, since

s(bird(e))

s(¬bird(e)) =
2 · SB
2 · S¬B

!
=

SBλ1 + SBλ2
S¬Bλ3 + S¬Bλ4

⇔ λ1 + λ2
λ3 + λ4

= 1. (7)

The use of complementary probability values for λ3 and λ4 trivially satis�es the
equation, and the four formulas above will thus collectively represent the entire
conditional distribution of �ies given bird. Therefore, if unwanted side-e�ects are
to be avoided, the representation of a full conditional distribution is perhaps the
most obvious solution.

We can represent a direct factorisation of the full joint, i.e. P (bird(e),�ies(e)) =
P (�ies(e) | bird(e))P (bird(e)), by adding the marginal probability P (bird(e)) =
pb to the model using either 〈bird(e), log(pb/(1− pb))〉 or the mutually exclusive
pair of bird(e) and ¬bird(e) with weights log(pb) and log(1 − pb). In the latter
case, we obtain a model that is completely analogous to a directed model in the
sense that it represents precisely the same factors with Z = 1.

We have now established that, in order to model causal in�uence, the use of
implications is certainly not as helpful as it may, at �rst, have appeared. Indeed,
the semantics of implications do not seem to translate well to the probabilistic
setting. Nevertheless, it is worth noting that it would have been possible to use
implications to achieve precisely the same e�ect as the four conjunctions above.
Speci�cally, the following two transformations are semantically equivalent:

−w1 (w2 + w3 + w4 − 2w1)/3 �ies(e)⇒ ¬bird(e)
−w2 (w1 + w3 + w4 − 2w2)/3 ¬�ies(e)⇒ ¬bird(e)
−w3 (w1 + w2 + w4 − 2w3)/3 �ies(e)⇒ bird(e)
−w4 (w1 + w2 + w3 − 2w4)/3 ¬�ies(e)⇒ bird(e)

26



The second transformation even retains the normalisation constant. However, we
cannot think of a good reason to prefer them � to the contrary: Since implications
are not mutually exclusive, their impact on possible worlds is considerably more
di�cult to interpret.

Syntactic Sugar. From the above considerations, we can draw an important
conclusion: Simply adding weights to the logical formulas we might have used in
the non-probabilistic case is unlikely to be su�cient if probabilistic dependencies
are to be captured to their full extent. While Markov logic networks are a gen-
eralisation of logic that soundly integrates probabilistic semantics, thinking in
logical terms is, for the most part, a hindrance as far as the probabilistic knowl-
edge engineering process is concerned. In fact, we suggest that logical formula-
tions involving (bi)implications be used primarily for the purpose of specifying
hard constraints. We argue that, with regard to probabilistic aspects, formulas
are mere syntactic sugar for the speci�cation of a subset of a clique's con�g-
urations, and whether or not the logical form fosters comprehensibility of the
e�ect of a weighted formula is debatable. In particular, we discourage the use of
implications in probabilistic contexts because implications are typically associ-
ated with a directedness which, in probabilistic settings, may not re�ect the ex-
pected semantics. We argue that the probabilistic counterpart of an implication
is not a probabilistic implication but rather a conditional probability (distribu-
tion). For the representation of non-deterministic features, an implication such
as as bird(e) ⇒ �ies(e) should be used only if the negation bird(e) ∧ ¬�ies(e)
is deemed equally appropriate for the task (where the negated form is perhaps
the more readable alternative). The key question to ask is: Is the set of partial
con�gurations a�ected by an implication truly the one we seek to a�ect or is it
the co-occurrence of antecedent and consequent (as in a conditional probability
statement) we are interested in?

5 Shallow Transfer

As mentioned in the introduction, one of the key ideas of �rst-order probabilistic
languages such as MLNs is to represent models that generalise across domains �
i.e. the principle of shallow transfer. For any particular domain (set of entities),
we, ideally, want the model to generate a speci�c ground model that is �ade-
quate�. In this section, we discuss cases where the transition from one domain
to another can a�ect the distribution in perhaps unexpected ways. In short, the
number of entities may matter signi�cantly.

Invariant properties of distributions across domains. In many scenarios, it is
reasonable to assume that the probability distributions represented by a statis-
tical relational model will possess certain invariants that will hold regardless of
the instantiation. For instance, in the introductory restaurant example, it might,
for instance, be reasonable to expect that the probability of being female should
be 0.5 for all people about whom we do not have any evidence. Indeed, if we as-
sume that the model is to represent a (temporally ordered) generative stochastic
process which �rst generates people along with their gender and subsequently
generates further properties and links to other entities depending on the gender,
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then the probability of being female must remain constant in the absence of
evidence. Similarly, an invariant might exist for the probability of a dish being
vegetarian.

Consider this simpli�ed version of the introductory example,

log(0.25/0.75) vegetarianDish(d)
log(0.15/0.85) vegetarian(p)
(hard) orders(p, d) ∧ vegetarian(p)⇒ vegetarianDish(d)

where the orders predicate is declared as functional (orders(person, dish!), see
footnote 2). As we already know from Section 4, the third formula will have
in�uence on the marginal probability of a dish being vegetarian. Therefore, it
is not surprising to learn the probability will be greater than the probability
0.25 that is indicated by the �rst formula. Perhaps more surprising is the fact
that the in�uence of the hard formula varies with the number of entities in the
domain. For example, the marginal probability of a given dish being vegetarian
is approximately 0.28 for a domain where there are two people and 0.39 for a
domain where there are four people and one dish.

The variations are due to combinatorial e�ects [5]. Without the third for-
mula, if there are NP persons and ND dishes, then there are α(NP , ND) :=
2NP+ND ·NDNP possible worlds with non-zero probability (given that every per-
son consumes exactly one dish). For any pair of possible worlds 〈x, x′〉 where x
and x′ di�er only in the truth value of vegetarianDish(d) for some dish d (x |=
vegetarianDish(d)), ω(x) : ω(x′) = 25 : 75. The inclusion of the hard constraint

causes the probability of δ(NP , ND) :=
∑NP

v=1

(
NP

v

)∑v
m=1

(
v
m

)∑ND

i=1

(
ND

i

)
im(ND−

i)v−mND
NP−v worlds violating the constraint to be set to zero (v is the number

of vegetarians, m is the number of meat-eating vegetarian, and i is the number
of non-vegetarian dishes), such that for some pairs 〈x, x′〉, the ratio ω(x) : ω(x′)
becomes 25 : 0, thus causing worlds with vegetarian dishes to become more
probable. Since the fraction δ(NP , ND)/α(NP , ND) increases as either NP or
ND increases, P (vegetarianDish(d)) varies with the number of people and dishes
accordingly.5

There is, unfortunately, no way of adjusting the parameters of the model such
that it will invariantly compute a �xed marginal probability for vegetarianDish.
Any adjustments made to the weight of the �rst formula will correct the proba-
bility only for a given number of entities.

Moreover, even if we replace the third constraint with the full conditional
distribution of orders given vegetarian and vegetarianDish (which would, by
de�nition, leave the marginals unchanged as explained in Section 4), there will
still be interactions with domain size owing to the constraint that requires exactly
one dish to be consumed by each person. Therefore, in conclusion, there are
probabilistic invariants that simply cannot be represented. Because the notion
of invariants that are to hold in all instantiations is all but far-fetched (any model
of a stochastic process that is causally ordered will typically exhibit invariants),

5 Note that there is an analogous e�ect for the predicate vegetarian. For reasons of
brevity, we leave its analysis to the reader.
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it is a key issue of knowledge engineering, and we deem it essential to be aware
of the rami�cations.

Several concepts have been introduced to address such issues. For instance,
MLNs can be augmented with constraints on formula probabilities, which, in an
online adaptation step, can be used to compute corresponding formula weights
that will satisfy these constraints [5]. In [1], the notion is extended to constraints
on conditional probabilities. Because a computationally expensive online adjust-
ment of parameters may be infeasible, adaptive Markov logic networks were
proposed in order to allow weights to be directly represented as functions of
domain-speci�c parameters, which can be learnt from multiple training databases
encompassing domains of variable size [4].

Parameter learning may not guarantee that shallow transfer will work as

expected. From the analyses above, it should be clear that the manual engi-
neering of MLNs is inherently di�cult. As soon as we depart from the pattern of
modelling marginal and conditional distributions using mutually exclusive and
exhaustive formulas, the interactions between formulas will typically be impossi-
ble to predict intuitively. Learning parameters from data (or even the structure
of the model) is often advisable. However, it is important to realise that learning
may not guarantee that shallow transfer will work as expected. Consider the
following MLN,

w1 w1 + δ vegetarian(p)
w2 w2 vegetarianDish(d)
w3 w3 − δ/ND orders(p, d)∧ vegetarian(p)∧ vegetarianDish(d)
w4 w4 − δ/ND ¬orders(p, d)∧ vegetarian(p)∧ vegetarianDish(d)
w5 w5 − δ/ND orders(p, d)∧ vegetarian(p)∧¬vegetarianDish(d)
w6 w6 − δ/ND ¬orders(p, d)∧ vegetarian(p)∧¬vegetarianDish(d)
w7 w7 orders(p, d)∧¬vegetarian(p)∧ vegetarianDish(d)
w8 w8 ¬orders(p, d)∧¬vegetarian(p)∧ vegetarianDish(d)
w9 w9 orders(p, d)∧¬vegetarian(p)∧¬vegetarianDish(d)
w10 w10 ¬orders(p, d)∧¬vegetarian(p)∧¬vegetarianDish(d)

which is capable of representing a factorisation analogous to a directed model:
The �rst two formulas can represent the marginal distributions of vegetarian and
vegetarianDish, and the remaining formulas can represent the four conditional
distributions of orders given vegetarian and vegetarianDish. For a case where
there are no constraints on the orders relation (such as the requirement that
exactly one dish must be consumed by everyone), this set of of formulas will
allow us to represent invariant marginals for both vegetarian and vegetarianDish

and, by assigning a hard negative weight to the �fth formula and a weight of
0 = log(1.0) to the sixth, it also allows us to represent the �vegetarian constraint�.

However, when learning the weights from data, we will not necessarily recover
the invariants � regardless of the degree to which the empirical frequencies in the
data match the true parameters (and regardless of the number of independent
training databases we may use). This is due to the fact that the learning problem
is often ill-posed [5]. For the above MLN, there is an in�nite number of weight
vectors that represent precisely the same distribution � for a given number of
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entities. In particular, if the number of dishes is ND, then for any δ ∈ R, the
two weight vectors listed above are equivalent and represent precisely the same
distribution over possible worlds. As soon as the number of dishes changes, how-
ever, the distributions will di�er signi�cantly [5]. In our example, the marginal
probability of being a vegetarian will vary widely.

A maximum likelihood learner will have no preference of one weight vector
over the other. By applying a form of regularisation (e.g. using Gaussian 0-
mean priors on the weights as proposed in [7]), we ensure that the optimisation
process returns a unique solution. However, that solution is not necessarily the
one we expect. Indeed, the solution that results can, as far as generalisation
across domains is concerned, be regarded as arbitrary. Hence the soundness
of shallow transfer cannot be taken for granted. Indeed, introducing additional
knowledge in the form of constraints is necessary in order for the learning process
to determine weights that will ultimately represent what is intended. From a
knowledge engineering perspective, this is an important point, for it suggests
that the task of knowledge engineering in MLNs may require considerations
that go beyond the selection of the �right� formulas even when the parameters
are learnt from data.

6 Conclusion

In this paper, we scrutinised a number of knowledge engineering questions that
arise in Markov logic networks (MLNs). While our collection is by no means
complete, we have, nevertheless, addressed many issues that are of high practi-
cal relevance. We described the fundamental semantics of MLNs and explained
the considerations that are necessary for the representation of simple probabilis-
tic properties with MLNs. With the probabilistic implication fallacy, we explic-
itly treated one of the most common sources of error, explaining the inherent
predicament in softening logic as well as its resolution. Finally, we discussed
and summarised conditions under which generalisation across domains can be
problematic even for cases where models are learnt from data.
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Abstract. Probabilistic conditional logic is a knowledge representation
formalism that uses probabilistic conditionals (if-then rules) to model
uncertain and incomplete information. By applying the principle of max-
imum entropy one can reason with a set of probabilistic conditionals in an
information-theoretical optimal way, provided that the set is consistent.
As in other fields of knowledge representation, consistency of probabilis-
tic conditional knowledge bases is hard to ensure if their size increases
or multiple sources contribute pieces of information. In this paper, we
discuss the problem of analyzing and measuring inconsistencies in prob-
abilistic conditional logic by investigating inconsistency measures that
support the knowledge engineer in maintaining a consistent knowledge
base. An inconsistency measure assigns a numerical value to the severity
of an inconsistency and can be used for restoring consistency. Previous
works on measuring inconsistency consider only qualitative logics and
are not apt for quantitative logics because they assess severity of incon-
sistency without considering the probabilities of conditionals. Here, we
investigate continuous inconsistency measures which allow for a more
fine-grained and continuous measurement.

1 Introduction

Inconsistencies arise easily when experts share their beliefs in order to build
a joint knowledge base. Although these inconsistencies often affect only a lit-
tle portion of the knowledge base or emerge from only little differences in the
experts’ beliefs, they cause severe damage. In particular, for knowledge bases
that use classical logic for knowledge representation, inconsistencies render the
whole knowledge base useless, due to the well-known principle ex falso quodlibet.
Therefore reasoning under inconsistency is an important field in knowledge rep-
resentation and reasoning and there are basically two paradigms for approaching
this issue. On the one hand one can live with inconsistencies and develop reason-
ing mechanisms that allow for consistent inference in the presence of inconsistent
information, cf. e. g. paraconsistent and default logics [8]. On the other hand one
can rely on classical inference mechanisms and ensure that knowledge bases are
consistent, cf. e. g. approaches to belief revision and information fusion [2]. In
this paper we employ probabilistic conditional logic [5] for knowledge represen-
tation. The basic notion of probabilistic conditional logic is that of a probabilistic
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conditional which has the form (ψ |φ)[d] with the commonsense meaning “if φ
is true then ψ is true with probability d”. A popular choice for reasoning with
sets of probabilistic conditionals is model-based inductive reasoning based on the
principle of maximum entropy [6, 5]. However, a prerequisite for applying this
principle is the consistency of the set, i. e. the existence of at least one probability
function that satisfies all probabilistic conditionals.

In this paper we investigate the issue of inconsistency in probabilistic condi-
tional logic from an analytical perspective. One way to analyze inconsistencies
is by measuring them. For the framework of classical logic, several approaches
to analyze and measure inconsistency have been proposed—see e. g. [3]—and
it is straightforward to apply those measures to the framework of probabilistic
conditional logic [11]. However, those approaches do not grasp the nuances of
probabilistic knowledge and allow only for a very coarse assessment of the sever-
ity of inconsistencies. In particular, those approaches do not take the crucial role
of probabilities into account and exhibit a discontinuous behavior in measuring
inconsistency. That is, a slight modification of the probability of a conditional
in a knowledge base may yield a discontinuous change in the value of the in-
consistency. In this paper, we consider measuring inconsistency in probabilistic
conditional logic and continue previous work [10] in several aspects. First, we
propose several novel principles for inconsistency measurement. Second, we pick
up an extended logical formalization [7] of the inconsistency measure proposed
in [10] and define a family of inconsistency measures based on minimizing the
p-norm distance of a knowledge base to consistency. Third, we propose a novel
compound measure that solves an issue with the previous measure and investi-
gate its properties.

The rest of this paper is organized as follows. In Sec. 2 we give a brief overview
on probabilistic conditional logic and continue in Sec. 3 with presenting a set of
rationality postulates for continuous inconsistency measurement. We propose a
family of inconsistency measures and a compound measure in Sec. 4 and analyze
their properties in Sec. 5. We briefly review related work in Sec. 6 and conclude
with a summary in Sec. 7.

2 Probabilistic Conditional Logic

Let At be a propositional signature, i. e. a finite set of propositional atoms. Let
L(At) be the corresponding propositional language generated by the atoms in At
and the connectives ∧ (and), ∨ (or), and ¬ (negation). For φ, ψ ∈ L(At) we ab-
breviate φ ∧ ψ by φψ and ¬φ by φ. The symbols > and ⊥ denote tautology and
contradiction, respectively. We use possible worlds, i. e. syntactical representa-
tions of truth assignments, for interpreting sentences in L(At). A possible world
ω is a complete conjunction, i. e. a conjunction that contains for each a ∈ At
either a or ¬a. Let Ω(At) denote the set of all possible worlds. A possible world
ω ∈ Ω(At) satisfies an atom a ∈ At, denoted by ω |= a if and only if a positively
appears in ω. The entailment relation |= is extended to arbitrary formulas in
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L(At) in the usual way. Formulas ψ, φ ∈ L(At) are equivalent, denoted by φ ≡ ψ,
if and only if ω |= φ whenever ω |= ψ for every ω ∈ Ω(At).

The central notion of probabilistic conditional logic [5] is that of a probabilistic
conditional.

Definition 1. If φ, ψ ∈ L(At) with d ∈ [0, 1] then (ψ |φ)[d] is called a proba-
bilistic conditional.

A probabilistic conditional c = (ψ |φ)[d] is meant to describe a probabilistic
if-then rule, i. e., the informal interpretation of c is that “If φ is true then ψ
is true with probability d” (see below). If φ ≡ > we abbreviate (ψ |φ)[d] by
(ψ)[d]. Further, for c = (ψ |φ)[d] we denote with head(c) = ψ the head of c, with
body(c) = φ the body of c, and with prob(c) = d the probability of c. Let C(L(At))
denote the set of all probabilistic conditionals with respect to L(At).

Definition 2. A knowledge base K is an ordered finite multi-subset of C(L(At)),
i. e. it holds that K = 〈c1, . . . , cn〉 for some c1, . . . , cn ∈ C(L(At)).

We impose an ordering on the conditionals in a knowledge base K only for tech-
nical convenience. The order can be arbitrary and has no further meaning other
than to enumerate the conditionals of a knowledge base in an unambiguous way.
For similar reasons we allow a knowledge base to contain the same probabilis-
tic conditional more than once. We come back to the reasons for these design
choices later. For knowledge bases K = 〈c1, . . . , cn〉, K′ = 〈c′1, . . . , c′m〉 and a
probabilistic conditional c we define c ∈ K via c ∈ {c1, . . . , cn}, K ⊆ K′ via
{c1, . . . , cn} ⊆ {c′1, . . . , c′m}, and K = K′ via {c1, . . . , cn} = {c′1, . . . , c′m}. The
union of belief bases is defined via concatenation.

Semantics are given to probabilistic conditionals by probability functions on
Ω(At). Let F denote the set of all probability functions P : Ω(At) → [0, 1]. A
probability function P ∈ F is extended to formulas φ ∈ L(At) via

P (φ) =
∑

ω∈Ω(At),ω|=φ
P (ω) .

If P ∈ F then P satisfies a probabilistic conditional (ψ |φ)[d], denoted by P |=pr

(ψ |φ)[d], if and only if P (ψφ) = dP (φ). Note that we do not define probabilistic
satisfaction via P (ψ |φ) = P (ψφ)/P (φ) = d in order to avoid a case differentiation
for P (φ) = 0, cf. [6]. A probability function P satisfies a knowledge base K (or
is a model of K), denoted by P |=pr K, if and only if P |=pr c for every c ∈ K.
Let Mod(K) be the set of models of K. If Mod(K) = ∅ then K is inconsistent.

Example 1. Consider the knowledge base

K = 〈(f | b)[0.9], (b | p)[1], (f | p)[0.1]〉

with the intuitive meaning that birds (b) usually (with probability 0.9) fly (f),
that penguins (p) are always birds, and that penguins usually do not fly (only
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with probability 0.1). The knowledge base K is consistent as for e. g. P ∈ F with

P (bfp) = 0.005 P (bfp) = 0.49 P (bfp) = 0.045 P (bfp) = 0.01

P (bfp) = 0.0 P (bfp) = 0.2 P (bfp) = 0.0 P (bfp) = 0.25

it holds that P |=pr K as e. g. P (b) = P (bfp)+P (bfp)+P (bfp)+P (bfp) = 0.55
and P (bf) = P (bfp) + P (bfp) = 0.495 and therefore P (f | b) = P (bf)/P (b) = 0.9.

A probabilistic conditional (ψ |φ)[d] is normal if and only if there are ω, ω′ ∈
Ω(At) with ω |= ψφ and ω′ |= ψφ.1 In other words, a probabilistic conditional c
is normal if it is satisfiable but not tautological.

Example 2. The probabilistic conditionals c1 = (> | a)[1] and c2 = (a | a)[0.1] are
not normal as c1 is tautological (there is no ω ∈ Ω(At) with ω |= >a as >a ≡⊥)
and c2 is not satisfiable (there is no ω ∈ Ω(At) with ω |= aa as aa ≡⊥)

As a technical convenience, for the rest of this paper we consider only normal
probabilistic conditionals, so let K be the set of all knowledge bases of C(L(At))
that contain only normal probabilistic conditionals.

Proposition 1. If (ψ |φ)[d] is normal then (ψ |φ)[x] is normal for every x ∈
[0, 1].

The proof of the above proposition is easy to see as the definition of normality
does not depend on the probability of a conditional.

Knowledge bases K1,K2 are extensionally equivalent, denoted by K1 ≡e K2,
if and only if Mod(K1) = Mod(K2). Note that the notion of extensional equiva-
lence does not distinguish between inconsistent knowledge bases, i. e. for incon-
sistent K1 and K2 it always holds that K1 ≡e K2. Consequently, we also consider
another equivalence relation for knowledge bases. Knowledge bases K1,K2 are
semi-extensionally equivalent, denoted by K1 ≡s K2, if and only if there is a
bijection ρK1,K2 : K1 → K2 such that c ≡e ρK1,K2(c) for every c ∈ K1. Note that
K1 ≡s K2 implies K1 ≡e K2 but the other direction is not true in general.

Example 3. Consider the two knowledge bases K1 = 〈(a)[0.7], (a)[0.4]〉 and K2 =
〈(b)[0.8], (b)[0.3]〉. Both K1 and K2 are inconsistent and therefore K1 ≡e K2. But
it holds that K1 6≡s K2 as both (a)[0.7] 6≡e (b)[0.8] and (a)[0.7] 6≡e (b)[0.3].

One way for reasoning with knowledge bases is by using model-based inductive
reasoning techniques [6]. For example, reasoning based on the principle of max-
imum entropy selects among the models of a knowledge base K the one unique
probability function with maximum entropy. Reasoning with this model satisfies
several commonsense properties, see e. g. [6, 5]. However, a necessary require-
ment for the application of model-based inductive reasoning techniques is the
existence of at least one model of a knowledge base. In order to reason with
inconsistent knowledge bases the inconsistency has to be resolved first. In the
following, we discuss the topic of inconsistency measurement for probabilistic
conditional logic as inconsistency measures can support the knowledge engineer
in the task of resolving inconsistency.

1 I thank an anonymous reviewer for pointing this formalization out to me.
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3 Principles for Inconsistency Measurement

An inconsistency measure I is a function that maps a (possibly inconsistent)
knowledge base onto a positive real value, i. e. a function I : K → [0,∞). The
value I(K) for a knowledge base K is called the inconsistency value for K with
respect to I. Intuitively, we want I to be a function on knowledge bases that
is monotonically increasing with the inconsistency in the knowledge base. If
the knowledge base is consistent, I shall be minimal. In order to formalize this
intuition we give a list of principles that should be satisfied by any reasonable
inconsistency measure. For that we need some further notation.

Definition 3. A set M is minimal inconsistent if M is inconsistent and every
M′ (M is consistent.

Let MI(K) be the set of the minimal inconsistent subsets of K.

Example 4. Consider the knowledge base K = 〈(a)[0.3], (b)[0.5], (a ∧ b)[0.7]〉.
Then the set of minimal inconsistent subsets of K is given via

MI(K) = { {(a)[0.3], (a ∧ b)[0.7]}, {(b)[0.5], (a ∧ b)[0.7]} } .

The notion of minimal inconsistent subsets captures those conditionals that are
responsible for creating inconsistencies. Conditionals that do not take part in
creating an inconsistency are free.

Definition 4. A probabilistic conditional c ∈ K is free in K if and only if c /∈M
for all M∈ MI(K).

For a conditional or a knowledge base C let At(C) denote the set of atoms
appearing in C.

Definition 5. A probabilistic conditional c ∈ K is safe in K if and only if
At(c) ∩ At(K \ c) = ∅.

Note that the notion of safeness is due to Hunter and Konieczny [4]. The notion
of a free conditional is clearly more general than the notion of a safe conditional.

Proposition 2. If c is safe in K then c is free in K.

The proof of Proposition 2 can be found in [11].

Definition 6. Let K ∈ K be a knowledge base with K = 〈c1, . . . , cn〉 and ci =
(ψi |φi)[di] for i = 1, . . . , n. The function ΛK : [0, 1]n → K with ΛK(x1, . . . , xn) =
〈(ψ1 |φ1)[x1], . . . , (ψn |φn)[xn]〉 is called the characteristic function of K.

Due to Proposition 1 the function ΛK is well-defined. The above definition is
also the justification for imposing an order on the probabilistic conditionals of a
knowledge base.
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Definition 7. Let I be an inconsistency measure and let K be a knowledge
base. The function θI,K : [0, 1]|K| → [0,∞) with θI,K = I ◦ ΛK is called the
characteristic inconsistency function of I and K.

Consider now the following properties from [10]. Let K,K′ be knowledge bases
and c a probabilistic conditional.

Consistency. K is consistent if and only if I(K) = 0
Monotonicity. I(K) ≤ I(K ∪ {c})
Super-additivity. If K ∩ K′ = ∅ then I(K ∪ K′) ≥ I(K) + I(K′)
Weak independence. If c ∈ K is safe in K then I(K) = I(K \ {c})
Independence. If c ∈ K is free in K then I(K) = I(K \ {c})
Penalty. If c ∈ K is not free in K then I(K) > I(K \ {c})
Continuity. θI,K is continuous

The property consistency demands that I(K) is minimal for consistent K. The
properties monotonicity and super-additivity demand that I is non-decreasing
under the addition of new information. The properties weak independence and
independence say that the inconsistency value should stay the same when adding
“harmless” information. The property penalty is the counterpart of independence
and demands that adding inconsistent information increases the inconsistency
value. The final property continuity describes our main demand for continuous
inconsistency measurement, i. e., a “slight” change in the knowledge base should
not result in a “vast” change of the inconsistency value.

We also consider the following novel properties. If f is a function f : [0, 1]n →
[0,∞) then ∇f : K → Rn with ∇f(x1, . . . , xn) = (∂f/∂x1, . . . , ∂f/∂xn) is its
gradient with partial derivatives ∂f/∂x1, . . . , ∂f/∂xn. There, K ⊆ [0, 1]n is the
subset of the domain of f where f is differentiable with respect to all directions.

Irrelevance of syntax. If K1 ≡s K2 then I(K1) = I(K2)
MI-separability. If MI(K1 ∪ K2) = MI(K1) ∪MI(K2) and MI(K1) ∩MI(K2) = ∅

then I(K1 ∪ K2) = I(K1) + I(K2)
Differentiability. θI,K is differentiable in (0, 1)|K|

Weak differentiability. θI,K is differentiable almost everywhere in (0, 1)|K|

Sub-linearity. Im ∇θI,K ⊆ [−1, 1]|K|

We define the property irrelevance of syntax in terms of the equivalence relation
≡s as all inconsistent knowledge bases are equivalent with respect to ≡e. For
an inconsistency measure I, imposing irrelevance of syntax to hold in terms of
≡e would yield I(K) = I(K′) for every two inconsistent knowledge bases K,K′.
The property MI-separability—which has been adapted from [3]—states that
determining the value of I(K1 ∪K2) can be split into determining the values of
I(K1) and I(K2) if the minimal inconsistent subsets of K1 ∪K2 are partitioned
by K1 and K2. The property differentiability strengthens the property continuity
and expects I to behave even more smoothly. The property weak differentiability
allows I to be non-differentiable on a null set. Finally, the property sub-linearity
demands that the value I(K) changes at most linearly in the change of K. This
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means, for example, that if one changes the probability of a conditional in K by
some value α, then the difference between the corresponding values of I should
not be more than α.

Some relationships between the above properties are as follows.

Proposition 3. Let I be an inconsistency measure and let K,K′ be some knowl-
edge bases.

1. If I satisfies super-additivity then I satisfies monotonicity.
2. If I satisfies independence then I satisfies weak independence.
3. If I satisfies MI-separability then I satisfies independence.
4. If I satisfies differentiability then I satisfies continuity.
5. If I satisfies differentiability then I satisfies weak differentiability.
6. K ⊆ K′ implies MI(K) ⊆ MI(K′).
7. If I satisfies independence then MI(K) = MI(K′) implies I(K) = I(K′).
8. If I satisfies independence and penalty then MI(K) ( MI(K′) implies I(K) <
I(K′).

The proofs of 1.)-3.) and 6.)-8.) can be found in [11]. The proofs of 4.) and 5.)
are obvious.

Previous research on inconsistency measurement focuses on inconsistency
measurement on propositional logic, see e. g. [3]. Adopting those measures for
probabilistic conditional logic is straightforward [11]. For example, consider the
following definition.

Definition 8. The function I# : K → [0,∞) defined via I#(K) = |MI(K)| is
called the MI cardinality measure.

The MI cardinality measure determines the inconsistency value of a knowledge
base K as the number of minimal inconsistent subsets of K.

Example 5. We continue Ex. 4. There it holds that I#(K) = 2.

Although I# is a rather simple inconsistency measure it already complies with
many principles.

Proposition 4. The function I# satisfies consistency, monotonicity, super-
additivity, weak independence, independence, MI-separability, and penalty.

The proof of Proposition 4 can be found in [11]. However, as the following exam-
ple shows, the MI cardinality measure—and other inconsistency measures that
were developed for propositional logic—does not satisfy continuity which is a
major drawback for the probabilistic setting.

Example 6. Consider the knowledge base K = 〈(b | a)[1], (a)[1], (b)[0]〉 which
models strongly inconsistent information. Clearly, it holds that I#(K) = 1.
Consider now the two modifications K′,K′′ of K given via

K′ = 〈(b | a)[0.6], (a)[0.6], (b)[0.3599]〉
K′′ = 〈(b | a)[0.6], (a)[0.6], (b)[0.36]〉 .
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It is also clear that I#(K′) = 1 and I#(K′′) = 0. By comparing K′ and K′′ one
can discover only a minor difference of the modeled knowledge. From a practical
point of view, whether b has probability 0.3599 or 0.36 may not matter for the
intended application. Still, a knowledge engineer may not grasp the harmlessness
of the inconsistency in K′ as K′ and K have the same inconsistency value.

In the following, we discuss inconsistency measures that are more apt for the
probabilistic setting.

4 Measuring Inconsistency by Distance Minimization

As can be seen in Ex. 6 the probabilities of conditionals play a crucial role in
creating inconsistencies. In order to respect this role we propose a family of
inconsistency measures that is based on the distance to consistency. Afterwards
we propose a compound measure that uses this measure and behaves well with
the desired properties.

Before defining the measure we need some further notation. Knowledge bases
K1,K2 are qualitatively equivalent, denoted by K1

∼=q K2, if and only if there is
a bijection σK1,K2 : K1 → K2 such that body(c) ≡ body(σ(c)) and head(c) ∧
body(c) ≡ head(σ(c)) ∧ body(σ(c)) for every c ∈ K1. Note that the function
σK1,K2

might not be uniquely determined.

Example 7. Consider the knowledge bases K1 = 〈(a)[0.2], (a)[0.8]〉 and K2 =
〈(a)[0.3], (a)[0.9]〉. It holds that K1

∼=q K2 but there are two bijections σ1
K1,K2

and σ2
K1,K2

given via

σ1
K1,K2

((a)[0.2]) = (a)[0.3] σ1
K1,K2

((a)[0.8]) = (a)[0.9]

σ2
K1,K2

((a)[0.2]) = (a)[0.9] σ1
K1,K2

((a)[0.8]) = (a)[0.3]

that establish the qualitative equivalence of K1 and K2.

If K1
∼=q K2 let SK1,K2

be the set of bijections between K1 and K2 with the
above property. Note that SK1,K2 is finite as both K1 and K2 are finite. Let N+

denote the set of positive integers.

Definition 9. Let K1,K2 be some knowledge bases and let p ∈ N+. Then the
p-norm distance dp(K1,K2) of K1 to K2 is defined via

dp(K1,K2) =





min
σ∈SK1,K2

{
p

√∑
c∈K1

|prob(c)− prob(σ(c))|p
}

if K1
∼=q K2

∞ otherwise
.

Note that dp is indeed a distance measure, i. e., it is positive definite, symmetric,
and satisfies the triangle inequality. This measure assigns an infinite distance to
two knowledge bases K1,K2 iff K1,K2 are not qualitatively equivalent. Otherwise
it is equivalent to the standard p-norm distance by interpreting probabilities of
conditionals as coordinates and selecting a bijection σ ∈ SK1,K2

that minimizes
this distance.
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Example 8. For K1 and K2 as given in Ex. 7 it holds that d1(K1,K2) = 0.2 and
d2(K1,K2) ≈ 0.1414. Note that σ1

K1,K2
is used for determining dp(K1,K2) as

σ2
K1,K2

yields values 1.2 and ≈ 0.8602, respectively.

The following definition has been rephrased from [10, 7].

Definition 10. Let K be a knowledge base and let p ∈ N+. Then define the
dp-measure Ip via

Ip(K) = min{dp(K,K′) | K′ consistent} (1)

for a knowledge base K.

The value Ip(K) is the minimal distance to a knowledge base K′ that is both
qualitatively equivalent to K and consistent. Now we can also justify repre-
senting knowledge bases as multi-sets. Considering the knowledge base K =
〈(a)[0.2], (a)[0.6]〉, it holds that K′ = 〈(a)[0.4], (a)[0.4]〉 minimizes the p-norm
distance to K.

The above definition presupposes that the minimum in Equation (1) exists.
The following proposition shows that this is indeed the case.

Proposition 5. The function Ip is well-defined.

Proof. Let K = 〈(ψ1 |φ1)[d1], . . . , (ψn |φn)[dn]〉 be a knowledge base and let P0

be the uniform probability function on Ω(At), i. e, it holds that P0(ω) = 1/|Ω(At)|
for every ω ∈ Ω(At) (note that Ω(At) is finite as At is finite). Let K′ be the
knowledge base defined via

K′ = 〈(ψ1 |φ1)[P0(ψ1 |φ1)], . . . , (ψn |φn)[P0(ψn |φn)]〉

As P0 is a positive probability function and every c ∈ K is normal it follows that
K′ is well-defined and P0 |=pr K′. As K ∼=q K′ it follows that Ip(K) is finite.
Furthermore, observe that the set

DK = {〈x1, . . . , xn〉 | 〈(ψ1 |φ1)[x1], . . . , (ψn |φn)[xn]〉 is consistent }

is compact (bounded and closed) as probabilistic satisfaction is defined via the
equation P (ψφ) = dP (φ) (for a probabilistic conditional (ψ |φ)[d]). As the func-
tional mapping

〈x1, . . . , xn〉 7→ p
√
|d1 − x1|p + . . .+ |dn − xn|p

is continuous it follows that the set {dp(K,K′) | K′ consistent} is closed. There-
fore, the minimum of this set and the value of Ip is well-defined. ut

In [7] it has been shown that for every p, p′ ∈ N+ with p 6= p′ the two measures
Ip and Ip′ are not equivalent, i. e., there are knowledge bases K1 and K2 such
that Ip(K1) > Ip(K2) but Ip′(K1) < Ip′(K2).
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Example 9. We continue Ex. 6. There, the knowledge base K∗ = 〈(b | a)[1],
(a)[0.5], (b)[0.5]〉 satisfies Ip(K) = dp(K,K∗) for every p. In particular, it holds
that Ip(K) = p

√
2 · 0.5p. For example, it holds that I1(K) = 1 and I2(K) ≈ 0.707.

Furthermore, it holds that I1(K′) = 0.0001 and I2(K′) ≈ 0.00006, and clearly
I1(K′′) = I2(K′′) = 0.

We also propose the following compound measure that explicitly considers the
crucial role of minimal inconsistent subsets.

Definition 11. Let K be a knowledge base and let I be an inconsistency mea-
sure. Then define the MI-measure IIMI(K) of K and I via

IIMI(K) =
∑

M∈MI(K)
I(M) .

The MI-measure is defined as the sum of the inconsistency values of all mini-
mal inconsistent subsets of the knowledge base under consideration. In the next
section, we investigate the properties of the measures proposed above.

5 Analysis and Comparison

We first investigate the properties of the dp-measure. We can extend a result
from [10] as follows.

Theorem 1. If p ∈ N+ then Ip satisfies consistency, monotonicity, weak inde-
pendence, independence, irrelevance of syntax, continuity, weak differentiability,
and sub-linearity.

Proof.

Consistency. As K is consistent and dp(K,K) = 0 it follows directly Ip(K) = 0.
Monotonicity. Let K = 〈c1, . . . , cn〉 and let K′ be consistent and dp(K,K′) =
Ip(K). Let furthermore σK,K′ ∈ SK1,K2

be the bijection used to determine
dp(K,K′). It follows that K′′ = K′ \ {σK,K′(cn)} is consistent as well and
K \ {cn} ∼=q K′′. It follows that Ip(K \ {cn}) ≤ dp(K \ {cn},K′′). Setting
ai = |prob(ci)− prob(σK,K′(ci))| for i = 1, . . . , n we get

Ip(K) = dp(K,K′) = p

√
ap1 + . . .+ apn

≥ p

√
ap1 + . . .+ apn−1 = dp(K \ {c},K′′) ≥ Ip(K \ {cn})

Independence. In [11] it has been shown that Ip for p = 1 satisfies indepen-
dence. This result can be extended to arbitrary p in a straightforward fashion.

Irrelevance of syntax. Let K1 and K2 be knowledge bases with K1 ≡s K2. Let
K′1 be consistent such that Ip(K1) = dp(K1,K′1). It follows that K1

∼=q K′1.
As K1 ≡s K2 there is a consistent K′2 such that K′1 ≡s K′2 and K2

∼=q K′2.
It follows that Ip(K2) ≤ dp(K2,K′2) = dp(K1,K′1) = Ip(K1). Similarly we
obtain Ip(K1) ≤ Ip(K2) and therefore the claim.
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Continuity. In [11] it has been shown that Ip for p = 1 satisfies continuity.
This result can be extended to arbitrary p in a straightforward fashion.

Weak differentiability. We only give a proof sketch for weak differentiability.
Let ~x ∈ (0, 1)|K| such that there is an open ε-ball Bε with ~x ∈ Bε and
θIp,K(~y) > 0 for every ~y ∈ Bε. Then θIp,K is differentiable on Bε as the p-
norm distance is a differentiable function if the distance does not equal zero.
Furthermore, let now ~x ∈ (0, 1)|K| be such that there is an open ε-ball Bε with
~x ∈ Bε and θIp,K(~y) = 0 for every ~y ∈ Bε. Then θIp,K is differentiable on Bε
as it is a constant function. Note furthermore that the set C ⊆ (0, 1)|K| such
that for every ~y ∈ C it holds that θIp,K(~y) = 0 is the finite union of pair-wise
disjoint closed convex sets F1, . . . , Fm, cf. [11]. Without loss of generality,
let F1, . . . , Fk with k ≤ m be the sets with dimension |K| and Fk+1, . . . , Fm
be the sets with a dimension less than |K|. Let bd S denote the boundary of
a set S. Note that bd Fi has dimension |K|− 1 for i = 1, . . . , k. Then the set
F = bd F1 ∪ . . . bd Fk ∪ Fk+1 ∪ . . . Fm is a null set in (0, 1)|K| and θIp,K is
differentiable on (0, 1)|K| \ F .

Sub-linearity. We only give a proof sketch for sub-linearity. Let K be the knowl-
edge base K = 〈(ψ1 |φ1)[d1], . . . , (ψn |φn)[dn]〉 and let ~x ∈ [0, 1]|K| such that
θI,K is differentiable in ~x = (x1, . . . , xn). Note that

(
p
√
g(x)

)′
=

1

p

1

g(x)p−1
g′(x)

for differentiable g and that |(|x|)′| = 1 for x 6= 0. Then consider the function

f(~x) = p
√
|d1 − x1|p + . . .+ |dn − xn|p (2)

and the following bound on the absolute value of its partial derivatives (i =
1, . . . , n)

∣∣∣∣
∂f

∂xi

∣∣∣∣ =

∣∣∣∣∣∣∣
1

p

1
(

p
√
|d1 − x1|p + . . .+ |dn − xn|p

)p−1 · p · |di − xi|p−1
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣

(
|di − xi|

p
√
|d1 − x1|p + . . .+ |dn − xn|p

)p−1∣∣∣∣∣∣

=

∣∣∣∣∣∣

(
p

√
|di − xi|p

|d1 − x1|p + . . .+ |dn − xn|p

)p−1∣∣∣∣∣∣
≤ 1

The above means that dp(K,K′) is sub-linear in K′ for fixed K. Assume now
that there is an open ε-ball Bε with ~x ∈ Bε and θIp,K(~y) > 0 for every
~y ∈ Bε. Then |∂θIp,K/∂xi| ≤ 1 directly from above (as θIp,K behaves like f in
the worst case). Furthermore, let now ~x ∈ (0, 1)|K| be such that there is an
open ε-ball Bε with ~x ∈ Bε and θIp,K(~y) = 0 for every ~y ∈ Bε. Then clearly
|∂θIp,K/∂xi| = 0 ≤ 1.
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Due to Proposition 3 it also follows that Ip satisfies weak independence. ut

Note that Ip does not satisfy differentiability in general as the following example
shows.

Example 10. Consider the knowledge base K = 〈(a)[0.7], (a)[0.3]〉. It is easy to
see that e. g. θI1,K(x, y) = |x− y|. In particular, it holds that θI1,K(x, y) = 0 if
and only if x = y. It also also quite clear that the absolute value |x| is continuous
for all x but only differentiable for x 6= 0.

However, for p > 1 we can strengthen Theorem 1 as follows.

Theorem 2. If p ∈ N+ and p > 1 then Ip satisfies differentiability.

We omit the proof of the above theorem due to space restrictions but note that
this follows from the differentiability of the p-norm distance for p > 1. Observe
that Ip does not satisfy penalty which has been mistakenly claimed in [10].
Consider the following counterexample.

Example 11. Consider the knowledge base K = 〈(a)[0.7], (a)[0.3]〉 and the prob-
abilistic conditional (a)[0.5]. Then (a)[0.5] is not free in K′ = K ∪ {(a)[0.5]} as
{(a)[0.3], (a)[0.5]} ∈ MI(K′). However, it holds that I1(K) = I1(K′) = 0.4—as
〈(a)[0.5], (a)[0.5]〉 has minimal distance to K and 〈(a)[0.5], (a)[0.5], (a)[0.5]〉 has
minimal distance to K′—which violates penalty.

In [11] it has been show that Ip for p = 1 also satisfies MI-separability and super-
additivity. This is not true for arbitrary values of p as the following example
shows.

Example 12. Let K = 〈(a)[0.3], (a)[0.7], (b)[0.3], (b)[0.7]〉. It is easy to see that
I2(K) =

√
0.22 + 0.22 + 0.22 + 0.22 = 0.4. It also holds that

I2(〈(a)[0.3], (a)[0.7]〉) = I2(〈(b)[0.3], (b)[0.7]〉) =
√

0.22 + 0.22 ≈ 0.283 .

It follows that

I2(K) < I2(〈(a)[0.3], (a)[0.7]〉) + I2(〈(b)[0.3], (b)[0.7]〉)

violating super-additivity and MI-separability as 〈(a)[0.3], (a)[0.7]〉 and 〈(b)[0.3],
(b)[0.7]〉 partition the set of minimal inconsistent subsets of K.

We now have a look at the properties of the MI-measure.

Theorem 3. Let I be an inconsistency measure.

1. IIMI satisfies monotonicity, super-additivity, weak independence, indepen-
dence, and MI-separability.

2. If I satisfies consistency then IIMI satisfies consistency and penalty.
3. If I satisfies irrelevance of syntax then IIMI satisfies irrelevance of syntax.
4. If I satisfies continuity then IIMI satisfies continuity.
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5. If I satisfies differentiability then IIMI satisfies differentiability.
6. If I satisfies weak differentiability then IIMI satisfies weak differentiability.

Proof.

1. We first show that IIMI satisfies super-additivity. If K∩K′ = ∅ then it holds
that MI(K) ∩MI(K′) = ∅ as well. Due to 6.) in Proposition 3 it follows that
MI(K) ∪MI(K′) ⊆ MI(K ∪ K′). It follows

IIMI(K ∪ K′) =
∑

M∈MI(K∪K′)

I(M) ≥
∑

M∈MI(K)
I(M) +

∑

M∈MI(K′)

I(M)

= IIMI(K) + IIMI(K′) .

Due to 1.) in Proposition 3 it also follows that IIMI satisfies monotonicity. We
now show that IIMI satisfies MI-separability. Let MI(K∪K′) = MI(K)∪MI(K′)
and MI(K) ∩MI(K′) = ∅. Then clearly

IIMI(K ∪ K′) =
∑

M∈MI(K∪K′)

I(M) =
∑

M∈MI(K)
I(M) +

∑

M∈MI(K′)

I(M)

= IIMI(K) + IIMI(K′) .

Due to 2.) and 3.) in Proposition 3 it also follows that IIMI satisfies indepen-
dence and weak independence.

2. We first show that IIMI satisfies consistency. If K is consistent then MI(K) =
∅ and IIMI(K) = 0. If K is inconsistent then there is a M ∈ MI(K) and
as I satisfies consistency it follows that I(M) > 0. Hence, IIMI(K) > 0 as
well. We now show that IIMI satisfies penalty. Let c ∈ K be a probabilistic
conditional that is not free in K. Due to 6.) in Proposition 3 it follows that
MI(K \ {c}) ⊆ MI(K). As c /∈ K \ {c} and there is at least one M ∈ MI(K)
with c ∈ M it follows that MI(K \ {c}) ( MI(K). As I satisfies consistency
it follows that I(M) > 0 and therefore IIMI(K \ {c}) < IIMI(K).

3. Let it hold that K1 ≡s K2. It follows that for every M ∈ MI(K1) there is
M′ ∈ MI(K2) with M ≡s M′, and vice versa. As I satisfies irrelevance
of syntax it follows that I(M) = I(M′) for every M ∈ MI(K1). Hence, it
holds that IIMI(K1) =

∑
M∈MI(K1)

I(M′) =
∑
M′∈MI(K2)

I(M′) = IIMI(K2).

4. It is easy to see that θIIMI,K is given via θIIMI,K =
∑
M∈MI(K) θI,M (given an

adequate ordering of the conditionals in K). It follows directly, that θIIMI,K is

continuous if θI,M is continuous for every M ∈ MI(K), i. e., if I satisfies
continuity.

5. This holds due to the same argument used in 4.).
6. This holds due to the same argument used in 4.). ut

As one can see the MI-measure behaves very well with respect to our rationality
postulates and even satisfies penalty, provided that the inner measure satisfies
consistency.
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Example 13. We continue Ex. 11. There it is II1MI (K) = Ip(K) = 0.4 but

II1MI (K′) = I1(〈(a)[0.7], (a)[0.3]〉) + I1(〈(a)[0.7], (a)[0.5]〉)
+ I1(〈(a)[0.3], (a)[0.5]〉) = 0.4 + 0.2 + 0.2 = 0.8 .

Therefore, the addition of the conditional (a)[0.5] is penalized by II1MI .

The following corollary is a direct application of Theorems 1 and 3.

Corollary 1. If p ∈ N+ then IIpMI satisfies consistency, monotonicity, super-
additivity, weak independence, independence, MI-separability, penalty, irrele-
vance of syntax, continuity, and weak differentiability. If p > 1 then IIpMI also
satisfies differentiability.

Note that IIpMI does not satisfy sub-linearity in general. Consider the following
counterexample.

Example 14. Consider the knowledge baseK = 〈(a)[0.7], (a)[0.3], (¬a)[0.7]〉. Note
that for x, y, z ∈ [0, 1] there are three (potential) minimal inconsistent sub-
sets of ΛK(x, y, z): {(a)[x], (a)[y]}, {(a)[x], (¬a)[z]}, {(a)[y], (¬a)[z]}. Then θI1,K
amounts to θI1,K(x, y, z) = |x− y|+ |1− x− z|+ |1− y− z|. For x = y = 0 and
z = 1 we get θI1,K(x, y, z) = 0 and for x = y = z = 0 we get θI1,K(x, y, z) = 2.
It follows that the absolute value of the partial derivation of θI1,K with respect
to the third coordinate has to be larger than 1 for at least one point.

6 Related Work

The work reported in this paper is based on results from [10, 7]. We extended the
investigation of measuring inconsistency from [10] by introducing several novel
rationality postulates, the MI-measure, and the resulting technical discussion.
The dp-measure has been proposed initially in [10] for p = 1 and extended to
arbitrary values for p in [7]. The work [7] also contains an in-depth discussion of
the dp measure in terms of (among others) applicability and computability. The
work [7] also defines probabilistic satisfaction via P (ψ |φ) = d which requires a
more careful treatment of the case P (φ) = 0 and the necessity of introducing
infinitesimal inconsistency values. However, in [7] no evaluation of the dp-measure
in terms of rationality postulates is given.

The work [1] also investigates the problem of reasoning in inconsistent prob-
abilistic knowledge bases. There, reasoning based on the principle of maximum
entropy is extended to be applicable on inconsistent knowledge bases. By doing
so one eliminates the need for restoring consistency. Furthermore, [1] also pro-
poses a continuous inconsistency measure which rests on the notion of candidacy
functions, a “fuzzy” extension of probability functions. A thorough comparison
of the measure of [1] with our approach is outside the scope of this paper but
we refer to [11] for a comparison with the d1-measure. However, note that the
measure of [1] does not satisfy super-additivity.
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In [9] another continuous inconsistency measure for probabilistic conditional
logic is proposed that is not based on the p-norm distance but on generalized
divergence which is a specific distance for probability functions. However, no
technical results and no evaluation is given in [9].

7 Summary

In this paper we investigated continuous inconsistency measures for probabilis-
tic conditional logic. We built on previous work and introduced several novel
rationality postulates for inconsistency measurement that addressed the behav-
ior of inconsistency measures with respect to continuity. It turned out that our
measures satisfy most of the desired properties and, in particular, the compound
measure also satisfies penalty.

The d1-measure has already been implemented within the Tweety library
for artificial intelligence2 and future work includes implementation of the other
measures. This will enable us to evaluate the behavior of the measures in more
depth.
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Abstract. We present a learning scenario for relational learning which
takes statistics on a population as well as uncertainty on individuals into
account. It can be considered as an extension of a propositional max-
imum entropy (ME) framework which regards learning as the inverse
process to inference. We start with the introduction of relational prob-
abilistic conditional semantics and ME inference. Then we give a brief
review of how learning can be performed in a propositional probabilistic
framework involving ME reasoning. We use this propositional scenario
to motivate the relational learning scenario and illustrate it by some
examples. Finally we compare our relational learning scenario to some
popular statistical relational learning approaches (MLNs, BLP, PRMs).

1 Introduction

In the field of probabilistic knowledge representation two important areas are
inference and learning. Inference is concerned with inferring knowledge from a
knowledge base, learning with learning knowledge bases from observed data.
In recent years propositional approaches like Bayesian networks and Markov
networks have been extended to the relational case using methods from the
field of inductive logic programming. Their learning methods aim at general
information, without taking uncommonly individuals into account.

The propositional framework of maximum entropy (ME) uses a set of prob-
abilistic rules, so-called conditionals, as a knowledge base. A ME-inference func-
tion takes a set of conditionals and determines a probability distribution which
satisfies all conditionals and has maximum entropy. In this way there is no more
information added than needed. In [4] a learning algorithm is introduced, tak-
ing a probability distribution and calculating a set of conditionals. ME-inference
applied to this set roughly calculates the original distribution again. In this way
learning can be considered as inverse to inference.

ME-inference has been extended to the relational case already [6]. In this pa-
per the relational learning problem shall be considered. The presented extension
to the relational case not only allows the analysis of general information, but
also of exceptional individual information.

In Section 2 the basic principles and maximum entropy inference methods are
introduced. Firstly propositional inference is considered, then a brief overview of
relational extensions is given. Section 3 is concerned with with learning. Again

46



firstly the propositional case is considered, then a concept for the relational ex-
tension is developed and illustrated by examples. Subsequently the propositional
and relational cases are compared with respect to expressiveness and complexity.
In Section 4 three relational extensions of graphical propositional frameworks are
considered and subsequently compared to the maximum entropy approach. The
paper concludes with a short outlook to future work.

2 Relational Probabilistic Semantics and Reasoning

Before considering the relational case, we give a brief overview of the proposi-
tional case to explain the basic concepts underlying both approaches. Ignoring
formal stringency, we denote corresponding concepts by the same identifiers. It
should be clear from the context what framework is considered.

2.1 ME-Optimal Reasoning in a Propositional Framework

Let Σ = {v1, . . . , vn} be a set of n binary propositional variables and let L be a
propositional language consisting of the propositional formulas over Σ. Thus for
all variables v ∈ Σ it holds v ∈ L, and if A,B ∈ L then ¬A,A∧B,A∨B ∈ L. v
is called a positive, ¬v a negative literal. A conjunction containing every variable
as a positive or a negative literal exactly once is called a complete conjunction
over Σ. Let Ω be the set of all 2n complete conjunctions over Σ. These can be
interpreted as the set of possible worlds (propositional interpretations) over L.
A probabilistic conditional (or rule) (B | A)[x] consists of propositional formulas
A,B and a probability value x.

Semantics is given to conditionals by defining a probability distribution P :
Ω → [0, 1] assigning probabilities to worlds. Then the entailment relation |=
between a probability distribution P and a probabilistic conditional (B | A)[x]
can be defined as follows.

P |= (B | A)[x] iff P (AB) = xP (A) and P (A) > 0 (1)

A set R of probabilistic conditionals is satisfied by P , respectively P is a model
for R iff P satisfies all conditionals in R. In general there can be many prob-
ability distributions satisfying R; a ME-inference function chooses the unique
model with maximum entropy [4]. Entropy can be considered as a measure
for the indifference within a probability distribution, it is defined as H(P ) :=∑
ω∈Ω P (ω) logP (ω). Maximum entropy reasoning is performed by choosing the

distribution

P ∗ = MEprop(R) := arg max
P |=R

H(P )

as a unique model forR. So P ∗ represents the incomplete (and uncertain) knowl-
edge from R inductively completed to a full distribution by applying the ME-
principle.
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2.2 ME-Optimal Reasoning in a Relational Framework

We consider a set of first order predicates Pred, a set of variables Var and a finite
set of constants Const. Let p/k denote the predicate p ∈ Pred with arity k. The
set of atoms A over Pred with respect to Var and Const can be defined in the
usual way by p(t1, . . . , tk) ∈ A iff p/k ∈ Pred, ti ∈ (Var ∪ Const) for 1 ≤ i ≤ k.
For better readability we will usually omit the referring indices. Analogously a
logical language L is defined as usual, that is, A ∈ L if A ∈ A and if A,B ∈ L
then ¬A,A∧B ∈ L. Let A∨B be the shorthand for ¬(¬A∧¬B). Conditionals
are of the form φ := (B | A), where A,B ∈ L, A is called the antecedence, B the
consequence of φ. The set of all conditionals is denoted by (L | L). A grounding
function gr maps terms and formulas to ground terms and ground formulas in
the usual way.

Let H denote the Herbrand base, i.e. the set containing all ground atoms
constructible from Pred and Const. Let gr(L) :=

⋃
A∈L gr(A) be the set of all

grounded formulas and analogously gr((L | L)) :=
⋃
φ∈(L|L) gr(φ) be the set of all

grounded conditionals. A Herbrand interpretation ω is a subset of the grounded
predicates, that is ω ⊆ H. Using a closed world assumption, each ground atom
pgr ∈ ω is interpreted as true and each missing ground atom is interpreted as
false; in this way they are similar to the complete conjunctions in the proposi-
tional case. Let Ω denote the set of all possible worlds (respectively Herbrand
interpretations), that is, Ω := P(H) (with P denoting the power set) and con-
sider a probability distribution P : Ω → [0, 1]. In this way grounded conditionals
can be handled like in the propositional case. The following semantics describe
how to handle conditionals containing variables.

Semantics for Relational Probabilistic Conditionals Whereas in proposi-
tional probabilistic logic a natural semantics is given by (1), in relational proba-
bilistic logic the decision is not that easy due to its relational character. Whereas
propositions can be considered as independent of each other, relational condi-
tionals about both constants and variables may exist, that conflict with each
other. For example the conditional Flies(X)[0.9], X ∈ Var is in conflict with
the conditional Flies(penguin)[0.0], penguin ∈ Const, since Flies(penguin)[0.9]
would be generated by grounding the former conditional. The problem can be
handled by distinguishing subjective and statistical conditionals like stated in
[3] for example. The following semantics tries to combine both approaches.

In [6] the averaging semantics and the aggregating semantics are introduced.
Like above, let A,B ∈ L denote formulas over L. The averaging semantics refers
to the average of the possible groundings.

P |=� (B | A)[x] iff

∑
(Bgr|Agr)∈gr((B|A)) P (Bgr | Agr)

| gr((B | A))| = x

The aggregating semantics, however, is more a kind of decomposition of the con-
ditional probability, in that it sums the probabilities of the conditional-satisfying
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worlds in the numerator and the probability of the antecedence-satisfying worlds
in the denominator.

P |=� (B | A)[x] iff

∑
Agr∈gr(A),Bgr∈gr(B) P (Bgr ∧Agr)∑

Agr∈gr(A) P (Agr)
= x

In [9] grounding semantics are introduced. The set of constants Const and
the set of variables Var are partitioned by introducing sorts, in this way it is
possible to restrict the grounding of general predicates to certain constants.
Conditionals then are interpreted by interpreting all ground conditionals just
like in the propositional case with respect to a special grounding operator G.

P |=G (B | A)[x] iff P |= (Bgr | Agr)[x] for all (Bgr | Agr) ∈ G((B | A))

That is, P is a grounding-model of (B | A)[x] iff P is a propositional model for
any ground instance given by G.

Reasoning under Maximum Entropy In [6] it is stated that the averaging
and aggregating semantics are compatible with ME-inference, that is, one ob-
tains inference functions ME�, ME� like in the propositional case. Additionally
it is shown that both semantics satisfy some desirable properties. Since the prob-
ability of each conditional is strictly determined, the inference function MEG can
be directly derived from the propositional inference operator MEprop, see [9] for
details.
In the following, let ME◦ ∈ {ME�,ME�,MEG} denote that inference function
which determines the satisfying probability distribution with maximum entropy
with respect to the given semantics:

ME◦(R) := arg max
P |=◦R

H(P )

3 Learning under Probabilistic Semantics

In this section, we will discuss some general aspects of a learning scenario in-
volving the relational semantics and ME◦ reasoning from Section 2.2. We will
concentrate on a proper description of such a learning scenario, especially how
the input data looks like. However, we will not deal with any practical learning
algorithms. We start with a brief review of how learning can be performed in a
propositional probabilistic framework involving ME reasoning. We will use this
propositional scenario to motivate the relational one as a natural extension.

3.1 Propositional Learning Scenario

The approach taken in [5] defines learning as a process inverse to inductive
knowledge representation. Therefore, one starts with given input data in terms
of a probability distribution P , and the goal is to learn a set of probabilistic
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rules R∗, so that P = MEprop(R∗) holds. Since the MEprop function is not
injective, in general many solutions exist and one is interested in a solution
R∗ ∈ MEprop

−1(P ) which represents P in a compact way. So the process of
learning (or more precisely the process of conditional knowledge discovery) is to
solve the inverse ME-problem by computing a preferably compact rule set R∗
so that the given distribution P is a ME-model for R∗ (see Fig. 1). In [5], a
practical learning algorithm and its implementation in the CondorCKD system
is presented which can perform the calculation of R∗.

R P

Inductive Knowledge Representation
ME  

ME-1

Knowledge Discovery

Fig. 1. Knowledge representation inverse to knowledge discovery

Example 1. The setting of this (fictional) example is a zoo where a population
of monkeys lives. The monkeys have been observed for some time and each
observation describes a monkey in terms of five binary attributes: aggressive,
hungry, male, nervous, sleepy. So each observation can be depicted by a binary
5-tuple, i. e. by a complete conjunction over appropriate binary variables. Table 1
shows the observed frequency freq(ω) and corresponding probability P (ω) (i. e.
relative frequency) of each tuple ω.

The probability distribution PT1 from Table 1 serves as input data to learn
a rule set R∗T1 so that PT1 = MEprop(R∗T1) holds. An algorithm which performs
this kind of learning operation is described in [5]. Let the learned rule set R∗T1

consist of the following rules:

(nervous | hungry ) [0.8]
(¬hungry | sleepy ) [0.7]
(aggressive | male ∧ hungry) [0.9]

So this set R∗T1 of generating rules compactly describes the observed distribution
PT1 in an entropy-optimal way. Furthermore, the rules from R∗T1 make certain
connections between variables obvious that hold in PT1. These connections are
not evident by just looking at the explicit representation of PT1.

3.2 Relational Learning Scenario

Considering one of the relational semantics from Section 2.2 and its correspond-
ing entailment relation |=◦, together with the inference operator ME◦, we can
define relational knowledge discovery analogously to the propositional approach
from Section 2.1, i. e. as an inverse process to ME◦-based inductive knowledge
representation.
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sleepy nervous male hungry aggressive freq(ω) P (ω)
0 0 0 0 0 65 0.0561
0 0 0 0 1 65 0.0561
0 0 0 1 0 7 0.0060
0 0 0 1 1 7 0.0060
0 0 1 0 0 65 0.0561
0 0 1 0 1 65 0.0561
0 0 1 1 0 1 0.0009
0 0 1 1 1 9 0.0078
0 1 0 0 0 65 0.0561
0 1 0 0 1 65 0.0561
0 1 0 1 0 112 0.0966
0 1 0 1 1 112 0.0966
0 1 1 0 0 65 0.0561
0 1 1 0 1 65 0.0561
0 1 1 1 0 16 0.0138
0 1 1 1 1 140 0.1208
1 0 0 0 0 41 0.0354
1 0 0 0 1 41 0.0354
1 0 0 1 0 21 0.0181
1 0 0 1 1 21 0.0181
1 0 1 0 0 41 0.0354
1 0 1 0 1 41 0.0354
1 0 1 1 0 3 0.0026
1 0 1 1 1 26 0.0224
1 1 0 0 0 0 0
1 1 0 0 1 0 0
1 1 0 1 0 0 0
1 1 0 1 1 0 0
1 1 1 0 0 0 0
1 1 1 0 1 0 0
1 1 1 1 0 0 0
1 1 1 1 1 0 0

Table 1. Observed probability distribution PT1

When performing relational maximum entropy reasoning (as described in
Section 2.2), we start with a set of relational probabilistic conditionals R and
have to calculate the distribution P ∗ = ME◦(R). Consequently, the thereto
inverse process of relational knowledge discovery (also see Fig. 1) is to determine
a set of relational probabilistic conditionals R∗, given a probability distribution
P over all possible worlds Ω, so that P = ME◦(R∗) holds. We will refer to this
as “relational ME-learning” in the following. Next, we illustrate this learning
scenario by another example.

Example 2. We take up again the setting from Example 1 and consider a popu-
lation of monkeys. However, this time, we do not make observations of “anony-
mous” monkeys, but detailed observations of individual monkeys and their rela-
tionships. The population consists of three monkeys: Andy, Bobby, and Charly.
Our observations focus on the feeding behavior of the monkeys, hence we note
whether a monkey is hungry and which monkey feeds another one. Since the
behavior of the monkeys is known to vary over time, we do not just take a single
snapshot of the population, but make several observations over a longer period
of time.

To describe our example setting in relational logic, we define the sets

Pred = {Feeds/2,Hungry/1} and Const = {andy, bobby, charly}
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of predicates and constants1. An observation of the population states the truth
value of every ground atom. Therefore, an observation ω is a Herbrand inter-
pretation, i. e. possible world, from the set Ω. Since there are 12 ground atoms,
constructible from Pred andConst, there are 212 = 4096 possible worlds in Ω.

For example, the observation ω332 = {H(a), H(c), F (b, a), F (b, c)} states that
the monkeys Andy and Charly are hungry, Bobby is not hungry, Bobby feeds
Andy and Charly, and that no other monkey feeds another one.

For each possible world ω,2 Table 2 shows its frequency freq(ω), i. e. how often
ω has been observed, and its corresponding probability (i. e. relative frequency).
It is important to note that (for short of notation) every world which is not listed
explicitly in Table 2 has implicitly a frequency of 0. Hence, Table 2 only lists 37
of the overall 4096 worlds in Ω.

Note that the predicate Feeds is meant to be irreflexive, i. e. a monkey
never feeds itself. Therefore, each world where at least one of the ground atoms
Feeds(andy, andy), Feeds(bobby, bobby), or Feeds(charly, charly) is true has a
mandatory frequency of 0. To keep things simple, we have omitted these ground
atoms in the above considerations. Consequently, in each world ω from Table 2,
these three ground atoms are implicitly false.

We use the probability distribution PT2 from Table 2 as input data for an
(fictitious) algorithm which can perform the above described kind of knowledge
discovery under aggregation semantics. That is, we want to determine a set
of relational probabilistic rules R∗T2, so that PT2 = ME�(R∗T2) holds. Let us
assume that such a learning algorithm discovers a rule set R∗T2 consisting of the
following rules:3

r1 : (Feeds(X,Y ) | ¬Hungry(X) ∧Hungry(Y ) )[0.80]

r2 : (Feeds(X,Y ) | Hungry(X) )[0.0]

r3 : (Feeds(X,Y ) | ¬Hungry(X) ∧ ¬Hungry(Y ) )[0.10]

r4 : (Feeds(X, charly) | ¬Hungry(X) )[0.95]

r5 : (Feeds(X,X) | > )[0.0]

So the first discovered rule r1 states that is very likely that a not-hungry monkey
feeds a hungry monkey. Rule r2 expresses the certain knowledge that a hungry
monkey never feeds another one. The next rule r3 says that it is very improbable
that a not-hungry monkey is fed by another one. Rule r4 is different from the
previous ones, because it makes a statement about an individual monkey: it is
most probable that if a monkey is not hungry, it feeds the monkey Charly, i. e.
regardless of whether Charly is hungry or not (perhaps because Charly is an

1 We will use the abbreviations F,H and a, b, c for a compact notation of predicates
and constants, respectively.

2 Table 2 uses a compact notation for possible worlds, in which “1” (“0”) indicates
that the respective ground atom is (not) included in the Herbrand interpretation.

3 Because currently no such learning algorithm is available, the input data PT2 has
been manually constructed artificially. In fact, ME�(R∗

T2) slightly differs from PT2.
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ω H(a) H(b) H(c) F (a, b) F (a, c) F (b, a) F (b, c) F (c, a) F (c, b) Freq(ω) P (ω)
ω0 0 0 0 0 0 0 0 0 0 5 0.006
ω4 0 0 0 0 0 0 1 0 0 15 0.019
ω16 0 0 0 0 1 0 0 0 0 15 0.019
ω20 0 0 0 0 1 0 1 0 0 30 0.038

ω64 0 0 1 0 0 0 0 0 0 1 0.001
ω68 0 0 1 0 0 0 1 0 0 20 0.026
ω80 0 0 1 0 1 0 0 0 0 20 0.026
ω84 0 0 1 0 1 0 1 0 0 40 0.051

ω128 0 1 0 0 0 0 0 0 0 5 0.006
ω129 0 1 0 0 0 0 0 0 1 10 0.013
ω144 0 1 0 0 1 0 0 0 0 10 0.013
ω145 0 1 0 0 1 0 0 0 1 20 0.026
ω160 0 1 0 1 0 0 0 0 0 10 0.013
ω161 0 1 0 1 0 0 0 0 1 20 0.026
ω176 0 1 0 1 1 0 0 0 0 20 0.026
ω177 0 1 0 1 1 0 0 0 1 40 0.051

ω256 0 1 1 0 0 0 0 0 0 1 0.001
ω258 0 1 1 0 1 0 0 0 0 30 0.038
ω260 0 1 1 1 0 0 0 0 0 20 0.026
ω262 0 1 1 1 1 0 0 0 0 40 0.051

ω264 1 0 0 0 0 0 0 0 0 5 0.006
ω266 1 0 0 0 0 0 0 1 0 10 0.013
ω268 1 0 0 0 0 0 1 0 0 10 0.013
ω270 1 0 0 0 0 0 1 1 0 20 0.026
ω192 1 0 0 0 0 1 0 0 0 10 0.013
ω208 1 0 0 0 0 1 0 1 0 20 0.026
ω224 1 0 0 0 0 1 1 0 0 20 0.026
ω240 1 0 0 0 0 1 1 1 0 40 0.051

ω320 1 0 1 0 0 0 0 0 0 1 0.001
ω324 1 0 1 0 0 0 1 0 0 30 0.038
ω328 1 0 1 0 0 1 0 0 0 20 0.026
ω332 1 0 1 0 0 1 1 0 0 40 0.051

ω384 1 1 0 0 0 0 0 0 0 5 0.006
ω385 1 1 0 0 0 0 0 0 1 20 0.026
ω386 1 1 0 0 0 0 0 1 0 20 0.026
ω387 1 1 0 0 0 0 0 1 1 40 0.051

ω448 1 1 1 0 0 0 0 0 0 100 0.128

Table 2. Observed probability distribution PT2 (only listing worlds with a non-zero
probability)

underfed baby monkey suffering from an eating disorder). Thus, r4 describes a
special case for Charly, because according to rules r1 and r3, one would have
suspected that the feeding of Charly (by a not-hungry monkey) depends on
whether Charly is hungry or not. The last rule (i. e. fact) r5 just expresses that
a monkey never feeds itself. What also becomes clear from these learned rules
is that there seems to be no noticeable difference in the behavior of the two
monkeys Andy and Bobby. Since none of the discovered rules make any special
statement about them, these two monkeys are some kind of prototypical monkeys
of the population.

As Example 2 has demonstrated, the relational learning scenario applies very
well to situations where statistical information about several possible worlds is
available and shall be processed in a way which also preserves information about
exceptional individuals. This also fits to another example setting which we will
have a brief look at: Consider a technical system consisting of several components
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(the individuals in this case) which can be in different states (e. g. Working(X),
Idle(X), Suspended(X), Defective(X), etc.) and which are related to each other
(e. g. WaitsFor(X,Y ), Powers(X,Y ), etc.). Let the system be equipped with
appropriate sensors to monitor and automatically protocol its complete current
state (in terms of a Herbrand interpretation) at a fixed time interval. So a fre-
quency distribution over possible worlds is generated. Using this distribution
as input data for the relational ME-learning scenario, one might learn rules
which describe general aspects of the system (e. g. (WaitsFor(X,Y ) | Idle(X ) ∧
Working(X))[0.8]). But one might also discover rules about correlations between
distinct components (e. g. Defective(machine5 ) | Powers(generator3 ,machine2 )
[0.9]) which could even make hidden problems of the system evident: e. g., a cor-
relation might be discovered that if generator3 powers machine2 , then there is
very often a defect of machine5 ; further investigations based on the discovered
unusual correlation could unveil that the defect is due to an over-voltage which
occurs only in this special situation.

3.3 Comparing Propositional and Relational Input

In the propositional learning scenario, the input data consists of a probability
distribution over possible worlds. So we process statistical information about
binary attribute vectors. Each attribute vector describes an entity by the truth
values of all attributes and the (relative) frequency of each entity results from
statistical observations. Although the input data from Example 1 was gathered
by observing individuals, it just reflects a purely statistical view on anonymous
individuals: each observed individual is just considered in terms of its attribute
values and statistically counted as a corresponding entity.

However, in the relational learning scenario, the input data carries explicit in-
formation about distinct individuals identified by corresponding constants. The
attributes of each individual are described by unary predicates and the corre-
sponding ground atoms, respectively. Thus, if a relational scenario with solely
unary predicates is considered, it resembles (roughly speaking) a propositional
scenario but with distinct individuals. By introducing (at least) a single binary
predicate, the difference in expressive power compared to the propositional case
becomes much more obvious: since information about distinct individuals can
be expressed, it is also possible to express information about relations between
individuals. Obviously, this cannot be done in a propositional scenario, because
there are no individuals (just entities carrying the statistical information about
counted individuals). A possible world (Herbrand interpretation) in the rela-
tional scenario states which attributes and relations hold for each individual. By
providing a frequency distribution over such possible worlds, the corresponding
probability of a possible world ω can also be interpreted as a (subjective) degree
of belief in the setting described by ω.

At this point, it should already be mentioned that the relational learning
approaches presented in Section 4 just processes (in general) a single Herbrand
interpretation as input data. Roughly speaking, these approaches exploit the
statistical information implicitly contained in a single (usually large) Herbrand
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interpretation to learn generalized statements. We will discuss this in detail in
Section 4.4.

Of course, one could simply map relational input data to propositional data
by introducing a propositional variable for each ground atom. This way, it would
be possible to use “relational” data within a propositional learning scenario.
But by applying such a simple propositionalization, the semantical connection
between the ground atoms will be lost, because the introduced propositional vari-
ables have no connections to their originating predicates and atoms (the name
of a variable might indicate its corresponding ground atom but this is of no
semantic relevance). So if the propositional learning algorithm from Section 3.1
was applied to the input data from Example 2 (by introducing a propositional
variable for each ground atom, e. g. feeds andy boby for Feeds(andy, bobby)), the
discovered rules would just make statements about ground atoms (after system-
atically replacing the “place holder” propositional variables with their corre-
sponding ground atoms). That is, no rule could make a generalized statement
using variables, but would just make statements about constants. The algorithm
could also not make use of connections between certain ground atoms, e. g. be-
tween Hungry(andy) and Feeds(andy, bobby) both involving andy, because the
algorithm would just “see” two distinct propositional variables hungry andy and
feeds andy boby without any connections in the first place.

3.4 Complexity of the Learning Scenarios

Comparing the propositional and the relational learning scenarios from the pre-
vious sections, both require statistical data in terms of a probability distribution
P over a set of possible worlds Ω as input data.

In the propositional case, there are |Ωprop| = 2|Σ| possible worlds, i. e. the size
of the distribution Pprop is exponential in the number of propositional variables.
So for a “moderate” number of variables (which might still be enough for some
interesting real world scenarios), a complete representation of Pprop is large but
still feasible.

On the contrary, in the relational case (with ar(pr) denoting arity of pred-
icate pr), the Herbrand base consists of |H| =

∑
pr∈Pred |Const|ar(pr) ground

atoms, resulting in |Ωrel| = 2|H| possible worlds, i. e. the size of the distribu-
tion Prel is exponential in the number of predicates, constants, and especially
in the predicates’ arity. By using typed constants and predicates, the number
of constructible ground atoms and therefore the size of H might be consider-
ably reduced. Nevertheless, due to the exponential size in the number of ground
atoms, the size of Ωrel makes a complete representation Prel infeasible even for
relatively small examples, as the following, just a “little bit” larger extension of
Example 2 shows.

Example 3. Continuing Example 2, let the monkey population we observe this
time consist of 10 monkeys. We extend our observations by the remaining four at-
tributes from Example 1 and by four more relations between monkeys, leading to
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the predicates4Pred = {hungry/1 , sleepy/1 ,nervous/1 , aggressive/1 ,male/1 ,
feeds/2 , attacks/2 , delouses/2 , playsWith/2 , protects/2}. So we have 5 predi-
cates with ar(pr) = 1, 5 predicates with ar(pr) = 2, and |Const| = 10 constants,
resulting in |H| = 5 · 10 + 5 · 102 = 550 ground atoms. Therefore, there are
|Ωrel| = 2550 possible worlds.

Regarding the size of Ωrel, it must be considered that in many example set-
tings a large portion of possible worlds have a frequency of zero, so that the set of
non-null worlds is only a small fraction of Ωrel. This is due to the fact that even
though the number of possible worlds, i. e. potentially different observations, is
theoretically enormous, the number of really observable worlds will probably be
of feasible size, since many attributes and relations and the corresponding depen-
dencies have a rather static character. Otherwise any observation will probably
be represented by another world, in this case a more coarse-grained analysis of
the data may be appropriate.

4 Other Probabilistic Relational Learning Approaches

At this point, we will have a look at some well-known approaches of statisti-
cal relational learning and especially what kind of relational input data these
approaches process.

4.1 Markov Logic Networks

Markov logic [11] combines first-order logic with Markov networks [10] to es-
tablish a framework which allows the handling of a wide range of tasks from
the area of statistical relational learning. The syntax of Markov logic in general
conforms with first-order logic, but additionally each logic formula has assigned
a real-valued weight value. The semantics of a set of Markov logic formulas is
determined by a probability distribution over possible worlds. In contrast to clas-
sical logic, Markov logic formulas are not handled as hard constraints, instead
each formula is softened depending on its weight. Thus, a possible world may
still have a positive probability, although it violates a formula of the knowledge
base. The weight of a formula determines its strength, i. e. how much the formula
influences the probability of a satisfying world in contrast to a violating world.

A Markov logic network (MLN) L is a finite set L = {(F1, w1), . . . , (Fn, wn)}
of pairs (Fi, wi) with a first-order logic formula Fi and a real value wi, its weight.
Together with a set of constants C it defines a Markov network ML,C : The net-
work contains a node for each constructible ground atom and an edge between
two nodes iff corresponding ground atoms appear together in at least one ground-
ing of a formula. For each possible grounding of each formula Fi, ML,C contains
one binary feature (function) which is weighted by wi.

4 Note that the predicate male is obviously an attribute which has a fixed truth value
for each individual (i. e. this truth value holds in every possible world). Therefore,
it would be desirable, if such a predicate could be incorporated in some terms of
background knowledge to remove this redundant information from each observation.
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Therefore, an MLN defines a template for constructing ground Markov net-
works. That is, for a different set C ′ of constants, a different ground Markov
network ML,C′ results from L, which may vary in size but whose general struc-
ture is quite similar (e. g. the groundings of a formula Fi have the weight wi in
any ground Markov network of L).

Let ni(ω) denote the number of true groundings of a formula Fi concerning
a possible world ω. A ground Markov network ML,C determines a probability
distribution PML,C

over possible worlds ω ∈ Ω via the log-linear model [11]

PML,C
(ω) =

1

Z
exp

(∑
(Fi,wi)∈L wini(ω)

)
(2)

using the normalization factor Z =
∑
ω∈Ω exp

(∑
(Fi,wi)∈L wini(ω)

)
.

Markov logic allows probabilistic inference by calculating the conditional
probability of a formula B (the query) given a formula A (the evidence).

Regarding Markov logic networks, two kinds of learning are to be distin-
guished: parameter (i. e. weight) learning and structure learning. When per-
forming weight learning, the logical formulas of an MLN (i. e. its structure) are
already known. The goal is to learn the missing weights (the parameters) for
these formulas. Therefore, a (generative) weight learning algorithm tries to cal-
culate weight values which maximize the log-likelihood of the input data. If it is
already known at learn time which predicates will be queried and which ones will
serve as evidence (e. g. in a collective classification task), it is more efficient to
apply an algorithm which performs discriminative weight learning by maximiz-
ing the conditional log-likelihood of the query atoms given the evidence atoms
of the input data. A MLN structure learning algorithm can either start with an
initial set of MLN formulas or with an empty set. Then the algorithm tries to
improve the log-likelihood of the input data by adding additional formulas (with
appropriate weights) to the current MLN.

For both kinds of MLN learning, the input data is a set of ground atoms – in
this context called relational database – which is considered under a closed world
assumption. Therefore, the whole input data consists of one Herbrand interpre-
tation, i. e. one possible world, ωinput. As mentioned before, a MLN learning
algorithm tries to find an MLN which maximizes the log-likelihood of this Her-
brand interpretation ωinput, i. e. the log-likelihood of equation 2 for a fixed ωinput
and variable parameters wi (in case of weight learning) or variable parameter L
(in case of structure learning).

4.2 Bayesian Logic Programs

Bayesian Logic Programs combine Bayesian networks with first order logic [7].
First order dependencies are represented as a logical program, the contained
clauses are grounded and used to construct a classical Bayesian network.

Bayesian clauses are of the form c := A|A1, . . . , Al, where A,A1, . . . , Al ∈ A.
The body and the head of a clause are denoted by body(c) := {A1, . . . , Al} and
head(c) := A, corresponding to the antecedence and consequence of conditionals
respectively. A Bayesian network can be described by a triple B = (C,CPD,CR),
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where C is a set of Bayesian clauses, CPD a set of conditional probability distri-
butions and CR a set of combining rules. For any Bayesian clause c CPD contains
a conditional probability distribution cpdc, and for any Bayesian predicate p CR
contains a combining rule crp. The combining rules are used to combine condi-
tional probability distributions for the same variable, e.g. P (A|B) and P (A|C)
can be combined to a new conditional probability distribution P (A|BC). Possi-
ble combining rules are e. g. noisy-or and average [7].

Any Bayesian clause c induces a set of grounded Bayesian clauses gr(c) by
substituting any appearing variable by any possible constant, similar to the def-
inition in Section 2. Any predicate appearing in

⋃
c∈C gr(c) then becomes a node

in the corresponding Bayesian network. There is an edge from the grounded
predicate pg1 to the grounded predicate pg2 iff there exists a grounded condi-
tional c with head(c) = pg2 and pg1 ∈ body(c). If the induced dependency
graph is nonempty, acyclic and any node is influenced by a finite set of other
nodes, it forms a Bayesian network. It factorizes in the usual way [7], that is
P (v1, . . . , v|V|) =

∏
v∈V P (v|pa(v)). Thereby V is the set of nodes of the Bayesian

network, that is, the grounded predicates, and pa(v) denotes the parent nodes
of v. If pa(v) is induced by a single grounded clause c, then the necessary condi-
tional probability distribution cpdc is already contained in CPD. If there is more
than one parent clause, the corresponding conditional probability distributions
are aggregated using the corresponding combining rule crv from CR. A Bayesian
logic program satisfying the above conditions of nonemptiness, acyclicity and
finite influence is called well-defined.

Similar to Markov logic networks the learning problem can be distinguished in
parameter learning and structure learning. Parameter learning refers to learning
the conditional probability distributions; here the same approaches as for clas-
sical Bayesian networks can be adopted. Structure learning is more complicated
since in this case not only the parameters but also the structure is unknown.
The structure of the Bayesian network is induced by the clauses, so structure
learning refers to learning the clauses respectively the logical program describ-
ing the problem. In [7] a greedy algorithm solving the problem is described.
It starts with an initial well-defined logical program C, that is determined us-
ing techniques from the ILP engine CLAUDIEN [1]. The clauses in C then are
modified by refinement operators with respect to validity with respect to the
learning data, acyclicity of the induced Bayesian network and a scoring function
evaluating the quality of the current solution until no further improvement is
obtained. The learning data is given by a set of data cases D = {D1, . . . , Dl}.
Each D ∈ D is a set of grounded predicates, similar to Herbrand interpretations,
but additionally atoms of unknown truth value are possible.

4.3 Probabilistic Relational Models

Probabilistic Relational Models [2] show strong structural similarities to Bayesian
Logic Programs, therefore we restrict ourselves to carve out the differences. In-
stead of a logical, a rather database-oriented framework is considered to induce
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a dependency-graph. Their main parts are classes with their attributes and ref-
erence slots, corresponding to tables with their attributes and foreign keys in
database terminology. Among the attributes, directed dependencies may exist,
within a class as well as among classes. To each attribute a conditional probabil-
ity distribution with respect to its parents is assigned. Similar to Bayesian Logic
Programs an instantiated dependency graph can be generated, establishing a
Bayesian network if it is acyclic. Indeed Probabilistic Relational Models pre-
suppose acyclicity; the joint probability distribution over all variables factorizes
then in the usual way. The problem of multiple conditional probability distribu-
tions to the same attribute, is overcome by database principles again, that is,
the conflicts are resolved using aggregation functions like average or minimum.

As the relational framework suggests, Probabilistic Relational Models are
able to learn from relational databases immediately. However, it is also possi-
ble to adapt the formalism to a single Herbrand interpretation using the closed
world assumption [2]. The learning problem can be separated into parameter
and structure learning again. Similar to Bayesian Logic Programs for parameter
learning again Bayesian approaches are used. For structure learning a sophis-
ticated greedy hill-climbing algorithm has been developed. Similar to Bayesian
Logic Programs the treatment of incomplete data has been considered [8].

4.4 Comparison

What the three presented approaches have in common is an underlying graphi-
cal framework and a statistical relational semantics. Markov logic networks are
based on Markov networks, Bayesian logic programs and Probabilistic relational
models on Bayesian networks. Roughly speaking the basic learning concept is
that each predicate (e.g. an attribute or a relation) of an individual depends
only on some other predicates. Which predicates affect another predicate is in-
dependent of the individual. Hence it is sufficient to consider a single Herbrand
interpretation to detect these dependencies. So one can roughly say that these
approaches detect common dependencies between the individuals of a single
world, that are used to form independent factors that altogether form a joint
distribution. This joint distribution can be used to evaluate the quality of the
factors to control a learning algorithm.

The relational ME-approach considered in this paper aims at detecting not
only general dependencies, but also the individual dependencies. In particular,
not only partial probability distributions but also more specific rules should
be learned. Common rules can be combined to general rules using one of the
three introduced semantics (averaging, aggregating and grounding). Seldom rules
can be used to detect outliers, that can be further investigated. To analyze
individuals in detail not one but several Herbrand interpretations, i.e. several
observations, have to be taken into account. In this way not only the uncertain
behavior of groups but simultaneously the uncertain behavior of the individual
can be modeled.
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5 Conclusion and Future Work

In this paper we presented a novel concept for relational learning and considered
possible learning scenarios. Instead of considering deterministic individuals in a
single Herbrand interpretation as in more popular approaches, the uncertainty
of the individual is taken into account by considering probabilities on Herbrand
interpretations. Of course, the gain in expressiveness is attended by a gain in
complexity, but this is not as obstructive as a merely theoretical analysis in-
dicates. This is due to the fact that in practical learning situations the size of
possible outcomes can be significantly smaller than the number of theoretically
possible worlds.

Nevertheless the presented learning task is currently merely conceptual. So
in future work, we plan to develop a learning algorithm which can perform this
learning task. For that purpose, we will investigate if (or to what extend) it can
use certain concepts of the propositional learning algorithm from [5].
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Abstract. Bayesian Logic Networks support statistical relational learning by 
combining  conditional  probability  structures  and  distributions  with  evident 
knowledge  and  logical  rules.  This  paper  shows how these  concepts  can  be 
applied to create an autonomously acting, self-learning agent. For this purpose, 
a  pathfinding  scenario  in  a  dynamic  environment  will  be  introduced  as  an 
example: The agent will learn conditional probabilities by moving through a 
simulated  traffic  environment.  Logical  rules  are  implemented  prior  to  the 
learning process to predetermine the agent's behavior in specific situations. The 
learned  behavior  can  easily  be  comprehended  after  the  learning  process  by 
inspecting  the  conditional  probability  network  with  the  learned  probability 
distributions.  The implementation of  the agent's  Bayesian Logic Network  is 
realized with ProbCog (an open-source software suite for statistical relational 
learning developed at the Technische Universität München), which is integrated 
into the external simulation application.

Keywords:  Agent, Bayesian Logic Network,  Dynamic Pathfinding,  ProbCog, 
Simulation, Statistical Relational Learning.

1   Introduction

Creating  agents  which  act  adaptively in  dynamic  environments  and improve their 
behavior  by  learning  autonomously  is  an  important  application  of  artificial 
intelligence approaches. Representing an agent's model and the learned knowledge in 
an  expressive  and  comprehensive  way  poses  additional  challenges.  Statistical 
relational  learning  approaches  combine  logical  inference  with  concepts  of 
probability  theory  and  machine  learning  [5]  and  can  be  useful  to  fulfill  the 
introductory requirements. 

In  this  paper,  Bayesian Logic Networks [3],  which support  statistical  relational 
learning,  are  used  to  implement  an  agent  with  the  qualities  described  above. 
Compared to other self-learning techniques (Reinforcement Learning, for instance), 
the agent's learned knowledge can be easily inspected and comprehended after the 
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learning process.  In  addition,  it  is  possible  to  inject  logical  rules  selectively:  The 
learning process can be supported with obvious correlations (which thus do not need 
to be learned) and certain behavior can be guaranteed.

As  a  test  scenario, a  simulated  traffic  environment  with  dynamic  weather 
conditions  is  constructed  in  which  the  agent  learns autonomously  to  optimize  its 
navigation  strategy  to  find  the  most  adequate  route  from  a  starting  point  to 
a destination.

Section 2 starts with a short introduction to Bayesian Logic Networks according 
to [3]. Section 3 outlines the simulation environment and the agent's model with a 
Bayesian Logic Network using the ProbCog system [3]. Sections 4 and 5 will discuss 
the agent's resulting behavior and future work using Bayesian Logic Networks for 
agents in dynamic environments.

2.   Bayesian Logic Networks

A Bayesian Network [4] is a representation of dependencies of conditional probability 
distributions as a directed acyclic graph. Nodes represent probability distributions and 
directed  edges  are  used  to  describe  the  dependencies  between these  distributions. 
Fig. 1 shows a simple example of a Bayesian Network.

Fig. 1. Node A represents the conditional distribution P(A|B,C). Nodes B and C represent the 
distributions P(B) and P(C). Similar examples can be found in [2] et al.

Jain, Waldherr, and Beetz introduced Bayesian Logic Networks in [3]. Bayesian 
Logic  Networks  extend  Bayesian  Networks  by  concepts  of  logic  to  combine 
quantitative and qualitative methods. Thereby, a probabilistic knowledge base can be 
supported  by  logical  rules  and  evident  knowledge  to  ensure  exact  inference 
when possible.
According to [3], a Bayesian Logic Network is defined as a tuple

B = (D, F, L) . (1)

The tuple D = (T, S, E, t) consists of a set T of the network's type declarations, a  
set S of function signatures, a set E of entities used for the type instantiations and a 
function t to assign the entities to their corresponding types. Types and their entities  
are used to describe the parameters and return values of the functions contained in S, 
where every function s in S is a tuple with the function name, a set of parameter types 
and the return type of the function. Logical predicates can be expressed as Boolean 
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functions and the type “Boolean” is always contained in T and its entities “True” and 
“False” are always contained in E.

The set F contains (conditional) probability distributions, where every distribution 
in F refers to a function in S. Therefore, every function can be considered a random 
variable that follows its corresponding distribution in F. The set F can be visually 
represented as a Bayesian Network, as described at the beginning of this section.

The set L consists of logical formulas over the functions (and predicates) contained 
in S.

By the concept of each node representing both a probability distribution in F and a 
function  in  S,  quantitative  as  well  as  qualitative  statements  about  functions  (and 
predicates) are possible and evident knowledge can be added to the network in case 
function values are known for certain arguments.

A Bayesian Logic Network (as well as a conventional Bayesian Network) can be 
trained.  The  training  data  consists  of  value  assignments  to  the  functions  and 
predicates of the network. The corresponding probability distributions are learned by 
counting relative frequencies of the assigned values: A learning algorithm counts how 
often every predicate evaluates to “True” or “False” and how often every function 
evaluates to certain values, according to the value assignments in the training data. 

Quantitative  and  qualitative  knowledge  about  functions  and  predicates  can  be 
inferred  from  a  Bayesian  Logic  Network  considering  both  the  probability 
distributions and the logical rules. 

3.   Simulation Environment and Agent

In the first of the following subsections, the simulation environment and the problem 
to be solved by the agent are described. Afterwards, the second subsection explains 
the agent's model based on the concepts described in section 2 using the ProbCog 
system [3].

3.1   Description of the Environment

The environment is a street network with changing weather conditions. The street 
network consists of four different street types, namely “Freeway,” “Highway,” “Main 
Street,” and “Side Street,” which determine the agent's speed. The changing weather 
conditions also influence the speed as well as the probability of traffic jams on these 
different street types.

The agent has to find an adequate route through the street network to optimize the 
time needed to get from the starting point to the destination. Therefore, the agent has 
to decide which streets to take, depending on the type, the weather conditions, and the 
traffic jam probability. Fig. 2 shows a screen shot of the simulation environment.
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Fig. 2. The circle at the bottom left represents the starting point, the circle at the top right 
represents the destination. The remaining third circle displays the agent's position. The various 
street types are illustrated by different line styles. Streets with hatching indicate traffic jams.

3.2   Modeling the Agent

The agent is modeled with a Bayesian Logic Network using ProbCog, an open-source 
software  suite  for  statistical  relational  learning,  developed  at  the  Technische 
Universität München [3].

Types.  As a first step, the occurring street types and weather conditions have to be 
differentiated in order to form the agent's model. In addition, two further types are 
necessary to describe streets and the current situation of the environment. In ProbCog, 
this is achieved with the following type declarations:

Type  Declarations  Required  to  Implement  the  Agent  as  Bayesian  Logic  Network 
Using ProbCog.

type Weather;
guaranteed Weather Sun, Rain, Snow;

type StreetType;
guaranteed StreetType Freeway, Highway, MainStreet, 
SideStreet;

type Street;

type Situation;
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The keyword “guaranteed” ensures that ProbCog is informed about the existence 
of  all  named entities,  even if the agent never comes across one or  more of  these 
entities while navigating through the environment.

Random Variables.  In the second step the  occurring random variables have to be 
declared as  functions,  which make use of  the  types previously declared.  Random 
variables are needed for the environment's street type distribution and the weather 
conditions. In addition, there are random variables to characterize whether there is a 
traffic jam on a street in a given situation, whether a street is available in a given 
situation, whether a street is a detour or not, and whether it is wise to choose a street  
in a given situation.  The latter random variable with the name “takeStreet” will be 
queried  later  to  retrieve  the  inference  results. In  ProbCog,  a  random  variable  is 
introduced  with  the  keyword  “random”  followed  by  the  function  name  with  its 
parameter  types  in  parentheses.  The  following  code  shows  the  random  variable 
declarations needed for the agent's model:

Random Variables Required by the Agent's Bayesian Logic Network.

random StreetType streetType(Street);
random Weather weather(Situation);
random Boolean trafficJam(Street,Situation);
random Boolean streetAvailable(Street);
random Boolean detour(Street);
random Boolean takeStreet(Street,Situation);

For reasons of simplification the random variables “streetAvailable” and “detour” 
do not depend on the current situation. This is not necessary, since in the environment 
scenario described above the topology of the streets is always the same while the 
simulation is running. Thus, this information can be provided without considering the 
current state of the environment. The information, if a street is available or whether it 
is a detour or not is provided as evident knowledge while the simulation is running 
(see section “Evident Knowledge”).

The conditional dependencies among the random variables can be modeled using 
ProbCog's integrated network editor1.  Fig.  3 shows a screen shot of  the complete 
network, created with the network editor.

1 The network editor can also be used after the agent's learning process to inspect the learned 
probabilities. For this purpose, a panel containing a probability table can be expanded for 
each node.
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Fig. 3. The probability of traffic jams depends on a given street type and on the current weather 
conditions. Whether a street should be taken depends on the street type, the weather conditions 
and  whether  there  is  a  traffic  jam  on  the  street  in  the  current  situation.  The  node 
“takeStreet(st,s)” is queried later for the inference results. The nodes “streetAvailable(st)” and 
“detour(st)” are provided for later use of logical rules and evident knowledge. 

Logic.  In the third step, the agent's model is completed by implementing the logical 
rules. By adding these rules, the agent's behavior can be predetermined for specific 
situations. This is useful in the beginning of the learning phase, when the agent has 
not  gained  enough  knowledge  yet.  But  it  is  also  useful  to  guarantee  a  specific 
behavior in addition to what the agent will learn. Moreover, the implemented logic 
can support the agent's Bayesian Logic Network on correlations that are evident and 
thus do not need to be learned: The agent can make use of the logical rules instead of  
accessing the learned probability distributions. 

In this model, only two logical rules are necessary: The first rule simply indicates 
that a street that is unavailable in the current situation cannot be taken by the agent. In 
ProbCog, this rule is implemented as follows:

Logical Rule to Determine that Only Currently Available Streets Can Be Taken.

(!streetAvailable(st)) => (!takeStreet(st,s)).

The second rule indicates that an available street, which represents a detour, will  
not be taken by the agent if it is affected by a traffic jam or if there is another street 
available in this situation without a traffic jam. This rule is implemented as follows:
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Logical Rule to Drive Around Traffic Jams.

(streetAvailable(st) ^ detour(st)
^ streetAvailable(st2)
^ ((!detour(st2,s)) v trafficJam(st,s))
^ (!(st2 = st)))
=> (!takeStreet(st,s)).

The latter rule guarantees that detours are only accepted in order to drive around a  
traffic jam with the restriction that a traffic jam cannot be avoided by using a detour 
street which is itself affected by a traffic jam. This behavior (or a similar one) could 
also be learned and inferred from the probability distributions of the Bayesian Logic 
Network. But by implementing this rule, the agent will drive around traffic jams from 
the  beginning  of  the  learning  phase,  even  if  nearly  nothing  is  known  about  the 
environment yet.

Training Data. While moving through the environment, the agent collects data about 
the environment's current traffic and weather conditions. At the beginning, the agent's 
behavior is based on random decisions to a larger extent. But while the simulation is 
running,  it  becomes  more  and  more  based  on  what  the  agent  learns  (see  section 
“Diversification”). The collected information is continuously written to a file  in the 
syntax used by ProbCog's learning module and this file is used as training data input 
for  the  Bayesian  Logic  Network: Every  time  the  agent  reaches  its  destination, 
ProbCog's learning module is called to learn the (conditional) probabilities for the 
Bayesian Logic Network from the collected training data.  The following fragment 
represents one record of the training data collected by the agent while moving through 
the environment:

Example of a Training Data Record.

weather(s31) = Sun
streetType(S2_E) = SideStreet
trafficJam(S2_E,s31) = False
takeStreet(S2_E,s31) = True

As the example shows: In situation “s31,” the sun is shining and no traffic jam 
exists on street “S2_E” (side street 2 heading East). To determine whether a street is  
taken or not, the speed change is used as the only  criterion  in this scenario:  If the 
agent is able to increase its speed after taking a certain street, it was preferable to take 
this street in this situation and “takeStreet” will be set to “True”. Otherwise, if the 
agent must decrease its speed after taking a certain street, “takeStreet” would be set to 
“False” for this street in this situation.2

2 A more planned behavior would be possible by using the difference of the time needed to 
reach the destination as criterion. But in this case, the streets chosen by the agent in the 
corresponding situations would have to be buffered until the destination is reached. After 
reaching the destination, it is determined if it was preferable to take these streets in these 
situations, depending on whether the agent needed more or less time to reach the destination.
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The  learning  module  works  under  the  closed  world  assumption  for  Boolean 
random  variables,  so  that  all  random  variables  are  evaluated  to  “False”  for  all 
arguments for which no information about a variable is provided in the training data.  
This  must be considered for  the random variables “streetAvailable” and “detour”, 
since these two random variables are not present in the training data at all and thus  
will always have probabilities equal to 0 for “True” after the learning process. The 
real  values  for  “streetAvailable”  and  “detour”  are  provided  as  evident  facts 
immediately before the inference starts, and then are only used for evaluation of the 
logical rules. At this point, inconsistencies may occur between the evident knowledge 
provided and the learned knowledge in the probability distributions:  If  one of the 
variables is set to “True” as evident fact, this would represent a conflict in case the 
corresponding  probability  equals  to  0.  Such  conflicts  may  lead  to  unpredictable 
inference behavior and must thus be avoided. This can be achieved by ensuring that 
the  random  variables  “streetAvailable”  and  “detour”  always  possess  probabilities 
greater than 0 for both “True” and “False” (the concrete probability values are not of 
importance  since  these  random  variables  are  only  used  for  the  logical  rules  as 
mentioned before). Therefore, the learned probability distributions for both random 
variables are simply replaced by the uniform distribution every time at the end of the 
agent's learning routine, subsequently to the call to ProbCog's learning module.

Evident Knowledge.  On every crossroad, the Bayesian Logic Network is provided 
with evident knowledge before ProbCog's  inference module is  asked about  which 
street  to  take.  The  evident  knowledge  provided  consists  of  the  current  weather 
conditions, the available streets with their street types, which of the available streets is 
currently affected by a traffic jam, and which of the available streets is a detour to 
reach  the  destination. The  evident  knowledge  is  written  to  a  file,  which  is  then 
processed by the inference module. The evident knowledge's syntax is equal to the 
syntax of the training data file. As an example, a data record of evident knowledge is 
shown as follows.

Example of an Evident Knowledge Record.

weather(s) = Rain
streetType(F1_E) = Freeway
trafficJam(F1_E,s) = True
streetAvailable(F1_E) = True
streetType(H1_S) = Highway
trafficJam(H1_S,s) = False
streetAvailable(H1_S) = True
detour(H1_S) = True

In the  situation described in  the example,  it  is  raining.  The agent  may choose 
between two streets: The freeway “F1_E” (freeway 1 heading East) and the highway 
“H1_S” (highway 1 heading South). On the freeway, there is currently a traffic jam, 
whereas the highway is free.  The highway heading South is a detour, since it leads 
away from the destination point and thus taking this street would increase the distance 
to  the destination. In  the environment scenario described above it  is  very easy to 
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determine whether a street is a detour or not: According to the position of the starting 
point and the destination, streets heading South or East present detours and streets 
heading North or West do not present detours.3 

Diversification.  If  some beneficial  decisions have already been learned,  it  is  still 
desirable for the agent to further explore the environment for possibly even better 
decisions. To achieve this, calling the inference module is diversified with a certain 
probability.  This  allows  for  the  agent  to  replace  a  decision  based  on  its  learned 
knowledge with a random decision instead. To keep the agent's model simple and for 
improved traceability  of  the  learning  results,  the  diversification  probability  in  the 
described scenario starts at  1.0 (random behavior)  and is  then discounted linearly 
while the simulation runs.4 As a result, the agent is able to more and more exploit the 
learned knowledge and the agent's behavior approaches an optimized policy.

Technical  Realization.  The  implementation  of  the  agent  is  realized  with  the 
programming language C-mol5 using Microsoft Visual Studio 2008 Express Edition 
and  the  .NET framework.  Since  ProbCog  offers  no  native  interface  for  this,  the 
integration  is  realized  by  automatically  writing  the  necessary  data  into  the 
corresponding files used by ProbCog's learning and inference modules. The modules 
are then called as external processes.  The standard out of the inference module is  
redirected to the main program and parsed to retrieve the results.

4.   Results

The agent presented here shows a solid learning behavior. The learned probabilities 
for the weather conditions approximate quickly to the real probability distribution of 
the simulation environment. Acceptable precision of the probabilities is reached after 
only a few iterations. But the learned probabilities for traffic jam and whether or not a 
street should be taken are relatively low. This is based on the fact that ProbCog's 
learning module works under the closed world assumption (as described in section 
3.2): All training data about traffic jams and whether or not a street should be taken is 
collected  for  the  current  situation  only.  Therefore,  the  corresponding  random 
variables “trafficJam” and “takeStreet” are automatically evaluated to “False” for all 
other situations. This effect does not influence the inference to evaluate a street in a  

3 In a more complex scenario, a detour could be determined for example with an A* search or 
a similar algorithm, if the topology of the map is known by the agent. If the agent does not  
know the (complete) topology, probabilistic or other approaches must be used instead.

4 More advanced strategies to control the diversification probability would be possible as well. 
For  example,  the diversification probability  could depend on the average changes in  the 
probability  distribution  of  “takeStreet”  (less  changes  meaning  less  diversification).  This 
could  lead  to  a  more  adaptive  behavior  to  environment  changes  that  appear  later  in 
the simulation.

5 C-mol  (C++-based  method-oriented  language)  is  a  programming language  developed  by 
Henrik Heimbürger and the author, where the methods of a program (instead of its classes) 
are the central development units [1].
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certain  situation,  since  the  probabilities  are  correct  in  relation  to  each  other.  But 
nevertheless, the possibility to enable the closed world assumption for certain random 
variables  (as  possible  in  the  inference  module)  might  be  a  useful  extension  to 
ProbCog. Fig. 4 shows the agent's learning behavior with linear discounting of the 
diversification probability.

Fig. 4. The x-axis represents the number of simulation runs and the y-axis represents the time 
needed to reach the destination. The agent's required driving time (dotted line) and the average 
driving  time  (continuous  line)  are  visualized.  The  diversification  probability  is  discounted 
linearly and the agent's (average) driving time decreases disproportionately.

The agent's learning success does not directly depend on the scenario size, since 
the number of conditional probabilities that have to be learned by the agent remains 
constant for larger street networks. Nevertheless, approximating an adequate behavior 
could take longer in case larger regions of one street type exist, since the agent would  
need more time to come across and collect data about all different street types. The 
same applies to the relocation of the starting point and the destination. But in this 
case, the determination of detours can become more complex and must be adapted 
(see section 3.2, “Evident Knowledge”).

The  integration  of  Bayesian  Logic  Networks  via  ProbCog  into  the  external 
simulation environment is relatively easy, although there is no native interface for the 
programming  language  used.  The  well  structured  output  of  ProbCog's  inference 
module can be easily parsed to obtain the results in the host application. But since the  
modules  must  be  called  as  external  processes  for  learning  and  for  the  inference 
queries, small delays are noticeable in the simulation every time ProbCog is called.  
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This might become a problem when using ProbCog in non-native environments where 
true real-time processing is required.

5.   Conclusion and Future Work

As demonstrated in the previous sections, Bayesian Logic Networks are a useful 
concept  to  create  agents  for  dynamic  environments.  Agents  can  be  modeled  by 
defining the random variables of the environment and their dependencies.  Logical 
rules can be added to inject a specific behavior in addition to what an agent will learn. 
This  may turn out to be very useful in  practical  applications,  where adaptivity is  
needed but a specific behavior must be guaranteed in some situations. The resulting 
agent learns to optimize its behavior autonomously and is adaptive to the dynamics of 
the environment. The learned knowledge can easily be examined and comprehended, 
which represents an advantage in comparison with other self-learning approaches.

But even if the agent's model can be created easily, it would be desirable if the 
conditional probability network structure of the Bayesian Logic Network could also 
be learned from the agent's collected training data. This would not only simplify the 
creation process of agents even further. Moreover, it would allow to create agents for 
environments where nothing is known about the probabilistic model. By also learning 
the Bayesian Logic Network structure, the learned knowledge would still remain easy 
to examine and to comprehend. At the same time, predetermined behavior could still  
be supplied with logical rules.
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On Efficient Algorithms for Minimal
ME-learning

Nico Potyka

Dept. of Computer Science, FernUniversität in Hagen

Abstract. In a knowledge representation sense, the principle of maxi-
mum entropy (ME) states that a set of probabilistic rules is best repre-
sented by that probability distribution satisfying all rules and possessing
maximum entropy. Accordingly an ME-inference function takes a set
of probabilistic rules and determines the ME-optimal distribution repre-
senting this rules. CondorCKD is an implementation of an algorithm that
inverts ME-inference in a special sense and realizes in this way a learn-
ing approach, completing the logical ME-framework. However, it does
not scale well for bigger problems. In this paper an alternative approach
is considered. Instead of an algebraic inversion strategy, the problem is
regarded as a combinatorial optimization problem. After a closer look on
this problem a simple top-down alternative to CondorCKD is presented,
achieving a significant performance gain.

1 Introduction

Probabilities are proven means to represent degrees of belief or statistical infor-
mation, hence probabilistic frameworks like Bayesian networks [11] or Markov
random fields [10] are popular for knowledge representation tasks. Whereas they
are based on a graphical structure, in the maximum entropy (ME) framework
a more symbolic formalism is used [8]. What they all have in common is that
a complete probability distribution is induced by a compact knowledge base,
i.e., a bayesian network, a Markov random field or a set of rules in case of the
ME-framework. In each formalism there is an inference procedure, able to create
a whole probability distribution from such a knowledge base. Also one may be
interested in a convenient knowledge base for observed data, this task is called
learning. The learning problem is well-examined for the mentioned graphical
models, see e.g. [11].

In the ME-framework a set of rules, so-called conditionals, is used as knowl-
edge base. In [8] an algorithm is developed that exploits a special structure
induced by an ME-inference function to invert this function in a sense. More
precisely, the algorithm takes a probability distribution and calculates a set of
conditionals. ME-inference applied to this conditional set approximately calcu-
lates the original distribution again. In this way it realizes a well-founded learning
procedure completing the ME-framework. It follows a bottom-up approach. Most
special rules able to represent any possible dependency are successive shortened,
with intention of decreasing redundany while preserving important information.
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In [9] CondorCKD is presented, an implementation of the algorithm in the
functional programming language Haskell. Even though good results for smaller
problems can be obtained, runtime and learning performance lower with increas-
ing problem complexity. This paper focuses on more efficient learning of minimal
knowledge bases, thereto the problem will be reformulated as a combinatorial
optimization problem. Then a top-down approach will be developed as an alter-
native to CondorCKD. Instead of decreasing the rule set as long as a correctness
criteria is maintained, a most general set is adequately increased until the criteria
is satisfied.

In Section 2 the basic principles are explained, i.e. the logical formalism and
the maximum entropy framework. Subsequently in section 3 the minimal ME-
learning problem is considered. Initially a reasonable upper bound for the size
of a knowledge base is determined, then the problem is formulated as a combi-
natorial optimization problem. In Section 4 then a greedy top-down-approach
is considered to solute the problem heuristically. After a short examination of
probabilistic difference measures a beneficial problem separation is introduced.
Subsequently a greedy top-down algorithm and experimental results for two im-
plementations are presented. The paper concludes with a short discussion and
ideas for further work.

2 Basic Principles

In this section the basic principles are introduced. Since the notation varies, it
must be mentioned, that in the following the power set, i.e., the set of all subsets
of a set A is denoted by 2A.

2.1 Multi-valued Propositional Probabilistic Logic

In most cases learning data is not represented as a probability distribution,
but as a set of data instances D, e.g., tuples in a database or, more generally,
a table of observations. This dataset D with its corresponding attributes in-
duces a probability distribution PD due to the relative frequencies of different
instances. Instances of the dataset are represented by words of a probabilisti-
cally logical language L over a finite set of n multi-valued propositional variables
V = {V1, . . . , Vn} representing the attributes. To each variable a finite domain
dom (Vi) = {vi1, . . . , viki} of values is assigned. Then L consists of all multi-
valued propositional formulas formed in the usual way by conjoining finitely
many atoms by conjunction, disjunction and negation. For ease of notation the
atom (V = v), V ∈ V, v ∈ dom(V ), is sometimes abbreviated by v, F ∧G by FG
and ¬F by F . The classical truth values true and false are denoted by > and
⊥. The conjunctions in Ω := {∧ni=1(Vi = vi)|vi ∈ dom(Vi) for all 1 ≤ i ≤ n},
containing exactly one proposition to each variable, are called complete conjunc-
tions.

Obviously each instance of the dataset can be represented by an ω ∈ Ω,
hence they are also called possible worlds. The set of all complete conjunctions,
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respectively the set of all possible worlds Ω, corresponds to the elementary
events of the considered probability distribution P. Hence intuitively speak-
ing P : Ω → R assigns to each instance of the dataset its relative frequency.
In a more logical way each complete conjunction ω ∈ Ω also corresponds to a
propositional interpretation Iω, since it assigns a truth value to each variable.
Let Mod(F ) := {ω ∈ Ω|Iω |= F} denote the set of all worlds corresponding to
classical models of a formula F ∈ L. Note that each formula F is equivalent to
the disjunction of complete conjunctions corresponding to its classical models,
i.e., F ≡ ∨ω∈Mod(F) ω. In this way a consistent probability to each formula can
be assigned as follows:

P(F) = P(
∨

ω∈Mod(F)

ω) =
∑

ω∈Mod(F)

P(ω). (1)

Conjunctions containing at most one proposition per variable are called elemen-
tary conjunctions. Hence each complete conjunction is an elementary conjunc-
tion, too. Conjunctions C with P(C) = 0 are of special interest as will be shown
later, they are called nullconjunctions (with respect to P). As usual the atom v
is called positive Literal, v negative literal. Since all variables are multi-valued,
negative literals are of little importance in this paper. For a boolean variable b
this may be a little bit confusing. Note that the positive literal (b = false) is
equivalent to the negative literal ¬(b = true).

Conditionals: Dependencies A ; B between formulas A,B ∈ L are repre-
sented by so-called conditionals (B|A)[x]. B is called consequence, A is called
antecedence of the conditional. The reason for the notation becomes obvious,
when assigning probabilistic semantics to conditionals as follows:

P |= (B|A)[x] iff P(A) > 0 and P(B|A) = x. (2)

Thereby P(B|A) := P(AB)
P(A) is the conditional probability of B given A. The defi-

nition of the probabilistic model relation can be extended to sets of conditionals
R naturally by P |= R iff P |= (B|A) for all (B|A) ∈ R. Let (L|L) denote the
set of all probabilistic conditionals. Conditionals (B|A) satisfying P(A) > 0, are
called consistent (with respect do P) in the following.

Conditionals (B|A)[x] are called deterministic conditionals (with respect to
P) if x ∈ {0, 1} and non-deterministic otherwise. The consequence of single-
elementary conditionalse consists of exactly one literal and their antecedence is
a disjunction of elementary conjunctions not containing the consequence vari-
able. In many cases conjunctions will be sufficiently expressive, discjunctions
may become necessary when considering the negation of multi-valued variables.
In this paper it is assumed that elementary conjunctions are sufficiently ex-
pressive. Let (V|L)∧P denote the conjunction-restricted set of single-elementary
conditionals that are consistent with respect to P. They can be perceived as a
sort of multi-valued, probabilistic horn-clauses.
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Example 1. Consider an expert system that shall learn some basic concepts
about cars. For this purpose several cars are observed and evaluated with re-
spect to their A(ge), P(erformance), F(uel type) and C(onsumption). The cor-
responding domains are dom(A) = {new, used}, dom(P ) = {high,med, low},
dom(F ) = {petrol, diesel} and dom(C) = {high,med, low}. Hence the set of
possible worlds Ω consists of all the possible configurations represented by com-
plete conjunctions like (A = new) ∧ (P = high) ∧ (F = petrol) ∧ (C = high).
The two tables in Figure 1 show the observed cars, with their corresponding
frequencies and relative frequencies interpreted as a probability distribution P.
Thereby every row corresponds to a complete conjunction. The nullconjunctions
are not explicitly listed.

A P F C frequency P(ω)

used high diesel med 12 0.012
used med diesel med 12 0.012
new high diesel high 13 0.013
new high diesel med 13 0.013
new med diesel med 13 0.013
used high diesel high 18 0.018
used low petrol low 54 0.054
used high petrol med 54 0.054
used low petrol med 54 0.054
used med petrol med 54 0.054

A P F C frequency P(ω)

new high petrol high 57 0.057
new high petrol med 57 0.057
new low petrol med 57 0.057
new med petrol med 57 0.057
new low petrol low 62 0.062
used low diesel low 78 0.078
used low diesel med 78 0.078
used high petrol high 81 0.081
new low diesel med 83 0.083
new low diesel low 89 0.089

Fig. 1. Learning data for an expert system.

Now the application of a learning algorithm may yield the conditional (C =
high|P = high)[1], expressing that the observed cars with a high performance
have also a high fuel consumption. Another conditional may be (C = low|F =
diesel)[0.8], expressing that observed cars consuming diesel often have a low fuel
consumption.

2.2 The ME-Principle

In an information theoretical sense entropy can be seen as a measure for un-
certainty inherent to a probability distribution P. Given a set of conditionals
R there can be many probability distributions satisfying R. The principle of
maximum entropy demands to choose that satisfying distribution possessing
maximum entropy [7].

A more general notion is the relative entropy, which is a measure for the
distance between two probability distributions. For probability distributions P1,
P2 defined on the same discrete set of elementary events Ω it is defined as follows:

R(P1,P2) :=
∑

ω∈Ω
P1(ω) · log

P1(ω)

P2(ω)
.
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By setting 0 · log 0
0 := 0 and demanding P2(ω) = 0 implies P1(ω) = 0 it is well-

defined. It is well-known that minimizing the relative entropy of a probability
distribution P to the uniform distribution corresponds to maximizing the entropy
of P. To underline this duality between minimization of the relative entropy and
maximization of the entropy, one often simply speaks of the ME-Principle.

ME-inference: Let R = {(B1|A1)[x1], . . . , (Bm|Am)[xm]} be a set of m prob-
abilistic conditionals. It turns out that the optimization problem of finding a
probability distribution representing R while maximizing entropy leads to a
special structure [8]. For every conditional (Bi|Ai)[xi] a function fi is defined as
follows:

fi(ω) =




α1−xi
i , if Iω |= AiBi
α−xii , if Iω |= AiBi

1, if Iω |= Ai.

(3)

The αi ∈ R result from the solution of the optimization problem, see [8] for
details. Hence fi maps a world ω ∈ Ω to a real number, dependent on the logical
interpretation of (Bi|Ai) with respect to the corresponding logical interpretation
to ω. Then the optimal solution is given as follows:

P∗(ω) = ME(R)(ω) = α0

∏

1≤i≤m
fi(ω). (4)

Thereby α0 is just a normalizing constant ensuring
∑
ω∈Ω P∗(ω) = 1 so that

P∗ is a probability distribution. The inference function ME maps a set of con-
ditionals R to the ME-optimal probability distribution representing R.

Example 2. The probability distribution P in Figure 1 is generated by ME-
inference applied to the condional set R shown in Figure 2, i.e., ME(R) = P.
Let R′ be the set of conditionals resulting from R by replacing the conditional
(C = high|P = high)[1.0] by the two conditionals (C = low|P = high)[0.0]
and (C = med|P = high)[0.0]. Then ME(R′) = P also holds, hence ME is not
injective.

(C = low|F = diesel)[0.8]
(P = high|A = used)[0.2]
(P = low|A = new)[0.3]

(C = high|P = high)[1.0]
(C = low|P = low)[1.0]

Fig. 2. Conditional set inducing car data.

ME-learning: In [8] it is proposed to consider ME-learning as a process being
inverse to ME-inference. As example 2 demonstrates the ME-function is not
injective, i.e., there can be more than one conditional set inducing the observed
probability distribution. But defining two conditional sets as equivalent with
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respect to ME-inference iff they induce the same probability distribution, it can
be inverted to representatives of equivalence classes [R]ME := {R′|ME(R′) =
ME(R)}.

Based on [8] in [9] CondorCKD is presented. It takes a probability distribu-
tion P and tries to compute a knowledge base R to P. It starts with the set
of single-elementary conditionals of maximal length, the so-called basic condi-
tionals. Numerical dependencies in P can be used to derive dependencies in the
conditional set. Using these dependencies the basic conditional set is stepwise
decreased by combining two conditionals to a shorter one or deleting condition-
als. Unfortunately the derived dependencies cannot be guaranteed to be valid,
unless P is a so-called faithful representation of R, see [8] for details.

To cover unfaithful representations, CondorCKD uses several heuristics [9].
But with increasing number of variables there are either too many invalid short-
enings of the basic conditional set or too many remaining conditionals. To avoid
invalid shortenings, i.e., shortenings entailing loss of information, backtracking
can be used [8]. A naive backtracking check could be implemented by infering
a probability distribution from the shortened conditional set and comparing it
to the original distribution. Nevertheless, a valid shortening at a certain point
may not be optimal. That is, the information contained in the shortened con-
ditional may be equivalently expressed by several other remaining conditionals.
But after shortening the conditional all the other conditionals have to remain
to conserve the information. Hence in this sense it is only a locally valid short-
ening. What is more, both ME-inference and the comparison of distributions
may be computation-costly. Since CondorCKD starts with a number of single-
elementary conditionals exponential in the number of variables, this is a serious
problem, since a huge number of checks might be necessary.

3 Minimal ME-learning

In this section the problem of inverting ME-inference, resp. the ME-learning
problem, is considered in detail. As mentioned above there is not necessarily a
unique solution. Given a probability distribution P a set of conditionals R is
searched, satisfying ME(R) = P. Then P is called ME-representation of R, R
is called knowledge base to P. The focus of this paper is on finding a knowledge
base of minimal size to a given distribution P, called minimal ME-learning in
the following. After considering an upper bound for the number of conditionals,
the problem is reformulated as a combinatorial optimization problem.

3.1 An upper Bound for a Knowledge Base

Consider a set of n multi-valued variables V = {V1, . . . , Vn} with the corre-
sponding logical language L, the set of worlds Ω, the probability distribution
P : Ω → R and the consistent conjunctive single-elementary conditionals (V|L)∧P
as explained in Section 2.1. For ease of notation it is assumed that |dom(V )| = k
for all V ∈ V. Then the probability distribution P can be uniquely described
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by kn real-valued variables xω corresponding to the probabilities of the possible
worlds. Every single-elementary conditional (v|A)[p] ∈ (V|L)∧P induces an equa-
tion over some variables xω as follows. By definition (2) P is a model for (v|A)[p]
iff the following holds:

p = P(v|A) =
P(Av)

P(A)
=

P(Av)

P(Av) + P(Av)
.

Hence (1 − p) · P(Av) − p · P(Av) = 0. Recalling that the probability of any
formula in L is equivalent to the sum of complete conjunctions corresponding to
its classical models as stated in (1), one obtains the following equation:

0 = (1− p) · P(Av)− p · P(Av)

= (1− p) · (
∑

ω∈Mod(Av)

P(ω))− p · (
∑

ω∈Mod(Av)

P(ω))

=
∑

ω∈Mod(Av)

(1− p)xω −
∑

ω∈Mod(Av)

p · xω.

This is a linear equation for the variables xω for P. kn linear independent equa-
tions are sufficient to determine P uniquely, this can be seen as a first upper
bound for the size of a solution set of the learning problem. With respect to the
fact that P can also be defined by kn assignments to the elementary worlds,
this is indeed an upper bound. But recalling that in applications a dataset D in-
duces the probability distribution, there will be predominantly nullconjunctions
if there are many variables considered. Further assuming, that there are more
efficient ways to represent the nullconjunctions, they can be handled separately
and the number of variables is bounded by O(|D|). In fact it will be only a frac-
tion of |D|, since many instances d ∈ D will be represented by the same worlds.
In this way a manageable bound is obtained.

3.2 The Problem of Minimal ME-learning

Minimal ME-Learning can be considered as a combinatorial optimization prob-
lem. In general a combinatorial optimization problem is described by a set X of
variables with corresponding domains, constraints among the variables and an
objective function that is to be optimized. Considering minimal ME-Learning,
the variables xφ ∈ X correspond to the consistent conditionals φ ∈ (V|L)∧P with
respect to P. Their domain is {0, 1}, indicating if the conditional is used. The
only constraint is ME(R) = P whereas R = {φ ∈ (V|L)∧P |xφ = 1}. This con-
straint will have to be relaxed to ME(R) ≈ P in general, since ME-inference is
done by approximative approaches. The objective function to be minimized is∑
xφ∈X xφ, i.e., the number of conditionals used.
To obtain the number of variables in X , if there are no nullconjunctions,

consider the conditionals from (V|L)∧P arranged in layers. Layer l includes the
single-elementary conditionals with antecedence of length l. If there are n vari-
ables in V, the minimum size of the antecedence is 0 (>), the maximum size n-1,
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hence altogether there are n layers. To each consequence literal there are
(
n−1
l

)

possible combinations of antecedence variables in layer l. Each of these combina-
tions may be interpreted in kl ways. So there are

(
n−1
l

)
·kl ·n possible conditionals

in layer l per consequence literal. Considering all k · n possible consequence lit-
erals, there are |(V|L)∧P | = k ·n ·∑0≤l≤n−1

(
n−1
l

)
· kl = k ·n · (k+ 1)n−1 > n · kn

variables in X .
As stated above, a valid solution of the ME-learning problem is a set R of

conditionals, satisfying ME(R) = P. Only a small proportion of the 2|(V|L)
∧
P |

subsets are valid solutions, nevertheless the calculation illustrates the possible
dimension of the search space of the combinatorial optimization problem. There-
fore it is essential to take the nullconjunctions into account to reduce the number
of possible conditionals |(V|L)∧P | to the number of consistent conditionals with
respect to P as stated in Section 2.1.

4 Top-down Learning

A simple approach to overcome the problems of CondorCKD is to start with
a set of most general conditionals and specialize them until P is sufficiently
approximated. Instead of bottom-up deleting and shortening the conditionals,
they are top-down added and extended. In the following a greedy top-down-
approach is developed and subsequently experimentally evaluated with respect
to runtime performance and knowledge base size.

4.1 Probabilistic Difference Measures

ME-inference is done by approximative approaches, hence in general one cannot
expect equality between the original and the inferred distribution and has to
define a tolerance threshold. Adequate difference measures are provided by the
concept of f-divergences [3]. The f -divergence Df (P1|P2) of P1 and P2 is induced
by a convex function f , with f(1) = 0, as follows:

Df (P1|P2) =
∑

ω∈Ω
P2(ω)f(

P1(ω)

P2(ω)
).

Similar to the definition of relative entropy here 0 · f( 0
0 ) := 0 and P2(ω) = 0

implies P1(ω) = 0 is demanded. It is easy to check that Df = R holds for f(t) =
t · log t, hence the relative entropy is a special case of an f -Divergence. More
popular measures can be derived, see [3] for an overview. The most important
features they all have in common is specified by the definition of an f -divergence.

f(1) = 0 assures that there is no error term P2(ω)f(P1(ω)
P2(ω)

) in the sum, if there

is no difference between the probabilities. The convexity assures that the error
term is not decreasing if the difference is increasing. The factor P2(ω) weighs the
error at the point ω with respect to the probability of ω. It seems reasonable that
more probable worlds are also more important. Since the original distribution P
reflects the searched probabilities it should be used as the second parameter for
Df .

79



4.2 Decomposing the Problem

To reduce the number of variables the learning problem is decomposed into the
search for a deterministic and a non-deterministic knowledge base. The following
proposition states some properties of conditionals satisfyable with respect to a
given probability distribution P.

Proposition 1. Let P be a probability distribution and let (B|A)[x] be a condi-
tional. Then the following holds.

1. If P |= (B|A)[x] then P(AB) > 0 or P(AB) > 0.
2. P |= (B|A)[0] if and only if P(AB) = 0 and P(AB) > 0.
3. P |= (B|A)[1] if and only if P(AB) > 0 and P(AB) = 0.
4. If P |= (B|A)[x] then x ∈]0, 1[ if and only if P(AB) > 0 and P(AB) > 0.

Proof. 1. If P |= (B|A)[x] then 0 < P(A) = P(AB) +P(AB), hence P(AB) > 0
or P(AB) > 0.

2. If P |= (B|A)[0] then necessarily P(AB) = 0 and P(AB) > 0. If conversely
P(AB) = 0 and P(AB) > 0 obviously P |= (B|A)[0] holds.

3. If P |= (B|A)[1] then P(AB) = (P(AB) + P(AB)) − P(AB) = P(A) −
P(B|A)P(A) = 0 and P(AB) > 0 because of 1. If conversely P(AB) = 0 and

P(AB) > 0 then P(B|A) = P(AB)
P(AB)+0 = 1, hence P |= (B|A)[1].

4. This follows immediately from 1-3.

A probability distribution satisfying P(ω) > 0 for all ω ∈ Ω is called strictly
positive. An immediate consequence of the proposition is, that there can be no
deterministic condionals satisfied in such a distribution, unless they are deter-
ministic in a logical sense already, ie., A ∨B is contradictory or tautological.

Any probability distribution P induces a strictly positive probability distribu-
tion P+ by restricting the domain to the set of worlds Ω+

P := {ω ∈ Ω|P(ω) > 0}
with positive probability, i.e., P+(ω) = P(ω) for all ω ∈ Ω+

P . By restricting the
set of models to Ω+

P each formula F ∈ L can be evaluated with respect to P+

and P(F) =
∑
ω∈Mod(F) P(ω) = 0 +

∑
ω∈Mod(F)∩Ω+

P
P+(ω) = P+(F). Hence

P |= (B|A)[x] if and only if P+ |= (B|A)[x]. Since the considered datasets in the
learning problem will probably contain only a fraction of the possible worlds,
it seems reasonable to learn from the corresponding induced strictly positive
probability distribution P+. In this way the number of variables might be sig-
nificantly smaller, this might speed up the inference procedure for determining
the solution quality as well as the learning procedure. Worlds with probability
0 are implicitly satisfied by P+. Hence in an optimal learning algorithm there
will be no deterministic conditionals found, since they add no new information.
In this way it will only determine a non-deterministic knowledge base.

To determine a deterministic knowledge base of minimal size it seems reason-
able to determine the most general nullconjunctions only, since any specialization
of a nullconjunction has to be a nullconjunction, too. They can be obtained by
starting with all atoms and conjoining them by conjunction until their prob-
ability is 0. Let N denote the set of most general nullconjunctions. Then for
each conjunction N ∈ N a fact (N |>)[0] can be added to the non-deterministic
knowledge base for P+ to obtain the complete knowledge base for P.
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4.3 Greedy Top-down Learning

In the following a greedy top-down approach shall be considered determining
a complete and compact, but not necessarily minimal knowledge base for P.
More precisely, it increases the empty conditional set successively by preferably
short conditionals to a knowledge base for P. Its search space is not built up
of valid solutions of the combinatorial optimization problem from the power set
2(V|L)

∧
P but of single-elementary conditionals from (V|L)∧P that will be combined

to a solution. For clear discrimination in the following the two search spaces are
denoted by S

2(V|L)∧P and S(V|L)∧P respectively. The search space S(V|L)∧P can be
considered as a layered graph, similar to the consideration in Section 3.2. In layer
l there are the valid single-elementary conditionals with antecedence of length
l. There is an edge from conditional (v|A) in layer l to a conditional (w|B) in
layer k iff (w|B) is in the following layer, i.e., l+ 1 = k, and they share the same
consequence variable, i.e., v = w. That is, the successors of a conditional are
obtained by adding exactly one literal, containing a variable that is not already
contained in the conditional, to the antecedence.

Example 3. Consider three boolean variables A,B,C and let X denote X = true
for X ∈ {A,B,C}. Figure 3 shows the search space S(V|L)∧P for this example.
It is artificially spanned by the conditional (>|>). Since there are only binary
variables it is sufficient to consider only the positive consequence.

Fig. 3. Search space for the opening procedure

The set of currently considered conditionals is called the search space border and
is denoted by B. S(V|L)∧P will be searched top-down by successively expanding
conditionals from the border, i.e., adding their successors to the border. Figure
4 illustrates a simple greedy algorithm.

GreedyCKD takes a probability distribution P, an f -divergence Df and a
threshold ε determining the approximation accuracy as input and computes a

81



Input: probability distribution P, f -divergence Df , threshold ε
Output: conditional set R

BEGIN
R← ∅, B ← {(>|>)}, r∗ ← (>|>)
N ← calculateNullconjunctions(P)
P ← P+

WHILE B 6= ∅ AND Df (ME(R),P) > ε DO
B ← (B ∪ expand(r∗,N )) \ {r∗}
evaluate(B)
r∗ ← best(B)
R← R∪ {r∗}

END WHILE
R← R∪ asFacts(N )
RETURN R

END

Fig. 4. GreedyCKD

set of conditionals R with Df (ME(R),P) ≤ ε. It starts with an empty condi-
tional set and the trivial conditional (>|>) spanning the search space S(V|L)∧P ,
i.e., (>|>) is expanded by the conditionals (v|>) for all v ∈ dom(V ) and all
V ∈ V. r∗ represents the currently best conditional. The most general nullcon-
junctions are calculated separately and P is replaced by P+. In this way it is in
particular possible to guarantee well-definedness for Df , since it is assured that
a nullconjunction in the original distribution is a nullconjunction in the inferred
distribution, too. The main loop is executed until the search space border is
empty or the correctness criteria is reached. Therein the currently best condi-
tional is expanded and removed from the search space border. The expansion
procedure has to take the nullconjunctions into account to pass only consistent
and non-deterministic conditionals. The conditionals in the search space border
are then evaluated, e.g., with respect to the obtained approximation gain, if
adding the current conditional to R. Subsequently the (locally) best conditional
is selected in a greedy manner.

Assuming the basic conditionals represent the distribution exactly, the algo-
rithm will always terminate satisfying Df (ME(R),P+) ≤ ε. Since the nullworlds
are covered in the last step by adding the nullconjunctions as facts, it finally
holds Df (ME(R),P) ≤ ε.

Naive Top-down Implementation (TDCKD): A naive version has been
implemented first. Conditionals are expanded by all successors, i.e., by extending
the antecedence with values of variables not already contained in the conditional.
The search space border is evaluated by calculating the approximate gain ([1],
[4]) for every border conditional b ∈ B. Basically it approximates Df (ME(R ∪
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{b}),P) by only adapting the factor for the new conditional b in the inference
step. The conditional obtaining the minimum value is selected and added to R.

So far only relative entropy has been used as a difference measure. If there
are long condionals in the set inducing P, the algorithm tends to find many
short rules that are specialized by longer rules subsequently and therefore might
be redundant. Nevertheless, they cannot be removed readily, unless every direct
successor has been added to the knowledge base. While CondorCKD tends to
represent few short conditionals by many long conditionals, GreedyCKD repre-
sents few long conditionals by many short conditionals.

Frequent Pattern Implementation (FPCKD): Since the simple implemen-
tation has to add many potentially redundant short conditionals before obtaining
interesting long conditionals, it seems reasonable to add a set of promising con-
ditionals to the search space border initially. A machine learning area with a
strong structural similarity to ME-learning is the area of association rule learn-
ing [6]. There the search for interesting rules is often decomposed by looking for
frequent patterns first and subsequently generating rules from these. Ideas from
[13] and [12] have been adapted to detect frequent patterns, i.e., atoms appear-
ing frequently together, and generate promising single-elementary conditionals
from them.

4.4 Experimental Results

To compare the implementations TDCKD and FPCKD to CondorCKD, mod-
ifications of the US Census Data from the UCI Machine Learning Repository
have been used [5]. Since all algorithms transform the dataset into a probability
distribution their runtime is almost independent of the number of instances, but
strongly dependent on the number of possible worlds induced by the variables.
Hence different subsets of the contained variables have been considered. TDCKD
and FPCKD had to approximate the original distribution to a threshold of 10−4.
Since CondorCKD contains no backtracking so far, the learned knowledge base
does not necessarily represent the original distribution again, but might repre-
sent it much better as well. To each algorithm one 2,000 MHz CPU and 256 MB
of main memory were assigned.

Figure 4.4 compares the runtime performance for the three implementations.
In the first picture the test started with 64 possible worlds (6 binary variables)
and was repeated with 128 (additional binary variable), 384 (additional ternary
variable) and 1152 (additional ternary variable) possible worlds. Using Condor-
CKD there is a tradeoff between runtime and approximation quality. If many
dependencies are found, there will be many shortenings necessary. This results
in a smaller knowledge base but increasing runtime. Conversely, if only few de-
pendencies are found, the algorithm can be much faster, but returns a huge
knowledge base of unshortened and highly redundant conditionals. It has been
configured as a compromise between a short knowledge base and good perfor-
mance, but better configurations might be possible. Using different configura-
tions it has been clearly outperformed at 384 worlds. The test set of the second

83



picture started with two ternary and two quarternary variables (144 worlds),
subsequently binary variables had been added. The runtime of CondorCKD ex-
ceeds the diagram for the first set already.

Fig. 5. Runtime in minutes for CondorCKD (continuous), TDCKD (dashed) and
FPCKD (dotted).

In figure 4.4 the size of the learned knowledge base is illustrated. The con-
tinuous line represents the upper bound as described in section 3.1. Since Con-
dorCKD is not aimed at minimal learning it determined knowledge bases above
this bound and hence is not incorporated in the comparison. On the left the
number of possible worlds is compared to the number of learned conditionals
describing the original distribution. On the right, inspired by information the-
ory, the possible worlds and the learned conditionals are evaluated with respect
to their description length. Let the description length of an atom (V = v) be
the number of bits needed to encode the value of the considered variable, i.e.,
dlog dom(V )e. The description length of a conjunction is the sum of the descrip-
tion lengths of the contained atoms and the description length of a conjunctive
conditional is the sum of the description lengths of the antecedence and the con-
sequence. Using the language from example 1 the description length of the world
(A = new)∧ (P = high)∧ (F = petrol)∧ (C = high) is 1 + 2 + 1 + 2 = 6 and the
description length of the conditional (C = high|P = high)[1] is 2+2 = 4. As the
figures show the knowledge base representation becomes much more rewarding,
if the number of possible worlds is growing.

Both top-down approaches perform similar with respect to the runtime as
well as with respect to the knowledge base size. For an increasing number of
variables FPCKD becomes slightly faster, since the frequent pattern structure
can be used to determine satisfying and violating worlds in the beginning more
efficient. For a small number of variables the advantage is outweighed by the
effort to determine frequent patterns.

It is also worth mentioning that TDCKD finds the smaller knowledge base
in most cases, even though it does not make use of any information but the cur-
rent information gain of the currently considered conditionals. In fact FPCKD
determines larger databases if the minimum support is lower and thus the initial
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Fig. 6. Upper bound (continuous) for the knowledge base size and results for TD-
CKD (dashed) and FPCKD (dotted) with respect to required conditionals (left) and
description length (right).

search space border is larger. The operating sequence of TDCKD can be intu-
itively described as consecutively adding general assumptions in form of facts
and delimiting them with respect to further information subsequently. This ap-
proach seems to work well for ME-learning, at least for problems of moderate
size.

5 Discussion and Further Work

In this paper a top-down ME-learning approach has been developed focused
on minimal learning rather than on inverting ME-inference in a rigorous sense.
The search for a minimal knowledge base is divided into the search for a de-
terministic and a probabilistic part to speed up the calculation steps. The two
implementations TDCKD and FPCKD perform well for problems of moderate
size.

One performance weakness is the search for nullconjunctions to determine
the deterministic part of the knowledge base. Currently it follows a brute force
approach that should be replaced by a more sophisticated method. A heuristical
tree structure approach used in CondorCKD [9] might be more efficient.

Recalling the upper bound for a knowledge base from section 3.1 the search
for the probabilistic part can be executed in O(|D|) iterations. If the approxi-
mation is not sufficient at this point, one can as well return the worlds in D as
facts as a solution. The computation-costly steps in each iteration are firstly the
calculation of the satisfying and violating worlds for the conditionals added to
the search space border and the evaluation of the conditionals. Both steps can be
performed in time O(|D|) and can be well parallelized. Furthermore, after each
iteration the currently represented probability distribution has to be derived,
this will become challenging for large problems.

To reduce the number of expensive inference steps it seems reasonable to add
several promising conditionals in each step. This will result in a bigger knowledge
base very likely. To further minimize it, subsequently common metaheuristics
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like simulated annealing could be used, see [2] for an overview. The mentioned
dependencies between numerical and conditional structure as described in [8]
already used in CondorCKD could be helpful to detect redundancies.

Even though a significant performance gain is obtained, the steep raising in-
dicates that this approach is not capable of handling datatypes containing more
than some thousand possible worlds, i.e., about 15 binary or some multi-valued
variables. Approximative bayesian network learning approaches scale much bet-
ter in this order of magnitude. Since these approaches are aimed at most probable
rather than sufficiently exact approximations of the data, this performance will
probably never be obtained. However, it is certainly possible to improve per-
formance by increasing the tolerance threshold or using a time limit. Roughly
speaking the algorithms would determine the most informative conditionals in
this way. With respect to interpretability the frequent pattern approach seems
more convenient for this purpose.
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