
INFORMATIK
BERICHTE

363 – 04/2012

A Generalized Iterative Scaling Algorithm for
Maximum Entropy Reasoning in Relational

Probabilistic Conditional Logic
Under Aggregation Semantics

Marc Finthammer

Fakultät für Mathematik und Informatik
Postfach 940
D-58084 Hagen

A Generalized Iterative Scaling Algorithm for
Maximum Entropy Reasoning in Relational

Probabilistic Conditional Logic Under
Aggregation Semantics

Marc Finthammer

Dept. of Computer Science, FernUniversität in Hagen

Abstract. Recently, different semantics for relational probabilistic con-
ditionals and corresponding maximum entropy (ME) inference operators
have been proposed. In this paper, we study the so-called aggregation
semantics that covers both notions of a statistical and subjective view.
The computation of its inference operator requires the calculation of
the ME-distribution satisfying all probabilistic conditionals. Since each
conditional induces a linear constraint on the probability distribution,
the optimization problem to solve is the calculation of the probability
distribution with maximum entropy under linear constraints. We demon-
strate how the well-known Generalized Iterative Scaling (GIS) algorithm
technique can be applied to this optimization problem to calculate the
maximum entropy distribution in an iterative way. We show how the
linear constrains are transformed into normalized feature functions to
meet the requirements of GIS and present a practical algorithm which
is tailor-made for the computation of the ME-inference operator based
on aggregation semantics. We also present a practical implementation of
the developed algorithm.

1 Introduction

There exist many approaches which combine propositional logic with probability
theory to express uncertain knowledge and allow uncertain reasoning, e. g. Bayes
Nets and Markov Nets [16] or probabilistic conditional logic [17]. Some of these
approaches have been extended to first-order logic, e. g. Bayesian logic programs
[13], Markov logic networks [8], and relational probabilistic conditional logic [9,
12] which introduces relational probabilistic conditionals.

Recently, different semantics for relational probabilistic conditionals and cor-
responding maximum entropy (ME) inference operators have been proposed.
One of these approaches is the so-called aggregation semantics presented in [12].
This semantics has some nice properties, as it allows to cover both notions of a
statistical and a subjective point of view. It can also handle statements about
exceptional individuals without running into imminent inconsistencies. The fol-
lowing example taken from [12] (and inspired by [7]) illustrates some difficulties
which can arise from a knowledge base in probabilistic first-order logic. Let X,Y

denote variables and let el(X) mean that X is an elephant, ke(X) means that
X is a zookeeper, and likes(X,Y) expresses that X likes Y .

Example 1. r1 : (likes(X,Y) | el(X) ∧ ke(Y)) [0.6]

r2 : (likes(X, fred) | el(X) ∧ ke(fred)) [0.4]

r3 : (likes(clyde, fred) | el(clyde) ∧ ke(fred)) [0.7]

The first probabilistic rule (or probabilistic conditional) r1 expresses that for an
arbitrary chosen elephant and keeper (from some given population), there is a
0.6 probability that the elephant likes the keeper. But r2 states that there is
an (exceptional) keeper fred , for whom there is just a 0.4 probability that an
arbitrary elephants likes him. Rule r3 makes a statement about two exceptional
individuals, i. e. the probability that the elephant clyde likes the keeper fred
is even 0.7. Rule r1 express statistical knowledge which holds in some given
population, whereas r3 expresses individual belief, and r2 is a mixture of both.
A simple semantical approach would be to ground all first-order rules (according
to a given universe) and define semantics on grounded probabilistic rules. But
in the above example, this would already cause severe problems, because the
grounding (likes(clyde, fred) | el(clyde) ∧ ke(fred)) [0.6] of r1 is in conflict with
r3 and also with the grounding of (likes(clyde, fred) | el(clyde) ∧ ke(fred)) [0.4]
of r2. However, the aggregation semantics is capable of handling such conflicts if
an appropriate universe is provided, so that the probabilities of exceptional and
generic individuals can be balanced.

The model-based inference operator ME� for aggregation semantics pre-
sented in [12] is based on the principle of maximum entropy. The principle
of maximum entropy exhibits excellent properties for commonsense reasoning
[15, 10, 11] and allows to complete uncertain and incomplete information in an
information-theoretic optimal way, and also the ME-based inference operator
ME� features many desirable properties of a rational inference operator [12].
However, up to now no practical implementation of ME� inference has been
developed. The determination of ME� (R) for a set R of probabilistic condi-
tionals requires the calculation of the ME-distribution satisfying all probabilistic
conditionals in R. This induces a convex optimization problem, so general tech-
niques for solving convex optimization problems could be applied to compute a
solution. Instead of employing such general techniques, in this paper we present
the first practical algorithm for computing ME� (R) which is tailor-made for
the problem. We employ the technique of the well-known Generalized Iterative
Scaling (GIS) algorithm [6], which allows to compute the ME-distribution under
linear constraints.

The the rest of the paper is structured as follows. In Sec. 2 we give a compact
overview of the syntax of relational probabilistic conditional logic and present
the aggregation semantics. In Sec. 3 feature functions are introduced to represent
the entailment relation in more compact way. In Sec. 4 the ME-inference oper-
ator ME� and the corresponding optimization problem are defined. In Sec. 5
the Generalized Iterative Scaling (GIS) algorithm and its requirement are dis-
cussed. We demonstrate how the optimization problem can be transformed into

2

a normalized form. This enables us to employ the GIS technique in a concrete al-
gorithm which determines ME�. In Sec. 6 we present a practical implementation
of the algorithm. We conclude in Sec. 7 with a summary and some discussion of
related and future work.

2 Background: Aggregation Semantics

In this section, we will give a brief introduction to the syntax of relational prob-
abilistic condition logic and the aggregation semantics.

2.1 Syntax

We consider a first-order signature Σ := (Pred,Const) consisting of a set of first
order predicates Pred and a finite set of constants Const. So Σ is a restricted
signature since it only contains functions with an arity of zero. Let p/k denote
the predicate p ∈ Pred with arity k. The set of atoms A over Pred with respect
to a set of variables Var and Const is defined in the usual way by p(t1, . . . , tk) ∈
A iff p/k ∈ Pred, ti ∈ (Var ∪Const) for 1 ≤ i ≤ k. For better readability we will
usually omit the referring indices.

Let L be a quantifier-free first-order language defined over Σ in the usual
way, that is, A ∈ L if A ∈ A, and if A,B ∈ L then ¬A,A ∧ B ∈ L. Let A ∨ B
be the shorthand for ¬(¬A ∧ ¬B). If it is clear from context, we use the short
notation AB to abbreviate a conjunction A ∧B .

Let gnd(A) be a grounding function which maps a formula A to its respective
set of ground instances in the usual way.

Definition 1 (Conditional). Let A(X), B(X) ∈ L be first-order formulas
with X containing the variables of A and B. (B(X)|A(X)) is called a con-
ditional. A is the antecedence and B the consequence of the conditional. The set
of all conditionals over L is denoted by (L|L).

Definition 2 (Probabilistic Conditional). Let (B(X)|A(X)) ∈ (L|L) be
a conditional and let d ∈ [0, 1] be a real value. (B(X)|A(X)) [d] is called a
probabilistic conditional with probability d. If d ∈ {0, 1} then the probabilistic
conditional is called hard, otherwise it is a called soft. The set of all probabilistic
conditionals over L is denoted by (L|L)prob.

A set of probabilistic conditionals is also called a knowledge base. (Probabilistic)
conditionals are also called (probabilistic) rules. If it is clear from context, we
will omit the “probabilistic” and just use the term “conditional”.

Let H denote the Herbrand base, i.e. the set containing all ground atoms
constructible from Pred and Const. A Herbrand interpretation ω is a subset of
the ground atoms, that is ω ⊆ H. Using a closed world assumption, each ground
atom pgnd ∈ ω is interpreted as true and each pgnd 6∈ ω is interpreted as false;
in this way a Herbrand interpretation is similar to a complete conjunction in
propositional logic. Let Ω denote the set of all possible worlds (i. e. Herbrand
interpretations), that is, Ω := P(H) (with P denoting the power set).

3

Definition 3 (Set of Grounding Vectors). For a conditional
(B(X)|A(X)) ∈ (L|L), the set of all constant vectors a which can be
used for proper groundings of (B(X)|A(X)) is defined as:
Hx(A,B) := {a = (a1, . . . , as) | a1, . . . , as ∈ Const

and (B(a)|A(a)) ∈ gnd ((B(X)|A(X)))}

2.2 Aggregation Semantics

Let P : Ω → [0, 1] be a probability distribution over possible worlds and let PΩ
be the set of all such distributions. P is extended to ground formulas A(a), with
a ∈ Hx(A), by defining

P (A(a)) :=
∑

ω|=A(a)

P (ω)

In [12] the aggregating semantics is introduced which defines the entailment
relation between probability distributions and probabilistic conditionals as fol-
lows:

Definition 4 (Aggregation Semantics Entailment Relation [12]). The
entailment relation |=� between a probability distribution P ∈ PΩ and a proba-
bilistic conditional (B(X)|A(X)) [d] ∈ (L|L)prob with

∑
a∈Hx(A,B) P (A(a)) > 0

is defined as:

P |=� (B(X)|A(X)) [d] iff

∑

a∈Hx(A,B)

P (A(a)B(a))

∑

a∈Hx(A,B)

P (A(a))
= d (1)

Note that both sums of the fraction run over the same set of grounding vectors
and therefore the same number of ground instances, i. e. a particular probability
P (A(a)) can be contained multiple times in the denominator sum. If P |=� r
holds for a conditional r, we say that P satisfies r or that P is a model of r.

Thus, the aggregation semantics resembles the definition of a conditional
probability by summing up the probabilities of all respective ground formulas.
The entailment relation |=� is extended to a set R of probabilistic conditionals
by defining

P |=� R iff ∀r ∈ R : P |=� r
Let S(R) := {P ∈ PΩ : P |=� R} denote the set of all probability distributions
which satisfy R. R is consistent iff S(R) 6= ∅, i. e. there exists a probability
distribution which satisfies all conditionals in R. Accordingly, a probabilistic
conditional r is called consistent (or satisfiable), if there exists a distribution
which satisfies r.

3 Feature Functions

For propositional conditionals, the satisfaction relation can be expressed by using
feature functions (e. g. [9]). The following definition introduces feature functions
for the relational case where the groundings have to be taken into account.

4

Definition 5 (Feature Function). For a probabilistic conditional

ri := (Bi(X)|Ai(X)) [di] define the functions v#i , f
#
i : Ω → N0 with

v#i (ω) :=
∣∣∣
{
a ∈ Hx(Ai,Bi) | ω |= Ai(a)Bi(a)

}∣∣∣ and

f#i (ω) :=
∣∣∣
{
a ∈ Hx(Ai,Bi) | ω |= Ai(a)Bi(a)

}∣∣∣ (2)

v#i (ω) indicates the number of groundings which verify ri for a certain ω ∈ Ω,

whereas f#i (ω) specifies the number of groundings which falsify ri.

The linear function function σi : Ω → R with

σi(ω) := v#i (ω)(1− di)− f#i (ω)di (3)

is called the feature function of the probabilistic conditional ri.

Now that we have defined the feature function σi of a probabilistic condi-
tional, the entailment relation of the aggregation semantics can be expressed in
terms of a linear constraint involving σi.

Proposition 1. Let (Bi(X)|Ai(X)) [di] be a probabilistic conditional and let
σi be its feature function according to Definition 5. Then it holds for P ∈ PΩ
with

∑
a∈Hx(A,B) P (A(a)) > 0:

P |=� (Bi(X)|Ai(X)) [di] iff
∑

ω∈Ω
P (ω)σi(ω) = 0 (4)

Proof. For ease of readability, we omit the index i of conditional ri.

P |=� (B(X)|A(X)) [d]

iff
∑

a∈Hx(A,B)

P (A(a)B(a)) = d
∑

a∈Hx(A,B)

P (A(a))

iff
∑

a∈Hx(A,B)

P (A(a)B(a)) = d
∑

a∈Hx(A,B)

[
P (A(a)B(a)) + P

(
A(a)B(a)

)]

iff
∑

a∈Hx(A,B)

[
(1− d)P (A(a)B(a))− dP

(
A(a)B(a)

)]
= 0

iff

(1− d)

∑

a∈Hx(A,B)

∑

ω∈Ω:
ω|=A(a)B(a)

P (ω)

− d

∑

a∈Hx(A,B)

∑

ω∈Ω:
ω|=A(a)B(a)

P (ω) = 0

iff

(1− d)

∑

ω∈Ω

∑

a∈Hx(A,B):
ω|=A(a)B(a)

P (ω)

− d

∑

ω∈Ω

∑

a∈Hx(A,B):
ω|=A(a)B(a)

P (ω) = 0

5

iff
∑

ω∈Ω

(
v#(ω)(1− d)P (ω)− f#(ω)dP (ω)

)
= 0

iff
∑

ω∈Ω

(
v#(ω)(1− d)− f#(ω)d

)
P (ω) = 0

iff
∑

ω∈Ω
σ(ω)P (ω) = 0 (5)

Proposition 1 shows that under aggregation semantics a conditional induces a
linear constraint which has to be met by a satisfying probability distribution.
The expected value E(σi, P) of a function σi under a distribution P is defined
as E(σi, P) :=

∑
ω∈Ω σi(ω)P (ω). Thus (5) states that the expected value of the

feature function σi must be 0 under every satisfying distribution.

4 Maximum Entropy Inference for Aggregation
Semantics

The entropy

H(P) := −
∑

ω∈Ω
P (ω) logP (ω)

of a probability distribution P measures the indifference within the distribution.
In [15] and [10], it has already been shown for a propositional framework,

that the principle of maximum entropy (ME) provides some desirable properties
for commonsense reasoning. The ME-inference operator for propositional condi-
tional logic from [10] allows to perform probabilistic reasoning on uncertain and
incomplete knowledge in an information-theoretic optimal way.

4.1 ME-Inference Operator based on Aggregation Semantics

A ME-inference operator based on aggregation semantics is introduced in [12]
as follows.

Definition 6 (ME� Inference Operator [12]). Let R be a consistent set of
probabilistic conditionals. The ME-inference operator ME� based on aggregation
semantics is defined as

ME�(R) := arg max
P∈PΩ :P |=�R

H(P) (6)

From all distributions satisfying R, this model-based inference operator
chooses the unique distribution with maximum entropy as a model for R. ME�
represents the incomplete (and uncertain) knowledge from R inductively com-
pleted to a full distribution by applying the ME-principle and respecting the
aggregation semantics. It also features several desirable properties of a rational
inference operator as shown in [12].

In [20] it is shown that (6) has a unique solution and describes a convex
optimization problem, since the solutions to P |=� R form a convex set and
H(P) is a strictly concave function. Thus, ME�(R) is well defined.

6

4.2 ME-Inference Optimization Problem

To avoid cumbersome distinctions of cases, in the following we consider only soft
probabilistic conditionals. Therefore, for the rest of the paper let

R := {r1, . . . , rm} (7)

be a consistent set of m soft probabilistic conditionals

ri = (Bi(X)|Ai(X)) [di] , with di ∈ (0, 1), 1 ≤ i ≤ m (8)

and let σi denote the feature function of ri according to Definition 5.

Proposition 2. For any consistent set of soft probabilistic conditionals R as
given by (7) and (8), it holds:

∃P ∈ S(R) : ∀ω ∈ Ω : P (ω) > 0,

that is, there exists a positive probability distribution which satisfies R.

From Definition 6 and Proposition 1 it follows that the determination of
ME�(R) requires to solve the following optimization problem with objective
function H(P) and m linear constraints induced by the m conditionals of R:

Definition 7 (Optimization Problem OptAgg(R)). Let σi, 1 ≤ i ≤ m,
be the feature functions for R. Then the optimization problem OptAgg(R) is
defined as:

maximize H(P)

subject to
∑
ω∈Ω P (ω)σi(ω) = 0, 1 ≤ i ≤ m

∑
ω∈Ω P (ω) = 1

P (ω) ≥ 0, ∀ω ∈ Ω

(9)

The two latter constraints ensure that the solution is a proper probability
distribution.

Proposition 3. The solution of the optimization problem OptAgg(R) for a
given set R is ME�(R).

5 Computing the Maximum Entropy Distribution

There exist several algorithms to calculate the solution of a general convex opti-
mization problem [4], i. e. these algorithms can be applied to a convex optimiza-
tion problem with an arbitrary (convex) objective function. In this paper, we
investigate an algorithm which is tailor-made for a convex optimization problem
of the form (9), i. e. for a convex optimization problem with entropy H(P) as
objective function. Since this algorithm is specialized to entropy optimization,
it can take advantage of certain characteristics of the entropy function, whereas
general algorithms for convex optimization problems can just utilize the convex-
ity of the objective function.

7

5.1 Generalized Iterative Scaling

The so-called Generalized Iterative Scaling (GIS) algorithm presented in [6] com-
putes the ME-distribution under linear constraints, i. e. it iteratively calculates a
sequence of distributions which converges to the solution. To be precise, the GIS
algorithm allows to compute the distribution with minimum relative entropy
(also see [5] for an alternative proof of the algorithm). The relative entropy (also
called Kullback-Leibler divergence or information divergence) between two dis-
tributions P and Q is defined as

K(P,Q) :=
∑

ω∈Ω
P (ω) log

P (ω)

Q(ω)

Let PU (ω) := 1
|Ω| for all ω ∈ Ω denote the uniform distribution over Ω. It is

easy to see that
K(P, PU) = log |Ω| −H(P) (10)

holds, i. e. entropy is just a special of relative entropy.

Proposition 4. Let PU be the uniform distribution and S be a set of probability
distributions over Ω. Then it holds:

arg min
P∈S

K(P, PU) = arg max
P∈S

H(P)

The proof of 4 follows directly from (10). Therefore, instead of maximizing the
entropy of a distribution, we will consider minimizing the relative entropy of a
distribution with respect to the uniform distribution.

The general from of the optimization problem solved by the GIS algorithm
is as follows:

Definition 8 (Optimization Problem OptGis(EQ)).
Let Q ∈ PΩ be a given probability distribution. For i = 1, . . . ,m, let ai :

Ω → R be a given function and let hi ∈ R be its given expected value, so that
the equation system (denoted by EQ) of linear constraints

∑
ω∈Ω P (ω)ai(ω) =

hi, i = 1, . . . ,m induced by the functions and their expected values can be satisfied
by a positive probability distribution.

Then the optimization problem OptGis(EQ) is defined as:

minimize K(P,Q)

subject to
∑
ω∈Ω P (ω)ai(ω) = hi, i = 1, . . . ,m

∑
ω∈Ω P (ω) = 1

P (ω) > 0, ∀ω ∈ Ω

(11)

If the preconditions of Definition 8 are met, the GIS algorithm can be applied
to compute the solution to the optimization problem OptGis(EQ).

Since the constraints in (9) have been induced by a consistent set of soft prob-
abilistic conditionals, they can be satisfied by a positive distribution according

8

to Proposition 2. So in principle, the GIS algorithm can be applied to compute
the solution to the optimization problem OptAgg(R), since this matches the
form of an optimization problem OptGis(EQ).

5.2 Transforming OptGis(EQ) into a Normalized Form

The concrete application of the GIS algorithm to OptGis(EQ) requires a trans-
formation into a normalized form meeting some additional requirements.

Definition 9 (Optimization Problem OptGisNorm(ÊQ)). Let Q ∈ PΩ be
a given probability distribution. For i = 1, . . . , m̂, let âi : Ω → R be a given func-
tion and let ĥi ∈ R be its given expected value, so that the induced equation system
(denoted by ÊQ) of linear constrains

∑
ω∈Ω P (ω)âi(ω) = ĥi, i = 1, . . . , m̂, can

be satisfied by a positive probability distribution. If

âi(ω) ≥ 0, ∀ω ∈ Ω, i = 1, . . . , m̂, (12)
m̂∑

i=1

âi(ω) = 1, ∀ω ∈ Ω (13)

ĥi > 0, i = 1, . . . , m̂ (14)
m̂∑

i=1

ĥi = 1 (15)

hold, then the optimization problem OptGisNorm(ÊQ) is defined as:

minimize K(P,Q)

subject to
∑
ω∈Ω P (ω)âi(ω) = ĥi, i = 1, . . . , m̂

∑
ω∈Ω P (ω) = 1

P (ω) > 0, ∀ω ∈ Ω

(16)

In [6] it is shown in general that an optimization problem OptGis(EQ)
can always be transformed appropriately to meet the requirements (12) – (15)
of OptGisNorm(ÊQ). Note that in [6] the additional requirement is made
that each function ai in OptGis(EQ) has at least one non-zero value, thereby
assuring that (14) holds in OptGisNorm(ÊQ) after the transformation. We will
show later (in the proof of Proposition 6) that for our transformed problem (14)
holds anyway, therefore we do not have to consider that additional requirement.

The normalized form (OptGisNorm(ÊQ)) can be reached by transform-
ing the original constraints appropriately (to assure (12) and (14)) and by
adding an additional correctional constraint (to assure (13) and (15)). Thus,
in a preprocessing step to the GIS algorithm the original constraints of an op-
timization problem OptGis(EQ) have to be transformed into an equivalent
normalized form which mets the requirements (12) to (15) of an optimiza-
tion problem OptGisNorm(ÊQ). Then the GIS algorithm can be applied to
OptGisNorm(ÊQ) to compute a solution.

9

In the following, we will demonstrate how the constraints from (9) can be
transformed into a set of normalized constraints meeting the normalization re-
quirements (12) to (15).

So we consider again the consistent set R of soft constraint from Definition 7.
Let

G#
i := |Hx(Ai,Bi)|

be the number of groundings of a conditional ri ∈ R, 1 ≤ i ≤ m, and let

G# :=
m∑

i=1

G#
i (17)

denote the total number of groundings of all conditionals in R.

Definition 10 (Non-Negative Feature Function). For each feature func-
tion σi of a conditional ri ∈ R of the optimization problem OptAgg(R), let the
non-negative feature function σ′i : Ω → R+

0 be defined as

σ′i(ω) := σi(ω) + diG
#
i , ∀ω ∈ Ω (18)

and the expected value of σ′i, denoted by ε′i, is set to

ε′i := diG
#
i (19)

Proposition 5. For a feature function σ′i and its expected value ε′i according to
Definition 10 the following holds:

0 ≤ σ′i(ω) ≤ G#
i , ∀ω ∈ Ω (20)

∑
ω∈Ω P (ω)σi(ω) = 0

⇔∑
ω∈Ω P (ω)σ′i(ω) = ε′i

(21)

Proof. From Definition 5 it follows directly that

0 ≤ v#i (ω) ≤ G#
i and 0 ≤ f#i (ω) ≤ G#

i

and therefore
−G#

i di ≤ σi(ω) ≤ G#
i (1− di) (22)

holds. Together with the definition (18) of σ′i, it follows that (20) holds. The
constraints in (21) are equivalent because:

∑
ω∈Ω P (ω)σi(ω) = 0

⇔∑
ω∈Ω P (ω)diG

#
i + P (ω)σi(ω) = diG

#
i

⇔∑
ω∈Ω P (ω)

(
diG

#
i + σi(ω)

)
= diG

#
i

⇔∑
ω∈Ω P (ω)σ′i(ω) = ε′i

10

Definition 11 (Normalized Feature Function). For each feature function
σi of a conditional ri ∈ R of the optimization problem OptAgg(R), let the
normalized feature function σ̂i : Ω → [0, 1] be defined as

σ̂i(ω) :=
σ′i(ω)

G# =
σi(ω) + diG

#
i

G# , ∀ω ∈ Ω (23)

and the expected value of σ̂i, denoted by ε̂i, is set to

ε̂i :=
ε′i
G# =

diG
#
i

G# (24)

Proposition 6. For a feature function σ̂i and its expected value ε̂i according to
Definition 11 the following holds:

0 ≤ σ̂i(ω) ≤ 1, ∀ω ∈ Ω (25)

0 ≤
m∑

i=1

σ̂i(ω) ≤ 1, ∀ω ∈ Ω (26)

∑
ω∈Ω P (ω)σi(ω) = 0

⇔∑
ω∈Ω P (ω)σ̂i(ω) = ε̂i

(27)

ε̂i > 0 (28)

0 <

m∑

i=1

ε̂i < 1 (29)

Proof. Equation (25) follows directly from (20) and the definition σ̂i. According

to Proposition 5, 0 ≤ σ′i(ω) ≤ G#
i holds for every 1 ≤ i ≤ m, and therefore

0 ≤ ∑m
i=1 σ

′
i(ω) ≤ ∑m

i=1G
#
i must hold as well. Using the definitions from (17)

and (23) it becomes obvious that (26) must hold:

0 ≤
m∑

i=1

σ̂i(ω) =

m∑

i=1

σ′i(ω)
∑m
j=1G

#
j

=

∑m
i=1 σ

′
i(ω)

∑m
i=1G

#
i

≤ 1

Using (21) and Definition 11, the constraints in (27) are equivalent because:
∑
ω∈Ω P (ω)σi(ω) = 0

⇔∑
ω∈Ω P (ω)σ′i(ω) = ε′i

⇔∑
ω∈Ω P (ω)

σ′i(ω)
G# =

ε′i
G#

⇔∑
ω∈Ω P (ω)σ̂i(ω) = ε̂i

Since di ∈ (0, 1), it holds 0 < diG
#
i ≤

∑m
j=1G

#
j . So together with (17) and (24)

it follows that (28) must hold:

ε̂i =
diG

#
i

G# =
diG

#
i∑m

j=1G
#
j

> 0

11

Finally (29) holds, since from di ∈ (0, 1) we get:

0 <
m∑

i=1

ε̂i =
m∑

i=1

diG
#
i

G# =

∑m
i=1G

#
i di∑m

i=1G
#
i

< 1

Definition 12 (Correctional Feature Function). Let σ̂1, . . . , σ̂m and
ε̂1, . . . , ε̂m be as in Definition 11. Then the additional correctional feature func-
tion σ̂m̂ with m̂ := m+ 1 is defined as

σ̂m̂(ω) := 1−
m∑

i=1

σ̂i(ω) (30)

and the corresponding additional correctional expected value ε̂m̂ is set to

ε̂m̂ := 1−
m∑

i=1

ε̂i (31)

Proposition 7. For the additional correctional feature function σ̂m̂ and ex-
pected value ε̂m̂ from Definition 12 it holds:

0 ≤ σ̂m̂(ω) ≤ 1, ∀ω ∈ Ω (32)

m̂∑

i=1

σ̂i(ω) = 1, ∀ω ∈ Ω (33)

ε̂m̂ > 0 (34)

m̂∑

i=1

ε̂i = 1 (35)

Proof. Equations (33) and (35) follow directly from the definition of σ̂m̂ and
ε̂m̂, respectively. Equation (32) holds, because 0 ≤∑m

i=1 σ̂i(ω) ≤ 1 holds due to
(26). Equation (34) holds due to 0 <

∑m
i=1 ε̂i < 1 in (29).

5.3 Normalized Optimization Problem

The above definitions of normalized feature functions σ̂1, . . . , σ̂m and a correc-
tional feature function σ̂m̂ (and their expected values ε1, . . . , εm and ε̂m̂) allows
us to define the following optimization problem, which represents the optimiza-
tion problem OptAgg(R) in a normalized form, meeting all requirements to
apply the GIS algorithm technique:

Definition 13 (Optimization Problem OptAggNorm(R)). Let

σ̂i(ω) =
σi(ω) + diG

#
i

G# , ∀ω ∈ Ω, 1 ≤ i ≤ m, and (36)

12

ε̂i =
diG

#
i

G# , 1 ≤ i ≤ m (37)

be the normalized feature functions and their expected values constructed (accord-
ing to Definition 11) from the set R of the optimization problem OptAgg(R).

Define m̂ := m+ 1 and let

σ̂m̂(ω) = 1−
m∑

i=1

σ̂i(ω), ∀ω ∈ Ω, and (38)

ε̂m̂ = 1−
m∑

i=1

ε̂i (39)

be the corresponding correctional feature function and its expected value (accord-
ing to Definition 12). Let PU be the uniform distribution. Then the optimization
problem OptAggNorm(R) is defined as:

minimize K(P, PU)

subject to
∑
ω∈Ω P (ω)σ̂i(ω) = ε̂i, 1 ≤ i ≤ m̂

∑
ω∈Ω P (ω) = 1

P (ω) > 0, ∀ω ∈ Ω

(40)

Proposition 8. The optimization problems OptAgg(R) and
OptAggNorm(R) have the same solution.

Proof. Due to (27) in Proposition 6, each constraint of OptAgg(R) has equiv-
alently been transformed into a constraint of OptAggNorm(R). The addi-
tionally introduced correctional constraint of OptAggNorm(R) is merely a
combination of all other linear constraints, therefore it does not constrain the
optimization problem any further. Proposition 4 ensures that under equivalent
sets of constraints, minimizing the relative entropy (with respect to the uniform
distribution PU) yields the same solution as maximizing the entropy, therefore
OptAgg(R) and OptAggNorm(R) have the same solution.

Proposition 9. The optimization problem OptAggNorm(R) yields an in-
stance of the optimization problem OptGisNorm(ÊQ), i. e. in particular, the
feature functions and expected values of OptAggNorm(R) satisfy the corre-
sponding requirements (12) – (15) in Definition 9.

Proof. Requirement (12) of OptGisNorm(ÊQ) is satisfied by all feature func-
tions σ̂1, . . . , σ̂m, σ̂m̂ of OptAggNorm(R) due to (25) in Proposition 6 and (32)
in Proposition 7. Requirement (13) is assured by (33) in Proposition 7. Require-
ment (14) is assured for ε̂1, . . . , ε̂m by (28) in Proposition 6 and for ε̂m̂ by (34)
in Proposition 7. Requirement (15) is assured by (35) in Proposition 7.

The following proposition is a direct consequence of Propositions 8 and 9:

13

Proposition 10. For any consistent set R of soft conditionals, the GIS
algorithm technique can directly be applied to the optimization problem
OptAggNorm(R) to compute its solution P ∗. Since P ∗ is also the solution
to the optimization problem OptAgg(R), the computation delivers the infer-
ence operator ME�(R) = P ∗.

5.4 GIS Algorithm for Aggregation Semantics

Based on the basic template for a GIS algorithm in [6], we present a practi-
cal GIS algorithm which computes the solution P ∗ of the optimization prob-
lem OptAggNorm(R). So according to Proposition 10, the algorithm delivers
ME�(R) as result. The pseudo-code of the GIS algorithm for aggregation se-
mantics is depicted in Fig. 1.

GIS Algorithm for Aggregation Semantics

Input: a consistent set R of m soft probabilistic conditionals

Output: inference operator ME�(R) := P ∗

Algorithm

– Let P(0) := PU
– Let σ̂1, . . . , σ̂m, σ̂m̂ be normalized feature functions and
ε̂1, . . . , ε̂m, ε̂m̂ be expected values constructed from R (according to Def. 13)

– Initialize iteration counter: k := 0
– Repeat until an abortion condition holds:
• Increase iteration counter: k := k + 1
• Calculate the scaling factor β(k),i of each feature function σ̂i:

β(k),i :=
ε̂i∑

ω∈Ω
P(k−1)(ω)σ̂i(ω)

, 1 ≤ i ≤ m̂

• Scale all probabilities appropriately:

P
′
(k)(ω) := P(k−1)(ω)

m̂∏

i=1

(
β(k),i

)σ̂i(ω) , ∀ω ∈ Ω

• Normalize the probability values:

P(k)(ω) :=
P
′
(k)(ω)

∑

ω∈Ω
P
′
(k)(ω)

, ∀ω ∈ Ω

– Let P ∗ := P(k) denote the final distribution of the iteration.

Fig. 1. GIS Algorithm for Aggregation Semantics

The algorithm starts with the uniform distribution as initial distribu-
tion. In the k-th iteration step, for each feature function σ̂i the current ra-
tio β(k),i between its given expected value ε̂i and its current expected value

14

∑
ω∈Ω P(k−1)(ω)σ̂i(ω) under the current distribution P(k−1) is determined. So

β(k),i is the factor required to scale P(k−1) appropriately so that the expected
value ε̂i of σ̂i would be met exactly. Since the actual scaling of P(k−1) has to be
performed with respect to all scaling factors β(k),1, . . . , β(k),m̂, the scaled distri-
bution P(k) cannot fit all expected values immediately, but it is guaranteed by
the GIS approach that a distribution iteratively computed that way converges
to the correct solution.

Note that the constraint
∑
ω∈Ω P (ω) = 1, which is contained in each of the

above optimization problems, is not explicitly encoded as a constraint in the GIS
algorithm in Fig. 1. Instead, the scaled probability values P

′
(k)(ω) are normalized

in each iteration step, so that P(k) is a proper probability distribution (which is
important to determine the correct β(k+1),i with respect to P(k)).

The GIS algorithm iteratively calculates a sequence of distributions which
converges to the solution of the optimization problem. So in practice, an abortion
condition must be defined which allows to stop the iteration if the solution has
been approximated with a sufficient accuracy. A practical abortion condition is,
e. g. to stop after iteration step k if |1−β(k),i| < δβ holds for all 1 ≤ i ≤ m̂, with δβ
being an appropriate accuracy threshold, i. e. if there is no more need to scale any
values because all scaling factors are almost 1 within accuracy δβ . Alternatively,
the iteration could stop after step k if |P(k)(ri)−di| < δr, 1 ≤ i ≤ m holds (with
P(k)(ri) denoting the probability of conditional ri under distribution P(k)), i. e.
if the probability of each conditional under the current distribution P(k) matches
its prescribed probability di within accuracy δr.

6 Implementation

The GIS algorithm for aggregation semantics has successfully been implemented
as a plugin for the KReator system. KReator [2] is an integrated develop-
ment environment for representing, reasoning, and learning with relational prob-
abilistic knowledge which aims at providing a versatile toolbox for researchers
and knowledge engineers in the field of statistical relational learning. 1 Since
KReator features a flexible plugin architecture for knowledge representation
formalisms, the implementation of a new plugin for knowledge bases with ag-
gregation semantics was quite easy. Implementing aggregation semantics as a
KReator plugin saved a lot of time compared to the from scratch development
of a stand-alone implementation, because KReator offers direct support for
central concepts like e. g. knowledge bases, first order logic, and model-based
inference. Since KReator is written in Java, the aggregation semantics plugin
and its core component, the GIS algorithm that we developed, have been im-
plemented in Java as well. Our first implementation of the GIS algorithm is a
straight-forward implementation of the pseudo-code from Fig. 1, with further
optimizations being referred to further refinements.

1 The development of KReator is part of the KReate project, cf. www.

fernuni-hagen.de/wbs/research/kreate/

15

The following example will be used to examine the runtime behavior of the
implementation:

Example 2. Suppose we have a zoo with a population of monkeys. The predicate
Feeds(X,Y) expresses that a monkey X feeds another monkey Y and Hungry(X)
says that a monkey X is hungry. The knowledge base Rmky contains conditionals
which express generic knowledge as well as one conditional stating exceptional
knowledge about a monkey Charly:

r1 : (Feeds(X,Y) | ¬Hungry(X) ∧Hungry(Y)) [0.80]

r2 : (Feeds(X,Y) | Hungry(X)) [0.001]

r3 : (Feeds(X,Y) | ¬Hungry(X) ∧ ¬Hungry(Y)) [0.10]

r4 : (Feeds(X, charly) | ¬Hungry(X)) [0.95]

r5 : (Feeds(X,X) | >) [0.001]

Considering the above example together with set Const = {andy, bobby, charly}
of constants, the corresponding Herbrand base contains 12 ground atoms. There-
fore |Ω| = 212 = 4, 096 elementary probabilities have to be computed in every
iteration step of the algorithm. Using the values of all scaling factors as abortion
condition (as suggested in Sec. 5.4) with an accuracy threshold of δβ = 0.001,
the GIS algorithm requires 20,303 steps to compute a solution with sufficient ac-
curacy. On a computer with an Intel Core i5-2500K CPU (4 cores, 3.3 Ghz) the
computation of the ME-distribution P ∗ takes 14 seconds. To additionally check
the accuracy of the calculated distribution P ∗, the probabilities of the condi-
tionals from Rmky have been recalculated under P ∗. Comparing these proba-
bilities with the prescribed probabilities of the conditionals reveals an deviation
of δr = 0.0017 at most. Performing the same computation with an improved
accuracy of δβ = 0.0001 results in 81,726 iteration steps taking 59 seconds and
revealing an improved deviation of δr = 0.00017 as well. Once the distribution
P ∗ has been computed, it can be (re-)used for probabilistic inference. That way,
arbitrary queries like e. g. q := (Feeds(andy, bobby) | Hungry(charly)) can be
addressed to the knowledge base and the answer (i. e. the queries’s probability
under P ∗) is determined immediately, e. g. P ∗(q) = 0.21.

7 Conclusion and Future Work

In this paper, we investigated the aggregation semantics for first-order prob-
abilistic logic and its ME-based inference operator ME�. We illustrated how
the convex optimization problem induced by ME� can be expressed in terms of
feature functions.

We developed an approach allowing us to use a GIS algorithm technique
for solving this optimization problem and presented the pseudo-code of a con-
crete algorithm which employs GIS to calculate ME�(R), i. e. the ME-optimal
probability distribution which satisfies all conditionals in R. A realization of

16

this algorithm has been integrated in a plugin for aggregation semantics in the
KReator system, being the first practical implementation of ME� inference.

The application of the algorithm presented in this paper to a consistent set of
probabilistic conditionals requires that all conditional have a soft probability to
assure that they can be satisfied by a positive probability distribution. In [5], it is
noted this requirement of the original GIS algorithm is not always necessary. We
will further investigate this topic to clarify if the requirement of soft probabilities
can be relaxed under certain circumstances.

In this paper, we focused on the development of an algorithm which is capable
of calculating ME� (R) in principle, so we did not discuss any performance is-
sues. The size of Ω is exponential in the number of ground atoms, which directly
depends on the number of constants and predicates. Therefore, any algorithm
working on a complete representation of a distribution P ∈ PΩ has exponential
running-time concerning the size of the input, i. e. concerning conditionals over
Const and Pred. But for some smaller examples, working on a complete repre-
sentation of P can still be feasible. It is also shown in [6], that the solution to
an optimization problem of the form (16) can always be presented in product

form, i. e. there exist α̂i ∈ R so that P ∗(ω) = α̂0

∏m̂
i=1 α̂

σ̂i(ω)
i holds. These αi

values can directly be calculated within the iteration of GIS algorithm, therefore
a compact representation of P ∗ is available.

In future work, we will study to what extend it is possible to work on decom-
posed distributions by employing junction trees and sophisticated propagation
techniques, as proposed in [1, 19]. Similar techniques have already been success-
fully adopted in [14] to an ME-inference operator for propositional languages and
have been implemented in the expert system Spirit [18]. As shown in [12], this
propositional ME-inference operator is just a special case of the ME� inference
operator, because the operators coincide for ground conditionals. We also plan
on investigating the application of the Improved Iterative Scaling (IIS) algorithm
from [3].

References

1. Badsberg, J.H., Malvestuto, F.M.: An implementation of the iterative proportional
fitting procedure by propagation trees. Computational Statistics & Data Analysis
37(3), 297–322 (September 2001)

2. Beierle, C., Finthammer, M., Kern-Isberner, G., Thimm, M.: Automated reasoning
for relational probabilistic knowledge representation. In: Giesl, J., Hähnle, R. (eds.)
Automated Reasoning: Fifth International Joint Conference (IJCAR’10). No. 6173
in Lecture Notes in Computer Science (July 2010)

3. Berger, A.L., Della Pietra, S., Della Pietra, V.J.: A maximum entropy approach
to natural language processing. Computational Linguistics 22(1), 39–71 (1996)

4. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
New York, NY, USA (2004)

5. Csiszar, I.: A geometric interpretation of Darroch and Ratcliff’s generalized itera-
tive scaling. Annals of Statistics 17(3), 1409–1413 (1989)

17

6. Darroch, J.N., Ratcliff, D.: Generalized iterative scaling for log-linear models. In:
Annals of Mathematical Statistics, vol. 43, pp. 1470–1480. Institute of Mathemat-
ical Statistics (1972)

7. Delgrande, J.: On first-order conditional logics. Artificial Intelligence 105, 105–137
(1998)

8. Domingos, P., Lowd, D.: Markov Logic: An Interface Layer for Artificial Intelli-
gence. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan
& Claypool Publishers (2009)

9. Fisseler, J.: Learning and Modeling with Probabilistic Conditional Logic, Disser-
tations in Artificial Intelligence, vol. 328. IOS Press, Amsterdam (2010)

10. Kern-Isberner, G.: Conditionals in nonmonotonic reasoning and belief revision.
Springer, Lecture Notes in Artificial Intelligence LNAI 2087 (2001)

11. Kern-Isberner, G., Lukasiewicz, T.: Combining probabilistic logic programming
with the power of maximum entropy. Artificial Intelligence, Special Issue on Non-
monotonic Reasoning 157(1-2), 139–202 (2004)

12. Kern-Isberner, G., Thimm, M.: Novel semantical approaches to relational proba-
bilistic conditionals. In: Lin, F., Sattler, U., Truszczyński, M. (eds.) Proceedings
of the Twelfth International Conference on the Principles of Knowledge Represen-
tation and Reasoning (KR’10). pp. 382–392. AAAI Press (May 2010)

13. Kersting, K., De Raedt, L.: Bayesian Logic Programming: Theory and Tool. In:
Getoor, L., Taskar, B. (eds.) An Introduction to Statistical Relational Learning.
MIT Press (2007)

14. Meyer, C.H.: Korrektes Schließen bei unvollständiger Information. Ph.D. thesis,
FernUniversität Hagen (1998)

15. Paris, J.: The uncertain reasoner’s companion – A mathematical perspective. Cam-
bridge University Press (1994)

16. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann (1998)

17. Rödder, W.: Conditional logic and the principle of entropy. Artificial Intelligence
117, 83–106 (2000)

18. Rödder, W., Meyer, C.H.: Coherent Knowledge Processing at Maximum Entropy
by SPIRIT. In: Proceedings of the Twelfth Conference on Uncertainty in Artificial
Intelligence (UAI 1996). pp. 470–476 (1996)

19. Teh, Y., Welling, M.: On improving the efficiency of the iterative proportional fit-
ting procedure. In: Proc. of the 9th Int’l. Workshop on AI and Statistics (AISTATS-
03) (2003)

20. Thimm, M.: Probabilistic Reasoning with Incomplete and Inconsistent Beliefs.
Ph.D. thesis, Technische Universität Dortmund (2011)

18

Verzeichnis der zuletzt erschienenen Informatik-Bericht

 [346] vor der Brück, T.:
Application of Machine Learning Algorithms for Automatic Knowledge Acquisition
and Readability Analysis Technical Report

[347] Fechner, B.:
Dynamische Fehlererkennungs- und –behebungsmechanismen für verlässliche
Mikroprozessoren

[348] Brattka, V., Dillhage, R., Grubba, T., Klutsch, A.:
 CCA 2008 - Fifth International Conference on Computability and Complexity in
 Analysis
[349] Osterloh, A.:
 A Lower Bound for Oblivious Dimensional Routing
[350] Osterloh, A., Keller, J.:
 Das GCA-Modell im Vergleich zum PRAM-Modell
[351] Fechner, B.:

GPUs for Dependability
[352] Güting, R. H., Behr, T., Xu, J.:
 Efficient k-Nearest Neighbor Search on Moving Object Trajectories
[353] Bauer, A., Dillhage, R., Hertling, P., Ko K.I., Rettinger, R.:
 CCA 2009 Sixth International Conference on Computability and Complexity in
 Analysis
[354] Beierle, C., Kern-Isberner, G.
 Relational Approaches to Knowledge Representation and Learning
[355] Sakr, M.A., Güting, R.H.
 Spatiotemporal Pattern Queries
[356] Güting, R. H., Behr, T., Düntgen, C.:
 SECONDO: A Platform for Moving Objects Database Research and for Publishing

and Integrating Research Implementations
[357] Düntgen, C., Behr, T., Güting, R.H.:
 Assessing Representations for Moving Object Histories
[358] Sakr, M.A., Güting, R.H.
 Group Spatiotemporal Pattern Queries
[359] Hartrumpf, S., Helbig, H., vor der Brück, T. , Eichhorn, C.
 SemDupl: Semantic Based Duplicate Identification
[360] Xu, J., Güting, R.H.
 A Generic Data Model for Moving Objects
[361] Beierle, C., Kern-Isberner, G.

Evolving Knowledge in Theory and Application: 3rd Workshop on Dynamics of
Knowledge and Belief, DKB 2011

[362] Xu, J., Güting, R.H.:
GMOBench: A Benchmark for Generic Moving Objects

