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Abstract

Inductive representation of conditional knowledge means to
complete knowledge appropriately and can be looked upon
as an instance of quite a general representation problem.
The crucial problem of discovering relevant conditional re-
lationships in statistical data can also be addressed in this
formal framework. The main point in this paper is to con-
sider knowledge discovery as an operation which is in-
verse to inductive knowledge representation, giving rise to
phrasing the inverse representation problem. This allows us
to embed knowledge discovery in a theoretical framework
where the vague notion of relevance can be given a precise
meaning: relevance here means relevance with respect to an
inductive representation method. In order to exemplify our
ideas, we present an approach to compute sets of condition-
als from statistical data, which are optimal with respect to
the information-theoretical principle of maximum entropy.

Keywords: data mining, knowledge discovery, knowledge
representation, reasoning under uncertainty, probabilistic
conditionals, inverse representation problem

1. Introduction

Commonsense and expert knowledge is most generally
expressed by rules, connecting a precondition and a conclu-
sion by an if-then-construction. If-then-rules often occur in
the form of probabilistic conditionals. For instance, such
conditionals may express commonsense knowledge like
“Students are young with a probability of (about) 80 %” and
“Singles (i.e. unmarried people) are young with a probabil-
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ity of (about) 70 %”, the latter knowledge being formally
expressed by {(young|student)[0.8], (young|single)[0.7]}.

In this paper, we address two crucial problems which
arise at once when probabilistic conditionals are used for
knowledge representation and reasoning:

• How to combine knowledge expressed by conditionals
so as to yield expressive answers to queries?

• Where do the (probabilistic) conditionals apt to repre-
sent knowledge appropriately come from?

Each of these questions has been investigated for quite a
long time. The proper use of rules has been discussed since
the days of the first rule-based systems (cf. e.g. [11]) and
has also been a topic in philosophical studies [1]. A mod-
ern and quite effective approach to represent probabilistic
rules is provided, for instance, by Bayesian networks (cf.
e.g. [33, 13]), or by the powerful maximum entropy ap-
proach [32]. As to the second question above – which ac-
tually should be considered in the first place –, one tends
to assume that some omniscient expert is able to express
his knowledge as (probabilistic) rules. In practice, how-
ever, statistical data are often used to (at least) support the
building of knowledge bases. Techniques and tools to tackle
this problem have been developed in the areas of machine
learning, and knowledge discovery and data mining (for an
overview, see [17, 16]).

The close relationship between these two problems is ob-
vious: Preferably those conditionals should be discovered
the combination of which yields most adequate answers to
queries. In spite of this, the questions above have often been
dealt with separately. The point of this paper is to provide a
formal framework to deal jointly with both problems, and to
make the interdependence between them clearly visible. In
particular, the often quite vague criterion of relevance ap-
plied to the rules to be discovered, can be given formally
a more precise meaning by referring to a particular knowl-
edge representation method.
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In detail, our line of argumentation is as follows: For the
first problem, we propose a model-based solution by for-
malizing a general representation problem: Given a specifi-
cation of a theory, select a set of models as its desired repre-
sentation. The well-known probabilistic principle of maxi-
mum entropy (ME-principle) is easily seen to solve this rep-
resentation problem for probabilistic conditionals in a most
satisfying way [32]. Having phrased this general represen-
tation problem, we address the second problem: Statistical
data may be summarized as a frequency distribution which
constitutes a probabilistic model for the rules it represents.
From our point of view, the important question how to ex-
tract rules from statistical data may thus be viewed as in-
verting the above mentioned representation problem, in that
now a set of probabilistic conditionals (i.e. a probabilistic
specification) has to be selected, given a model. So, the
task of discovering rules from data can be considered as
an instance of this abstract inverse representation problem.
For the inductive representation of probabilistic condition-
als via the ME-principle, we will illustrate the functionality
of a KDD (Knowledge Discovery in Data) approach to solve
this inverse representation problem, i.e. to compute a con-
cise set of rules which are most relevant with respect to the
ME-method.

The rest of this paper is organized as follows: In Section
2, we recall some basic definitions and establish our nota-
tion; moreover, we use the notion of institutions for a for-
malization of probabilitic conditional logic as suggested in
[6] and [7]. The general notions of the representation prob-
lem and the inverse representation problem are introduced
and illustrated in various application areas in Sections 3 and
4, respectively. Section 5 gives an example how KDD can
be seen as an instance of the inverse representation prob-
lem, while Section 6 gives some conclusions and points out
further work.

2 The institution of probabilistic conditional
logic

2.1. Theories and their presentations in the frame-
work of institutions

As a general framework for logical systems, Goguen and
Burstall introduced the notion of an institution [18]. An in-
stitution formalizes the informal notion of a logical system,
including syntax, semantics, and the relation of satisfaction
between them. The latter poses the major requirement for
an institution: that the satisfaction relation is consistent un-
der the change of notation.

Institutions have been used for the general study of log-
ics. For instance, there are widely applicable results about
building up larger theories from smaller components. In-
stitution morphisms [20] support the comparison of differ-

ent logics, they are used for glueing together several logics
within one system, and they may permit a theorem prover
for one institution to be used on theories from another one.
Additionally, institutions have also been used as a basis for
specification and development languages; in fact, institu-
tions arose in the context of designing the specification lan-
guage Clear [12, 18]. For some of the work using institu-
tions see e.g. [19, 34, 9, 37, 20].

Before going into the details of the definition of an in-
stitution, we briefly recall some basic facts about category
theory which institutions use as a framework.

If C is a category, |C | denotes the objects of C and /C/
its morphisms; for both objects c ∈ |C | and morphisms
ϕ ∈ /C/, we also write just c ∈ C and ϕ ∈ C, respectively.
Cop is the opposite category of C, with the direction of all
morphisms reversed. SET and CAT denote the categories
of sets and of categories, respectively. (For more informa-
tion about categories, see e.g. [21] or [30].)

The central definition of an institution [18] is the follow-
ing (cf. Figure 1 that visualizes the relationships within an
institution):

Definition 1 An institution is a quadruple

Inst = 〈Sig , Mod , Sen, |= 〉

with a category Sig of signatures as objects, a functor
Mod : Sig → CAT op yielding the category of Σ-models
for each signature Σ, a functor Sen : Sig → SET yielding
the sentences over a signature, and a |Sig |-indexed relation
|=Σ ⊆ |Mod(Σ) | × Sen(Σ) such that for each signature
morphism ϕ : Σ → Σ′ ∈ /Sig/, for each m′ ∈ |Mod(Σ′) |,
and for each f ∈ Sen(Σ) the following satisfaction condi-
tion holds:

m′ |=Σ′ Sen(ϕ)(f) iff Mod(ϕ)(m′) |=Σ f

We illustrate this definition by formalizing propositional
logic as an institution.

Example 2 The institution of propositional logic is denoted
by

InstB = 〈SigB, ModB, SenB, |=B 〉

and its components are as expected:

1. Signatures: A propositional signature Σ ∈ SigB is a
set of propositional variables, Σ = {a1, a2, . . .}.

2. Models: ModB(Σ) contains the set of all propositional
interpretations for Σ, i.e.

ModB(Σ) = {I | I : Σ → Bool}

where Bool = {true, false}.
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Figure 1. Relationships within an institution Inst = 〈Sig , Mod , Sen, |= 〉 (cf. [18])

3. Sentences: The set SenB(Σ) contains the usual propo-
sitional formulas constructed from the propositional
variables in Σ and the logical connectives ∧ (and), ∨
(or), and ¬ (not). The symbols � and ⊥ denote a tau-
tology (like a ∨ ¬a) and a contradiction (like a ∧ ¬a),
respectively. In order to simplify notations, we will of-
ten replace conjunction by juxtaposition and indicate
negation of a formula by barring it, i.e. AB = A ∧ B
and A = ¬A. As usual, an atom is a formula consist-
ing of just a propositional variable, a literal is a pos-
itive or a negated atom, an elementary conjunction is
a conjunction of literals, and a complete conjunction is
an elementary conjunction containing each atom either
in positive or in negated form. ΩΣ denotes the set of
all complete conjunctions over a signature Σ; if Σ is
clear from the context, we may drop the index Σ.

Note that there is an obvious bijection between
|ModB(Σ) | and ΩΣ, associating with I ∈ |ModB(Σ) |
the complete conjunction ωI ∈ ΩΣ in which an atom
ai ∈ Σ occurs in positive form iff I(ai) = true.

4. Satisfaction relation: The satisfaction relation is
also defined as expected for propositional logic, e.g.
I |=B,Σ ai iff I(ai) = true and I |=B,Σ A ∧ B iff
I |=B,Σ A and I |=B,Σ B for ai ∈ Σ and A, B ∈
SenB(Σ). �

For sets F, G of Σ-sentences and a Σ-model m we write
m |=Σ F iff m |=Σ f for all f ∈ F . The satisfaction re-

lation is lifted to semantical entailment |=Σ between sen-
tences by defining F |=Σ G iff for all Σ-models m with
m |=Σ F we have m |=Σ G. F • = {f ∈ Sen(Σ) |
F |=Σ f} is called the closure of F , and F is closed if F =
F •. A Σ-presentation is a pair 〈Σ, F 〉 with F ⊆ Sen(Σ),
and a Σ-theory is a presentation 〈Σ, F 〉 such that F is closed
under semantical entailment, i.e. F = F •. Mod(〈Σ, F 〉)
denotes the full subcategory of Mod(Σ) of all Σ-models
that satisfy F .

2.2. Probabilistic conditional logic

We will first give a very short introduction to probabilis-
tics as far as it is needed here: Let Σ ∈ |SigB | be a propo-
sitional signature. A probability distribution (or probability
function) over Σ is a function P : SenB(Σ) → [0, 1] such
that P (�) = 1, P (⊥) = 0, and P (A∨B) = P (A)+P (B)
for any formulas A, B ∈ SenB(Σ) with AB = ⊥. Each
probability distribution P is determined uniquely by its val-
ues on the complete conjunctions1 ω ∈ ΩΣ, since

P (A) =
∑

ω∈ΩΣ,ω |=B,Σ A

P (ω) (1)

For two propositional formulas A, B ∈ SenB(Σ) with
P (A) > 0, the conditional probability of B given A is

P (B|A) :=
P (AB)
P (A)

1Note that complete conjunctions correspond to elementary events
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Based on InstB , the institution of probabilistic condi-
tional logic is given by

InstC = 〈SigC , ModC , SenC , |=C 〉

with components defined as follows:

Signatures: SigC is identical to the category of proposi-
tional signatures, i.e. SigC = SigB.

Models: For each signature Σ, the objects of ModC(Σ) are
probability distributions over the propositional variables,
i.e.

ModC(Σ) = {P | P is a probability distribution over Σ}.

Example 3 Let Σ = {a, b, c} be a propositional signature
with the atomic propositions a – being a student, b – being
young, c – being unmarried. We define a Σ-model P by
assigning a probability P (ω) to every complete conjunction
ω over Σ:

ω P (ω) ω P (ω)

abc 0.1950 abc 0.1758
abc 0.0408 abc 0.0519
abc 0.1528 abc 0.1378
abc 0.1081 abc 0.1378

P can be taken as the representation of some statistical in-
formation about a typical population, on the one hand, or as
the representation of subjective beliefs concerning the re-
lationships between the variables involved. For instance,
the probability P (abc) of being a student, being young, and
being unmarried is given by 0.1950, and the probability
P (abc) of being a student, not being young, and being un-
married is 0.0408. �

Sentences: For each signature Σ, the set SenC(Σ) contains
probabilistic conditionals (sometimes also called proba-
bilistic rules) of the form

(B|A)[x]

where A, B ∈ SenB(Σ) are propositional formulas from
InstB. x ∈ [0, 1] is a probability value indicating the degree
of certainty for the occurrence of B under the condition A.
Note that a probabilistic fact of the form B[x] can easily
be expressed as a conditional (B|�)[x] with a tautology as
trivial antecedent.

Satisfaction relation: The satisfaction relation

|=C,Σ ⊆ |ModC(Σ) | × SenC(Σ)

is defined by
P |=C,Σ (B|A)[x] iff

P (A) > 0 and P (B | A) =
P (AB)
P (A)

= x

Note that for probabilistic facts we have P |=C,Σ (B|�)[x]
iff P (B) = x from the definition of the satisfaction relation
since P (�) = 1.

Example 4 Let Σ and P be as in Example 3. Then
P |=C,Σ (b|�)[0.6614] since the probability of being young
is P (b) = 0.6614, as can be seen directly from equation
(1). Furthermore, P |=C,Σ (b|a)[0.8] since the probability
of being young under the condition of being a student is
P (b|a) = 0.8. �

Presentation of probabilistic theories are pairs 〈Σ, R〉,
consisting of a set Σ of propositional variables and a set
R of probabilistic conditionals. While Σ lists the attributes
which are relevant in the present investigation, R may be
thought of as describing probabilistically important rela-
tionships between those attributes. In the example above,
e.g. the conditional (b|a)[0.8] could be an element of such a
set R. In a medical environment, probabilistic conditionals
can establish connections between symptoms and diseases,
or in economics, they can reflect typical customer behavior.

3. The representation problem and preferred
models

The original motivation for institutions was the definition
of the semantics of the specification language Clear [12],
and institutions have been used for various aproaches to
modularized specification and programming development,
often involving the notion of an abstract data type (ADT).
When trying to use formal methods in software develop-
ment, one quickly comes across the need for a rigorous
method for specifying, refining, and implementing data
types at levels that are independent from a specific repre-
sentation used in e.g. traditional programming languages.
Using institutions, a specification is a (theory) presentation
〈Σ, F 〉 (cf. Sect. 2.1). This certainly meets the requirement
of abstractness; but what does 〈Σ, F 〉 represent? The gen-
eral institution framework provides Mod(〈Σ, F 〉) as a se-
mantics for 〈Σ, F 〉, but in many cases we are interested only
in specific models. This is what we call the representation
problem:

Given a specification 〈Σ, F 〉, select a class of
(preferred) models M ⊆ Mod(〈Σ, F 〉) as its de-
sired representation.

In every specification approach based on logic, an answer
to the representation problem must be given. In the initial
approach to ADT specifications one is interested in mod-
els that are initial in the category Mod(〈Σ, F 〉); other ap-
proaches take the terminal models, the finitely generated

4



models, or even all models as in so-called loose ADT spec-
ifications (cf. e.g. [12, 15, 34, 10, 38, 18]).

When it comes to reasoning, the representation problem
is crucially relevant for other reasons. Whereas classical
logical reasoning is done with respect to all models, reason-
ing with respect to the models selected according to the rep-
resentation problem requires tailored inference techniques.
For instance, when reasoning with respect to equationally
defined initial ADTs, induction should be used since the ini-
tial models are finitely generated.

While for ADT specifications the selection of models
M ⊆ Mod(〈Σ, F 〉) requires special reasoning techniques,
the selection itself is not motivated by these reasoning tech-
niques. On the other hand, this is indeed the case for ap-
proaches in defeasible reasoning. Here, the motivation to
focus on preferred models is to select models which are
most appropriate for yielding plausible conclusions. The set
of formulas F in a specification 〈Σ, F 〉 is taken to specify
incomplete knowledge, and basing entailment upon a rela-
tively small set of models (the most plausible ones) means
to extend the knowledge expressed by F , so as to derive
more (tentative) conclusions than can be obtained by classi-
cal deduction. If there is only one most plausible model,
then this model completes the available knowledge, and
hence inductively represents F . Thereby, in order to get
stronger (‘better’) inference capabilities, one deliberately
accepts leaving the framework of classical logical reasoning
and choosing e.g. the preferential models approach of non-
monotonic logics (cf. [35, 31, 29]) as appropriate paradigm.

In a probabilistic environment, the problem of plausi-
ble inference is even more difficult to be dealt with, since
ModC(〈Σ, R〉) typically contains a huge number of very
different distributions, all reflecting the conditional knowl-
edge given by R. Entailment based on all models is quite
weak, e.g. it is not possible to derive the probability of a
conjunction from the probability of each conjunct. In gen-
eral, mostly intervals of possible probability values can be
obtained which are often inexpressively large.

Example 5 Let R be a set containing two probabilistic con-
ditionals both having C as its conclusion, one under the
condition A and the other one under the condition B, i.e.
R = {(C|A)[x], (C|B)[y]} for some given probabilities
x, y ∈ (0, 1). What does this mean for the occurrence of
C under the condition of both A and B? One can show
that for any probability z ∈ (0, 1) the set R is compatible
with (C|AB)[z], that is, for all (non-trivial) x, y, z ∈ (0, 1),
there is a probability distribution P such that both P |=C R
and P |=C (C|AB)[z]. So, actually nothing can be derived
about the probability of (C|AB) from R. �

The problem of yielding plausible inferences from a set
R of probabilistic conditionals can be solved by the prin-
ciple of maximum entropy (ME-principle) in the following

way: This information-theoretical principle selects a distri-
bution P ∗ from ModC(〈Σ, R〉) whose entropy

H(P ∗) = −
∑

ω∈Ω

P ∗(ω) log2 P ∗(ω)

is maximal. Similar as for initial ADT specifications (ini-
tial objects are unique up to isomorphisms), this selects a
unique model (cf. [14]), denoted by P ∗ = ME(〈Σ, R〉), as
the desired representation for the specification 〈Σ, R〉 which
can be used for inferences.

The rationale behind the ME-approach can be de-
scribed informally as follows: Maximizing entropy in
ModC(〈Σ, R〉) means to permit as much indeterminate-
ness as possible, so that R be represented most faithfully,
without external knowledge being added. In this way, the
(incomplete) knowledge given by R is completed in an
information-theoretically optimal way. More formal justi-
fications of the ME-method are also available: Paris [32]
investigates several inductive representation techniques and
proves that the ME-principle yields the only method to rep-
resent incomplete knowledge in an unbiased way, satisfying
a set of postulates describing sound commonsense reason-
ing. Shore and Johnson [36] also state a list of axioms char-
acterizing the ME-principle as an optimal method to process
probabilistic knowledge. Kern-Isberner [22] proves it to be
most adequate to handle complex conditional interactions.

4 The inverse representation problem

In system and software development, one generally starts
with a set of requirements that have to be specified, further
refined, revised, implemented, etc., until one arrives at a
model that (hopefully) meets all the requirements. Using
specifications along this way, various instances of the rep-
resentation problem will arise.

For probabilistic conditionals, there is also another line
of development. Given (possibly large) sets of data, sta-
tistical information can be generated from it, giving us a
probability distribution and thus a model. In the area of
knowledge discovery in data (KDD) a principal aim is to
find a set of peculiarly interesting or relevant rules that hold
in the given data and may thus be taken as a representation
for it (see e.g. [3]). In classical KDD tasks, the relevance
of rules is usually measured by some statistical criteria, like
e.g. high probabilities, support, or chi-squared values (cf.
[4]). In mathematical contexts, one often seeks for a min-
imal set of sentences (or axioms) describing a (set of) pre-
ferred model(s). When axiomatizing the essential properties
of a concrete data type in an ADT specification, one might
aim at a set of equations that is confluent and terminating
when interpreted as a set of rewrite rules, while minimality
of the set of equations is not important. A further charac-
terization of relevant sentences is to require syntactical sim-
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plicity: a single-headed conditional with only one literal in
its conclusion is likely to be more interesting than a condi-
tional containing a complex formula in its conclusion. So,
in general, the notion of relevance depends heavily on the
corresponding application and is – at least in KDD – often
frequency-based.

From a more abstract point of view, however, the prob-
lem of discovering relevant relationships (in data or in mod-
els) can be seen as the problem to compute a set of formu-
las which represents a given model (or a given set of mod-
els) according to some (inductive) representation method.
Therefore, we propose to call this the inverse representa-
tion problem:

Given a set of Σ-models M ⊆ Mod(〈Σ, F 〉), find
a set of (relevant) sentences F such that the spec-
ification 〈Σ, F 〉 has M as its desired representa-
tion.

As before, M may be a singleton or an arbitrary subset of
Mod(〈Σ, F 〉).

Note that by viewing knowledge discovery as an inverse
representation problem, the notion of relevance is given a
meaning which abstracts from purely statistical aspects: rel-
evance here means relevance with respect to a particular
representation method. It can be sharpened by combining
it with a demand for minimality, in order to find a kind of
a base for the given model (or given models, respectively),
as in mathematical contexts. Alternatively, one can focus
on computing rules with a simple syntax to make the dis-
covered knowledge most expressive and clear. So, although
the inverse representation problem provides a clear formal
frame for knowledge discovering, context-dependent as-
pects can also be taken into regard.

After having presented the inverse representation prob-
lem as a general and formal framework to deal with knowl-
edge discovery tasks, let us now consider again the logic
InstC of probabilistic conditionals. Here, as described in
Section 3, the ME-principle provides an excellent inductive
representation method. We now rephrase the inverse repre-
sentation problem within the ME-framework as follows:

Given a probability distribution P ∈ ModC(Σ),
find a set of rules R such that P ∈ ModC(〈Σ, R〉)
and such that the entropy of P is maximal in
ModC(〈Σ, R〉), i.e. P = ME(〈Σ, R〉).

Whereas previously no tool had been known that helps one
to find such an ME-optimal set of rules, in [23] a general ap-
proach to solve the inverse representation problem was pre-
sented which works for ME-representation (see [25]) and
related methods. In the following, we will demonstrate how
KDD can be seen as an instance of the inverse representa-
tion problem in the ME-framework.

5. KDD as an instance of the inverse represen-
tation problem

In this section, we briefly sketch the method described
in [25], and illustrate its functionality. This method can be
used to compute a concise set of probabilistic condition-
als R from a given distribution P over a signature Σ such
that P = ME(〈Σ, R〉). The approach differs from usual
knowledge discovery and data mining methods in that it
takes explicitly inductive representation into consideration.
It is not based on observing conditional independencies, but
aims at learning relevant conditional dependencies in a non-
heuristic way. As a further novelty, the method does not
compute single, isolated rules, but yields as a result a set of
rules while taking into account highly complex interactions
of rules.

As a first step to ensure that most informative rules are
found, we will make a syntactic restriction and concentrate
on single-elementary conditionals, i.e. conditionals whose
antecedents are conjunctions of literals, and whose conse-
quents consist of a single literal. These conditionals – some-
times also called association rules – are often found to be
particularly interesting and informative [2].

The basic idea is to exploit numerical relationships found
in P as manifestations of interactions of underlying condi-
tional knowledge. To make these interactions transparent
and computable, so-called conditional structures are cal-
culated for each complete conjunction, reflecting the effect
(positive, negative, or neutral) each conditional has on the
respective complete conjunction. Further on, a group theo-
retical framework is developed to be able to match products
of probabilities with products of conditional structures. In
this way, a crucial connection between numerical and struc-
tural information is established which can be used to extract
sets of relevant rules from statistical data. Roughly, the cor-
responding algorithm takes the following steps (for full de-
tails of the algorithm, we refer to [24]):

• Start with a set B of single-elementary rules the length
of which is considered to be large enough to capture
all relevant dependencies. Ideally, B would consist
of rules whose antecedents have maximal length (i.e.
number of variables -1).

• Search for numerical relationships in P by investigat-
ing which products of probabilities match.

• Compute the corresponding conditional structures
with respect to B, yielding equations of group ele-
ments.

• Solve these equations by forming appropriate factor
groups.
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• Building these factor groups corresponds to eliminat-
ing and joining the basic conditionals in B to make
their information more concise, in accordance with the
numerical structure of P . Actually, the antecedents of
the conditionals in B are shortened so as to comply
with the numerical relationships in P .

As strange as this connection between knowledge discov-
ery and group theory might appear at first sight, it is ob-
vious from an abstract and methodological point of view:
Considering knowledge discovery as an operation inverse to
inductive knowledge representation, the use of group theo-
retical means to realize invertability is bold, but straightfor-
ward. Moreover, the joint impact of conditionals and their
interactions can be symbolized by products and quotients,
respectively. Their handling in a group theoretical structure
allows a systematic disentangling of highly complex con-
ditional interaction, thereby presenting a completely new
approach to discover “structures of knowledge”.

Now, the point that makes this approach applicable to the
ME-methodology is that the ME-principle complies with
the algebraic theory of conditional structures – it satis-
fies the so-called principle of conditional preservation [22],
which proves to be a powerful and effective guideline for
inductive knowledge representation and belief revision (cf.
[27]). Therefore, it can be assumed that numerical relation-
ships observed in P actually correspond to interactions of
conditionals which are ME-represented in P .

In the following example, we will illustrate this abstract
description by computing ME-generating rules from the
probability distribution shown above.

Example 6 Let Σ = {a, b, c} be the propositional signature
introduced in Example 3, i.e. with the three propositional
variables a - being a student, b - being young, and c - being
unmarried. Further, let P ∈ ModC(Σ) be the distribution
given in Example 3 which we repeat here for convenience:

ω P (ω) ω P (ω)

abc 0.1950 abc 0.1758
abc 0.0408 abc 0.0519
abc 0.1528 abc 0.1378
abc 0.1081 abc 0.1378

Starting with observing relationships between probabilities
like

P (abc) = P (abc)
P (abc)
P (abc)

=
P (abc)
P (abc)

P (abc)
P (abc)

=
P (abc)
P (abc)

the procedure described in [25] yields the set

S = {(a|�), (c|�), (b|a), (b|c)}

of structural conditionals not yet having assigned any prob-
abilities to them. Associating the proper probabilities
(which are directly computable from P ) with these struc-
tural conditionals, we obtain

S∗ = { (a|�)[0.4635],
(c|�)[0.4967],
(b|a)[0.8],
(b|c)[0.7] }

as an ME-generating set for P , i.e. P = ME(〈Σ,S∗〉).
That means, that these four probabilistic conditionals

represent P with respect to the ME-method. In other words,
the probabilistic conditionals

(student|�)[0.4635],
(unmarried|�)[0.4967],
(young|student)[0.8],
(young|unmarried)[0.7]

that have been generated from P fully automatically, consti-
tute a consise set of uncertain rules that faithfully represent
the complete distribution P in an information-theoretically
optimal way. �

This academic example may suffice to illustrate the func-
tionality of the method. In real life applications, several
modifications have to be made to cope with the complexity
of large data bases. For instance, in order to obtain compact
sets of expressive rules, one would prefer to take orders of
magnitudes of probabilities into account, instead of work-
ing on exact probability values. An interesting application
of the theory of conditional structures is that it provides an
elegant way to handle the countless number of empty cells
in sparse contingency tables appropriately. Basically, the
problem with these empty cells is that they should not be in-
terpreted as elementary events with probability 0, since this
would amount to introduce knowledge where there is none.
In our approach, it is possible to take them as what they are
– lacking information. Moreover, it is possible to further
tune the general approach to knowledge discovery sketched
at the beginning of this section, to the ME-methodology in
particular. Doing so, we would find that in the above ex-
ample, the first two of the discovered rules are redundant –
actually, the probabilistic rules

(young|student)[0.8],
(young|unmarried)[0.7]

are enough to represent P via the ME-principle.
These techniques, as well as practical details and experi-

ences with applications will be described in more detail in
a forthcoming paper.
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6 Conclusions and further work

In this paper, by using the abstract logical concept of in-
stitutions we described how inductive representation of and
reasoning with conditional knowledge can be looked upon
as an instance of quite a general representation problem.
Moreover, we showed that the crucial problem of discover-
ing relevant conditional relationships in statistical data can
also be addressed in this formal framework, namely, by con-
sidering knowledge discovery as an operation which is in-
verse to inductive knowledge representation. This gave rise
to phrasing the inverse representation problem.

In order to exemplify our ideas, we illustrated the func-
tionality of an approach to compute sets of conditionals
from statistical data, which are optimal with respect to
the information-theoretical principle of maximum entropy.
This connection between formal logical work and practical
uncertain reasoning is part of our CONDOR project (sup-
ported by the German science foundation DFG) (cf. [8]) and
will be continued there.

Some theoretical aspects only touched on in this paper
are discussed in more detail in [5]. Investigations concern-
ing the connection between the institutions of propositional
and probabilistic (conditional) logic can be found in [6]. In
[7], formal relationships between probabilistic and quali-
tative conditionals are dealt with. The elaboration of our
approach in ordinal frameworks, such as provided by, e.g.,
possibility theory [28], has been begun in [26], and is a topic
of our ongoing research.
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Forschungsgemeinschaft within the CONDOR-project under
grant BE 1700/5-1.
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